JP2002373527A - Transparent electrode film and sputtering target for forming this electrode film - Google Patents

Transparent electrode film and sputtering target for forming this electrode film

Info

Publication number
JP2002373527A
JP2002373527A JP2001182782A JP2001182782A JP2002373527A JP 2002373527 A JP2002373527 A JP 2002373527A JP 2001182782 A JP2001182782 A JP 2001182782A JP 2001182782 A JP2001182782 A JP 2001182782A JP 2002373527 A JP2002373527 A JP 2002373527A
Authority
JP
Japan
Prior art keywords
film
electrode film
transparent electrode
target
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001182782A
Other languages
Japanese (ja)
Other versions
JP4794757B2 (en
Inventor
Masataka Yahagi
政隆 矢作
Masakatsu Ubusawa
正克 生澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001182782A priority Critical patent/JP4794757B2/en
Publication of JP2002373527A publication Critical patent/JP2002373527A/en
Application granted granted Critical
Publication of JP4794757B2 publication Critical patent/JP4794757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent electrode film excellent in etching characteristics while maintaining good transmittance of visible light and a certain amount of resistance, and a target, which can lessen formation of nodule and unusual electric discharge in the sputtering process, which forms this transparent electrode film, and furthermore, to provide the target of the composition which can disregard pollution (contamination) from crushing media (zirconia) in the crushing process for supplying fine particles of high sintering nature on the occasion of manufacturing the target. SOLUTION: It is a transparent electrode film, which contains zirconium oxide of 5% (or more) to 10% in weight in indium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、タッチパネル等
に用いられる透明電極膜及び同電極膜を形成するための
スパッタリングターゲットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent electrode film used for a touch panel or the like and a sputtering target for forming the electrode film.

【0002】[0002]

【従来の技術】ITO(インジウム−錫を主成分とする
複合酸化物:In−SnO)膜は液晶ディスプ
レーを中心とする表示デバイス等の透明電極(膜)とし
て広く使用されている。このITO膜を形成する方法と
して、真空蒸着法やスパッタリング法など、一般に物理
蒸着法と言われている手段によって行われており、特に
操作性や膜の安定性からマグネトロンスパッタリング法
を用いて形成されている。スパッタリング法による膜の
形成は、陰極に設置したターゲットにArイオンなどの
正イオンを物理的に衝突させ、その衝突エネルギーでタ
ーゲットを構成する材料を放出させて、対面している陽
極側の基板にターゲット材料とほぼ同組成の膜を積層す
ることによって行われる。スパッタリング法による被覆
法は処理時間や供給電力等を調節することによって、安
定した成膜速度でオングストローム単位の薄い膜から数
十μmの厚い膜まで形成できるという特徴を有してい
る。
BACKGROUND ART ITO (indium - tin composite oxide as the main component: In 2 O 3 -SnO 2) film is widely used as a transparent electrode (film) such as a display device around the liquid crystal display . As a method of forming the ITO film, a method generally called a physical vapor deposition method, such as a vacuum vapor deposition method or a sputtering method, is used. ing. Formation of a film by the sputtering method involves physically colliding positive ions such as Ar ions with a target placed on the cathode, releasing the material constituting the target with the collision energy, and forming the target on the facing substrate on the anode side. This is performed by laminating a film having substantially the same composition as the target material. The coating method by the sputtering method is characterized in that a thin film of angstrom unit to a thick film of several tens μm can be formed at a stable film forming rate by adjusting the processing time, the supplied power, and the like.

【0003】ところで、現在最も多く使用されているI
TO系の透明電極膜は、可視光の透過率及び導電性には
優れているが、主として以下のような問題点がある。そ
の1つは、膜質が均一でなく、かつ回路形成時のエッチ
ング特性が悪いことである。近年ディスプレー装置や表
示入力装置においては、画素密度を増大させて緻密な画
面とすることが求められているが、これに伴って透明電
極パターンの緻密化が要求されている。例えば、液晶デ
ィスプレー装置においては配線幅が20〜50μmとい
う細線に形成される部分もあり、高度のエッチング加工
性が要求されている。このようなITOの透明電極膜の
欠点を改善したものとして、IXO(In−Zn
O)膜の提案がなされている。しかし、これはITO膜
に比べエッチング性が著しく大きいが、導電性に劣り、
また酸やアルカリ等に対する耐薬品性あるいは耐水性等
が不十分であるという問題がある。さらに向上したエッ
チング性が災いとなって、オーバーエッチングとなる傾
向があり、必ずしも適切な材料とは言い難い面がある。
[0003] By the way, the most frequently used I
Although the TO-based transparent electrode film is excellent in visible light transmittance and conductivity, it mainly has the following problems. One is that the film quality is not uniform and the etching characteristics during circuit formation are poor. In recent years, in display devices and display input devices, it has been required to increase the pixel density to obtain a fine screen, and accordingly, a finer transparent electrode pattern has been required. For example, in a liquid crystal display device, there is a portion formed as a thin line having a wiring width of 20 to 50 μm, and a high etching processability is required. IXO (In 2 O 3 -Zn) has been proposed as an improvement over such a transparent electrode film made of ITO.
O) A film has been proposed. However, this has remarkably large etching property as compared with the ITO film, but has poor conductivity,
In addition, there is a problem that the chemical resistance or water resistance to acids and alkalis is insufficient. Further, the improved etching property is harmful, and tends to be over-etched, which is not always an appropriate material.

