JP2002364836A - Incinerator, and heat exchanger tank and ejector for incinerator - Google Patents

Incinerator, and heat exchanger tank and ejector for incinerator

Info

Publication number
JP2002364836A
JP2002364836A JP2001211399A JP2001211399A JP2002364836A JP 2002364836 A JP2002364836 A JP 2002364836A JP 2001211399 A JP2001211399 A JP 2001211399A JP 2001211399 A JP2001211399 A JP 2001211399A JP 2002364836 A JP2002364836 A JP 2002364836A
Authority
JP
Japan
Prior art keywords
flow path
ejector
incinerator
gas
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001211399A
Other languages
Japanese (ja)
Inventor
Shigeto Takemoto
茂人 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001211399A priority Critical patent/JP2002364836A/en
Publication of JP2002364836A publication Critical patent/JP2002364836A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an incinerator vaporizing and melting refuse for the complete combustion of it by effectively utilizing exhaust heat. SOLUTION: An ejector 31 is provided at the boundary of the combustion chamber of the incinerator provided with a primary combustion chamber 12 and a secondary combustion chamber 13 to transfer the unburned gas of the primary combustion chamber to the secondary combustion chamber while sucking and burning it. The exhaust gas that has finished to be burned in the secondary combustion chamber 13 is allowed to flow into a high-temperature gas supply inlet 56 of a heat exchanger tank 51 through a high-temperature gas flow path 81, and separated into the gas at a high temperature containing a large amount of oxygen and the gas at a low temperature containing a large amount of carbon dioxide inside it by utilizing the differences in temperature and specific gravity. The gas at the high temperature containing a large amount of oxygen is returned to the primary combustion chamber 15 through a high-temperature gas reflux flow path 82 by using the negative pressure of the ejector 31, and refuse is further vaporized and burned by this high-temperature gas. The principal part of the part exposed to the high temperature can be manufactured of only a refractory material, and the fusion point of the refractory material is high as compared with metal materials. Thus, the problem of metal corrosion is solved while providing a simpler structure more than a conventional one, so as to permit the refuse to be incinerated completely at higher temperatures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焼却炉に関する。詳
しくは、一般廃棄物、医療廃棄物、タイヤを含む産業廃
棄物、廃油、厨芥、などの廃棄物を焼却する場合、燃焼
排気ガスによる大気汚染などの公害を発生させないよう
に焼却することが可能な焼却炉に関する。さらに、ボイ
ラーや加熱炉、窯釜、など燃料の燃焼させて熱を得る炉
全般に対しても応用が可能である。
[0001] The present invention relates to an incinerator. In detail, when incinerating waste such as general waste, medical waste, industrial waste including tires, waste oil, kitchen waste, etc., it is possible to incinerate so as not to cause pollution such as air pollution by combustion exhaust gas. About incinerators. Further, the present invention can be applied to all furnaces that obtain heat by burning fuel, such as a boiler, a heating furnace, and a kiln.

【0002】[0002]

【従来の技術】従来の廃棄物焼却技術において、一次燃
焼室において被燃焼物を加熱して部分燃焼、炭化させ
て、炭化する際ににより発生する未燃ガスを二次燃焼室
内で空気を加えて再燃焼させる技術は公知であり、被燃
焼物を容易に燃焼するとこが可能な気体に変化させた後
に完全燃焼させ、未燃物中に含まれる有機有毒物質(例
えばダイオキシンなど)を熱分解し、排出を抑制する。
(特許第3100572参照)
2. Description of the Related Art In a conventional waste incineration technique, an object to be burned is heated in a primary combustion chamber to partially burn and carbonize, and unburned gas generated by carbonization is added to air in a secondary combustion chamber. The technique of reburning is known, and the burnable material is converted into a gas that can be easily burned and then completely burned, and the organic toxic substances (for example, dioxin etc.) contained in the unburned material are thermally decomposed. And control emissions.
(See Japanese Patent No. 3100572)

【0003】また、焼却により発生する高温の排気ガス
の熱を、熱交換器を使用して焼却炉内に供給するための
空気に伝導させ、一次燃焼室、及び二次燃焼室へ高温の
燃焼用空気として供給する技術も公知である。さらに、
焼却炉内に滞留する排気ガスを排出するために、焼却炉
の排気ガスの流路上に誘引送風機を設けて、焼却炉内の
排気ガスを吸引し、煙突へ向けて排出する技術も公知で
ある。また、従来の焼却炉では材質上の問題点のため、
燃焼温度を抑える傾向にあり、一例として二次燃焼室内
部は950℃程度の温度で運転されいている現状があ
る。
Further, the heat of the high-temperature exhaust gas generated by the incineration is conducted to the air for supplying into the incinerator by using a heat exchanger, and the high-temperature exhaust gas is supplied to the primary combustion chamber and the secondary combustion chamber. Techniques for supplying air for use are also known. further,
In order to discharge the exhaust gas staying in the incinerator, an induction blower is provided on a flow path of the exhaust gas of the incinerator, and a technique of sucking the exhaust gas in the incinerator and discharging the exhaust gas to a chimney is also known. . In addition, conventional incinerators have material problems,
The combustion temperature tends to be suppressed, and as an example, the inside of the secondary combustion chamber is currently operated at a temperature of about 950 ° C.

【0004】[0004]

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記部
分燃焼、炭化、により被燃焼物から未燃ガスを発生させ
るためには、被燃焼物を含めた一次燃焼室内部を高温に
保つ必要があり、例えば水分を多く含む厨芥などを焼却
する場合には、別途に化石燃焼を使用して燃える助燃バ
ーナーなどの燃料を消費する熱源を一次燃焼室内部など
に設けて、被燃焼物の乾燥と加熱などを促進する必要が
あり、継続的に化石燃焼を消費するために、廃棄物焼却
に一定のランニングコストが必要であった。
However, in order to generate unburned gas from the burning object by the partial combustion and carbonization, it is necessary to keep the inside of the primary combustion chamber including the burning object at a high temperature. For example, when incinerating garbage that contains a lot of water, a separate heat source that consumes fuel, such as an auxiliary burner that burns using fossil combustion, is installed inside the primary combustion chamber, etc. to dry and heat the burned material. In order to continuously consume fossil combustion, waste incineration required a certain running cost.

【0005】また、前記熱交換器は金属材料で製作され
る場合が多く、高温の排気ガスを直接熱源として利用す
ると、熱交換器本体の過熱による融解や、表面の急速な
酸化による劣化、さらには、塩化ビニールを燃焼させた
時に発生する排気ガス中の塩素ガスと排気ガス中の水蒸
気と、が熱交換器表面で急速に冷却されて結露、化合、
電離して塩酸となり、前記熱交換器を腐食して、熱交換
器の排気ガス流路上の熱伝導面を破損するといった問題
があった。同様に、前記誘引送風機についても、送風機
の羽部分を含む内部は排気ガスに曝されるため、前記熱
交換器と同様に融解や腐食の問題がある。同様に、エゼ
クターについても本体部は金属で構成されているため、
前記熱交換器と同様に融解や腐食の問題がある。
In addition, the heat exchanger is often made of a metal material. If a high-temperature exhaust gas is directly used as a heat source, the heat exchanger itself is melted by overheating, the surface is rapidly deteriorated by oxidation, and furthermore, Is that chlorine gas in the exhaust gas generated when vinyl chloride is burned and water vapor in the exhaust gas are rapidly cooled on the surface of the heat exchanger, causing condensation, compounding,
There has been a problem that ionization forms hydrochloric acid, corrodes the heat exchanger, and damages the heat conducting surface on the exhaust gas passage of the heat exchanger. Similarly, the induction blower also has a problem of melting and corrosion as in the case of the heat exchanger, since the interior of the blower including the blade portion is exposed to the exhaust gas. Similarly, since the main body of the ejector is made of metal,
Like the heat exchanger, there is a problem of melting and corrosion.

【0006】上記のような問題のため、熱交換器に供給
される排気ガスは前工程で一定温度以下に冷却したガス
を用いるか、又は前工程での腐食物質を除去した排気ガ
スを用いるか、又は耐腐食性の優れた材質で前記熱交換
器の表面を覆う必要であり、排気ガスが持つ熱を高い効
率で供給空気に交換することは実用上、技術上、さらに
はコスト上困難である。
[0006] Due to the above-mentioned problems, whether the exhaust gas supplied to the heat exchanger is a gas cooled to a certain temperature or lower in the previous process, or an exhaust gas from which corrosive substances are removed in the previous process is used. Or, it is necessary to cover the surface of the heat exchanger with a material having excellent corrosion resistance, and it is practically, technically, and further difficult to replace the heat of exhaust gas with supply air with high efficiency. is there.

【0007】また、前記一例として二次燃焼室内部は9
50℃程度の温度で運転されいている現状があり、焼却
灰を融解させえる温度には至らない。同様に、一次燃焼
室内に、炭化され、炭素分を多く含む焼却灰を融解する
ための融解槽を設け、融解槽に焼却灰を集め、その中に
純酸素を供給して燃焼させたとしても、一次燃焼室内温
度まで上昇させることは困難である。
As an example, the inside of the secondary combustion chamber is 9
There is a current state of operation at a temperature of about 50 ° C., and the temperature does not reach a temperature at which incinerated ash can be melted. Similarly, even if a melting tank is provided in the primary combustion chamber for melting incinerated ash that is carbonized and contains a large amount of carbon, the incinerated ash is collected in the melting tank, and pure oxygen is supplied therein and burned. It is difficult to raise the temperature to the primary combustion chamber.

【0008】本発明は上記従来の問題点に鑑み、高い熱
効率で被燃焼物を乾燥、炭化、ガス化、燃焼、融解させ
ることが可能な焼却炉と、それを構成するために必要な
熱交換手段と高温ガスの移送手段とを提供し、被燃焼物
を高温下で気化による完全燃焼をさせて有機有毒物質の
分解をして排出を抑制することで大気汚染問題に対応す
るとともに、焼却灰の融解を容易にして、その容積を減
容し、埋め立て処分場の枯渇問題に対応するための手段
を提供することを目的とする。
In view of the above-mentioned conventional problems, the present invention provides an incinerator capable of drying, carbonizing, gasifying, burning, and melting an object to be burned with high thermal efficiency, and a heat exchange necessary for constituting the incinerator. Means and means for transporting high-temperature gas, combustibles are completely combusted by vaporization at high temperatures to decompose organic toxic substances, thereby reducing emissions and responding to air pollution problems. It is an object of the present invention to provide a means for facilitating melting, reducing the volume, and responding to the problem of depletion of landfills.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1は、一
例として図1を参照して説明すると、被燃焼物例えば都
市から排出される一般廃棄物を受け入れて貯留し、高温
により乾燥、炭化、燃焼などさせるために還元雰囲気に
保たれる一次燃焼室12と、一次燃焼室内12で被燃焼
物が加熱、部分燃焼して、有機物の分解、気化により発
生した可燃性の未燃ガスを再燃焼させるための二次燃焼
室13と、を備えた焼却炉において、高圧の空気を発生
する送風手段38と、送風手段38から供給される高圧
の二次燃焼用空気を二次燃焼室13近傍の方向へ噴射す
ることで発生する負圧を利用して一次燃焼室内12に滞
留する未燃ガスを含めた雰囲気を吸引し、吸引された未
燃ガスと二次燃焼用空気を混合、燃焼させるとともに、
未燃ガスと空気の混合物及び燃焼で発生した化合物及び
火炎などを二次燃焼室13へ排出させるために、一次燃
焼室12と二次燃焼室13の境界部に設けられるエゼク
ター31と、送風手段38で発生する高圧空気をエゼク
ターに供給するために、送風手段38の出口とエゼクタ
ー31の空気供給流路34を連通するための連通手段3
9と、内面を耐熱性を有する部材で覆い、高さの異なる
位置に少なくとも3箇所の開口部を形成した容器を熱交
換タンク51として焼却炉に併設し、前記少なくとも3
箇所の開口部の名称を、前記3箇所のうち、最上部近傍
に位置する開口部を高温ガス取出口54、前記高温ガス
取出口より下方向に位置する開口部を燃焼ガス給入口5
6、前記燃焼ガス給入口56より鉛直下方に位置する開
口部を低温ガス取出口55と定義して、二次燃焼室内1
3に滞留する高温ガスを熱交換タンク51へ向けて、エ
ゼクター31の作用によって二次燃焼室13内に発生し
た圧力を利用して供給するために、二次燃焼室の出口1
4と燃焼ガス給入口56とを連通する燃焼ガス流路81
と、熱交換タンク51の上方52付近に滞留する高温で
かつ酸素を多く含むガスを、前記エゼクター13の作用
で一次燃焼室12内に発生した負圧を利用して、焼却炉
の一次燃焼室12へ供給するために、高温ガス取出口5
4と焼却炉の一次燃焼室12と、を連通する高温ガス還
流流路82と、を備えることを特徴とする。
The present invention will be described with reference to FIG. 1 as an example. As shown in FIG. 1, a burnable material, for example, general waste discharged from a city is received and stored, and is dried at a high temperature. A primary combustion chamber 12 maintained in a reducing atmosphere for carbonization, combustion, etc., and an object to be burned is heated and partially burned in the primary combustion chamber 12 to decompose an organic substance and to remove combustible unburned gas generated by vaporization. In an incinerator provided with a secondary combustion chamber 13 for reburning, a blowing means 38 for generating high-pressure air and a high-pressure secondary combustion air supplied from the blowing means 38 are supplied to the secondary combustion chamber 13. The atmosphere including the unburned gas staying in the primary combustion chamber 12 is sucked by utilizing the negative pressure generated by the injection in the vicinity direction, and the sucked unburned gas and the secondary combustion air are mixed and burned. Let me
An ejector 31 provided at a boundary between the primary combustion chamber 12 and the secondary combustion chamber 13 for discharging a mixture of unburned gas and air, a compound generated by combustion, a flame, and the like to the secondary combustion chamber 13; Communication means 3 for communicating the outlet of the blowing means 38 with the air supply flow path 34 of the ejector 31 to supply the high-pressure air generated at 38 to the ejector;
9, a container having an inner surface covered with a heat-resistant member and having at least three openings formed at different heights is provided as a heat exchange tank 51 in the incinerator.
Of the three locations, the opening located in the vicinity of the top of the three locations is defined as the hot gas outlet 54, and the opening located below the hot gas outlet is defined as the combustion gas inlet 5
6. An opening located vertically below the combustion gas inlet 56 is defined as a low-temperature gas outlet 55, and
The outlet 1 of the secondary combustion chamber is used to supply the high-temperature gas remaining in the secondary combustion chamber 3 to the heat exchange tank 51 using the pressure generated in the secondary combustion chamber 13 by the action of the ejector 31.
Gas passage 81 that communicates with the combustion gas supply port 56 and the combustion gas supply port 56
And a high-temperature and oxygen-rich gas remaining near the upper portion 52 of the heat exchange tank 51, using the negative pressure generated in the primary combustion chamber 12 by the action of the ejector 13, to use the primary combustion chamber of the incinerator. Hot gas outlet 5 to supply to
And a high-temperature gas recirculation flow path 82 communicating the primary combustion chamber 12 with the primary combustion chamber 12 of the incinerator.

