JP5761670B2 - Sputtering target for forming transparent conductive film and method for producing the same - Google Patents
Sputtering target for forming transparent conductive film and method for producing the same Download PDFInfo
- Publication number
- JP5761670B2 JP5761670B2 JP2011236653A JP2011236653A JP5761670B2 JP 5761670 B2 JP5761670 B2 JP 5761670B2 JP 2011236653 A JP2011236653 A JP 2011236653A JP 2011236653 A JP2011236653 A JP 2011236653A JP 5761670 B2 JP5761670 B2 JP 5761670B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- film
- zirconium oxide
- sintered
- transparent electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Description
この発明は、液晶ディスプレーを中心とする表示デバイス等に用いられる透明電極膜を形成するためのスパッタリングターゲットに関する。 The present invention relates to a sputtering target for forming a transparent electrode film used for a display device or the like centering on a liquid crystal display.
ITO(インジウム−錫を主成分とする複合酸化物:In2O3−SnO2)膜は液晶ディスプレーを中心とする表示デバイス等の透明電極(膜)として広く使用されている。
このITO膜を形成する方法として、真空蒸着法やスパッタリング法など、一般に物理蒸着法と言われている手段によって行われており、特に操作性や膜の安定性からマグネトロンスパッタリング法を用いて形成されている。
スパッタリング法による膜の形成は、陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面している陽極側の基板にターゲット材料とほぼ同組成の膜を積層することによって行われる。
スパッタリング法による被覆法は処理時間や供給電力等を調節することによって、安定した成膜速度でオングストローム単位の薄い膜から数十μmの厚い膜まで形成できるという特徴を有している。
ところで、現在最も多く使用されているITO系の透明電極膜は、可視光の透過率及び導電性には優れているが、主として以下のような問題点がある。
An ITO (indium-tin-based composite oxide: In 2 O 3 —SnO 2 ) film is widely used as a transparent electrode (film) for a display device or the like centering on a liquid crystal display.
As a method of forming this ITO film, it is performed by means generally called physical vapor deposition such as vacuum vapor deposition or sputtering, and it is formed by magnetron sputtering particularly from the viewpoint of operability and film stability. ing.
A film is formed by sputtering, in which positive ions such as Ar ions are physically collided with a target placed on the cathode, and the material constituting the target is released by the collision energy, and the substrate on the anode side facing the target is released. This is done by stacking films having the same composition as the target material.
The coating method by sputtering has a feature that a thin film in angstrom units to a thick film of several tens of μm can be formed at a stable film formation speed by adjusting the processing time, supply power, and the like.
By the way, the ITO-based transparent electrode film that is most frequently used at present is excellent in visible light transmittance and conductivity, but mainly has the following problems.
その1つは、膜質が均一でなく、かつ回路形成時のエッチング特性が悪いことである。近年ディスプレー装置や表示入力装置においては、画素密度を増大させて緻密な画面とすることが求められているが、これに伴って透明電極パターンの緻密化が要求されている。例えば、液晶ディスプレー装置においては配線幅が20〜50μmという細線に形成される部分もあり、高度のエッチング加工性が要求されている。
このようなITOの透明電極膜の欠点を改善したものとして、IXO(In2O3−ZnO)膜の提案がなされている。しかし、これはITO膜に比べエッチング性が著しく大きいが、導電性に劣り、また酸やアルカリ等に対する耐薬品性あるいは耐水性等が不十分であるという問題がある。さらに向上したエッチング性が災いとなって、オーバーエッチングとなる傾向があり、必ずしも適切な材料とは言い難い面がある。
One of them is that the film quality is not uniform and the etching characteristics at the time of circuit formation are poor. In recent years, display devices and display input devices have been demanded to increase the pixel density to provide a dense screen, and in accordance with this, it is required to make the transparent electrode pattern dense. For example, in a liquid crystal display device, there is a portion formed in a thin line having a wiring width of 20 to 50 μm, and high etching processability is required.
An IXO (In 2 O 3 —ZnO) film has been proposed as an improvement of the defects of the ITO transparent electrode film. However, this has significantly higher etching properties than the ITO film, but is inferior in conductivity, and has a problem of insufficient chemical resistance or water resistance against acids, alkalis and the like. Further, the improved etching property tends to be a disaster and tends to be over-etched, which is not necessarily an appropriate material.