【0004】その2の問題は、ITO透明電極膜形成用
ターゲットに錫リッチ相が存在することである。この錫
リッチ相は後述するノジュールの発生原因となる。すな
わち、ITO膜をスパッタリングにより形成する場合に
ノジュールと呼ばれる微細な突起物がターゲット表面の
エロージョン部に発生し、これにより異常放電やスプラ
ッシュを引き起こし、スパッタレートを低下させるとい
う問題である。さらに、このノジュールに起因する異常
放電やスプラッシュが原因となってスパッタチャンバ内
に粗大な粒子(パーティクル)が浮遊し、これが形成し
ている膜に付着して品質を低下させる原因となる。以上
から、実際の製造に際しては、ターゲットに発生したノ
ジュールを定期的に除去することが必要となり、これが
著しく生産性を低下させるという問題があり、ノジュー
ルの発生の少ないターゲットが求められている。
[0004] The second problem is that a tin-rich phase exists in a target for forming an ITO transparent electrode film. This tin-rich phase causes the generation of nodules described later. That is, when the ITO film is formed by sputtering, fine projections called nodules are generated in the erosion portion on the target surface, thereby causing abnormal discharge or splash and lowering the sputtering rate. Further, due to abnormal discharge or splash caused by the nodules, coarse particles (particles) float in the sputtering chamber, and adhere to a film formed thereby, thereby deteriorating the quality. As described above, in actual production, it is necessary to periodically remove nodules generated in the target, which significantly lowers productivity, and there is a demand for a target in which nodules are less generated.

【0005】その3の問題は、上記のような問題からノ
ジュールの低減方法として焼結体の密度を可能な限り上
げるために焼結体中の空孔を少なくすることが提案さ
れ、成形前の粉体を一層微粉にすることが求められた。
一般に、微粉砕はジルコニアビーズ及びジルコニアの内
壁をもつ容器を使用して行われているが、このような粉
砕メディアからの汚染(コンタミ)、すなわちジルコニ
アがターゲット材に混入するという問題があった。ま
た、一方では加圧状態での焼結が必要であり、密度をさ
らに上昇させるために設備をよりいっそう大型にする必
要があるという問題があり、さらに工業的にも効率の良
い方法とは言えなかった。
[0005] The third problem is to reduce the number of pores in the sintered body in order to increase the density of the sintered body as much as possible. It was required to make the powder finer.
In general, fine pulverization is performed using a container having zirconia beads and an inner wall of zirconia. However, there is a problem that contamination (contamination) from such a pulverization medium, that is, zirconia is mixed into a target material. On the other hand, sintering under the pressurized state is necessary, and there is a problem that the equipment needs to be further enlarged in order to further increase the density, which can be said to be an industrially efficient method. Did not.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の諸問
題点の解決、良好な可視光の透過率とある程度の電気抵
抗を維持しながら、エッチング特性に優れた透明電極膜
を提供することにある。また、この透明電極膜を形成す
るスパッタリングプロセスにおいて、ノジュールの形成
や異常放電を少なくすることができるターゲットを提供
する。さらにターゲットの製造に際して、焼結性の高い
粉体を供給するための粉砕工程において、粉砕メディア
(ジルコニア)からの汚染(コンタミ)を無視できる組
成のターゲットを提供する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a transparent electrode film having excellent etching characteristics while maintaining good visible light transmittance and a certain electric resistance. It is in. Further, the present invention provides a target capable of reducing formation of nodules and abnormal discharge in a sputtering process for forming the transparent electrode film. Further, the present invention provides a target having a composition in which contamination (contamination) from a pulverizing medium (zirconia) can be ignored in a pulverizing step for supplying a powder having a high sinterability at the time of manufacturing the target.