【0010】前記請求項1記載の構成をとることによ
り、一次燃焼室12で部分燃焼による熱で加熱、気化、
昇華された被燃焼物は可燃性の未燃ガスを発生し、送風
手段38から送られる空気が持つ圧力的エネルギーの一
部がエゼクター31内で略二次燃焼室方向に噴射される
時に運動エネルギーに変換され、その伝達を受けて未燃
ガス流路32内部の未燃ガスの一部が二次燃焼室13へ
押し出されることにより発生するエゼクター31内の負
圧により一次燃焼室12内部の未燃ガスが吸引される。
吸引された可燃性ガスが、エゼクター31内に噴射され
る空気に混合されると同時に発火して火炎をあげながら
二次燃焼室13に押し入れられる。このとき、エゼクタ
ー31に供給する空気は、燃焼に必要な空気以上の量を
供給する。このため、二次燃焼室13内部は高温で豊酸
素状態になり、燃焼、酸化が完結して、可燃ガス中に含
まれるほとんどの有機物は酸化され、二酸化炭素に変化
する。
By adopting the structure of the first aspect, the primary combustion chamber 12 heats, vaporizes,
The sublimated burned substance generates flammable unburned gas, and a part of the pressure energy of the air sent from the air blowing means 38 is injected into the ejector 31 in the direction of the secondary combustion chamber when the kinetic energy is injected. The uncombusted gas inside the primary combustion chamber 12 is converted by the negative pressure in the ejector 31 generated when a part of the unburned gas inside the unburned gas passage 32 is pushed out to the secondary combustion chamber 13 in response to the transmission. Fuel gas is sucked.
The sucked combustible gas is mixed with the air injected into the ejector 31 and simultaneously ignites and is pushed into the secondary combustion chamber 13 while raising the flame. At this time, the amount of air supplied to the ejector 31 is larger than the amount of air required for combustion. For this reason, the inside of the secondary combustion chamber 13 becomes rich in oxygen at a high temperature, combustion and oxidation are completed, and most of the organic substances contained in the combustible gas are oxidized and changed to carbon dioxide.

【0011】また、熱交換タンク51の内部は、一次燃
焼室12と高温ガス還流流路82を通して連通している
ため、エゼクター31作動の結果、少なくとも二次燃焼
室13よりは低い内圧となり、二次燃焼室13内部の高
温で比較的多く酸素を含んだ燃焼ガスが燃焼ガス供給口
56から熱交換タンク内部へ流入する。熱交換タンク5
1は焼却炉の各燃焼室よりも著しく大きな容積を持つよ
うに構成しているため、熱交換タンク51内部では燃焼
ガスは流速が極端に落ちた静置状態に近い状態になる。
Further, since the inside of the heat exchange tank 51 communicates with the primary combustion chamber 12 through the high-temperature gas recirculation passage 82, the internal pressure of the heat exchanger tank 51 becomes lower than at least the secondary combustion chamber 13 as a result of the operation of the ejector 31. A high temperature and relatively high amount of oxygen-containing combustion gas in the next combustion chamber 13 flows into the heat exchange tank from the combustion gas supply port 56. Heat exchange tank 5
Since 1 is configured to have a significantly larger volume than each combustion chamber of the incinerator, the combustion gas in the heat exchange tank 51 is in a state close to a stationary state in which the flow velocity is extremely reduced.

【0012】また、熱交換タンク51の内部の燃焼ガス
の熱は内壁、外壁を伝導して外部に放熱され、徐々に奪
われているため、流入したばかりの燃焼ガスがそれまで
に蓄積されていた燃焼ガスよりも温度が高いため、ガス
同士の温度差による比重の差が発生して、高温のガスほ
ど上方へ移動し、逆に低温のガスが下部に沈降する。さ
らに、熱交換タンク51内部における二酸化炭素の濃度
は、5〜12%と大気に比較して極端に高く、二酸化炭
素の空気に対する比重は、1.52であり、他の主なガ
スの組成である、酸素の1.11、窒素の0.96と比
較すると重い性質があるため、前記濃度下では二酸化炭
素が下方に沈降する傾向にある。
Further, since the heat of the combustion gas inside the heat exchange tank 51 is conducted to the outside through the inner and outer walls and is gradually taken away, the combustion gas that has just flowed in has been accumulated up to that time. Since the temperature of the combustion gas is higher than that of the combustion gas, a difference in specific gravity occurs due to a temperature difference between the gases, and the higher the temperature of the gas, the higher the gas moves, and the lower the temperature of the gas, the lower the gas. Further, the concentration of carbon dioxide in the heat exchange tank 51 is 5 to 12%, which is extremely higher than that of the atmosphere, and the specific gravity of carbon dioxide with respect to air is 1.52. As compared with 1.11 of oxygen and 0.96 of nitrogen, carbon dioxide tends to settle down under the above-mentioned concentration because of its heavy properties.

【0013】また、エゼクター31から供給される燃焼
用空気により、一次燃焼室12、二次燃焼室13、熱交
換タンク51はいずれも大気よりも高い圧力であるた
め、前記熱交換タンク51の下部53付近に沈降した低
温で二酸化炭素を多く含むガスは低温ガス取出口55か
ら図示しない排気ガス浄化装置と煙突を経て大気へ開放
される。
Further, since the primary combustion chamber 12, the secondary combustion chamber 13, and the heat exchange tank 51 are all at a higher pressure than the atmosphere due to the combustion air supplied from the ejector 31, the lower part of the heat exchange tank 51 The low-temperature gas containing a large amount of carbon dioxide that has settled in the vicinity of 53 is released from the low-temperature gas outlet 55 to the atmosphere through an exhaust gas purifier (not shown) and a chimney.

【0014】一方、熱交換タンク51の上方52付近に
上昇した比較的高温で酸素を多く含むガスは、エゼクタ
ー31の吸引効果により負圧一次燃焼室12に連通する
高温ガス還流流路82へ高温ガス取出口54から流れ、
一次燃焼室12の高温ガス供給口15から一次燃焼室1
2内に流入して、一次燃焼室12内部の温度を上昇させ
るとともに、内部の被燃焼物を加熱しガス化を促す。こ
のとき、流入したガスは大気よりも酸素濃度が低い上に
一次燃焼室11内部は高温になった炭素を多く含む被燃
焼物が豊富にあるため、不完全燃焼状態になり、一酸化
炭素などの可燃性の未燃ガスを主に発生し、さらに雰囲
気中の二酸化炭素の多くも、高温の炭素に接触して一酸
化炭素に還元される。この結果、一次燃焼室12内部は
可燃性で高温の未燃ガスが充満した状態となり、再びエ
ゼクター31に吸引された際にエゼクター内に供給され
るの空気中の酸素と接触して燃焼を開始し、二次燃焼室
13内で燃焼を完結する。気体である未燃ガスを豊酸素
状態で燃焼させるため、すすなどの燃え残りや一酸化炭
素などの未燃分がほとんど残らない。
On the other hand, the gas having a relatively high temperature and containing a large amount of oxygen, which has risen near the upper portion 52 of the heat exchange tank 51, flows into the hot gas recirculation flow path 82 communicating with the negative pressure primary combustion chamber 12 by the suction effect of the ejector 31. Flows from the gas outlet 54,
From the high temperature gas supply port 15 of the primary combustion chamber 12 to the primary combustion chamber 1
2 and raises the temperature inside the primary combustion chamber 12 and heats the internal combustion objects to promote gasification. At this time, the inflowing gas has an oxygen concentration lower than that of the atmosphere, and the inside of the primary combustion chamber 11 contains abundant materials containing a large amount of high-temperature carbon. Mainly combustible unburned gas, and much of the carbon dioxide in the atmosphere comes into contact with the high-temperature carbon and is reduced to carbon monoxide. As a result, the inside of the primary combustion chamber 12 is filled with combustible and high-temperature unburned gas, and when it is sucked into the ejector 31 again, it comes into contact with oxygen in the air supplied to the ejector and starts combustion. Then, the combustion is completed in the secondary combustion chamber 13. Since unburned gas, which is a gas, is burned in a rich oxygen state, almost no unburned components such as soot and unburned components such as carbon monoxide remain.

【0015】本発明の請求項2は、一例として図3を参
照して説明すると、内部が密であり耐火性を有する部材
の塊をエゼクター本体31として、エゼクター本体31
に未燃ガスを流すために貫通する穴を設けて未燃ガス流
路32とし、未燃ガス流路32に干渉しない位置に、未
燃ガスの燃焼及び加速用の空気を供給するための、空気
供給流路34を設け、前記未燃ガス流路32の外縁近傍
に巻きつけるように配置した空気噴射流路33を設け、
前記空気供給流路34と前記空気噴射流路33にそれぞ
れ接続手段37aの一方を接続し、前記接続手段37a
の一方に対する他方どうしを連通手段36aに接続して
連通するとともに、前記空気噴射流路33内の高圧空気
を前記未燃ガス流路32内へ噴射するために、前記空気
噴射流路33の内側から斜め上方向でかつ未燃ガス流路
32のある方向に向かって前記未燃ガス流路32の内側
まで貫通する空気噴射穴35aを設けてなることを特徴
とする。
A second embodiment of the present invention will be described with reference to FIG. 3 as an example.
In order to supply the air for combustion and acceleration of the unburned gas to a position that does not interfere with the unburned gas flow path 32 by providing a through hole for flowing the unburned gas to the unburned gas flow path 32, An air supply channel 34 is provided, and an air injection channel 33 arranged to be wound around the outer edge of the unburned gas channel 32 is provided,
One of the connection means 37a is connected to the air supply flow path 34 and the air injection flow path 33, respectively.
The other is connected to the communicating means 36a to communicate with one another, and in order to inject the high-pressure air in the air injection channel 33 into the unburned gas channel 32, the inside of the air injection channel 33 is And an air injection hole 35a penetrating diagonally upward and in the direction of the unburned gas flow path 32 to the inside of the unburned gas flow path 32.

【0016】この構成により、エゼクター31内に滞留
する未燃ガスに高圧の空気を一次燃焼室側に向かって吹
き付けることが可能になり、燃焼用空気の運動エネルギ
ーが未燃ガスに衝突時に伝導して、未燃ガスも一次燃焼
室側に移動する。また、燃焼用空気と未燃ガスとの混合
もされる。さらに、高温となるエゼクター本体、空気噴
射流路、接続手段、連通手段、空気供給流路の熱を外部
から供給される燃焼用空気に伝導して冷却することが可
能になり、とりわけ空気噴射穴と未燃ガス流路との合流
点付近においては、高圧の燃焼用空気がほぼ大気圧の未
燃ガス流路内に出るときに断熱膨張し、自らの比熱以上
の熱を奪うことか可能になる。また、エゼクター本体は
各管路を木枠の中へ設け、穴については焼き払い可能な
素材で設けた後、この中に不定形耐火物を流し込んだ
後、焼成して製作するが、主要部が不定形耐火物となり
金属よりも融点が高いため、耐熱性に優れる。
With this configuration, high-pressure air can be blown toward the primary combustion chamber toward the unburned gas remaining in the ejector 31, so that the kinetic energy of the combustion air is transmitted to the unburned gas at the time of collision. Thus, the unburned gas also moves to the primary combustion chamber. Also, the combustion air and the unburned gas are mixed. Furthermore, it becomes possible to conduct heat of the ejector body, the air injection flow path, the connection means, the communication means, and the air supply flow path, which become high in temperature, to the combustion air supplied from the outside, thereby cooling the air. In the vicinity of the confluence between the gas and the unburned gas flow path, when the high-pressure combustion air exits the unburned gas flow path at almost atmospheric pressure, it adiabatically expands, and it is possible to take heat over its own specific heat. Become. In addition, the ejector body is provided with each pipe in a wooden frame, the holes are made of a material that can be burned off, then an irregular shaped refractory is poured into this and fired, but the main part is manufactured. Since it is an amorphous refractory and has a higher melting point than metals, it has excellent heat resistance.

【0017】本発明の請求項3は、一例として図3から
図5を参照して説明すると、請求項2記載の焼却炉用エ
ゼクターの空気噴射穴35aに代えて、前記空気噴射流
路33上に接続手段37bの一方を取付けるとともに、
前記接続手段37bの他方から前記未燃ガス流路32方
向へ連通手段36bを設け、前記連通手段36bの端部
に噴出方向仮想軸線を前記未燃ガス流路32に向けた空
気噴射ノズル35bを取付け、前記空気噴射35bノズ
ルの噴射口を前記未燃ガス流路32の内部に開口するよ
うに配置したことを特徴とする。この構成により、空気
噴射穴だけでは穴の口径と噴射方向仮想軸線の方向の調
整を精密に調整することが困難で、使用による磨耗の発
生で穴の直径を維持することも困難であるが、ノズルを
採用することでこれらの問題点が解決可能になる。
According to a third aspect of the present invention, as an example, referring to FIGS. 3 to 5, instead of the air injection hole 35a of the incinerator ejector according to the second aspect, the air injection flow path 33 is provided. Attach one of the connecting means 37b to the
A communication means 36b is provided from the other end of the connection means 37b in the direction of the unburned gas flow path 32, and an air injection nozzle 35b having an injection direction virtual axis directed toward the unburned gas flow path 32 is provided at an end of the communication means 36b. Attachment is characterized in that the injection port of the air injection 35b nozzle is arranged to open inside the unburned gas passage 32. With this configuration, it is difficult to precisely adjust the diameter of the hole and the direction of the virtual axis of the injection direction with the air injection hole alone, and it is also difficult to maintain the diameter of the hole due to the occurrence of wear due to use. These problems can be solved by employing a nozzle.

【0018】本発明の請求項4は、一例として図3、図
4、図6を参照して説明すると、請求項2記載の焼却炉
用エゼクターの空気噴射穴35aに代えて、前記空気噴
射流路33上に接続手段37bの一方を取付けるととも
に、前記接続手段37bの他方から前記未燃ガス流路3
2の方向へ連通手段36bを設け、前記連通手段36b
の端部に噴出方向仮想軸線を前記未燃ガス流路32に向
けた空気噴射ノズル35bを取付け、前記空気噴射ノズ
ル35bの噴射口と前記未燃ガス流路32と、を連通す
る流路36cを設けたことを特徴とする。この構成をと
ることにより、空気噴射ノズル本体が高温の未燃ガスに
接触することを回避することが可能になるので、高温に
よるノズルの材質の変質を防止するとともに、より高い
温度の未燃ガスを扱うことが可能になる。
According to a fourth aspect of the present invention, as an example, referring to FIGS. 3, 4, and 6, instead of the air injection hole 35a of the incinerator ejector according to the second aspect, the air injection flow One of the connecting means 37b is mounted on the path 33, and the other of the connecting means 37b is connected to the unburned gas passage 3
2, a communication means 36b is provided in the direction of
An air injection nozzle 35b having an injection direction virtual axis directed toward the unburned gas flow passage 32 is attached to an end of the air injection nozzle 35b, and a flow passage 36c communicating the injection port of the air injection nozzle 35b and the unburned gas flow passage 32 is provided. Is provided. With this configuration, it is possible to prevent the air injection nozzle body from coming into contact with the high-temperature unburned gas. Can be handled.