その2の問題は、ITO透明電極膜形成用ターゲットに錫リッチ相が存在することである。この錫リッチ相は後述するノジュールの発生原因となる。すなわち、ITO膜をスパッタリングにより形成する場合にノジュールと呼ばれる微細な突起物がターゲット表面のエロージョン部に発生し、これにより異常放電やスプラッシュを引き起こし、スパッタレートを低下させるという問題である。
さらに、このノジュールに起因する異常放電やスプラッシュが原因となってスパッタチャンバ内に粗大な粒子(パーティクル)が浮遊し、これが形成している膜に付着して品質を低下させる原因となる。
以上から、実際の製造に際しては、ターゲットに発生したノジュールを定期的に除去することが必要となり、これが著しく生産性を低下させるという問題があり、ノジュールの発生の少ないターゲットが求められている。
The second problem is that a tin-rich phase exists in the ITO transparent electrode film forming target. This tin-rich phase causes nodules to be described later. That is, when the ITO film is formed by sputtering, fine protrusions called nodules are generated in the erosion portion of the target surface, thereby causing abnormal discharge and splash, thereby reducing the sputtering rate.
Further, the abnormal discharge and splash resulting from the nodules cause coarse particles to float in the sputtering chamber, which adheres to the film formed and causes the quality to deteriorate.
From the above, in actual production, it is necessary to periodically remove the nodules generated in the target, which has a problem that the productivity is remarkably reduced, and a target with little generation of nodules is demanded.
その3の問題は、上記のような問題からノジュールの低減方法として焼結体の密度を可能な限り上げるために焼結体中の空孔を少なくすることが提案され、成形前の粉体を一層微粉にすることが求められた。
一般に、微粉砕はジルコニアビーズ及びジルコニアの内壁をもつ容器を使用して行われているが、このような粉砕メディアからの汚染(コンタミ)、すなわちジルコニアがターゲット材に混入するという問題があった。
また、一方では加圧状態での焼結が必要であり、密度をさらに上昇させるために設備をよりいっそう大型にする必要があるという問題があり、さらに工業的にも効率の良い方法とは言えなかった。
As the third problem, as a nodule reduction method, it is proposed to reduce the number of pores in the sintered body in order to increase the density of the sintered body as much as possible. It was required to make it finer.
In general, fine pulverization is performed using a container having zirconia beads and an inner wall of zirconia. However, there is a problem that contamination (contamination) from such pulverization media, that is, zirconia is mixed into the target material.
On the other hand, there is a problem that sintering in a pressurized state is necessary, and the equipment needs to be made larger in order to further increase the density, and it can be said that it is an industrially efficient method. There wasn't.
公知文献として、下記特許文献を挙げることができるが、良好な可視光の透過率と高導電性を維持しながら、適度なエッチング性を備えた透明電極膜を得るための手段としては、十分な機能を有していない。 As publicly known documents, the following patent documents can be cited, but as a means for obtaining a transparent electrode film having appropriate etching properties while maintaining good visible light transmittance and high conductivity, it is sufficient. Has no function.
本発明は、上記の諸問題点の解決、良好な可視光の透過率と高導電性を維持しながら、適度なエッチング性を備えた透明電極膜を得る。
また、この透明電極膜を形成するスパッタリングプロセスにおいて、高密度でノジュール発生が少ない焼結体ターゲットを効率的に製造し、これによってノジュールの発生に伴う生産性の低下や品質の低下を抑制し、さらに粉砕メディアからの汚染(コンタミ)を無視できるターゲットを得ることを目的とする。
The present invention provides a transparent electrode film having an appropriate etching property while solving the above-mentioned problems, maintaining good visible light transmittance and high conductivity.
In addition, in the sputtering process for forming this transparent electrode film, a sintered body target with a high density and less nodule generation is efficiently produced, thereby suppressing a decrease in productivity and quality due to the generation of nodules, Furthermore, it aims at obtaining the target which can ignore the contamination (contamination) from the grinding media.
本発明は、
1 酸化インジウム中に酸化ジルコニウム0.1〜5重量%含有し、該酸化インジウム中に酸化ジルコニウムが固溶していることを特徴とする透明電極膜
2 酸化インジウム中に酸化ジルコニウム0.1〜5重量%含有し、該酸化インジウム中に酸化ジルコニウムが固溶していることを特徴とする透明電極膜を形成するためのスパッタリングターゲット、を提供する。
The present invention
1 Transparent electrode film comprising zirconium oxide in an indium oxide content of 0.1 to 5% by weight and zirconium oxide in the indium oxide 2 0.1 to 5 zirconium oxide in the indium oxide There is provided a sputtering target for forming a transparent electrode film, which is contained by weight and zirconium oxide is dissolved in the indium oxide.