【0007】[0007]

【課題を解決するための手段】本発明は、 1.酸化インジウム中に酸化ジルコニウム5重量%
(超)〜10重量%含有することを特徴とする透明電極
膜 2.酸化インジウム中に酸化ジルコニウム5重量%
(超)〜10重量%含有することを特徴とする透明電極
膜を形成するためのスパッタリングターゲットを提供す
る。 3.EPMA観察によるジルコニウム相の径が5μm以
下であることを特徴とする上記2記載の透明電極膜を形
成するためのスパッタリングターゲット。
The present invention provides: 5% by weight of zirconium oxide in indium oxide
1. Transparent electrode film characterized by containing (super) to 10% by weight 5% by weight of zirconium oxide in indium oxide
Provided is a sputtering target for forming a transparent electrode film characterized by containing (super) to 10% by weight. 3. 3. The sputtering target for forming a transparent electrode film according to the above item 2, wherein the zirconium phase has a diameter of 5 μm or less as observed by EPMA.

【0008】[0008]

【発明の実施の形態】透明導電膜の導電性は、一般に面
積抵抗(Ω/□)で表され、通常5Ω/□程度という面
積抵抗が要求されており、上記のような液晶ディスプレ
ー画面に適用する場合においては液晶画面の高精細化と
ともにさらに低い面積抵抗が要求されている。面積抵抗
は比抵抗を透明導電膜の厚みで割った値で表される。し
たがって、透明導電膜の面積導電率は導電率(比抵抗の
逆数)と、膜厚の積で表現され、この導電率σ(Ω−1
・cm−1)は膜に含まれるキャリヤ(正孔又は電子)
の持つ電荷e(クーロン)とキャリヤ移動度μ(cm
/V・sec)及びキャリヤ濃度n(cm−3)の積で
表される(σ(Ω−1・cm−1)=e・μ・n)。し
たがって、透明導電膜の導電率を向上させ、比抵抗(抵
抗率とも云う)と面積抵抗とを低下させるためには、キ
ャリヤ移動度μ(cm/V・sec)及びキャリヤ濃
度n(cm−3)のいずれか一方又は双方を増大させれ
ばよい。
BEST MODE FOR CARRYING OUT THE INVENTION The conductivity of a transparent conductive film is generally represented by a sheet resistance (Ω / □), and usually requires a sheet resistance of about 5Ω / □, and is applied to a liquid crystal display screen as described above. In such a case, a liquid crystal screen is required to have a higher definition and a lower sheet resistance is required. The sheet resistance is represented by a value obtained by dividing the specific resistance by the thickness of the transparent conductive film. Therefore, the area conductivity of the transparent conductive film is represented by the product of the conductivity (the reciprocal of the specific resistance) and the film thickness, and this conductivity σ (Ω −1)
・ Cm -1 ) is the carrier (hole or electron) contained in the film
Charge e (coulomb) and carrier mobility μ (cm 2
/ V · sec) and the carrier concentration n (cm −3 ) (σ (Ω −1 · cm −1 ) = e · μ · n). Therefore, in order to improve the conductivity of the transparent conductive film and reduce the specific resistance (also referred to as resistivity) and the sheet resistance, the carrier mobility μ (cm 2 / V · sec) and the carrier concentration n (cm Any one or both of 3 ) may be increased.

【0009】このことから、キャリヤ濃度nを高めるた
めのドーパントとして、酸化インジウム(In
に高濃度(〜5重量%まで)で固溶する酸化ジルコニウ
ム(ZrO)に着目した。この酸化ジルコニウムドー
パントは後述するように、良好な可視光の透過率と高導
電性を維持することができることが判明した。これにつ
いては、本発明者らは既に、特願2001−02507
8として提起している。他方、このことから酸化ジルコ
ニウム(ZrO)の含有量が5重量%を超え増加して
いくに伴って、得られる膜の比抵抗は高くなっていくこ
とが理解できる。したがって、ある程度高い比抵抗を有
する膜を得るためには、このジルコニウム濃度の調整が
有効であることが分かった。すなわち、このような比較
的高い比抵抗を有する膜は、タッチパネルの原料として
さらに有効である。また、この酸化ジルコニウムドーパ
ントは、耐酸性に関してITOの成分であるSnO
高くないがZnO程卑ではなく、適度なエッチング特性
が得られるという優れた特長がある。
Therefore, indium oxide (In 2 O 3 ) is used as a dopant for increasing the carrier concentration n.
Attention was paid to zirconium oxide (ZrO 2 ) which forms a solid solution at a high concentration (up to 5% by weight). It has been found that this zirconium oxide dopant can maintain good visible light transmittance and high conductivity as described later. Regarding this, the present inventors have already disclosed Japanese Patent Application No. 2001-02507.
8 On the other hand, from this, it can be understood that as the content of zirconium oxide (ZrO 2 ) increases beyond 5% by weight, the specific resistance of the obtained film increases. Therefore, it was found that the adjustment of the zirconium concentration was effective in obtaining a film having a relatively high specific resistance. That is, such a film having a relatively high specific resistance is more effective as a raw material for a touch panel. The zirconium oxide dopant is not so high in acid resistance as SnO 2, which is a component of ITO, but is not as base as ZnO and has an excellent feature that an appropriate etching property can be obtained.