【0019】本発明の請求項5は、一例として図3から
図10を参照して説明すると、請求項3又は4のいずれ
かに記載の焼却炉用エゼクターの、空気噴射ノズル35
bと空気噴射流路33との間の連通手段36bに代え
て、前記空気噴射流路33の管壁に穴を設け、前記空気
噴射ノズル35bを前記穴へ直接取付けたことを特徴と
する。この構成により、エゼクター製作時に連通手段の
材料コストを削減するとともに、製作工程も簡略化する
ことが可能になる。
A fifth aspect of the present invention will be described with reference to FIGS. 3 to 10 as an example. In the incinerator ejector according to the third or fourth aspect, an air injection nozzle 35 is provided.
A hole is provided in the pipe wall of the air injection channel 33 instead of the communicating means 36b between the air injection channel 33 and the air injection channel 33, and the air injection nozzle 35b is directly attached to the hole. With this configuration, it is possible to reduce the material cost of the communication means when manufacturing the ejector and to simplify the manufacturing process.

【0020】本発明の請求項6は、一例として図3と図
7を参照して説明すると、請求項2から5のいずれかに
記載の焼却炉用エゼクター31において、さらに、前記
空気供給流路34及び前記空気噴射流路33と、前記空
気噴射穴35a又は前記空気噴射ノズル35bと、前記
流路36b、36c及び前記連通手段36bを複数系統
独立して設けるとともに、噴射穴35a又は噴射ノズル
35bの噴出方向仮想軸線と未燃ガス流路32の流路方
向である仮想中心線の方向とでなす角度を、前記系統ご
とに異なる角度をなすように設けてあることを特徴とす
る。この構成により、エゼクター効果は、未燃ガス流路
の流路方向である仮想軸線方向に空気を噴射した際に最
大になり、仮想軸線方向に対して直角に空気を噴射した
際に最小になる性質を利用可能になり、噴射角度の異な
るそれぞれの系統に供給する燃焼用空気の圧力を個別に
所定の値に調整することにより、空燃比(燃焼用空気と
未燃ガスとの混合比率)を一定に保ったまま未燃ガスの
流量を調節することが可能になる。
According to a sixth aspect of the present invention, referring to FIG. 3 and FIG. 7 as an example, in the incinerator ejector 31 according to any one of the second to fifth aspects, the air supply passage is further provided. 34 and the air injection passage 33, the air injection hole 35a or the air injection nozzle 35b, the flow passages 36b and 36c and the communication means 36b are provided independently in a plurality of systems, and the injection hole 35a or the injection nozzle 35b is provided. The angle formed by the virtual axis of the ejection direction of the above and the direction of the virtual center line which is the flow direction of the unburned gas flow path 32 is provided so as to be different for each system. With this configuration, the ejector effect is maximized when air is injected in the virtual axis direction that is the flow direction of the unburned gas flow path, and minimized when air is injected perpendicular to the virtual axis direction. The property becomes available, and the air-fuel ratio (mixing ratio of combustion air and unburned gas) is adjusted by individually adjusting the pressure of combustion air supplied to each system with different injection angles to a predetermined value. It is possible to adjust the flow rate of the unburned gas while keeping it constant.

【0021】本発明の請求項7は、一例として図3と図
11を参照して説明すると、請求項2から6のいずれか
に記載の焼却炉用エゼクターにおいて、さらに、補助燃
料を供給するための補助燃料供給流路44を設け、前記
未燃ガス流路32の外縁近傍に配置した補助燃料噴射流
路43を設け、前記補助燃料供給流路44上と前記補助
燃料噴射流路43上にそれぞれ接続手段47aの一方を
接続し、前記接続手段47aの一方に対する他方どうし
を連通手段46aにより接続するとともに、前記補助燃
料噴射流路43内の燃料を未燃ガス流路32内へ噴射す
るために、前記補助燃料噴射流路43の内側から前記未
燃ガス流路32の内側まで貫通する補助燃料噴射穴45
aを設けてあることを特徴とする。この構成により、特
に焼却炉の運転開始時で未燃ガスが燃焼用空気と接触し
て発火可能な温度以下の場合や、被燃焼物の供給が一時
的に不足した場合にエゼクター内部や二次燃焼室側で火
炎を維持することが可能になり、焼却炉の連続運転が可
能になる。
A seventh aspect of the present invention will be described with reference to FIGS. 3 and 11 as an example. In the incinerator ejector according to any one of the second to sixth aspects, the present invention further provides an auxiliary fuel. The auxiliary fuel supply flow path 44 is provided, and the auxiliary fuel injection flow path 43 disposed near the outer edge of the unburned gas flow path 32 is provided. To connect one of the connecting means 47a and connect the other of the connecting means 47a to the other by the communicating means 46a, and to inject the fuel in the auxiliary fuel injection passage 43 into the unburned gas passage 32. The auxiliary fuel injection hole 45 penetrates from the inside of the auxiliary fuel injection passage 43 to the inside of the unburned gas passage 32.
a is provided. With this configuration, especially when the incinerator starts operating and the temperature of the unburned gas is lower than the ignitable temperature due to contact with the combustion air, or when the supply of burnables is temporarily insufficient, the inside of the ejector or the secondary The flame can be maintained on the combustion chamber side, and the incinerator can be operated continuously.

【0022】本発明の請求項8は、一例として図3と図
11から図12を参照して説明すると、請求項7記載の
焼却炉用エゼクター補助燃料噴射穴45aに代えて、前
記補助燃料噴射流路43上に接続手段47bの一方を取
付けるとともに、前記接続手段47bの他方から前記未
燃ガス流路方向へ連通手段46bを設け、前記連通手段
46bの端部に噴出方向仮想軸線を前記未燃ガス流路3
2に向けた補助燃料噴射ノズル45bを取付け、前記補
助燃料噴射ノズル45bの噴射口を前記未燃ガス流路3
2の内部に開口するように配置したことを特徴とする。
この構成により、補助燃料噴射穴だけでは穴の口径と噴
射方向仮想軸線の方向の調整を精密に調整することが困
難で、使用による磨耗の発生で穴の直径を維持すること
も困難であるが、ノズルを採用することでこれらの問題
点が解決可能になる。
According to an eighth aspect of the present invention, as an example, referring to FIGS. 3 and 11 to 12, the auxiliary fuel injection hole 45a is replaced with the auxiliary fuel injection hole 45a for an incinerator according to the seventh aspect. One of the connection means 47b is mounted on the flow path 43, and a communication means 46b is provided from the other of the connection means 47b in the direction of the unburned gas flow path, and the virtual axis of the ejection direction is set at the end of the communication means 46b. Fuel gas flow path 3
The auxiliary fuel injection nozzle 45b directed to the second fuel gas passage 2 is attached, and the injection port of the auxiliary fuel injection nozzle 45b is
2 is arranged so as to open inside.
With this configuration, it is difficult to precisely adjust the diameter of the hole and the direction of the virtual axis of the injection direction only with the auxiliary fuel injection hole, and it is also difficult to maintain the diameter of the hole due to wear due to use. These problems can be solved by employing a nozzle.

【0023】本発明の請求項9は、一例として図3と図
11から図13を参照して説明すると、請求項7記載の
焼却炉用エゼクター補助燃料噴射穴45aに代えて、前
記補助燃料噴射流路43上に接続手段47bの一方を取
付けるとともに、前記接続手段47bの他方から前記未
燃ガス流路32方向へ連通手段を46b設け、前記連通
手段46bの端部に噴出方向仮想軸線を前記未燃ガス流
路32に向けた補助燃料噴射ノズル45bを取付け、前
記補助燃料噴射ノズル45bの噴射口と前記未燃ガス流
路32と、を連通する流路46cを設けたことを特徴と
する。この構成により、補助燃料ノズル本体が高温の未
燃ガスに接触することを回避することができるので、高
温によるノズルの材質の変質を防止するとともに、より
高い温度の未燃ガスを扱うことが可能になる。
According to a ninth aspect of the present invention, referring to FIG. 3 and FIGS. 11 to 13 as an example, the auxiliary fuel injection hole 45a is replaced with the auxiliary fuel injection hole 45a for an incinerator according to the seventh aspect. One of the connecting means 47b is mounted on the flow path 43, and a communicating means 46b is provided from the other of the connecting means 47b in the direction of the unburned gas flow path 32, and a virtual axis of the jetting direction is provided at an end of the communicating means 46b. An auxiliary fuel injection nozzle 45b directed to the unburned gas flow path 32 is attached, and a flow path 46c communicating the injection port of the auxiliary fuel injection nozzle 45b and the unburned gas flow path 32 is provided. . With this configuration, the auxiliary fuel nozzle body can be prevented from coming into contact with the high-temperature unburned gas, so that the material of the nozzle can be prevented from being deteriorated due to the high temperature, and the higher-temperature unburned gas can be handled. become.

【0024】本発明の請求項10は、一例として図3と
図11から図15を参照して説明すると、請求項8又は
9いずれかに記載の焼却炉用エゼクターの、補助燃料噴
射ノズル45bと補助燃料噴射流路43との間の連通手
段46bに代えて、前記補助燃料噴射流路43の管壁に
穴を設け、前記補助燃料噴射ノズル45bを前記穴へ直
接取付けたことを特徴とする。この構成により、エゼク
ター製作時に連通手段の材料コストを削減するととも
に、製作工程も簡略化することが可能になる。
According to a tenth aspect of the present invention, the auxiliary fuel injection nozzle 45b of the incinerator ejector according to the eighth or ninth aspect will be described with reference to FIGS. A hole is provided in the tube wall of the auxiliary fuel injection channel 43 instead of the communicating means 46b between the auxiliary fuel injection channel 43 and the auxiliary fuel injection nozzle 45b is directly attached to the hole. . With this configuration, it is possible to reduce the material cost of the communication means when manufacturing the ejector and to simplify the manufacturing process.

【0025】本発明の請求項11は、一例として図3を
参照して説明すると、請求項2から10のいずれかに記
載の焼却炉用エゼクターにおいて、エゼクター本体の表
面の一点から本体の内部を貫通して、前記表面の一点と
は異なるエゼクター本体の表面へ連通して開口する冷却
用媒質流路49を設けたことを特徴とする。この構成に
より、未燃ガスの燃焼によりエゼクター本体が帯びる熱
を冷却用媒質を介して外部に放散することが可能になる
とともに、より高い温度の未燃ガスを取り扱うことが可
能となり、焼却炉全体の運転温度を上げることが可能に
なる。
According to an eleventh aspect of the present invention, referring to FIG. 3 as an example, in the incinerator ejector according to any one of the second to tenth aspects, the inside of the main body of the ejector main body is formed from one point on the surface of the ejector main body. A cooling medium flow path 49 is provided which penetrates and opens to communicate with the surface of the ejector body different from one point of the surface. With this configuration, it becomes possible to dissipate the heat generated by the ejector body to the outside through the cooling medium due to the combustion of the unburned gas, and to handle unburned gas at a higher temperature. Operating temperature can be increased.

【0026】本発明の請求項12は、一例として図1を
参照して説明すると、焼却炉からの排気ガスを充満さ
せ、温度差による比重、成分による比重、熱線の放射
量、の差を利用して高温と低温のガスを分離するための
熱交換タンクの構成であって、漏斗状に形成し、その漏
斗状の先端部には飛灰取出口57を設けた底部と、前記
飛灰取出口57には開閉手段58を設けるとともに、前
記底部の周縁に接続され、低温ガス取出口55と、前記
低温ガス取出口55よりも上方へ位置する燃焼ガス給入
口56と、を形成した側壁と、側壁の最上部の周縁に接
続され、高温ガス取出口54を形成した天井部と、から
なる熱交換タンク51であって、前記熱交換タンク51
の内壁は、鉛直方向の上部と下部に少なくとも2種類以
上の領域に分割して、前記領域ごとに異なった成分から
なる耐火材料を用いて構成し、前記下部の内壁62の耐
火材料は、前記上部の内壁61の耐火材料と比較して、
加熱された場合に放射するの熱線の量が多い耐火材料を
用いてなることを特徴とする。
A twelfth aspect of the present invention will be described with reference to FIG. 1 as an example. The exhaust gas from an incinerator is filled and a difference in specific gravity due to a temperature difference, specific gravity according to a component, and the amount of heat radiation is utilized. A heat exchange tank for separating high-temperature and low-temperature gas by forming a funnel shape, a bottom portion having a fly ash outlet 57 at the funnel-shaped tip, The outlet 57 is provided with an opening / closing means 58 and is connected to the periphery of the bottom portion, and has a side wall formed with a low-temperature gas outlet 55 and a combustion gas inlet 56 located above the low-temperature gas outlet 55. And a ceiling connected to the uppermost peripheral edge of the side wall and having a hot gas outlet 54 formed therein.
The inner wall is divided into at least two or more types of regions in the upper part and the lower part in the vertical direction, and is configured by using a refractory material having a different component for each of the regions, and the refractory material of the lower inner wall 62 is Compared to the refractory material of the upper inner wall 61,
It is characterized by using a refractory material that emits a large amount of heat rays when heated.

【0027】本発明の請求項13は、前記天井に設けら
れた高温ガス取出口の位置を前記側壁へ代えた場合の構
成である。この他、飛灰を吸い込む難点はあるものの、
低温ガス取出口を底部に設けることも可能であり、本質
的には鉛直方向に高さの異なる位置に低いほうから低温
ガス取出口、燃焼ガス給入口、高温ガス取出口を設けれ
ばよい。
According to a thirteenth aspect of the present invention, the hot gas outlet provided on the ceiling is replaced with the side wall. In addition to this, although there is a difficulty in inhaling fly ash,
It is also possible to provide a low-temperature gas outlet at the bottom. Essentially, it is sufficient to provide a low-temperature gas outlet, a combustion gas supply inlet, and a high-temperature gas outlet at positions different in height in the vertical direction.