良好な可視光の透過率と高導電性を維持しながら、適度なエッチング性を備えた透明電極膜を得るものであり、また透明電極膜を形成するスパッタリングプロセスにおいて、高密度でノジュール発生が少ない焼結体ターゲットを効率的に製造し、これによってノジュールの発生に伴う生産性の低下や品質の低下を抑制し、さらに粉砕メディアからの汚染(コンタミ)を無視できるターゲットを得ることができるという優れた特長を有する。また、室温又は低温での膜特性に優れている。 A transparent electrode film having an appropriate etching property while maintaining good visible light transmittance and high conductivity is obtained, and in the sputtering process for forming the transparent electrode film, high density and little nodule generation are obtained. An excellent production of a sintered compact target that effectively suppresses the decline in productivity and quality caused by the generation of nodules, and can obtain a target that can ignore contamination (contamination) from the grinding media. It has the features. In addition, the film characteristics at room temperature or low temperature are excellent.
透明導電膜の導電性は、一般に面積抵抗(Ω/□)で表され、通常5Ω/□程度という面積抵抗が要求されており、上記のような液晶ディスプレー画面に適用する場合においては液晶画面の高精細化とともにさらに低い面積抵抗が要求されている。
面積抵抗は比抵抗を透明導電膜の厚みで割った値で表される。したがって、透明導電膜の面積導電率は導電率(比抵抗の逆数)と、膜厚の積で表現され、この導電率σ(Ω−1・cm−1)は膜に含まれるキャリヤ(正孔又は電子)の持つ電荷e(クーロン)とキャリヤ移動度μ(cm2/V・sec)及びキャリヤ濃度n(cm−3)の積で表される(σ(Ω−1・cm−1)=e・μ・n)。
したがって、透明導電膜の導電率を向上させ、比抵抗と面積抵抗とを低下させるためには、キャリヤ移動度μ(cm2/V・sec2及びキャリヤ濃度n(cm−3)のいずれか一方又は双方を増大させればよい。
The conductivity of the transparent conductive film is generally represented by a sheet resistance (Ω / □), and usually a sheet resistance of about 5Ω / □ is required. When applied to the liquid crystal display screen as described above, With higher definition, lower sheet resistance is required.
The area resistance is represented by a value obtained by dividing the specific resistance by the thickness of the transparent conductive film. Therefore, the area conductivity of the transparent conductive film is expressed by the product of the conductivity (reciprocal of the specific resistance) and the film thickness, and this conductivity σ (Ω −1 · cm −1 ) is the carrier (hole) contained in the film. Or (electrons) charge e (coulomb), carrier mobility μ (cm 2 / V · sec) and carrier concentration n (cm −3 ) (σ (Ω −1 · cm −1 ) = e · μ · n).
Therefore, in order to improve the conductivity of the transparent conductive film and reduce the specific resistance and the sheet resistance, one of the carrier mobility μ (cm 2 / V · sec 2 and the carrier concentration n (cm −3 )) Or both may be increased.
このことから、本発明者らはキャリヤ濃度nを高めるためのドーパントとして、酸化インジウム(In2O3)に高濃度(〜5重量%まで)で固溶する酸化ジルコニウム(ZrO2)に着目した。
この酸化ジルコニウムドーパントは後述するように、良好な可視光の透過率と高導電性を維持することができることが判明した。
From this, the present inventors focused on zirconium oxide (ZrO 2 ), which is a solid solution at a high concentration (up to 5 wt%) in indium oxide (In 2 O 3 ) as a dopant for increasing the carrier concentration n. .
As will be described later, it has been found that this zirconium oxide dopant can maintain good visible light transmittance and high conductivity.