【0010】さらに、本発明はターゲット中のジルコニ
ウム相の径を5μm以下とすることができる。なお、タ
ーゲット中では酸化インジウムと酸化ジルコニウムの複
合酸化物又は酸化インジウムへの固溶体として存在する
が、酸化ジルコニウムの濃度が5%近傍までは酸化ジル
コニウムが固溶し、その量が増えると固溶しきれずにE
PMA観察によるジルコニウム相が析出してくる。この
ジルコニウム相はターゲット中では異相であり、これが
大きくなると長時間のスパッタリングにおいてはノジュ
ールの発生やアーキングの原因となり、極端な場合はス
パッタ膜の組成が不均一となる可能性もある。したがっ
て、このようなジルコニウム含有析出相を5μm以下と
し、均一分散させることによってノジュールの発生やア
ーキングを防止することができる。
Further, according to the present invention, the diameter of the zirconium phase in the target can be 5 μm or less. In the target, there is a composite oxide of indium oxide and zirconium oxide or as a solid solution in indium oxide. However, zirconium oxide forms a solid solution up to a concentration of zirconium oxide up to about 5%. E without
A zirconium phase is precipitated by PMA observation. This zirconium phase is a heterogeneous phase in the target. If the zirconium phase is large, it may cause generation of nodules or arcing in long-time sputtering, and in extreme cases, the composition of the sputtered film may become non-uniform. Therefore, generation of nodules and arcing can be prevented by setting the zirconium-containing precipitation phase to 5 μm or less and uniformly dispersing the same.

【0011】さらに、スパッタリング時の膜特性を左右
する要因として、上記に示すようにターゲットの密度が
挙げられ、ターゲットの密度が高いほど安定したスパッ
タリング特性と良好な膜が得られる。ターゲットの密度
を向上させるためには、成形前の粉体が細かければ細か
いほど良いことが知られている。酸化インジウムに加え
るドーパントとして上記の酸化ジルコニウム(ジルコニ
ア)を用いることができると同時に、酸化ジルコニウム
を微粉砕用のメディアとして用いる、即ちジルコニアビ
ーズやジルコニアライニングの容器を使用して粉砕する
ことができ、粉砕メディア自体が汚染源(コンタミ源)
とならないという大きな利点がある。これによって、粉
砕のレベルを向上させ、従来に比べてはるかに高純度で
かつ高密度のスパッタリングターゲットを得ることがで
きる。また、このような高密度ターゲットを使用するこ
とにより、ノジュールの発生を抑え、このノジュールに
起因する異常放電やスプラッシュが原因となって生ずる
パーティクルの発生を抑え、導電膜の品質低下を効果的
に抑制できるという特長を有する。
Further, as described above, the factor which influences the film characteristics at the time of sputtering is the density of the target. The higher the density of the target, the more stable the sputtering characteristics and the better the film can be obtained. It is known that in order to improve the density of the target, the finer the powder before molding, the better. The above-mentioned zirconium oxide (zirconia) can be used as a dopant to be added to indium oxide, and at the same time, zirconium oxide can be used as a medium for fine pulverization, that is, pulverization using a container of zirconia beads or zirconia lining, The grinding media itself is a source of contamination (contamination source)
There is a great advantage that it does not occur. As a result, the level of pulverization can be improved, and a sputtering target with much higher purity and higher density than before can be obtained. In addition, by using such a high-density target, the generation of nodules is suppressed, the generation of particles caused by abnormal discharge or splash caused by this nodule is suppressed, and the quality of the conductive film is effectively reduced. It has the feature that it can be suppressed.

【0012】[0012]

【実施例及び比較例】次に、本発明の実施例について説
明する。なお、本実施例はあくまで一例であり、この例
に制限されるものではない。すなわち、本発明の技術思
想の範囲内で、実施例以外の態様あるいは変形を全て包
含するものである。
Examples and Comparative Examples Next, examples of the present invention will be described. This embodiment is merely an example, and the present invention is not limited to this example. That is, all aspects or modifications other than the examples are included within the scope of the technical idea of the present invention.