【0028】本発明の請求項14は、一例として図1を
参照して説明すると、請求項12又は13のいずれかに
記載の熱交換タンクにおいて、さらに、前記焼却炉用熱
交換タンク51の内部で、かつ、前記低温ガス取出口5
5の近傍で、かつ、上方の位置に、前記低温ガス取出口
の断面積に対して少なくとも広い面積を有する突起物
を、前記熱交換タンクの内壁からタンクの鉛直方向の仮
想中心線に向かって下り勾配を有する方向をなすよう
に、前記内壁へ取付け部材を介して固定される飛灰よけ
63を備えることを特徴とする。この構成をとることに
より、熱交換タンク内で沈降をはじめる飛灰の一部は前
記飛灰よけの上部に堆積し、飛灰の自重で自身を支えき
れなくなった時点で、崩落して前記飛灰取出口の上方付
近に移動する。
According to a fourteenth aspect of the present invention, referring to FIG. 1 as an example, the heat exchange tank according to any one of the twelfth and thirteenth aspects of the present invention further comprises a heat exchange tank 51 for the incinerator. And the low-temperature gas outlet 5
In the vicinity of and above 5, a projection having at least a large area with respect to the cross-sectional area of the low-temperature gas outlet is formed from the inner wall of the heat exchange tank toward a virtual center line in the vertical direction of the tank. A fly ash shield 63 fixed to the inner wall via a mounting member so as to form a direction having a downward slope is provided. By taking this configuration, part of the fly ash that begins to settle in the heat exchange tank accumulates on the fly ash shed, and when it cannot support itself with its own weight, it collapses and falls. It moves near the upper part of the fly ash outlet.

【0029】本発明の請求項15は、一例として図1を
参照して説明すると、請求項12から14のいずれかに
記載の焼却炉用熱交換タンク51の飛灰取出口57に設
けた開閉手段に代えて、スクリュー型給送コンベアを備
えることを特徴とする。この構成により、飛灰取出口の
開閉手段の隙間を埋めて気密性を向上させるために必要
な所定量の飛灰量を保ちつつ、過量な飛灰だけを任意
量、任意時点で外部へ排出することが容易になる。
According to a fifteenth aspect of the present invention, referring to FIG. 1 as an example, the opening and closing provided in the fly ash outlet 57 of the heat exchange tank 51 for an incinerator according to any one of the twelfth to fourteenth aspects. A screw type feeding conveyor is provided instead of the means. With this configuration, while maintaining a predetermined amount of fly ash necessary to fill the gap between the opening and closing means of the fly ash outlet and improve airtightness, only an excessive amount of fly ash is discharged to the outside at an arbitrary amount and at an arbitrary time. It becomes easier to do.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。以下の図面は本発
明の実施の一形態に係る構成を示す概略図であり、図1
は廃棄物焼却炉の構成を示す断面図、図2は熱交換タン
ク51の高温ガス給入口56付近に必要により取付ける
高温ガス整流器の投影図である。又、図3はエゼクター
本体を詳細に示す透視図であり、構造を明確に示すため
に内部構造の隠れ線を便宜的に実線で示す。図4から図
10はエゼクター本体31内部において空気噴射穴35
a又は空気噴射ノズル35bの断面付近を示す断面図で
ある。同様に図11から図15はエゼクター本体31内
部において補助燃料噴射穴45a又は補助燃料噴射ノズ
ル45bの断面付近を示す断面図であり、以下詳しく説
明する。
Embodiments of the present invention will be specifically described below with reference to the drawings. The following drawings are schematic diagrams showing a configuration according to an embodiment of the present invention, and FIG.
FIG. 2 is a cross-sectional view showing the configuration of the waste incinerator, and FIG. 2 is a projection view of a high-temperature gas rectifier to be mounted near the high-temperature gas supply port 56 of the heat exchange tank 51 as necessary. FIG. 3 is a perspective view showing the ejector main body in detail, and hidden lines of the internal structure are indicated by solid lines for the sake of clarity of the structure. FIGS. 4 to 10 show the air injection holes 35 inside the ejector body 31.
It is sectional drawing which shows the vicinity of the cross section of a or the air injection nozzle 35b. Similarly, FIGS. 11 to 15 are cross-sectional views showing the vicinity of a cross section of the auxiliary fuel injection hole 45a or the auxiliary fuel injection nozzle 45b inside the ejector body 31, which will be described in detail below.

【0031】本発明における焼却炉は、図1において一
例として、鉄筋コンクリートなどの構造物(図示せず)
で焼却炉外郭を製作し、一次燃焼室12、二次燃焼室1
3、ごみホッパー21、固定炉床16、可動炉床17、
灰取出口18を設け、油圧手段19の動作でプッシャ2
7を動かし、被燃焼物22を一次燃焼室12内部に送り
込めるようにするとともに、一次燃焼室12内部の焼却
中の被燃焼物24、25を移送するために油圧手段19
と可動炉床17を設ける。被燃焼物の入口には開閉手段
を設けて、一次燃焼室12への外気の流入を制限するこ
とが望ましい。
The incinerator according to the present invention is a structure (not shown) such as reinforced concrete as an example in FIG.
The incinerator shell is manufactured by using the primary combustion chamber 12 and the secondary combustion chamber 1
3, refuse hopper 21, fixed hearth 16, movable hearth 17,
An ash outlet 18 is provided, and the operation of the hydraulic
7 to move the burnables 22 into the primary combustion chamber 12 and to transfer the incinerated burnables 24 and 25 inside the primary combustion chamber 12 by hydraulic means 19.
And a movable hearth 17. It is desirable to provide an opening / closing means at the entrance of the burnable material to restrict the inflow of outside air into the primary combustion chamber 12.

【0032】一次燃焼室12の内壁、二次燃焼室13の
内壁、可動炉床17、固定炉床17は、耐火煉瓦、耐熱
煉瓦、不定形耐火物など耐火性を充分に有する素材を使
用して製作する。また、焼却炉の構造物と各燃焼室との
間には、燃焼室内部の熱を外部に逃がしにくくするため
に、断熱材の充填や一定の空間を構築して空気層を構成
し、保温対策を持つことが望ましい。さらに、前記保温
対策に加えてボイラーの水管を通すことも熱回収と冷却
という点で望ましい。また、とりわけ二次燃焼室の内部
は本装置中最も高温になる部分であるめ、必要に応じで
水冷壁やウォータージャケットなどの冷却手段を設け
る。また、一次燃焼室12と二次燃焼室13の側壁に
は、高温ガス還流流路82と燃焼ガス流路81を接続す
るための開口部を設ける。
The inner wall of the primary combustion chamber 12, the inner wall of the secondary combustion chamber 13, the movable hearth 17, and the fixed hearth 17 are made of a material having sufficient fire resistance, such as a refractory brick, a heat-resistant brick, and an amorphous refractory. To produce. In addition, between the structure of the incinerator and each combustion chamber, an air layer is constructed by filling with heat insulating material and constructing a certain space in order to make it difficult for heat inside the combustion chamber to escape to the outside. It is desirable to have measures. Furthermore, in addition to the above-mentioned heat retention measures, it is also desirable to pass through a water pipe of a boiler in terms of heat recovery and cooling. In particular, since the inside of the secondary combustion chamber is the hottest part in the present apparatus, a cooling means such as a water cooling wall or a water jacket is provided as necessary. An opening for connecting the high-temperature gas recirculation flow path 82 and the combustion gas flow path 81 is provided on the side wall of the primary combustion chamber 12 and the secondary combustion chamber 13.

【0033】次に、一次燃焼室12と二次燃焼室の境界
には、ガスが流れる隙間を持たせないようにエゼクター
31を設置する。一次燃焼室側の境界部付近の断面積を
二次燃焼室側よりも狭くする構造にして段差をつくり、
その段差にエゼクター31を置くように配置することが
できる。エゼクター31と炉壁部材との間には設置前に
不定形耐火物を薄く盛り付けてその上にエゼクター31
を置くことで、エゼクターと炉壁部材との間の気密性を
保ち、エゼクター31の作動で一次燃焼室12側よりも
高い圧力を持った二次燃焼室13側のガスが再び一次燃
焼室12側へ流入することを防止することが望ましい。
Next, an ejector 31 is provided at the boundary between the primary combustion chamber 12 and the secondary combustion chamber so as not to have a gap through which gas flows. A step is created by making the cross-sectional area near the boundary on the primary combustion chamber side narrower than the secondary combustion chamber side,
The ejector 31 can be arranged so as to be placed on the step. Before the installation, a thin refractory of irregular shape is provided between the ejector 31 and the furnace wall member.
By keeping the airtightness between the ejector and the furnace wall member, the gas on the side of the secondary combustion chamber 13 having a higher pressure than the side of the primary combustion chamber 12 by the operation of the ejector 31 causes the gas on the primary combustion chamber 12 It is desirable to prevent inflow to the side.

【0034】次に、エゼクター31の詳細であるが、図
3から図15においては図示の簡略化のため、空気噴射
流路、空気噴射ノズル、補助燃焼噴射流路、補助燃料噴
射ノズル、連通手段などは1本しか表されてないが、実
施時は対向するように偶数本の前記流路を設け、対向す
るノズルなどから出る各噴射物が未燃ガス流路32内で
衝突せしめることが、エゼクターの動作効率上望まし
い。また、前記本数は限定されない。また、図3におけ
る空気噴射流路33、補助燃料噴射流路43は図示の都
合上角管で表されているが、実際には円管を使用して製
作することが圧力に対する強度の点で望ましい。また、
空気供給流路34、補助燃焼供給流路44、の端部は、
エゼクター本体31の表面から必要長さ飛び出してフラ
ンジなどの接続手段を設ける構成にすることが、実施に
おいて各管路の接続が容易になり望ましい。さらに、エ
ゼクター31内に構成される各鋼管には、表面に伸縮可
能な耐火素材例えばテープ状の石綿などを巻きつけてお
くことが、使用時に熱を帯びた場合、不定形耐火物と鋼
管の熱膨張率の差による膨張を吸収できるため、エゼク
ター本体に亀裂が発生することを防止できるので望まし
い。また、冷却用媒体流路は前記空気供給流路34と同
様に鋼管により製作してもよい。補助燃料関連の流路な
どについては上記と同様である。また、本明細書におい
て、燃焼用の空気と表記を統一してあるが、代わりに純
酸素又は酸素富化した空気を利用することも可能であ
る。この場合、燃焼時に発生する窒素酸化物の削減に効
果がある。また、図3における空気噴射流路33の構造
は輪のように未燃ガス流路32の近傍に設置されている
が、空気噴射流路33の配置は未燃ガス流路32の近傍
であれば限定されないので、例えば未燃ガス流路32の
周囲に螺旋状に配置して、その螺旋の終点を盲栓で塞い
だ構成でも可能である。
Next, the details of the ejector 31 will be described with reference to FIGS. 3 to 15. For simplicity of illustration, the air injection flow path, the air injection nozzle, the auxiliary combustion injection flow path, the auxiliary fuel injection nozzle, and the communicating means are shown. Although only one is shown, at the time of implementation, an even number of the flow paths are provided so as to face each other, and each jet ejected from an opposed nozzle or the like may collide in the unburned gas flow path 32, It is desirable for the operation efficiency of the ejector. The number is not limited. In addition, the air injection passage 33 and the auxiliary fuel injection passage 43 in FIG. 3 are represented by square tubes for convenience of illustration, but actually manufactured using a circular tube in terms of strength against pressure. desirable. Also,
The ends of the air supply channel 34 and the auxiliary combustion supply channel 44 are
It is desirable to provide a connecting means such as a flange that protrudes from the surface of the ejector main body 31 by a required length since connection of each pipe is easy in practice. Furthermore, it is possible to wind a stretchable refractory material such as a tape-like asbestos around the surface of each steel pipe formed in the ejector 31. Since the expansion due to the difference in the coefficient of thermal expansion can be absorbed, the occurrence of cracks in the ejector body can be prevented, which is desirable. Further, the cooling medium passage may be made of a steel pipe similarly to the air supply passage 34. The flow paths related to the auxiliary fuel and the like are the same as above. Also, in this specification, the notation of air for combustion is unified, but pure oxygen or oxygen-enriched air may be used instead. In this case, it is effective in reducing nitrogen oxides generated during combustion. Further, the structure of the air injection flow path 33 in FIG. 3 is installed near the unburned gas flow path 32 like a ring, but the arrangement of the air injection flow path 33 may be near the unburned gas flow path 32. Since there is no limitation, for example, a configuration in which the spiral is arranged around the unburned gas flow path 32 and the end point of the spiral is closed with a blind plug is also possible.

【0035】本エゼクターの設計時における主要なパラ
メーターは、設計空気噴射穴35a又はノズル35bに
ついて、空気噴射穴35a又はノズル35bの噴射方向
仮想軸線と未燃ガス流路32とのなす角度、噴射口径、
未燃ガス流路1本に対する空気噴射穴35a又はノズル
35bの設置数、空気供給流路34に供給する空気圧、
未燃ガス流路32の口径、未燃ガスの組成、使用温度で
ある。また、各流路は空気噴射穴35a又はノズル35
bの口径面積の合計に対して充分に大な口径面積を有す
ることで管路を流れる流体の圧力損失を削減でき、より
高圧な流体を書くノズルまで供給でき、噴射速度を向上
させることができるので、望ましい。
The main parameters at the time of designing this ejector are the angle between the virtual axis of the injection direction of the air injection hole 35a or the nozzle 35b and the unburned gas flow path 32, and the injection port diameter for the designed air injection hole 35a or the nozzle 35b. ,
The number of air injection holes 35a or nozzles 35b provided for one unburned gas passage, the air pressure supplied to the air supply passage 34,
The diameter of the unburned gas passage 32, the composition of the unburned gas, and the operating temperature. Further, each flow path is provided with an air injection hole 35a or a nozzle 35.
By having a sufficiently large diameter area with respect to the total diameter area of b, the pressure loss of the fluid flowing through the pipeline can be reduced, the higher pressure fluid can be supplied to the nozzle for writing, and the injection speed can be improved. So desirable.

【0036】送風手段38は、圧縮空気を発生させるこ
とが可能なコンプレッサーを設け、発生する圧縮空気を
焼却炉本体11の側壁を貫通して設けられる連通手段3
9を介して前記エゼクター31の空気供給流路34に接
続される。尚、エゼクター31の空気供給流路34の接
続口が焼却炉本体11の表面に露出するようにエゼクタ
ー本体31を設置してある場合には、送風手段38から
の連通手段39は直接空気供給流路34に接続すること
が可能になり、この場合エゼクターのメンテナンスが容
易になる。
The blowing means 38 is provided with a compressor capable of generating compressed air, and the generated compressed air is passed through the side wall of the incinerator main body 11 to communicate with the communicating means 3.
9 is connected to the air supply channel 34 of the ejector 31. When the ejector main body 31 is installed such that the connection port of the air supply flow path 34 of the ejector 31 is exposed on the surface of the incinerator main body 11, the communication means 39 from the blowing means 38 directly supplies the air supply flow. It is possible to connect to the path 34, in which case the maintenance of the ejector is facilitated.