酸化ジルコニウム(ZrO2)の含有量が5重量%を超えると酸化インジウム中に酸化ジルコニウムを固溶させることができず、余剰酸化ジルコニウム粒が析出し透過率を悪化させる。また、0.1重量%未満では酸化ジルコニウムドーパントとしての機能を生じさせることができず、良好な可視光の透過率と高導電性を維持することができない。したがって、酸化インジウム中に酸化ジルコニウム0.1〜5重量%含有させることが必要である。 If the content of zirconium oxide (ZrO 2 ) exceeds 5% by weight, zirconium oxide cannot be dissolved in indium oxide, and excess zirconium oxide particles are precipitated, thereby deteriorating the transmittance. On the other hand, if it is less than 0.1% by weight, the function as a zirconium oxide dopant cannot be produced, and good visible light transmittance and high conductivity cannot be maintained. Therefore, it is necessary to contain 0.1 to 5% by weight of zirconium oxide in indium oxide.
この酸化ジルコニウムドーパントは、耐酸性はITOの成分であるSnO2程高くないがZnO程卑ではなく、適度なエッチング特性が得られるという優れた特長がある。
さらに、スパッタリング時の膜特性を左右する要因として、上記に示すようにターゲットの密度が挙げられ、ターゲットの密度が高いほど安定したスパッタリング特性と良好な膜が得られる。
This zirconium oxide dopant has an excellent feature that the acid resistance is not as high as SnO 2 which is a component of ITO but is not as low as ZnO, and appropriate etching characteristics can be obtained.
Furthermore, as a factor which influences the film characteristics at the time of sputtering, the density of the target can be mentioned as described above, and the higher the target density, the more stable sputtering characteristics and a good film can be obtained.
ターゲットの密度を向上させるためには、成形前の粉体が細かいほど良いが、上記の酸化ジルコニウム(ジルコニア)ドーパントは粉砕のために既存の粉砕メディア、即ちジルコニアビーズやジルコニアライニングの容器を使用して粉砕することができ、粉砕メディア自体が汚染源(コンタミ源)とならないという大きな利点がある。 In order to improve the density of the target, the finer the powder before molding, the better. However, the above-mentioned zirconium oxide (zirconia) dopant uses an existing grinding media, that is, a container of zirconia beads or zirconia lining for grinding. There is a great advantage that the pulverization medium itself does not become a contamination source (contamination source).
これによって、粉砕のレベルを向上させ、従来に比べてはるかに高純度でかつ高密度のスパッタリングターゲットを得ることができる。
また、このような高密度ターゲットを使用することにより、ノジュールの発生を抑え、このノジュールに起因する異常放電やスプラッシュが原因となって生ずるパーティクルの発生を抑え、導電膜の品質低下を効果的に抑制できる。
As a result, the level of pulverization can be improved, and a sputtering target having a much higher purity and a higher density than conventional can be obtained.
Moreover, by using such a high-density target, the generation of nodules is suppressed, the generation of particles caused by abnormal discharge and splash due to the nodules is suppressed, and the quality of the conductive film is effectively reduced. Can be suppressed.
次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。 Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.
(実施例)
酸化インジウム(In2O3)粉に酸化ジルコニウム(ZrO2)粉を5重量%となるように所定量混合した後、ジルコニア(ZrO2)ボール(ビーズ)を粉砕メディアとして用いて微粉砕を行った。焼結密度を上げるために、0.8μm以下まで粉砕を実施した。
この混合粉末を使用して、1t(トン)/cm2の圧力でプレス成形を行いφ200×8(mm)の成形体とし、さらにCIP(等方冷間プレス)を行った。そしてこの成形体を酸素雰囲気中1640°Cの温度で4時間焼結を行い焼結体(以下、「IZO焼結体」という。)ターゲットを得た。焼結密度は98%に達した。
(Example)
After a predetermined amount of zirconium oxide (ZrO 2 ) powder is mixed with indium oxide (In 2 O 3 ) powder so as to be 5% by weight, fine pulverization is performed using zirconia (ZrO 2 ) balls (beads) as grinding media. It was. In order to increase the sintered density, pulverization was performed to 0.8 μm or less.
Using this mixed powder, press molding was performed at a pressure of 1 t (tons) / cm 2 to obtain a molded body of φ200 × 8 (mm), and further CIP (isotropic cold pressing) was performed. Then, this compact was sintered in an oxygen atmosphere at a temperature of 1640 ° C. for 4 hours to obtain a sintered compact (hereinafter referred to as “IZO sintered compact”) target. The sintered density reached 98%.