【0013】(実施例1〜3)酸化インジウム(In
)粉に酸化ジルコニウム(ZrO)粉を6、7、
8重量%となるように秤量した後、ジルコニア(ZrO
)ボール(ビーズ)を粉砕メディアとして用い、アト
ライタで混合・微粉砕を行い、メジアン径で0.8μm
の混合粉体スラリーを得た。なお、上記酸化ジルコニウ
ム粉を6、7、8重量%とした場合について、それぞれ
実施例1、2、3とする。このスラリーを造粒し、球状
の造粒粉を得た。さらにこの造粒粉をプレス成型し、さ
らにCIP(等方冷間プレス)を行った。そしてこの成
形体を酸素雰囲気中1640°Cの温度で4時間焼結を
行い、焼結体(以下、「IZO焼結体」という。)を得
た。焼結密度は99%以上に達した。この焼結体を研
削、切断を行い、所定形状のスパッタリング用ターゲッ
トに加工した。
(Examples 1 to 3) Indium oxide (In 2
Zirconium oxide (ZrO 2 ) powder is added to O 3 ) powder for 6, 7,
8% by weight, and then zirconia (ZrO)
2 ) Using balls (beads) as grinding media, mix and finely grind with an attritor, median diameter 0.8 μm
Was obtained. Examples 1, 2, and 3 were made when the amount of the zirconium oxide powder was 6, 7, and 8% by weight. This slurry was granulated to obtain a spherical granulated powder. Further, the granulated powder was press-molded, and further subjected to CIP (isotropic cold pressing). Then, this compact was sintered at a temperature of 1640 ° C. for 4 hours in an oxygen atmosphere to obtain a sintered body (hereinafter referred to as “IZO sintered body”). The sintering density reached over 99%. This sintered body was ground and cut, and processed into a sputtering target having a predetermined shape.

【0014】次に、このIZO焼結体ターゲットを用い
てガラス基板にDCスパッタにより、次の条件で透明電
極膜を形成した。 スパッタガス : Ar+O スパッタガス圧 : 0.5Pa 電力量 : 60W 成膜速度 : 約300Å/min この場合のノジュールの発生量(被覆率)を測定した
が、本実施例のIZO焼結体におけるノジュールの被覆
率は10%以下であった。
Next, a transparent electrode film was formed on the glass substrate by DC sputtering using the IZO sintered body target under the following conditions. Sputtering gas: Ar + O 2 Sputtering gas pressure: 0.5 Pa Electric power: 60 W Deposition rate: about 300 ° / min The amount of nodule generated (coverage) in this case was measured, but the nodule in the IZO sintered body of this example was measured. Was 10% or less.