【0037】次に、熱交換タンク51の詳細を図1と図
2を参照して説明すると、鉄筋コンクリートなどの構造
物で熱交換タンク51の外郭を製作し、前記外郭から支
持部材を使用して内面を耐火材料を固定して覆って構成
し、熱交換タンク51の表面から中まで貫通する、最下
部の低温ガス取出口55と、それより上にある燃焼ガス
給入口56と、それより上にある高温ガス取出口54を
設ける。さらに、焼却炉11の二次燃焼室出口14に燃
焼ガス流路81の一方を接続し、他方を熱交換タンク5
1の燃焼ガス給入口56に接続する。また、熱交換タン
ク51の高温ガス取出口54に高温ガス還流流路82の
一方を接続し、他方を焼却炉11の高温ガス供給口15
に接続する。また、低温ガス取出口55に連通手段を接
続し、補助装置を経由して煙突に連通し大気開放され
る。
Next, the details of the heat exchange tank 51 will be described with reference to FIG. 1 and FIG. 2. An outer shell of the heat exchange tank 51 is made of a structure such as reinforced concrete, and a support member is used from the outer shell. The lower surface is formed by fixing the refractory material on the inner surface and penetrating from the surface of the heat exchange tank 51 to the inside thereof. A hot gas outlet 54 is provided. Further, one of the combustion gas passages 81 is connected to the secondary combustion chamber outlet 14 of the incinerator 11 and the other is connected to the heat exchange tank 5.
One combustion gas supply port 56 is connected. One of the hot gas recirculation passages 82 is connected to the hot gas outlet 54 of the heat exchange tank 51, and the other is connected to the hot gas supply port 15 of the incinerator 11.
Connect to In addition, a communication means is connected to the low-temperature gas outlet 55, which is connected to a chimney via an auxiliary device and is opened to the atmosphere.

【0038】上記熱交換タンクの構成で、熱交換タンク
としての機能を果たすことが可能になり、飛灰が著しく
少ない燃料例えば重油などを燃料とするボイラーの燃焼
炉などに利用が可能になる。熱交換タンクの形状は、縦
長の容器であれば効果を奏するが、二次燃焼の失火など
の原因で未燃ガスが熱交換タンク51内部に異常に充満
したのち、発火して爆発した場合を考慮すると、構造的
に強度が最大になる円筒形又は円錐形が望ましい。さら
に熱交換タンク51の天井部は鍋蓋のように開閉可能で
かつ主に自重で圧接されて気密する構造とすることで、
爆発時に急激に発生するガスを迅速に大気に開放して内
部の圧力の異常な上昇を回避して熱交換タンク本体51
の破損と、それに伴う破片の飛散による二次災害を防止
するために有効である。
With the configuration of the heat exchange tank, the function as a heat exchange tank can be achieved, and the heat exchange tank can be used for a boiler combustion furnace or the like that uses a fuel with extremely low fly ash, such as heavy oil. The shape of the heat exchange tank is effective as long as the container is vertically long.However, the case where the unburned gas abnormally fills the inside of the heat exchange tank 51 due to the misfire of the secondary combustion and the like and ignites and explodes. Considering this, a cylindrical or conical shape that maximizes structural strength is desirable. Furthermore, the ceiling of the heat exchange tank 51 can be opened and closed like a pot lid, and is mainly pressed against by its own weight to make it airtight.
The gas generated rapidly at the time of the explosion is quickly released to the atmosphere to avoid an abnormal increase in the internal pressure, and the heat exchange tank body 51
This is effective in preventing secondary disasters caused by damage to the shards and the accompanying shards.

【0039】また、廃棄物を焼却した場合に多く発生す
る飛灰を収集して排出するための手段として、熱交換タ
ンク51の底部は漏斗状に形成して、熱交換タンク51
内部で沈降した飛灰64を集めることが可能になる。集
められた飛灰64は開閉手段58を開いて外部に排出す
るが、開閉手段58の閉時における熱交換タンク51の
気密性を保つためには一定量の飛灰64を意図的に確保
しておくことが望ましく、確保された飛灰64が開閉手
段58の例えばダンパーと本体の間の隙間に挟まり気密
効果を得ることができる。開閉手段58は前記の如くダ
ンパーを使用すると低コストで構成できる。また、任意
の時点で任意の量の飛灰58を排出が可能となる紛体用
のスクリュー型給送コンベアを採用してもよい。スクリ
ュー型給送コンベアとは、例えば中空の円筒容器の中に
棒材で軸を設け、前期棒材の周縁には棒材対して垂直で
螺旋状になした連続面を必要とされる移送距離分持ち、
前記円筒容器の端の一方には紛体を供給するためのホッ
パーを設け、他方は移送目的点の上方付近に開口して、
前記棒材を減速器を介したモーターで回転させることに
より、円筒容器内の定点における見かけ上の螺旋面の位
置が移動するため、紛体が受ける重力と螺旋面からの摩
擦力の合力により、紛体を移送することが可能になる移
送手段である。
Further, as a means for collecting and discharging fly ash generated when waste is incinerated, the bottom of the heat exchange tank 51 is formed in a funnel shape, and
The fly ash 64 settled inside can be collected. The collected fly ash 64 is opened to open and close the opening / closing means 58 and discharged to the outside. To maintain the airtightness of the heat exchange tank 51 when the opening / closing means 58 is closed, a certain amount of fly ash 64 is intentionally secured. It is desirable to keep the fly ash 64 secured between the opening and closing means 58, for example, a gap between the damper and the main body, so that an airtight effect can be obtained. The opening / closing means 58 can be configured at low cost by using a damper as described above. Further, a screw-type feeding conveyor for powder which can discharge an arbitrary amount of fly ash 58 at an arbitrary time may be employed. A screw-type feeding conveyor is, for example, a shaft provided with a rod in a hollow cylindrical container, and a continuous surface that is vertically and spirally formed with respect to the periphery of the rod at the periphery of the rod. Sharing,
One end of the cylindrical container is provided with a hopper for supplying powder, and the other is opened near the transfer destination point,
By rotating the rod by a motor through a speed reducer, the apparent position of the spiral surface at a fixed point in the cylindrical container moves, and the resultant force of the gravity received by the powder and the frictional force from the spiral surface causes the powder to move. Is a transfer means that can transfer the data.

【0040】また、熱交換タンク51内部で沈降中の飛
灰が低温ガス取出口55に吸い込まれて排出され、図示
しない排気ガス処理装置に負荷がかかることを軽減する
ために、熱交換タンク51内部の低温ガス取出口55の
上方へ、前記低温ガス取出口55の断面積に対して少な
くとも広い面積を有する突起物を、前記熱交換タンクの
内壁からタンクの鉛直方向の仮想中心線に向かって下り
勾配を有する方向をなすように、前記内壁へ取付け部材
を介して固定される飛灰よけ63を設けることが有効で
ある。飛灰よけ63は、耐火材料例えばアルミナセメン
トなどを板状になした物で良く、面積は大きいほど多く
の飛灰を集めて落下させることができる反面、あまりに
大きくなりすぎると、飛灰よけ63と熱交換タンク51
の内部の底部との隙間が小さくなりすぎ、この結果この
隙間部分においてガスの流速が上昇して、高速で流れる
ガスが底部に沈降した飛灰を舞い上げて逆効果となるこ
とが懸念されるため、熱交換タンクの断面積の6割程度
が適切である。
The fly ash settling inside the heat exchange tank 51 is sucked into the low-temperature gas outlet 55 and discharged therefrom, so that the load on the exhaust gas treatment device (not shown) is reduced. A protrusion having at least a large area with respect to the cross-sectional area of the low-temperature gas outlet 55 is formed above the internal low-temperature gas outlet 55 from the inner wall of the heat exchange tank toward a virtual center line in the vertical direction of the tank. It is effective to provide a fly ash shield 63 fixed to the inner wall via a mounting member so as to form a direction having a downward slope. The fly ash repellent 63 may be a plate made of a refractory material such as alumina cement, and the larger the area, the more fly ash can be collected and dropped. 63 and heat exchange tank 51
There is a concern that the gap between the inside and the bottom becomes too small, and as a result, the gas flow velocity increases in this gap, and the gas flowing at high speed soars the fly ash that has settled to the bottom and has an adverse effect. Therefore, about 60% of the cross-sectional area of the heat exchange tank is appropriate.

【0041】さらに、熱交換タンク51の内壁に使用す
る耐火材料は、鉛直方向の上部61と下部62の少なく
とも2種類の領域に分割して、下部62の領域には組成
として炭化珪素を多く含む耐火材料を用い、上部61の
領域はアルミニウムの酸化物を多く含む耐火材料を用い
て製作することが望ましい。物質が熱せられた時に放射
する熱線(赤外線)の量は、物質固有の異なる値になる
性質を利用して、下部62を上部61に対して熱せられ
た場合に熱線を多く放射する耐火材料を使用して構築す
ることにより、熱交換タンク下部53の中心付近が最も
熱線が密になる。さらに、熱交換タンク51の内壁から
放射される熱線の放射方向は壁面に対して直角方向だけ
ではなく、放射量の差はあるものの、ほぼ180度すべ
ての方向に放射されるため、下部62付近から放射され
た熱線は上部61付近にも達し、一部が上部61に吸収
され、発熱して再び熱交換タンク上部52付近のガスを
温める。前記下部62と上部61では熱線の放射量は異
なるため、総合的にみると熱交換タンク下部53付近の
熱が上部52付近へ向かって移動し、熱交換タンク51
の熱の分離を促進する。さらに、熱交換タンクの下部5
3の中心付近に耐火材料で頂点を上にして円錐又は角錐
状の形状で、底辺は熱交換タンク51の内壁に対して間
隔の空けた反射器を製作して取付けると、熱交換タンク
の下部62付近から放射された熱線は前記円錐又は角錐
の斜面に再び反射して、その反射熱線が上部61付近に
効率よく到達する。さらに、鉄鋼の反射炉の如く,前記
反射器の斜面を内面に向かってへこんだ曲面として、そ
の曲面を凹面鏡と見立てたと仮定したときの反射焦点位
置を熱交換タンク上部52付近になすように製作して設
けることで、さらに熱の移動の効率を増す。さらに、熱
交換タンク51の天井を含めた上部の形状を頂上面を下
に向けた円錐台又は角錐台状にし、底面つまりこの場合
熱交換タンクの内面の天井部の中心付近に前記反射器を
頂点を下に向けて設けると、円錐台又は角錐台状の部分
の内面に至った熱線は、再びこの内壁を暖めて熱線を放
射するとともに、面から発する熱線の放射量分布はその
面の正面が最大になるため、前記放射する面の対面に向
かって多くが放射され、これの繰り返しで熱は円錐台又
は角錐台の底面方向つまりこの場合は熱交換タンク内面
の最上部付近へ移動する傾向にあり、相対的に下部へ向
かう熱線の漏洩を減少させることが可能になる。この場
合は、前記円錐台又は角錐台の底面部つまりこの場合熱
交換タンクの最上部付近でかつ前記反射器の底面が及ん
でいたいところに高温ガス取出口54を設けることが望
ましい。
Further, the refractory material used for the inner wall of the heat exchange tank 51 is divided into at least two types of regions, an upper portion 61 and a lower portion 62 in the vertical direction, and the lower portion 62 contains a large amount of silicon carbide as a composition. It is preferable to use a refractory material and to manufacture the upper portion 61 using a refractory material containing a large amount of aluminum oxide. The amount of heat rays (infrared rays) radiated when a substance is heated is different from that of a material. By using and constructing, the heat rays become densest near the center of the heat exchange tank lower portion 53. Furthermore, the radiation direction of the heat ray radiated from the inner wall of the heat exchange tank 51 is not only in the direction perpendicular to the wall surface but also in the direction of almost 180 degrees although there is a difference in radiation amount. The heat rays radiated from the upper part also reach the vicinity of the upper part 61, and a part thereof is absorbed by the upper part 61, and generates heat to heat the gas near the heat exchange tank upper part 52 again. Since the lower portion 62 and the upper portion 61 emit different amounts of heat rays, the heat in the vicinity of the heat exchange tank lower portion 53 moves toward the upper portion 52 and the heat exchange tank 51 in total.
Promotes heat separation. Furthermore, the lower part 5 of the heat exchange tank
3 is formed in a conical or pyramid shape with a refractory material in the vicinity of the center, with the apex facing upward, and the bottom is manufactured by attaching a reflector spaced to the inner wall of the heat exchange tank 51, and the lower part of the heat exchange tank is attached. The heat rays radiated from near 62 are reflected again on the slope of the cone or pyramid, and the reflected heat rays efficiently reach near the upper portion 61. Further, as in the case of a steel reverberation furnace, the reflector is formed as a curved surface in which the slope of the reflector is depressed toward the inner surface, and the reflection focal position when the curved surface is assumed to be a concave mirror is formed near the upper portion 52 of the heat exchange tank. With this arrangement, the efficiency of heat transfer is further increased. Further, the shape of the upper portion including the ceiling of the heat exchange tank 51 is formed in a truncated cone or truncated pyramid shape with the top surface facing downward, and the reflector is provided near the center of the bottom surface, that is, the ceiling of the inner surface of the heat exchange tank in this case. When the apex is provided downward, the heat rays reaching the inner surface of the truncated cone or the truncated pyramid shape heat the inner wall again and radiate the heat rays, and the radiation distribution of the heat rays emitted from the surface is in front of the surface. Is large, so much is radiated toward the opposite surface of the radiating surface, and by this repetition, heat tends to move toward the bottom of the truncated cone or truncated pyramid, that is, in this case, near the top of the inner surface of the heat exchange tank. And it is possible to reduce the leakage of the heat ray toward the lower part relatively. In this case, it is desirable to provide a hot gas outlet 54 near the bottom of the truncated cone or truncated pyramid, that is, near the top of the heat exchange tank and where the bottom of the reflector should reach.