酸化ジルコニウムの固溶をIZO焼結体ターゲットのXRD(X線回折)により確認した。対比のために実施例の酸化ジルコニウム含有量5重量%以外に、上記実施例と同様の条件で、酸化ジルコニウム含有量1重量%及び酸化ジルコニウム含有量10重量%(本発明の範囲外)のIZO焼結体ターゲットを作成した。
酸化ジルコニウム含有量10重量%のXRD測定結果を図1に示す。また、酸化ジルコニウム含有量5重量%及び酸化ジルコニウム含有量1重量%IZO焼結体ターゲットにおけるXRD測定結果を図2及び図3に示す。
The solid solution of zirconium oxide was confirmed by XRD (X-ray diffraction) of the IZO sintered compact target. For comparison, IZO with a zirconium oxide content of 1% by weight and a zirconium oxide content of 10% by weight (outside the scope of the present invention) under the same conditions as in the above example, except for the zirconium oxide content of 5% by weight of the example. A sintered compact target was created.
FIG. 1 shows the results of XRD measurement with a zirconium oxide content of 10% by weight. Moreover, the XRD measurement result in an IZO sintered compact target with a zirconium oxide content of 5% by weight and a zirconium oxide content of 1% by weight is shown in FIGS.
図1の酸化ジルコニウム10重量%を含有するターゲットでは、2θが30.24度、35.04度、50.36度、60.24度のところに立方晶ZrO2のピークが見られ、立方晶ZrO2が完全に固溶していないことが分かる。
なお、これらのピークは立方晶In2O3の30.50度、35.38度、50.94度、60.56度のピークと近いため、一見するとIn2O3のピークが低角側に広がったように見える。
しかし、図2及び図3に示す通り、これらのピークは酸化ジルコニウム含有量5重量%及び酸化ジルコニウム含有量1重量%の本発明の範囲にあるIZO焼結体ターゲットでは観察されず、ZrO2が固溶しているのが分かる。
In the target containing 10% by weight of zirconium oxide in FIG. 1, the peak of cubic ZrO 2 is observed at 2θ of 30.24 degrees, 35.04 degrees, 50.36 degrees, and 60.24 degrees. It can be seen that ZrO 2 is not completely dissolved.
Note that these peaks are close to the peaks of cubic In 2 O 3 at 30.50 degrees, 35.38 degrees, 50.94 degrees, and 60.56 degrees, so at first glance, the peaks of In 2 O 3 are on the lower angle side. It seems to have spread.
However, as shown in FIGS. 2 and 3, these peaks are not observed in the IZO sintered target in the range of the present invention in amounts containing zirconium oxide 5% by weight and zirconium oxide content of 1 wt%, ZrO 2 is You can see that it is in solid solution.
次に、このIZO焼結体ターゲットを用いてガラス基板にDCスパッタにより、次の条件で透明電極膜を形成した。
スパッタガス : Ar+O2
スパッタガス圧 : 0.4Pa
スパッタガス流量 : 8SCCM
酸素濃度 : 1%
投入パワー : 0.5W/cm2
この場合のノジュールの発生量(被覆率)を測定したが、本実施例のIZO焼結体におけるノジュールの被覆率は10%以下であった。
Next, a transparent electrode film was formed on the glass substrate by DC sputtering using the IZO sintered compact target under the following conditions.
Sputtering gas: Ar + O 2
Sputtering gas pressure: 0.4 Pa
Sputtering gas flow rate: 8SCCM
Oxygen concentration: 1%
Input power: 0.5 W / cm 2
The nodule generation amount (coverage) in this case was measured, and the nodule coverage in the IZO sintered body of this example was 10% or less.
また、成膜の比抵抗(Ω・cm)及び550nmでの透過率%の膜特性を調べ、その結果を表1に示す。なお、表1においては室温、酸素濃度1%成膜時の膜特性を示す。
また、比較のために、同様の条件で作製したITO膜(比較例1)及びIXO膜(比較例2)の比抵抗(Ω・cm)及び550nmでの透過率%の膜特性を表1に掲載した。
Further, the film characteristics of the specific resistance (Ω · cm) of film formation and the transmittance% at 550 nm were examined, and the results are shown in Table 1. Table 1 shows film characteristics at the time of film formation at room temperature and an oxygen concentration of 1%.
For comparison, Table 1 shows the specific resistance (Ω · cm) of the ITO film (Comparative Example 1) and the IXO film (Comparative Example 2) produced under the same conditions and the film characteristics of transmittance% at 550 nm. Posted.