【0015】また、成膜の比抵抗(Ω・cm)及び55
0nmでの透過率%の膜特性を調べ、その結果を表1に
示す。なお、表1においては室温、酸素濃度1%成膜時
の膜特性を示す。また、比較のために、同様の条件で作
製したITO膜(比較例1)及びIXO膜(比較例2)
の比抵抗(Ω・cm)及び550nmでの透過率%の膜
特性を表1に掲載した。この表1から明らかなように、
比抵抗は高くなり、透過率は本発明の実施例と比較例1
のITOとは殆ど遜色なく、本発明の実施例の良好な可
視光の透過率と高い比抵抗を示しているのが分かる。ま
た、酸化ジルコニウムの増加量とスパッタリングにより
得られた膜の比抵抗とはある程度相関があり、酸化ジル
コニウムの増加とともに膜の比抵抗が高くなる傾向が見
られた。一般に、ITO膜に対して本発明のIZO焼結
体ターゲットを使用したIZO膜は基板温度を上げて成
膜した状態での膜特性には大差ないが、室温で成膜した
膜での特性がより優れているという結果が得られた。
Further, the specific resistance (Ω · cm) of film formation and 55
The film characteristics of the transmittance% at 0 nm were examined, and the results are shown in Table 1. Table 1 shows film properties at the time of film formation at room temperature and an oxygen concentration of 1%. For comparison, an ITO film (Comparative Example 1) and an IXO film (Comparative Example 2) manufactured under the same conditions.
Table 1 shows the specific resistance (Ω · cm) and the film characteristics of the transmittance% at 550 nm. As is clear from Table 1,
The specific resistance is increased, and the transmittance is equal to the Example of the present invention and Comparative Example
It can be seen that they exhibit good visible light transmittance and high specific resistance of Examples of the present invention, almost inferior to ITO. Further, there was a certain correlation between the amount of zirconium oxide and the specific resistance of the film obtained by sputtering, and it was found that the specific resistance of the film tended to increase as the amount of zirconium oxide increased. In general, an IZO film using the IZO sintered body target of the present invention with respect to an ITO film has almost no difference in film characteristics in a state where the film is formed by raising the substrate temperature. The result was better.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例1〜3及び比較例1、2のターゲッ
ト中の酸化ジルコニウム濃度と密度の測定結果を表2に
示す。この表2に示されているように、実施例1〜3の
相対密度はいずれも97%を超えており、酸化ジルコニ
ウム濃度の増加とともに相対密度は向上している。この
表に示していないが、酸化ジルコニウム濃度10wt%
では、相対密度98.7%に達した。これによって、均
一かつ品質に優れたスパッタ膜の形成が可能となる。こ
れに対し、比較例1及び2のターゲットの密度はそれぞ
れ93%、87%であり、本実施例よりも低く悪い結果
が得られた。そして、ノジュール被覆率は70%に達し
た。さらに、酸化ジルコニウムの濃度が増した場合に、
固溶しきれずにジルコニウム相(酸化ジルコニウム相)
が析出してくる様子を観察した。図1は、酸化ジルコニ
ウム含有量6wt%のターゲット(実施例1)のEPM
A観察結果(1000倍)である。この図1では、ジル
コニウム相の径が1μm未満の微細な析出物が見られ
る。この程度の析出物は、スパッタリングの際のノジュ
ールやアーキングの発生はなく、またスパッタ膜の組成
が不均一となる虞もない。
Table 2 shows the measurement results of the zirconium oxide concentration and density in the targets of Examples 1 to 3 and Comparative Examples 1 and 2. As shown in Table 2, the relative densities of Examples 1 to 3 all exceeded 97%, and the relative densities improved with an increase in the zirconium oxide concentration. Although not shown in this table, zirconium oxide concentration 10 wt%
In this case, the relative density reached 98.7%. This makes it possible to form a uniform and excellent quality sputtered film. On the other hand, the densities of the targets of Comparative Examples 1 and 2 were 93% and 87%, respectively, which were lower than those of the present example and poor results were obtained. And the nodule coverage reached 70%. Furthermore, when the concentration of zirconium oxide increases,
Zirconium phase (zirconium oxide phase) without solid solution
Was observed. FIG. 1 shows an EPM of a target (Example 1) having a zirconium oxide content of 6 wt%.
A is the observation result (1000 times). In FIG. 1, fine precipitates having a zirconium phase diameter of less than 1 μm are seen. Such a precipitate does not generate nodules or arcing at the time of sputtering, and there is no possibility that the composition of the sputtered film becomes non-uniform.

【0018】近年、器機の軽量化及びコスト削減からガ
ラス基板に替えてプラスチックシートやフイルムを使用
する傾向にある。プラスチックスは耐熱性に劣るので、
基板を加熱しない、あるいは低温での成膜が求められて
いる。したがって、上記のような室温又は低温での膜特
性に優れている本件発明の透明電極は、この目的に合致
し、優れた材料と言える。また、比較例1及び2では、
本実施例と同等の0.8μm以下までの粉砕を実施する
と、ジルコニアのコンタミが著しく増大しているのが確
認できた。
In recent years, there has been a tendency to use plastic sheets and films instead of glass substrates in order to reduce the weight and cost of equipment. Since plastics have poor heat resistance,
There is a demand for film formation without heating the substrate or at a low temperature. Therefore, the transparent electrode of the present invention, which has excellent film properties at room temperature or low temperature as described above, meets this purpose and can be said to be an excellent material. In Comparative Examples 1 and 2,
When pulverization to 0.8 μm or less, which is the same as in this example, it was confirmed that the zirconia contamination was significantly increased.

【0019】[0019]

【表2】 [Table 2]