【0042】次に、熱交換タンク51内のガスは外乱に
より攪拌されてしまうと、上部52の高温ガスと下部5
3の低温ガスが混ざってしまうため、より静置に近い状
態に保つことが望ましく、これを実現するの手段とし
て、燃焼ガス給入口56の形状を燃焼ガス流路方向を頂
点とした円錐又は角錐の形状に掘削した形状にすること
で、タンクの中心に向かって次第に流路の断面積が大き
くなり、相反してガスの流速を低下させ、タンク内部の
ガスの流入するガスの運動エネルギーによる攪拌を低減
することができる。また、円錐又は角錐状の漏斗のよう
な形状の部材を耐火材料で製作し、ガス拡散器として、
この底辺部を熱交換タンク51の外壁に合致する形状に
加工して熱交換タンク51の外壁の燃焼ガス給入口56
付近に壁面から支持される取付け部材を使用して固定
し、高温ガス給入口56の外部の開口部の大きさは前記
ガス拡散器の仮想底面うち斜面の部材の厚さを除いた領
域と同等な大きさとして設けることが望ましい。さら
に、断面積が最大になるガス拡散器の仮想底面部、又は
燃焼ガス給入口56の内側の開口部に、直径が1cm程
度の小さな穴を一面に多数設けた耐火材料の板を拡散板
として熱交換タンク51のいずれかの部分から支持され
る取付け部材を介して流路を塞ぐように取付けると、燃
焼ガス流路81から供給される燃焼ガスが前記小さな穴
を通過時に圧力損失を受けて、燃料ガス流路81側の圧
力が熱交換タンク51の内部の圧力よりも高くなるた
め、前記小さな穴一つ一つへ均一的に分散して流れやす
くなる傾向があり、流路の断面上の異なった位置間にお
けるガスの流速の均一化が可能になり望ましい。さら
に、例えば耐火材で製作した内部が中空である直方体に
おいて、隣接する2面のみを削除し、前記削除した面の
いずれか1面のみを高温ガス給入口56周辺の熱交換タ
ンク51内部の内壁の形状に合致するように加工したの
部材を高温ガス整流器79として、高温ガス給入口56
を覆うように、開口部77が略水平方向を向くように取
付けることで、燃焼ガス給入口56から熱交換タンク5
1の中心に向かって放出される燃焼ガスの流れる方向
を、内壁に平行な方向に変えることができる。これによ
り、燃焼ガスの一部は熱交換タンク51の内壁に沿って
流れ、タンク内部の内壁付近を旋回する。この旋回によ
り熱交換タンク51の内部の中心から内壁の手前まで燃
焼ガスが、特に垂直方向の動きについてほぼ静止状態に
近くなる。さらに、前記旋回により内壁付近を旋回する
ガスは内壁面の微小な凹凸から摩擦抵抗を受け、次第に
その運動エネルギーを損失し、さらに静置状態に近づけ
ることが可能になり、前記ガスの攪拌を減少させること
ができる。
Next, when the gas in the heat exchange tank 51 is stirred by disturbance, the high-temperature gas in the upper
Since the low-temperature gas of 3 is mixed, it is desirable to keep the state close to stationary. As a means for realizing this, the shape of the combustion gas inlet 56 is changed to a cone or pyramid having the combustion gas flow direction as a vertex. The cross-sectional area of the flow path gradually increases toward the center of the tank by excavating into the shape of the tank, conversely reducing the flow velocity of the gas, and stirring the gas flowing into the tank by the kinetic energy of the gas flowing into the tank Can be reduced. Also, a member like a conical or pyramid-shaped funnel is made of refractory material, and as a gas diffuser,
This bottom portion is processed into a shape that matches the outer wall of the heat exchange tank 51, and the combustion gas supply port 56 on the outer wall of the heat exchange tank 51 is formed.
It is fixed using a mounting member supported from the wall in the vicinity, and the size of the opening outside the high-temperature gas supply port 56 is the same as the area of the virtual bottom surface of the gas diffuser except for the thickness of the sloped member. It is desirable to provide a large size. Further, a plate made of a refractory material having a large number of small holes having a diameter of about 1 cm on the entire surface thereof at a virtual bottom portion of the gas diffuser having a maximum cross-sectional area or an opening inside the combustion gas inlet 56 is used as a diffusion plate. When mounted so as to close the flow path via a mounting member supported from any part of the heat exchange tank 51, the combustion gas supplied from the combustion gas flow path 81 receives a pressure loss when passing through the small hole. Since the pressure on the side of the fuel gas passage 81 becomes higher than the pressure inside the heat exchange tank 51, the fuel gas tends to be uniformly dispersed in each of the small holes and to flow easily. This makes it possible to make the flow velocity of the gas uniform between different positions. Furthermore, for example, in a rectangular parallelepiped made of a refractory material and having a hollow inside, only two adjacent surfaces are deleted, and only one of the deleted surfaces is replaced with the inner wall inside the heat exchange tank 51 around the high-temperature gas supply inlet 56. A member processed to conform to the shape of the high-temperature gas rectifier 79 is used as the high-temperature gas supply port 56.
So that the opening 77 faces in a substantially horizontal direction so as to cover the heat exchange tank 5 from the combustion gas supply port 56.
The flow direction of the combustion gas discharged toward the center of the first can be changed to a direction parallel to the inner wall. Thereby, a part of the combustion gas flows along the inner wall of the heat exchange tank 51 and swirls around the inner wall inside the tank. Due to this swirl, the combustion gas from the center inside the heat exchange tank 51 to just before the inner wall becomes almost stationary, especially in the vertical movement. Further, the gas swirling around the inner wall due to the swirling receives frictional resistance from the minute irregularities on the inner wall surface, gradually loses its kinetic energy, and can be closer to a stationary state, thereby reducing the stirring of the gas. Can be done.

【0043】次に補助装置について図1と図3を参照し
ながら説明すると、通常、本焼却炉の最小構成におい
て、主要部における燃焼用空気の流入口はエゼクター3
1内部の空気噴射穴35aのみであり、排気ガスの出口
は熱交換タンク51の低温ガス取出口55のみであり、
その他の部分は外気に対して気密性を有するようになし
てあるものであるから、燃焼用空気が装置内に流入する
と、大気に対して圧力を生じ、その圧力が低温ガス取出
口55まで伝導して自動的に低温ガス取出口55付近の
ガスが外部へ排出される。しかしながら、燃焼速度を増
して、焼却炉の処理能力を向上させるために、誘引送風
機72を設けても良い。次に、低温ガス取出口55又は
誘引送風機72を通過した排気ガスは図示しない排気ガ
ス処理装置と、煙突73を経由して大気に開放される。
Next, the auxiliary device will be described with reference to FIGS. 1 and 3. Generally, in the minimum configuration of the present incinerator, the inlet of the combustion air in the main part is the ejector 3.
1 is only the air injection hole 35a inside, the outlet of the exhaust gas is only the low temperature gas outlet 55 of the heat exchange tank 51,
Since the other parts are made airtight to the outside air, when the combustion air flows into the apparatus, a pressure is generated against the atmosphere, and the pressure is transmitted to the low-temperature gas outlet 55. Then, the gas near the low-temperature gas outlet 55 is automatically discharged to the outside. However, an induction blower 72 may be provided to increase the burning rate and improve the processing capacity of the incinerator. Next, the exhaust gas that has passed through the low-temperature gas outlet 55 or the induction blower 72 is released to the atmosphere via an exhaust gas processing device (not shown) and a chimney 73.

【0044】次に、本発明を変形して応用した例を図1
6を参照しながら説明すると、主要部は図1と同一であ
るが、焼却炉本体11と熱交換タンク51を同一の筐体
で構成することを特徴としている。この特徴により、各
燃焼室から壁面を通して外部に伝導して損失する熱の一
部を熱交換タンクとの接触面から回収することが可能に
なる。また、燃焼ガス流路81と高温ガス還流流路82
については壁材で囲まれた空間を流路として構成するこ
とを特徴としている。この特徴により、前記同様の熱の
回収が可能になる他、各管路が各燃焼室と熱交換タンク
51の隔壁を兼ねることで、管路関連工事が不要になり
管路部材を無使用にするとともに、装置全体の製作コス
トも削減が可能である。さらに図16においては図示の
都合上、高温ガス還流流路15は熱交換タンク51の外
部に出た後、一次燃焼室12に連通しているが、実施上
は前記の理由により熱交換タンク51の内部に壁材を組
合せて設けた流路を高温ガス還流流路としたほうが望ま
しい。また、焼却灰取出口18に代えて落下管91を焼
却灰が至る位置に設けるとともに、スラグコンベア92
を落下管91の下部に配し、水93により水封して外気
の落下管からの流入を防止していることを特徴とする。
この特徴により、装置内の外気に対する気密を保ったま
ま焼却灰25の連続的な排出を可能とする。
Next, an example in which the present invention is modified and applied is shown in FIG.
6, the main part is the same as that of FIG. 1, but the incinerator main body 11 and the heat exchange tank 51 are constituted by the same casing. This feature makes it possible to recover a part of the heat that is lost due to conduction from each combustion chamber to the outside through the wall surface from the contact surface with the heat exchange tank. In addition, a combustion gas passage 81 and a high-temperature gas recirculation passage 82
Is characterized in that a space surrounded by a wall material is configured as a flow path. Due to this feature, in addition to the same heat recovery as described above, since each pipe also serves as a partition of each combustion chamber and the heat exchange tank 51, pipe-related work is not required, and pipe members are not used. In addition, the manufacturing cost of the entire apparatus can be reduced. Further, in FIG. 16, for convenience of illustration, the high-temperature gas recirculation flow path 15 goes out of the heat exchange tank 51 and then communicates with the primary combustion chamber 12. It is desirable that the flow path provided by combining the wall materials inside the inside be a high-temperature gas recirculation flow path. Also, a drop tube 91 is provided in place of the incineration ash outlet 18 in place of the incineration ash, and a slag conveyor 92 is provided.
Is disposed below the drop tube 91 and is sealed with water 93 to prevent outside air from flowing from the drop tube.
With this feature, it is possible to continuously discharge the incinerated ash 25 while maintaining the airtightness against the outside air in the apparatus.

【0045】次に、本発明に焼却灰25の溶融装置を付
加した例を図17を参照しながら説明すると、主要部は
図1、図16と同一であり、加えて、焼却灰25が油圧
手段19の動作に連動する可動炉床17に押し出されて
落下する位置に、可動な支持部材又は支持構造と、駆動
手段96に連結手段85を介して連結される連結手段9
9と、に支持された融解槽95を設け、前記駆動手段9
6と焼却炉本体11、及び、前記融解槽95と連結手段
99と、の接続手段は平面上に可動にするために、ベア
リングなどを介して接続するとともに、外部にコンプレ
ッサーなどの加圧手段98、酸素透過膜装置などの酸素
富化手段97、とそれらを連通する連通手段99a,b
を設け、連通手段99bは炉壁を貫通して融解槽95近
傍に至り、その先端は融解槽95が通常位置における融
解槽95の底部付近で開口することを特徴としている。
この特徴により、還元雰囲気である一次燃焼室12内部
で一部燃焼、炭化を終え、固定炭素を多く含んだ焼却灰
25は、可動炉床17に押されて融解槽95の中に溜ま
る。これが所定量に達した時点で、酸素富化した空気又
は純酸素を連通手段99bから焼却灰の中に送り込むこ
とにより、高温の前記焼却灰の中の固定炭素と前記酸素
富化した空気が接触して燃焼を始めるとともに、燃焼に
よる高温で融解槽内の焼却灰を融解する。固定炭素が燃
焼を終えた時点で、駆動手段96を作動させ、連動して
融解槽95を傾斜させて融解したスラグを落下管91へ
落とし、水92で冷却して固化することが可能になる。
Next, an example in which a melting device for the incineration ash 25 is added to the present invention will be described with reference to FIG. 17. The main part is the same as that in FIG. 1 and FIG. A movable supporting member or a supporting structure and a connecting means 9 connected to a driving means 96 via a connecting means 85 at a position where the movable hearth 17 is pushed out and falls down in conjunction with the operation of the means 19.
And a melting tank 95 supported by the driving means 9.
6 and the incinerator main body 11, and the melting tank 95 and the connecting means 99 are connected via bearings or the like so as to be movable on a plane, and externally provided with a pressurizing means 98 such as a compressor. Enrichment means 97 such as an oxygen permeable membrane device, and communication means 99a and b for communicating them.
The communication means 99b penetrates the furnace wall to reach the vicinity of the melting tank 95, and the tip thereof is characterized in that the melting tank 95 is opened near the bottom of the melting tank 95 at the normal position.
Due to this feature, part of the combustion and carbonization in the primary combustion chamber 12, which is a reducing atmosphere, is finished, and the incinerated ash 25 containing a large amount of fixed carbon is pushed by the movable hearth 17 and accumulates in the melting tank 95. When this reaches a predetermined amount, oxygen-enriched air or pure oxygen is fed into the incineration ash from the communication means 99b, so that the fixed carbon in the high-temperature incineration ash contacts the oxygen-enriched air. To start burning, and melt the incineration ash in the melting tank at the high temperature of the burning. When the fixed carbon finishes burning, the driving means 96 is operated, the melting tank 95 is inclined in conjunction with the molten carbon, the molten slag is dropped into the drop tube 91, and the molten slag can be cooled and solidified by the water 92. .

【0046】以上のような構成により、以下に本発明に
おける焼却炉の基本仕様での一連の動作を以下に述べ
る。送風手段38で発生した高圧の空気は連通手段3
9、空気供給流路34、連通手段36a、空気噴射流路
33、空気噴射穴35aを経由して未燃ガス流路32内
へ鉛直上方に向かって噴射される。噴射された空気は未
燃ガス流路32内部での空気噴射穴35aより上方にあ
る未燃ガスに衝突して運動エネルギーを与えるため、未
燃ガスと供給された空気が混合しながら未燃ガス流路3
2の上方へ移動して排出される。この排出により、未燃
ガス流路32内の空気噴射穴35aより下方で負圧を生
じ、前記下方にある未燃ガスが上方へ移動するとともに
未燃ガス流路32の下部の開口部から一次燃焼室12内
部の未燃ガスを吸引する。さらに、一次燃焼室12内部
に滞留する未燃ガスは酸素不足状態で燃焼させているた
め可燃性のガスを多く含むとともに、自らの発火点より
も高温であるため、未燃ガス流路32内部において空気
噴射穴35aから供給された空気と接触した瞬間に発
火、燃焼を開始し、二次燃焼室13内部において燃焼を
完結する。
With the above configuration, a series of operations in the basic specification of the incinerator according to the present invention will be described below. The high-pressure air generated by the blowing means 38 is
9. The air is injected vertically upward into the unburned gas flow path 32 via the air supply flow path 34, the communication means 36a, the air injection flow path 33, and the air injection hole 35a. The injected air collides with the unburned gas located above the air injection hole 35a inside the unburned gas flow path 32 to give kinetic energy, so that the unburned gas and the supplied air are mixed while the unburned gas is mixed. Channel 3
2 and is discharged. Due to this discharge, a negative pressure is generated below the air injection hole 35a in the unburned gas passage 32, the unburned gas below moves upward, and the unburned gas passage 32 is opened through the primary opening through the lower opening. The unburned gas inside the combustion chamber 12 is sucked. Further, the unburned gas remaining in the primary combustion chamber 12 is burned in a state of lack of oxygen and therefore contains a large amount of combustible gas, and has a higher temperature than its own ignition point. At the moment when the air comes into contact with the air supplied from the air injection hole 35a, ignition and combustion start, and the combustion is completed inside the secondary combustion chamber 13.