この表1から明らかなように、比抵抗及び透過率は本発明の実施例と比較例1のITOとは殆ど遜色なく、本発明の実施例の良好な可視光の透過率と高導電性を維持しているのが分かる。
一般に、ITO膜に対して本発明のIZO焼結体ターゲットを使用したIZO膜は基板温度を上げて成膜した状態での膜特性は大差ないが、室温で成膜した膜での特性がより優れているという結果が得られた。
As is apparent from Table 1, the specific resistance and the transmittance are almost the same as those of the example of the present invention and the ITO of the comparative example 1, and the good visible light transmittance and high conductivity of the example of the present invention are obtained. You can see that it is maintained.
In general, the IZO film using the IZO sintered compact target of the present invention is not much different from the ITO film when the substrate temperature is raised, but the characteristics of the film formed at room temperature are much different. The result was excellent.
近年、液晶ディスプレー等の軽量化からガラス基板に替えてプラスチックシートやフイルムを使用する傾向にある。プラスチックスは耐熱性に劣るので、基板を加熱しない、あるいは低温での成膜が求められている。したがって、上記のような室温又は低温での膜特性に優れている本件発明の透明電極は、この目的に合致し、優れた材料と言える。 In recent years, there is a tendency to use a plastic sheet or a film instead of a glass substrate because of weight reduction of a liquid crystal display or the like. Since plastics are inferior in heat resistance, there is a demand for film formation at a low temperature without heating the substrate. Therefore, the transparent electrode of the present invention having excellent film properties at room temperature or low temperature as described above meets this purpose and can be said to be an excellent material.
他方、比較例2のIXO膜では透過率は高いが、比抵抗が著しく低くなっている。また、比較例1及び2では、本実施例と同等の0.8μm以下までの粉砕を実施すると、ジルコニアのコンタミが著しく増大しているのが確認できた。
なお、比較例1及び2のターゲットの密度はそれぞれ93%、87%であり、本実施例よりも低く、ノジュール被覆率は70%に達していた。
On the other hand, in the IXO film of Comparative Example 2, the transmittance is high, but the specific resistance is extremely low. Further, in Comparative Examples 1 and 2, it was confirmed that the zirconia contamination was remarkably increased when pulverization to 0.8 μm or less, which was the same as in this example, was performed.
In addition, the densities of the targets of Comparative Examples 1 and 2 were 93% and 87%, respectively, which were lower than that of the present example, and the nodule coverage reached 70%.
次に、上記実施例と比較例1及び2の透明電極膜について、基板温度とエッチング速度との関係を表2に示す。エッチャントはHCl:H2O:HNO3=1:1:0.08の混酸を用いた。
表2から明らかなように、ITOである比較例1に対して、基板温度が室温の場合及び200°Cの場合、いずれも本実施例であるIZOのエッチング速度が勝っていることが分かる。特に基板温度が200°Cの場合に、その差が著しい。
また、比較例2のIXOでは室温のエッチング性は92700Å/min、200°Cでは90900Å/minと異常に高いが、反面オーバーエッチングになりやすく、好ましくない。
Next, the relationship between the substrate temperature and the etching rate is shown in Table 2 for the transparent electrode films of the above Examples and Comparative Examples 1 and 2. The etchant used was a mixed acid of HCl: H 2 O: HNO 3 = 1: 1: 0.08.
As is apparent from Table 2, it can be seen that the etching rate of IZO, which is the present example, is superior when the substrate temperature is room temperature and when the substrate temperature is 200 ° C., as compared with Comparative Example 1 that is ITO. The difference is particularly remarkable when the substrate temperature is 200 ° C.
Further, the IXO of Comparative Example 2 has an abnormally high etching property at room temperature of 92700 Å / min and 90900 Å / min at 200 ° C, but is not preferable because it tends to cause over-etching.