【0020】次に、上記実施例と比較例1及び2の透明
電極膜について、基板温度とエッチング速度との関係を
表3に示す。エッチャントはHCl:HO:HNO
=1:1:0.08の混酸を用いた。表3から明らかな
ように、ITOである比較例1に対して、基板温度が室
温の場合及び200°Cの場合、いずれも本実施例であ
るIZOのエッチング速度が勝っていることが分かる。
特に基板温度が200°Cの場合に、その差が著しい。
また、比較例2のIXOでは室温のエッチング性は92
700Å/min、200°Cでは90900Å/mi
nと異常に高いが、反面オーバーエッチングになりやす
く、好ましくない。
Next, Table 3 shows the relationship between the substrate temperature and the etching rate for the transparent electrode films of the above embodiment and Comparative Examples 1 and 2. The etchant is HCl: H 2 O: HNO 3
= 1: 1: 0.08 mixed acid was used. As is clear from Table 3, when the substrate temperature is room temperature and when the substrate temperature is 200 ° C., the etching rate of IZO according to the present example is superior to Comparative Example 1 which is ITO.
In particular, when the substrate temperature is 200 ° C., the difference is remarkable.
The IXO of Comparative Example 2 had an etching property of 92
700Å / min, 90900Å / mi at 200 ° C
n is unusually high, but undesirably tends to be overetched.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】良好な可視光の透過率とある程度の比較
的高い比抵抗を維持しながら、適度なエッチング性を備
えた透明電極膜を得るものであり、また透明電極膜を形
成するスパッタリングプロセスにおいて、高密度でノジ
ュール発生が少ない焼結体ターゲットを効率的に製造
し、これによってノジュールの発生に伴う生産性の低下
や品質の低下を抑制し、さらに粉砕メディアからの汚染
(コンタミ)を無視できるターゲットを得ることができ
るという優れた特長を有する。また、室温又は低温での
膜特性に優れており、液晶ディスプレー等の軽量化から
ガラス基板に替えて耐熱性に劣るプラスチックシートや
フイルムを基板とする場合に、特に有用である。
According to the present invention, a transparent electrode film having a suitable etching property is obtained while maintaining a good visible light transmittance and a certain relatively high specific resistance, and a sputtering process for forming the transparent electrode film. , Efficient production of sintered targets with high density and low nodule generation, thereby suppressing productivity and quality deterioration due to nodule generation, and ignoring contamination from grinding media It has an excellent feature that a target that can be obtained can be obtained. Further, it is excellent in film properties at room temperature or low temperature, and is particularly useful when a plastic sheet or film having poor heat resistance is used as a substrate in place of a glass substrate due to weight reduction of a liquid crystal display or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】EPMA観察によるジルコニウム相の析出物を
示す図である。
FIG. 1 is a view showing a precipitate of a zirconium phase observed by EPMA.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/285 H01L 21/285 S Fターム(参考) 2H092 KB05 KB14 NA29 4K029 AA09 BA45 BA50 BC09 CA05 DC05 DC09 DC34 4M104 AA10 BB36 DD39 DD40 DD42 GG20 HH20 5B087 BC33 CC11 CC16 CC36 5G307 FB01 FC09 FC10 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (reference) H01L 21/285 H01L 21/285 SF term (reference) 2H092 KB05 KB14 NA29 4K029 AA09 BA45 BA50 BC09 CA05 DC05 DC09 DC34 4M104 AA10 BB36 DD39 DD40 DD42 GG20 HH20 5B087 BC33 CC11 CC16 CC36 5G307 FB01 FC09 FC10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化インジウム中に酸化ジルコニウム5
重量%(超)〜10重量%含有することを特徴とする透
明電極膜。
1. Zirconium oxide 5 in indium oxide
A transparent electrode film, which is contained in an amount of 10% by weight (excess) to 10% by weight.
【請求項2】 酸化インジウム中に酸化ジルコニウム5
重量%(超)〜10重量%含有することを特徴とする透
明電極膜を形成するためのスパッタリングターゲット。
2. Zirconium oxide 5 in indium oxide
A sputtering target for forming a transparent electrode film, wherein the sputtering target contains from 10% by weight (excess) to 10% by weight.
【請求項3】 EPMA観察によるジルコニウム相の径
が5μm以下であることを特徴とする請求項2記載の透
明電極膜を形成するためのスパッタリングターゲット。
3. The sputtering target for forming a transparent electrode film according to claim 2, wherein the diameter of the zirconium phase observed by EPMA is 5 μm or less.
JP2001182782A 2001-06-18 2001-06-18 Sputtering target for forming a transparent electrode film Expired - Lifetime JP4794757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182782A JP4794757B2 (en) 2001-06-18 2001-06-18 Sputtering target for forming a transparent electrode film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182782A JP4794757B2 (en) 2001-06-18 2001-06-18 Sputtering target for forming a transparent electrode film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011092573A Division JP5290350B2 (en) 2011-04-19 2011-04-19 Transparent electrode film

Publications (2)

Publication Number Publication Date
JP2002373527A true JP2002373527A (en) 2002-12-26
JP4794757B2 JP4794757B2 (en) 2011-10-19

Family

ID=19022811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182782A Expired - Lifetime JP4794757B2 (en) 2001-06-18 2001-06-18 Sputtering target for forming a transparent electrode film

Country Status (1)

Country Link
JP (1) JP4794757B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203553A (en) * 2008-02-26 2009-09-10 Samsung Corning Precision Glass Co Ltd Zinc-oxide-based sputtering target, manufacturing method therefor, and zinc-oxide-based thin film
WO2011043235A1 (en) 2009-10-06 2011-04-14 Jx日鉱日石金属株式会社 Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
JP2014167170A (en) * 2014-04-25 2014-09-11 Mitsubishi Materials Corp Oxide sputtering target and manufacturing method of the same
JP2015214437A (en) * 2014-05-08 2015-12-03 出光興産株式会社 Oxide sintered body and sputtering target

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309511A (en) * 1989-05-24 1990-12-25 Showa Denko Kk Transparent conductive film
JPH06160876A (en) * 1992-11-24 1994-06-07 Toppan Printing Co Ltd Transparent electrode plate and its production
JPH09152940A (en) * 1995-11-30 1997-06-10 Idemitsu Kosan Co Ltd Touch panel
JPH09209134A (en) * 1996-01-31 1997-08-12 Idemitsu Kosan Co Ltd Target and its production
JPH10147862A (en) * 1996-11-15 1998-06-02 Sumitomo Metal Mining Co Ltd Indium oxide-tin oxide sintered body
JPH11157924A (en) * 1997-11-19 1999-06-15 Kobe Steel Ltd Ito sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309511A (en) * 1989-05-24 1990-12-25 Showa Denko Kk Transparent conductive film
JPH06160876A (en) * 1992-11-24 1994-06-07 Toppan Printing Co Ltd Transparent electrode plate and its production
JPH09152940A (en) * 1995-11-30 1997-06-10 Idemitsu Kosan Co Ltd Touch panel
JPH09209134A (en) * 1996-01-31 1997-08-12 Idemitsu Kosan Co Ltd Target and its production
JPH10147862A (en) * 1996-11-15 1998-06-02 Sumitomo Metal Mining Co Ltd Indium oxide-tin oxide sintered body
JPH11157924A (en) * 1997-11-19 1999-06-15 Kobe Steel Ltd Ito sputtering target

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203553A (en) * 2008-02-26 2009-09-10 Samsung Corning Precision Glass Co Ltd Zinc-oxide-based sputtering target, manufacturing method therefor, and zinc-oxide-based thin film
WO2011043235A1 (en) 2009-10-06 2011-04-14 Jx日鉱日石金属株式会社 Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
US8771557B2 (en) 2009-10-06 2014-07-08 Jx Nippon Mining & Metals Corporation Indium oxide sintered compact, indium oxide transparent conductive film, and manufacturing method of indium oxide transparent conductive film
US9589695B2 (en) 2009-10-06 2017-03-07 Jx Nippon Mining & Metals Corporation Indium oxide transparent conductive film
US10037830B2 (en) 2009-10-06 2018-07-31 Jx Nippon Mining & Metals Corporation Indium oxide transparent conductive film
JP2014167170A (en) * 2014-04-25 2014-09-11 Mitsubishi Materials Corp Oxide sputtering target and manufacturing method of the same
JP2015214437A (en) * 2014-05-08 2015-12-03 出光興産株式会社 Oxide sintered body and sputtering target

Also Published As

Publication number Publication date
JP4794757B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
KR100957733B1 (en) Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP5716768B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
JP4730204B2 (en) Oxide sintered compact target and method for producing oxide transparent conductive film using the same
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
KR101004981B1 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP2007277075A (en) Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
KR20090063946A (en) Indium tin oxide target and manufacturing method of transparent conductive film using the same
JP2000040429A (en) Manufacturing of zinc oxide transparent conductive film
JP4779798B2 (en) Oxide sintered body, target, and transparent conductive film obtained using the same
JP4770310B2 (en) Transparent conductive film, transparent conductive substrate and oxide sintered body
JP2002226966A (en) Transparent electrode film, and sputtering target for deposition of the electrode film
JP4794757B2 (en) Sputtering target for forming a transparent electrode film
JP4234483B2 (en) ITO sputtering target, manufacturing method thereof, and ITO transparent conductive film
JPWO2005019492A1 (en) ITO sputtering target
JP2003100154A (en) Transparent conductive film, its manufacturing method and its application
JP3775344B2 (en) Oxide sintered body
JP5976855B2 (en) Method for producing sputtering target for forming transparent electrode film
JP2014148752A (en) Transparent electrode film and manufacturing method of the transparent electrode film
JP5290350B2 (en) Transparent electrode film
JP5761670B2 (en) Sputtering target for forming transparent conductive film and method for producing the same
JP2001081551A (en) Ito sputtering target
KR100788333B1 (en) Metal oxide containing cu for forming electrically conductive transparent thin layer and sintered body thereof, electrically conductive transparent thin layer using the same, and manufacturing method thereof
JP2005298306A (en) Oxide sintered compact, sputtering target and transparent electrically conductive thin film
JP2001335925A (en) Method for producing ito thin film
JP4218230B2 (en) Sintered body target for transparent conductive film production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4794757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term