【0047】焼却炉の二次燃焼室13で発生する高温で
二酸化炭素を多く含む燃焼ガスを熱交換タンク51内部
に導く。二次燃焼室13内部はエゼクター31の効果に
より大気圧よりも高い状態に保たれており、また、熱交
換タンク51の内部は低温ガス取出口55から煙突73
を経由して大気開放されて大気圧であるため、二次燃焼
室13内部の燃焼ガスは圧力差で熱交換タンク51内部
に流れ込むことができる。熱交換タンク51に流れ込ん
だ燃焼ガスは、それまで同場所に滞留していた燃焼ガス
よりも温度が高いため、ガスの温度差による比重の差が
発生して、より高温の燃焼ガスの一部が熱交換タンク上
部52付近に温度の低いガスを押しのけて上昇して滞留
する傾向がある。前記傾向に相対して低温のガスは熱交
換タンク下部53付近に下降して滞留する傾向がある。
さらに、燃焼ガスは二次燃焼室13において空気過多状
態で燃焼を終えさせたガスであって、二酸化炭素濃度が
5から12%程度含み、他の主な組成ガスである窒素,
酸素と比重を比較すると、窒素0.967、酸素1.1
05に対して二酸化炭素は1.529と重いため熱交換
タンク下部53付近に滞留する傾向がある。前記傾向に
相対して、残りの主なガスである窒素、酸素が二酸化炭
素に押しのけられるかたちで上部付近に滞留する。
The high temperature and carbon dioxide-rich combustion gas generated in the secondary combustion chamber 13 of the incinerator is introduced into the heat exchange tank 51. The interior of the secondary combustion chamber 13 is maintained at a pressure higher than the atmospheric pressure due to the effect of the ejector 31, and the interior of the heat exchange tank 51 is connected to the low temperature gas outlet 55 through the chimney 73.
The combustion gas in the secondary combustion chamber 13 can flow into the heat exchange tank 51 due to the pressure difference because the gas is released to the atmosphere via the air pressure and the atmospheric pressure. Since the temperature of the combustion gas flowing into the heat exchange tank 51 is higher than that of the combustion gas that has been staying in the same place, a difference in specific gravity occurs due to the temperature difference of the gas, and a part of the higher temperature combustion gas is generated. Tend to push up the low temperature gas near the upper part 52 of the heat exchange tank and rise and stay there. In contrast to the above tendency, the low-temperature gas tends to fall near the lower part 53 of the heat exchange tank and stay there.
Further, the combustion gas is a gas that has been burned in the secondary combustion chamber 13 in an excess air state, has a carbon dioxide concentration of about 5 to 12%, and has nitrogen, which is another main constituent gas,
When the specific gravity is compared with oxygen, nitrogen is 0.967, oxygen is 1.1.
Since carbon dioxide is 1.529 which is heavier than 05, it tends to stay near the lower part 53 of the heat exchange tank. Contrary to the above tendency, the remaining main gases, ie, nitrogen and oxygen, stay near the upper part in a form displaced by carbon dioxide.

【0048】前記熱交換タンク上部52付近に滞留した
高温ガスはエゼクター31の動作により負圧になってい
る一次燃焼室12に向かって高温ガス還流流路82から
流れる。一次燃焼室に到達した高温ガスは被燃焼物の一
部燃焼して僅かに残存する酸素を使い切り、さらに高温
で炭化、を促進して可燃性ガスを発生させる。可燃性ガ
スの組成としては、被燃焼物中の高温の固定炭素と雰囲
気中の二酸化炭素が反応して生ずる一酸化炭素が多い。
The high-temperature gas staying in the vicinity of the upper portion 52 of the heat exchange tank flows from the high-temperature gas recirculation flow path 82 toward the primary combustion chamber 12 which is under negative pressure by the operation of the ejector 31. The high-temperature gas that has reached the primary combustion chamber partially burns the material to be burned, uses up a small amount of remaining oxygen, and further promotes carbonization at a high temperature to generate flammable gas. As the composition of the combustible gas, there are many carbon monoxides generated by the reaction between the high-temperature fixed carbon in the burned object and the carbon dioxide in the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る焼却炉の全体構成
を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing the entire configuration of an incinerator according to one embodiment of the present invention.

【図2】本発明の実施の一形態に係る焼却炉の高温ガス
整流器の詳細な投影図である。
FIG. 2 is a detailed projection view of the high-temperature gas rectifier of the incinerator according to one embodiment of the present invention.

【図3】本発明の実施の一形態に係る焼却炉用エゼクタ
ーの詳細な投影図である。
FIG. 3 is a detailed projection view of an ejector for an incinerator according to an embodiment of the present invention.

【図4】本発明の実施の一形態に係る焼却炉用エゼクタ
ーの空気噴射穴を流路方向に垂直に切断した詳細な断面
図である。
FIG. 4 is a detailed cross-sectional view of an ejector for an incinerator according to an embodiment of the present invention, in which an air injection hole is cut perpendicular to a flow channel direction.

【図5】本発明の実施の一形態に係る焼却炉用エゼクタ
ーの空気噴射ノズルを流路方向に垂直に切断した詳細な
断面図である。
FIG. 5 is a detailed sectional view of the air injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicular to the flow path direction.

【図6】本発明の実施の一形態に係る焼却炉用エゼクタ
ーの空気噴射ノズルを流路方向に垂直に切断した詳細な
断面図である。
FIG. 6 is a detailed cross-sectional view of the air injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicular to the flow path direction.

【図7】本発明の実施の一形態に係る焼却炉用エゼクタ
ーの空気噴射ノズルを流路方向に垂直に切断した詳細な
断面図である。
FIG. 7 is a detailed cross-sectional view of the air injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicularly to the flow path direction.

【図8】本発明の実施の一形態に係る焼却炉用エゼクタ
ーの空気噴射ノズルを流路方向に垂直に切断した詳細な
断面図である。
FIG. 8 is a detailed cross-sectional view of the air injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicularly to the flow path direction.

【図9】本発明の実施の一形態に係る焼却炉用エゼクタ
ーの空気噴射ノズルを流路方向に垂直に切断した詳細な
断面図である。
FIG. 9 is a detailed cross-sectional view of the air ejecting nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicular to the flow path direction.

【図10】本発明の実施の一形態に係る焼却炉用エゼク
ターの空気噴射ノズルを流路方向に垂直に切断した詳細
な断面図である。
FIG. 10 is a detailed cross-sectional view of the air injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicular to the flow path direction.

【図11】本発明の実施の一形態に係る焼却炉用エゼク
ターの補助燃料噴射穴を流路方向に垂直に切断した詳細
な断面図である。
FIG. 11 is a detailed cross-sectional view of the auxiliary fuel injection hole of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicular to the flow path direction.

【図12】本発明の実施の一形態に係る焼却炉用エゼク
ターの補助燃料噴射ノズルを流路方向に垂直に切断した
詳細な断面図である。
FIG. 12 is a detailed sectional view of the auxiliary fuel injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicularly to the flow path direction.

【図13】本発明の実施の一形態に係る焼却炉用エゼク
ターの補助燃料噴射ノズルを流路方向に垂直に切断した
詳細な断面図である。
FIG. 13 is a detailed cross-sectional view of the auxiliary fuel injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicular to the flow path direction.

【図14】本発明の実施の一形態に係る焼却炉用エゼク
ターの補助燃料噴射ノズルを流路方向に垂直に切断した
詳細な断面図である。
FIG. 14 is a detailed sectional view of the auxiliary fuel injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicularly to a flow path direction.

【図15】本発明の実施の一形態に係る焼却炉用エゼク
ターの補助燃料噴射ノズルを流路方向に垂直に切断した
詳細な断面図である。
FIG. 15 is a detailed cross-sectional view of the auxiliary fuel injection nozzle of the ejector for an incinerator according to one embodiment of the present invention, which is cut perpendicularly to a flow path direction.

【図16】本発明の実施の一形態に係る焼却炉の全体構
成を示す概略断面図である。
FIG. 16 is a schematic sectional view showing the entire configuration of an incinerator according to one embodiment of the present invention.

【図17】本発明の実施の一形態に係る焼却炉の全体構
成を示す概略断面図である。
FIG. 17 is a schematic sectional view showing the entire configuration of an incinerator according to one embodiment of the present invention.

【図18】本発明の実施の一形態に係る焼却炉の融解槽
付近の詳細な投影図である。
FIG. 18 is a detailed projection view near the melting tank of the incinerator according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 焼却炉本体 12 一次燃焼室 13 二次燃焼室 14 二次燃焼室出口 15 高温ガス供給口 31 エゼクター本体 32 未燃ガス流路 33 空気噴射流路 34 空気供給流路 35 空気噴射穴 35b 空気噴射ノズル 36 連通手段 36b 流路 37 接続手段 38 送風手段 39 連通手段 43 補助燃料噴射流路 44 補助燃料供給流路 45 補助燃料噴射穴 45b 補助燃料噴射ノズル 46 連通手段 46b 流路 47 接続手段 49 冷却用媒質流路 51 熱交換タンク本体 54 高温ガス取出口 55 低温ガス取出口 56 燃焼ガス給入口 57 飛灰取出口 58 開閉手段 61 上部耐火材料 62 下部耐火材料 63 飛灰よけ 64 飛灰 77 開口部 79 高温ガス整流器 81 燃焼ガス流路 82 高温ガス還流流路 DESCRIPTION OF SYMBOLS 11 Incinerator main body 12 Primary combustion chamber 13 Secondary combustion chamber 14 Secondary combustion chamber outlet 15 Hot gas supply port 31 Ejector main body 32 Unburned gas flow path 33 Air injection flow path 34 Air supply flow path 35 Air injection hole 35b Air injection Nozzle 36 Communication means 36b Flow path 37 Connection means 38 Blowing means 39 Communication means 43 Auxiliary fuel injection flow path 44 Auxiliary fuel supply flow path 45 Auxiliary fuel injection hole 45b Auxiliary fuel injection nozzle 46 Communication means 46b Flow path 47 Connection means 49 Cooling Medium flow path 51 Heat exchange tank main body 54 High temperature gas outlet 55 Low temperature gas outlet 56 Combustion gas inlet 57 Fly ash outlet 58 Opening / closing means 61 Upper refractory material 62 Lower refractory material 63 Fly ash repellent 64 Fly ash 77 Opening 79 Hot gas rectifier 81 Combustion gas flow path 82 Hot gas recirculation flow path

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/46 F23G 5/46 A F23L 9/00 F23L 9/00 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F23G 5/46 F23G 5/46 A F23L 9/00 F23L 9/00

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】被燃焼物を受入、乾燥、炭化、燃焼などさ
せるための一次燃焼室と、一次燃焼室で発生した未燃ガ
スを再燃焼させるための二次燃焼室と、を備えた焼却炉
において、大気圧よりも高い圧力の空気を発生させるた
めに外部に設けられた送風手段と、前記送風手段から供
給される二次燃焼用空気の噴射により発生するエゼクタ
ー効果を利用して、前記一次燃焼室内に滞留するガスを
吸引して前記二次燃焼室へ排出させるべく構成され、前
記一次燃焼室と前記二次燃焼室の双方に連通するように
設けられたエゼクターと、前記送風手段の出口と前記エ
ゼクターの空気供給流路を連通するための連通手段と、
内面を耐熱性を有する部材で覆い、高さの異なる位置に
少なくとも3箇所の開口部を形成した容器を熱交換タン
クとして前記焼却炉に併設し、前記少なくとも3箇所の
開口部の名称を、前記3箇所中の相対位置として、最上
部に位置する開口部を高温ガス取出口、前記高温ガス取
出口よりも下方に位置する開口部を燃焼ガス給入口、前
記燃焼ガス給入口より下方に位置する開口部を低温ガス
取出口と定義したとき、前記二次燃焼室に形成した開口
部である二次燃焼室出口と前記燃焼ガス給入口と、を連
通する燃焼ガス流路と、前記高温ガス取出口と前記一次
燃焼室に形成した開口部である高温ガス供給口と、を連
通する高温ガス還流流路と、を備えることを特徴とする
焼却炉。
An incinerator comprising a primary combustion chamber for receiving, drying, carbonizing, burning, etc., an object to be burned, and a secondary combustion chamber for reburning unburned gas generated in the primary combustion chamber. In the furnace, using an air blower provided outside to generate air having a pressure higher than the atmospheric pressure, and using an ejector effect generated by injection of secondary combustion air supplied from the blower, An ejector that is configured to suck gas remaining in the primary combustion chamber and discharge the gas to the secondary combustion chamber, and that is provided so as to communicate with both the primary combustion chamber and the secondary combustion chamber; Communication means for communicating an outlet and an air supply flow path of the ejector,
The inner surface is covered with a heat-resistant member, and a container having at least three openings formed at different heights is provided along with the incinerator as a heat exchange tank, and the name of the at least three openings is As relative positions among the three positions, the opening located at the top is located at the hot gas outlet, the opening located below the hot gas outlet is located at the combustion gas inlet, and located below the combustion gas inlet. When the opening is defined as a low-temperature gas outlet, a combustion gas flow path communicating between the secondary combustion chamber outlet, which is an opening formed in the secondary combustion chamber, and the combustion gas supply port, An incinerator comprising: a high-temperature gas recirculation flow path that communicates an outlet with a high-temperature gas supply port that is an opening formed in the primary combustion chamber.
【請求項2】内部が密であり耐火性を有する部材の塊を
エゼクター本体として、エゼクター本体に未燃ガスを流
すために貫通する穴を設けて未燃ガス流路とし、前記未
燃ガス流路に干渉しない位置に、未燃ガスの燃焼及び加
速用の空気を供給するための、空気供給流路を設け、前
記未燃ガス流路の外縁近傍に巻きつけるように配置した
空気噴射流路を設け、前記空気供給流路と前記空気噴射
流路にそれぞれ接続手段の一方を接続し、前記接続手段
の一方に対する他方どうしを連通手段に接続して連通す
るとともに、前記空気噴射流路内の高圧空気を前記未燃
ガス流路内へ噴射するために、前記空気噴射流路の内側
から斜め上方向で、かつ、未燃ガス流路のある方向に向
かって前記未燃ガス流路の内側まで貫通する空気噴射穴
を設けてなる焼却炉用エゼクター。
2. An unburned gas passage, wherein a lump of a member having a dense interior and having fire resistance is used as an ejector body, and a hole is formed through the ejector body to allow unburned gas to flow. An air supply passage for supplying air for combustion and acceleration of unburned gas at a position not interfering with the passage, and an air injection passage arranged so as to be wound around an outer edge of the unburned gas passage; Is provided, and one of the connection means is connected to the air supply flow path and the air injection flow path, respectively, and the other of the connection means is connected to and communicated with the communication means, and inside the air injection flow path. In order to inject high-pressure air into the unburned gas flow path, an obliquely upward direction from the inside of the air injection flow path, and the inside of the unburned gas flow path in the direction of the unburned gas flow path. Incineration with air injection holes that penetrate Use the ejector.
【請求項3】請求項2記載の焼却炉用エゼクターの空気
噴射穴に代えて、前記空気噴射流路上に接続手段の一方
を取付けるとともに、前記接続手段の他方から前記未燃
ガス流路方向へ連通手段を設け、前記連通手段の端部に
噴出方向仮想軸線を前記未燃ガス流路に向けた空気噴射
ノズルを取付け、前記空気噴射ノズルの噴射口を前記未
燃ガス流路の内部に開口するように配置したことを特徴
とする焼却炉用エゼクター。
3. An incinerator ejector according to claim 2, wherein one of the connecting means is mounted on the air injection flow path in place of the air injection hole, and the other of the connection means is directed toward the unburned gas flow path. A communication means is provided, and an air injection nozzle having an injection direction virtual axis directed toward the unburned gas flow path is attached to an end of the communication means, and an injection port of the air injection nozzle is opened inside the unburned gas flow path. An ejector for an incinerator, characterized in that the ejector is arranged so as to perform the following.
【請求項4】請求項2記載の焼却炉用エゼクターの空気
噴射穴に代えて、前記空気噴射流路上に接続手段の一方
を取付けるとともに、前記接続手段の他方から前記未燃
ガス流路方向へ連通手段を設け、前記連通手段の端部に
噴出方向仮想軸線を前記未燃ガス流路に向けた空気噴射
ノズルを取付け、前記空気噴射ノズルの噴射口周辺と前
記未燃ガス流路と、を連通する流路を設けたことを特徴
とする焼却炉用エゼクター。
4. An incinerator ejector according to claim 2, wherein one of the connecting means is mounted on the air injection flow path instead of the air injection hole, and the other of the connection means is directed toward the unburned gas flow path. A communication means is provided, and an air injection nozzle having an injection direction virtual axis directed toward the unburned gas flow path is attached to an end of the communication means, and the vicinity of an injection port of the air injection nozzle and the unburned gas flow path are provided. An incinerator ejector characterized by having a communicating flow path.
【請求項5】請求項3又は4のいずれかに記載の焼却炉
用エゼクターの、空気噴射ノズルと空気噴射流路との間
の連通手段に代えて、前記空気噴射流路の管壁に穴を設
け、前記空気噴射ノズルを前記穴へ直接取付けたことを
特徴とする焼却炉用エゼクター。
5. An incinerator ejector according to claim 3, wherein a hole is formed in a pipe wall of said air injection passage in place of the communicating means between the air injection nozzle and the air injection passage. And an ejector for an incinerator, wherein the air injection nozzle is directly attached to the hole.
【請求項6】請求項2から5のいずれかに記載の焼却炉
用エゼクターにおいて、さらに、前記空気供給流路及び
前記空気噴射流路と、前記空気噴射穴又は前記空気噴射
ノズルと、前記流路及び前記連通手段を複数系統独立し
て設けるとともに、噴射穴又は噴射ノズルの噴出方向仮
想軸線と未燃ガス流路の流路方向である仮想中心線の方
向とでなす角度を、前記系統ごとに異なる角度をなすよ
うに設けてあることを特徴とする焼却炉用エゼクター。
6. The ejector for an incinerator according to claim 2, further comprising: the air supply channel and the air injection channel; the air injection hole or the air injection nozzle; A plurality of paths and the communication means are provided independently of each other, and the angle formed by the virtual axis of the injection direction of the injection hole or the injection nozzle and the direction of the virtual center line which is the flow direction of the unburned gas flow path is defined for each of the systems. An ejector for an incinerator, characterized in that the ejector is provided at a different angle.
【請求項7】助燃料を供給するための補助燃料供給流路
を設け、前記未燃ガス流路の外縁近傍に配置した補助燃
料噴射流路を設け、前記補助燃料供給流路上と前記補助
燃料噴射流路上にそれぞれ接続手段の一方を接続し、前
記接続手段の一方に対する他方どうしを連通手段により
接続するとともに、前記補助燃料噴射流路内の燃料を未
燃ガス流路内へ噴射するために、前記補助燃料噴射流路
の内側から前記未燃ガス流路の内側まで貫通する補助燃
料噴射穴を設けてなる焼却炉用エゼクター。
7. An auxiliary fuel supply flow path for supplying auxiliary fuel, an auxiliary fuel injection flow path disposed near an outer edge of the unburned gas flow path is provided, and an auxiliary fuel supply flow path is provided between the auxiliary fuel supply flow path and the auxiliary fuel supply flow path. To connect one of the connection means on the injection flow path and connect the other of the connection means to each other by the communication means, and to inject the fuel in the auxiliary fuel injection flow path into the unburned gas flow path. An incinerator ejector comprising an auxiliary fuel injection hole penetrating from the inside of the auxiliary fuel injection passage to the inside of the unburned gas passage.
【請求項8】請求項7記載の焼却炉用エゼクター補助燃
料噴射穴に代えて、前記補助燃料噴射流路上に接続手段
の一方を取付けるとともに、前記接続手段の他方から前
記未燃ガス流路方向へ連通手段を設け、前記連通手段の
端部に噴出方向仮想軸線を前記未燃ガス流路に向けた補
助燃料噴射ノズルを取付け、前記補助燃料噴射ノズルの
噴射口を前記未燃ガス流路の内部に開口するように配置
したことを特徴とする焼却炉用エゼクター。
8. An ejector auxiliary fuel injection hole for an incinerator according to claim 7, wherein one of said connecting means is mounted on said auxiliary fuel injection flow path, and said other of said connection means is in the direction of said unburned gas flow path. A communication means is provided, and an auxiliary fuel injection nozzle having an injection direction virtual axis directed toward the unburned gas flow path is attached to an end of the communication means, and an injection port of the auxiliary fuel injection nozzle is connected to the unburned gas flow path. An ejector for an incinerator, wherein the ejector is arranged so as to open inside.
【請求項9】請求項7記載の焼却炉用エゼクター補助燃
料噴射穴に代えて、前記補助燃料供給流路上に接続手段
の一方を取付けるとともに、前記接続手段の他方から前
記未燃ガス流路方向へ連通手段を設け、前記連通手段の
端部に噴出方向仮想軸線を前記未燃ガス流路に向けた補
助燃料噴射ノズルを取付け、前記補助燃料噴射ノズルの
噴射口と前記未燃ガス流路と、を連通する流路を設けた
ことを特徴とする焼却炉用エゼクター。
9. An incinerator ejector auxiliary fuel injection hole according to claim 7, wherein one of the connection means is mounted on the auxiliary fuel supply flow path, and the other of the connection means is connected to the unburned gas flow path. A communication means is provided, and an auxiliary fuel injection nozzle having an injection direction virtual axis directed toward the unburned gas flow path is attached to an end of the communication means, and an injection port of the auxiliary fuel injection nozzle and the unburned gas flow path are provided. An ejector for an incinerator, characterized in that a flow path communicating with the ejector is provided.
【請求項10】請求項8又は9いずれかに記載の焼却炉
用エゼクターの、補助燃料噴射ノズルと補助燃料噴射流
路との間の連通手段に代えて、前記補助燃料噴射流路の
管壁に穴を設け、前記補助燃料噴射ノズルを前記穴へ直
接取付けたことを特徴とする焼却炉用エゼクター。
10. The tube wall of the auxiliary fuel injection flow path of the ejector for an incinerator according to claim 8 instead of the communicating means between the auxiliary fuel injection nozzle and the auxiliary fuel injection flow path. An ejector for an incinerator, wherein a hole is provided in the hole, and the auxiliary fuel injection nozzle is directly mounted in the hole.
【請求項11】冷却用媒質(例えば水など)を通すため
に、エゼクター本体の表面の一点から本体の内部を貫通
して、前記表面の一点とは異なるエゼクター本体の表面
へ連通して開口する冷却用媒質流路を設けたことを特徴
とする、請求項2から10のいずれかに記載の焼却炉用
エゼクター。
11. An ejector body penetrates through the interior of the body from one point of the surface of the ejector body and communicates with and opens to a surface of the ejector body different from the one point of the surface for passing a cooling medium (for example, water). The ejector for an incinerator according to any one of claims 2 to 10, wherein a cooling medium flow path is provided.
【請求項12】漏斗状に形成し、その漏斗状の先端部に
は飛灰取出口を設けた底部と、前記飛灰取出口には開閉
手段を設けるとともに、前記底部の周縁に接続され、低
温ガス取出口と、前記低温ガス取出口よりも上方へ位置
する燃焼ガス給入口と、を形成した側壁と、前記側壁の
最上部の周縁に接続され、高温ガス取出口を形成した天
井部と、からなる熱交換タンクであって、前記熱交換タ
ンクの内壁は、鉛直方向の上部と下部に少なくとも2種
類以上の領域に分割して、前記領域ごとに異なった成分
からなる耐火材料を用いて構成し、前記内壁の下部の耐
火材料は、前記上部の内壁の耐火材料と比較して、加熱
された場合に放射するの熱線の量が多い性質の耐火材料
を用いてなる焼却炉用熱交換タンク。
12. A funnel-shaped tip having a bottom provided with a fly ash outlet at the tip of the funnel, and an opening / closing means provided at the fly ash outlet, and connected to a periphery of the bottom. A low-temperature gas outlet, a side wall forming a combustion gas inlet positioned above the low-temperature gas outlet, and a ceiling connected to the uppermost periphery of the side wall and forming a high-temperature gas outlet. , Wherein the inner wall of the heat exchange tank is divided into at least two or more types of regions in an upper part and a lower part in a vertical direction, and using a refractory material having a different component for each of the areas. The heat exchange material for an incinerator, wherein the refractory material at the lower portion of the inner wall is made of a refractory material having a property of emitting a large amount of heat rays when heated as compared with the refractory material at the upper inner wall. tank.
【請求項13】漏斗状に形成し、その漏斗状の先端部に
は飛灰取出口を設けた底部と、前記飛灰取出口には開閉
手段を設けるとともに、前記底部の周縁に接続され、低
温ガス取出口と、前記低温ガス取出口よりも上方へ位置
する燃焼ガス給入口と、前記燃焼ガス給入口よりも上方
へ位置する高温ガス取出口と、を形成した側壁と、側壁
の最上部の周縁に接続される天井部と、からなる熱交換
タンクであって、前記熱交換タンクの内壁は、鉛直方向
の上部と下部の少なくとも2種類の領域に分割して、前
記領域ごとに異なった成分からなる耐火材料を用いて構
成し、前記下部の耐火材料は、前記上部の耐火材料と比
較して、加熱された場合に放射するの熱線の量が多い耐
火材料を用いてなる焼却炉用熱交換タンク。
13. A funnel-shaped tip having a bottom provided with a fly ash outlet at the tip of the funnel, and an opening / closing means provided at the fly ash outlet, and connected to a periphery of the bottom. A side wall forming a low-temperature gas outlet, a combustion gas inlet located above the low-temperature gas outlet, and a high-temperature gas outlet located above the combustion gas inlet, and a top portion of the side wall And a ceiling portion connected to the periphery of the heat exchange tank, wherein the inner wall of the heat exchange tank is divided into at least two types of regions, an upper portion and a lower portion in a vertical direction, and each region has a different shape. For the incinerator, the refractory material at the lower portion is composed of a refractory material having a large amount of heat rays radiated when heated, compared with the refractory material at the upper portion. Heat exchange tank.
【請求項14】請求項12又は13のいずれかに記載の
熱交換タンクにおいて、さらに、前記焼却炉用熱交換タ
ンクの内部で、かつ、前記低温ガス取出口の近傍で、か
つ、上方の位置に、前記低温ガス取出口の断面積に対し
て少なくとも広い面積を有する突起物を、前記熱交換タ
ンクの内壁からタンクの鉛直方向の仮想中心線に向かっ
て下り勾配を有する方向をなすように、前記内壁へ取付
け部材を介して固定される飛灰よけを備えることを特徴
とする焼却炉用熱交換タンク。
14. The heat exchange tank according to claim 12, further comprising: a position inside the heat exchange tank for the incinerator, near the low-temperature gas outlet, and above. The protrusion having at least a large area with respect to the cross-sectional area of the low-temperature gas outlet is formed in a direction having a downward gradient from the inner wall of the heat exchange tank toward a virtual center line in the vertical direction of the tank. A heat exchange tank for an incinerator, comprising a fly ash shield fixed to the inner wall via a mounting member.
【請求項15】請求項12から14のいずれかに記載の
焼却炉用熱交換タンクの飛灰取出口に設けた開閉手段に
代えて、スクリュー型給送コンベアを備えることを特徴
とする焼却炉用熱交換タンク。
15. An incinerator comprising a screw type conveyor instead of the opening / closing means provided at the fly ash outlet of the heat exchange tank for an incinerator according to claim 12. For heat exchange tank.
JP2001211399A 2001-06-06 2001-06-06 Incinerator, and heat exchanger tank and ejector for incinerator Pending JP2002364836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001211399A JP2002364836A (en) 2001-06-06 2001-06-06 Incinerator, and heat exchanger tank and ejector for incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001211399A JP2002364836A (en) 2001-06-06 2001-06-06 Incinerator, and heat exchanger tank and ejector for incinerator

Publications (1)

Publication Number Publication Date
JP2002364836A true JP2002364836A (en) 2002-12-18

Family

ID=19046722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001211399A Pending JP2002364836A (en) 2001-06-06 2001-06-06 Incinerator, and heat exchanger tank and ejector for incinerator

Country Status (1)

Country Link
JP (1) JP2002364836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190808A (en) * 2007-02-06 2008-08-21 Soai:Kk Combustion device
KR101163655B1 (en) 2011-09-02 2012-07-06 안재식 Boiler
CN104482540A (en) * 2014-11-13 2015-04-01 李观德 Clean and environment-friendly waste gasification heat storage method and device
KR101806297B1 (en) * 2016-10-07 2018-01-10 최상철 Incinerator for low nox combustion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190808A (en) * 2007-02-06 2008-08-21 Soai:Kk Combustion device
KR101163655B1 (en) 2011-09-02 2012-07-06 안재식 Boiler
CN104482540A (en) * 2014-11-13 2015-04-01 李观德 Clean and environment-friendly waste gasification heat storage method and device
KR101806297B1 (en) * 2016-10-07 2018-01-10 최상철 Incinerator for low nox combustion
WO2018066786A1 (en) * 2016-10-07 2018-04-12 최상철 Waste incinerator for reducing nox

Similar Documents

Publication Publication Date Title
JP2525726B2 (en) Waste incinerator for bulk garbage and liquids containing hydrocarbons
JP4766562B2 (en) Wood pellet fired steam boiler
TWI554730B (en) Smokeless incinerator and power generation system and heat exchange system using same
RU2619434C1 (en) Installation for solid fuel combustion
EP2884200B1 (en) Central heating boiler
JP2011196598A (en) Method of supplying combustion air in vertical waste incinerator, and vertical waste incinerator
KR100610642B1 (en) Combustion melting furnace, combustion melting method, and generating system for utilizing waste heat
TWI229726B (en) Slagging combustion furnace
JP4116698B2 (en) Ash fusion incineration system
JP2007163078A (en) Waste disposal method and device
JP2002364836A (en) Incinerator, and heat exchanger tank and ejector for incinerator
JP3033015B2 (en) Semi-dry distillation gasification incineration method and apparatus
JP4589832B2 (en) Incinerator
JP3748364B2 (en) Fly ash melting furnace
JP2008275180A (en) Waste melting treatment method and equipment
JP2005069542A (en) Vertical refuse incinerating furnace and combustion control method for higher heating value waste in furnace thereof
JP3764634B2 (en) Oxygen burner type melting furnace
CN1130539C (en) Reverberatory melting keeping furnace
JPH06109221A (en) Waste burning furnace
JP4337072B2 (en) Waste melting furnace
JP6906878B1 (en) Combustion furnace and boiler system
JP2003074817A (en) Waste gasifying/melting equipment, and its operation method
JP2000240916A (en) Secondary combustion chamber of incinerator
WO2005121646A1 (en) Tuyere structure of waste fusion furnace and combustible dust blowing method
JP2007147176A (en) Incinerator