良好な可視光の透過率と高導電性を維持しながら、適度なエッチング性を備えた透明電極膜を得るものであり、また透明電極膜を形成するスパッタリングプロセスにおいて、高密度でノジュール発生が少ない焼結体ターゲットを効率的に製造し、これによってノジュールの発生に伴う生産性の低下や品質の低下を抑制し、さらに粉砕メディアからの汚染(コンタミ)を無視できるターゲットを得ることができるという優れた特長を有する。また、室温又は低温での膜特性に優れており、液晶ディスプレー等の軽量化からガラス基板に替えて耐熱性に劣るプラスチックシートやフイルムを基板とする場合に、特に有用である。 A transparent electrode film having an appropriate etching property while maintaining good visible light transmittance and high conductivity is obtained, and in the sputtering process for forming the transparent electrode film, high density and little nodule generation are obtained. An excellent production of a sintered compact target that effectively suppresses the decline in productivity and quality caused by the generation of nodules, and can obtain a target that can ignore contamination (contamination) from the grinding media. It has the features. Further, it is excellent in film properties at room temperature or low temperature, and is particularly useful when a plastic sheet or film having inferior heat resistance is used instead of a glass substrate due to weight reduction of a liquid crystal display or the like.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011236653A JP5761670B2 (en) | 2011-10-28 | 2011-10-28 | Sputtering target for forming transparent conductive film and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011236653A JP5761670B2 (en) | 2011-10-28 | 2011-10-28 | Sputtering target for forming transparent conductive film and method for producing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001025078A Division JP2002226966A (en) | 2001-02-01 | 2001-02-01 | Transparent electrode film, and sputtering target for deposition of the electrode film |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014033553A Division JP2014148752A (en) | 2014-02-25 | 2014-02-25 | Transparent electrode film and manufacturing method of the transparent electrode film |
JP2015011555A Division JP5976855B2 (en) | 2015-01-23 | 2015-01-23 | Method for producing sputtering target for forming transparent electrode film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012052239A JP2012052239A (en) | 2012-03-15 |
JP5761670B2 true JP5761670B2 (en) | 2015-08-12 |
Family
ID=45905868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011236653A Expired - Lifetime JP5761670B2 (en) | 2011-10-28 | 2011-10-28 | Sputtering target for forming transparent conductive film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5761670B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014148752A (en) * | 2014-02-25 | 2014-08-21 | Jx Nippon Mining & Metals Corp | Transparent electrode film and manufacturing method of the transparent electrode film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02309511A (en) * | 1989-05-24 | 1990-12-25 | Showa Denko Kk | Transparent conductive film |
JP2002226966A (en) * | 2001-02-01 | 2002-08-14 | Nikko Materials Co Ltd | Transparent electrode film, and sputtering target for deposition of the electrode film |
-
2011
- 2011-10-28 JP JP2011236653A patent/JP5761670B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2012052239A (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4054054B2 (en) | Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film | |
JP4098345B2 (en) | Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film | |
KR100787635B1 (en) | Indium tin oxide target, method of manufacturing the same and transparent electrode manufactured by using the same | |
JP4816116B2 (en) | Oxide sintered body for sputtering target, oxide film obtained using the same, and transparent substrate including the same | |
JPWO2007066490A1 (en) | Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film | |
JP2007314364A (en) | Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same | |
CN103717779A (en) | Zn-sn-o type oxide sintered body and method for producing same | |
JP2007063649A (en) | Sputtering target, and transparent electrically conductive film | |
JPWO2007142330A1 (en) | Transparent conductive film, method for producing the same, and sputtering target used for the production thereof | |
US20100003495A1 (en) | Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method | |
JP2006193363A (en) | Oxide sintered compact, sputtering target, and transparent electroconductive thin film | |
JP4770310B2 (en) | Transparent conductive film, transparent conductive substrate and oxide sintered body | |
JP2002226966A (en) | Transparent electrode film, and sputtering target for deposition of the electrode film | |
JP5976855B2 (en) | Method for producing sputtering target for forming transparent electrode film | |
JP2014148752A (en) | Transparent electrode film and manufacturing method of the transparent electrode film | |
JP4687374B2 (en) | Transparent conductive film and transparent conductive substrate containing the same | |
JP5761670B2 (en) | Sputtering target for forming transparent conductive film and method for producing the same | |
JP4813182B2 (en) | ITO sputtering target | |
JP4794757B2 (en) | Sputtering target for forming a transparent electrode film | |
JP2013533378A (en) | Transparent conductive film, target for transparent conductive film, and method for producing target for transparent conductive film | |
JP4234483B2 (en) | ITO sputtering target, manufacturing method thereof, and ITO transparent conductive film | |
KR101240167B1 (en) | Indium tin oxide sintered body and indium tin oxide target | |
JP5290350B2 (en) | Transparent electrode film | |
KR20090113573A (en) | Indium tin oxide target and manufacturing method of the same | |
JP2005320192A (en) | Oxide sintered compact, spattering target, and transparent conductive thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131011 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140225 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140305 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150601 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5761670 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |