JP2002362998A - Method and device for producing silicon carbide single crystal - Google Patents

Method and device for producing silicon carbide single crystal

Info

Publication number
JP2002362998A
JP2002362998A JP2001171587A JP2001171587A JP2002362998A JP 2002362998 A JP2002362998 A JP 2002362998A JP 2001171587 A JP2001171587 A JP 2001171587A JP 2001171587 A JP2001171587 A JP 2001171587A JP 2002362998 A JP2002362998 A JP 2002362998A
Authority
JP
Japan
Prior art keywords
silicon carbide
crystal
gas
carbide single
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001171587A
Other languages
Japanese (ja)
Other versions
JP4742448B2 (en
Inventor
Naohiro Sugiyama
尚宏 杉山
Daisuke Nakamura
大輔 中村
Shoichi Onda
正一 恩田
Masaki Matsui
正樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2001171587A priority Critical patent/JP4742448B2/en
Publication of JP2002362998A publication Critical patent/JP2002362998A/en
Application granted granted Critical
Publication of JP4742448B2 publication Critical patent/JP4742448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for producing a silicon carbide single crystal, by which deposition of the silicon carbide single crystal at inappropriate places other than the growth end surface of the growing crystal can be suppressed, and the growth of the growing crystal for a long time is possible, and a manufacturing device for the silicon carbide single crystal. SOLUTION: A pedestal 3 for supporting a substrate crystal 7 formed from a silicon carbide single crystal is placed in a reaction vessel 2 having a cylindrical peripheral wall 20. The silicon carbide single crystal is grown on the substrate crystal 7 by supplying a silicon containing gas 81, a carbon containing gas 82 and a carrier gas 83 toward the substrate crystal 7 supported by the pedestal 3, and at the same time, the excess silicon containing gas 81, the excess carbon containing gas 82 and the exess carrier gas 83 are discharged through between the pedestal 3 and the peripheral wall 20. An etching gas of etching silicon carbide is introduced to the neighborhood of the periphery of the interface 37 of the substrate crystal 7 and the pedestal 3 and the neighborhood of the periphery of growing end surface 750 of growing crystal 75 of the silicon carbide single crystal grown on the substrate crystal 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,CVD法(化学気相法)を利用
して,高歩留まり,高効率で炭化珪素単結晶を成長させ
ることができる炭化珪素単結晶の製造方法及び製造装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a silicon carbide single crystal which can grow a silicon carbide single crystal with high yield and high efficiency by utilizing a CVD (chemical vapor deposition) method.

【0002】[0002]

【従来技術】炭化珪素は,高耐圧,高電子移動度という
特徴を有するため,パワーデバイス用半導体として期待
されている。その基板となる炭化珪素単桔晶を製造する
方法としては,一般に,昇華法(改良レーリー法)と呼
ばれる方法と,CVD法がある。 上記改良レーリー法
では,黒鉛製るつぼ内に炭化珪素原料を挿入すると共に
この原料部と対向するように種結晶(基板結晶)を黒鉛
製るつぼの内壁に装着する。そして,原料部を2200
〜2400℃に加熱して昇華ガスを発生させ,原料部よ
り数十〜数百℃低温にした種結晶上において再結晶させ
ることで炭化珪素単結晶を成長させる。
2. Description of the Related Art Silicon carbide has characteristics of high breakdown voltage and high electron mobility, and is therefore expected as a semiconductor for power devices. As a method of manufacturing a silicon carbide single crystal serving as the substrate, there are generally a method called a sublimation method (improved Rayleigh method) and a CVD method. In the improved Rayleigh method, a silicon carbide raw material is inserted into a graphite crucible, and a seed crystal (substrate crystal) is mounted on the inner wall of the graphite crucible so as to face the raw material portion. Then, the raw material section was changed to 2200
Sublimation gas is generated by heating to a temperature of about 2400 ° C. and recrystallized on a seed crystal cooled several tens to several hundreds degrees Celsius lower than the raw material to grow a silicon carbide single crystal.

【0003】この改良レーリー法では,炭化珪素単結晶
の成長に伴って炭化珪素原料が減少するため,成長させ
ることができる量に限界がある。そして,たとえ,成長
途中に原料を追加する手段をとったとしても,SiCが
昇華する際にSi/C比が1を超える比で昇華するた
め,成長中に原料を追加するとるつぼ内の昇華ガスの濃
度や昇華速度が揺らぎ,結晶を連続的に高品質に成長さ
せることの障害となってしまう。
In the improved Rayleigh method, the amount of silicon carbide raw material decreases with the growth of the silicon carbide single crystal, so that the amount that can be grown is limited. And even if a means for adding a raw material during the growth is employed, the sublimation gas in the crucible is increased when the raw material is added during the growth because the Si / C ratio sublimates at a ratio of more than 1 when the SiC is sublimated. The concentration and the sublimation rate fluctuate, which hinders continuous high-quality crystal growth.

【0004】一方,上記CVDによって炭化珪素をエピ
タキシャル成長させるものとしては,例えば特表平11
−508531号公報に開示された方法がある。この方
法は,円筒状の反応管(サセプタ)内に種結晶を配置
し,SiやCを含有する原料ガスを供給して上記種結晶
上において炭化珪素単結晶を成長させる方法である。こ
の方法によれば,上記反応ガスの供給を連続的に行うこ
とができるので,改良レーリー法に比べて,炭化珪素単
結晶を長時間成長させ続けることができる。
On the other hand, as a method for epitaxially growing silicon carbide by the CVD, for example, Japanese Patent Application Laid-Open
There is a method disclosed in JP-A-508531. In this method, a seed crystal is placed in a cylindrical reaction tube (susceptor), and a source gas containing Si or C is supplied to grow a silicon carbide single crystal on the seed crystal. According to this method, the supply of the reaction gas can be performed continuously, so that the silicon carbide single crystal can be continuously grown for a long time as compared with the modified Rayleigh method.

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来のC
VD法では,結晶成長する箇所が,上記種結晶上に限ら
ず,上記反応管の内周面上,あるいは上記原料ガスを排
出する排出口近傍等の不要な箇所においても炭化珪素結
晶が堆積し成長する。そのため,この不要な箇所での炭
化珪素結晶の成長によって,原料ガスの供給が続けられ
ず,種結晶上における炭化珪素単結晶の成長も途中で止
めざるを得なくなってしまう。
However, the above-mentioned conventional C
In the VD method, the silicon carbide crystal is deposited not only on the seed crystal but also on an unnecessary portion such as on the inner peripheral surface of the reaction tube or in the vicinity of the outlet for discharging the source gas. grow up. Therefore, the supply of the source gas cannot be continued due to the growth of the silicon carbide crystal at the unnecessary portion, and the growth of the silicon carbide single crystal on the seed crystal must be stopped halfway.

【0006】この対策として,例えばWO 98/14
644号公報に示されているように,反応容器の円周に
沿って,反応には関与しないガス(He)を導入するこ
とによって排気口の目詰まりを防止する方法がある。し
かしながら,この方法では,種結晶上で成長する炭化珪
素単結晶(成長結晶)自身がエッチングされることが避
けられない。そのため,成長結晶の歩留まりが低下し,
生産性が低下する。
As a countermeasure against this, for example, WO 98/14
As disclosed in Japanese Patent No. 644, there is a method for preventing clogging of an exhaust port by introducing a gas (He) not involved in the reaction along the circumference of the reaction vessel. However, in this method, it is inevitable that the silicon carbide single crystal (grown crystal) itself grown on the seed crystal is etched. As a result, the yield of grown crystals decreases,
Productivity decreases.

【0007】本発明はかかる従来の問題点に鑑みてなさ
れたもので,成長結晶の成長端における成長を確保した
上で,成長結晶の成長端面以外の不要な箇所での炭化珪
素単結晶の堆積を抑制することができ,成長結晶の長時
間にわたる成長が可能な炭化珪素単結晶の製造方法及び
製造装置を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is intended to secure the growth at the growth end of a grown crystal and to deposit a silicon carbide single crystal at an unnecessary portion other than the growth end face of the grown crystal. It is an object of the present invention to provide a method and an apparatus for manufacturing a silicon carbide single crystal, which can suppress growth and allow a grown crystal to grow for a long time.

【0008】[0008]

【課題の解決手段】第1の発明は,筒状の周壁を有する
反応容器内に,炭化珪素単結晶よりなる基板結晶を支持
する台座を配置し,該台座に支持された上記基板結晶に
向けて珪素を含有する珪素含有ガスと炭素を含有する炭
素含有ガスを供給して上記基板結晶上において炭化珪素
単結晶を成長させると共に,上記台座と上記周壁の間を
通過して余剰の上記珪素含有ガス及び上記炭素含有ガス
を排出する炭化珪素単結晶の製造方法において,上記基
板結晶と上記台座との境界面の外周近傍と,上記基板結
晶上において成長した炭化珪素単結晶である成長結晶の
成長端面の外周近傍に,炭化珪素をエッチングする効果
のあるエッチングガスを導入することを特徴とする炭化
珪素単結晶の製造方法にある(請求項1)。
According to a first aspect of the present invention, a pedestal for supporting a substrate crystal made of silicon carbide single crystal is arranged in a reaction vessel having a cylindrical peripheral wall, and the pedestal is directed toward the substrate crystal supported on the pedestal. A silicon-containing gas containing silicon and a carbon-containing gas containing carbon are supplied to grow a silicon carbide single crystal on the substrate crystal, and pass through the space between the pedestal and the peripheral wall to contain the excess silicon-containing gas. In the method for producing a silicon carbide single crystal for discharging a gas and the carbon-containing gas, a growth of a growth crystal, which is a silicon carbide single crystal grown on the substrate crystal, near an outer periphery of a boundary surface between the substrate crystal and the pedestal. A method for producing a silicon carbide single crystal, characterized in that an etching gas having an effect of etching silicon carbide is introduced into the vicinity of an outer periphery of an end face.

【0009】本発明においては,上記のごとく,上記基
板結晶と上記台座との境界面の外周近傍と,上記基板結
晶上において成長した炭化珪素単結晶である成長結晶の
成長端面の外周近傍という少なくとも2箇所に,上記エ
ッチングガスを導入する。これにより,上記成長結晶を
ほとんどエッチングすることなく,上記台座や周壁及び
排気系統への炭化珪素単結晶の堆積を抑制することがで
きる。
In the present invention, as described above, at least the vicinity of the outer periphery of the boundary surface between the substrate crystal and the pedestal and the vicinity of the outer periphery of the growth end face of the silicon carbide single crystal grown on the substrate crystal. The etching gas is introduced into two places. Thereby, deposition of the silicon carbide single crystal on the pedestal, the peripheral wall, and the exhaust system can be suppressed without substantially etching the grown crystal.

【0010】すなわち,上記成長結晶の成長端面に到達
した上記珪素含有ガス及び炭素含有ガスは,基板結晶あ
るいはその上に既に形成された成長結晶の成長端面上に
おいて炭化珪素単結晶を成長させる。そして,この結晶
の成長に寄与できなかった余剰のガスは,上記成長結晶
と上記周壁との間を通過して排気されていく。このと
き,本発明では,上記2箇所からのエッチングガスの導
入により,上記余剰のガスの反応性を2段階で変化させ
ることができる。
That is, the silicon-containing gas and the carbon-containing gas reaching the growth end face of the grown crystal grow a silicon carbide single crystal on the growth end face of the substrate crystal or the growth crystal already formed thereon. Excess gas that has not contributed to the growth of the crystal passes through the space between the grown crystal and the peripheral wall and is exhausted. At this time, in the present invention, the reactivity of the surplus gas can be changed in two stages by introducing the etching gas from the two locations.

【0011】まず,上記基板結晶上において成長した炭
化珪素単結晶である成長結晶の成長端面の外周近傍に,
上記エッチングガスを導入する。これにより,未だ反応
性を有する余剰の珪素含有ガス及び炭素含有ガスの混合
ガスの状態が,珪素と炭素が過飽和で反応性の高い状態
から,過飽和度がゼロの状態に近づくように,上記エッ
チングガスが作用する。これにより,上記余剰のガスと
エッチングガスの混合ガスは,新たな結晶成長を抑制
し,かつ,既に得られている成長結晶をエッチングして
しまうことをも抑制する状態に変化する。
First, in the vicinity of the outer periphery of the growth end face of a silicon carbide single crystal grown on the substrate crystal,
The above etching gas is introduced. Thereby, the above-mentioned etching is performed so that the state of the mixed gas of the surplus silicon-containing gas and the carbon-containing gas still reactive becomes closer to the state where the degree of supersaturation becomes zero from the state where silicon and carbon are supersaturated and highly reactive. Gas works. As a result, the mixed gas of the surplus gas and the etching gas changes to a state that suppresses new crystal growth and also suppresses etching of the already-grown grown crystal.

【0012】次に,上記混合ガスは,成長結晶の側面を
通過した後,上記基板結晶と上記台座との境界面の外周
近傍において,さらに導入されたエッチングガスと混ざ
る。これにより,既に過飽和状態がゼロに近づいていた
上記混合ガスは,さらに導入されたエッチングガスによ
って十分に未飽和の状態に変化し,また,上記エッチン
グガスによって炭化珪素結晶をエッチングする能力をも
有するものとなる。そのため,この段階における上記混
合ガスは,新たな炭化珪素結晶の成長を確実に抑制し,
かつ,新たに炭化珪素結晶が成長堆積しようとしても,
上記エッチングガスのエッチング力によってその堆積を
妨げる性質を有するものとなる。
Next, after passing through the side surface of the grown crystal, the mixed gas is mixed with the introduced etching gas near the outer periphery of the boundary between the substrate crystal and the pedestal. Thus, the mixed gas whose supersaturated state has already approached zero is sufficiently changed to an unsaturated state by the introduced etching gas, and also has a capability of etching the silicon carbide crystal by the etching gas. It will be. Therefore, the mixed gas at this stage reliably suppresses the growth of new silicon carbide crystals,
And even if a new silicon carbide crystal grows and deposits,
It has the property of preventing the deposition by the etching power of the etching gas.

【0013】このように,本発明においては,上記2段
階のエッチングガスの導入を行うことによって,珪素含
有ガスと炭素含有ガスの上記過飽和度の解消と,未飽和
化とを段階的に行うことができる。これにより,上記成
長結晶のエッチングを防止しつつ,排気系統への炭化珪
素単結晶の堆積を防止することができる。それ故,成長
結晶の長時間にわたる成長を可能にすることができる。
また,必要に応じて,多段階のエッチングガス導入を行
うことによって,さらに制御性の優れた結晶成長が可能
となる。
As described above, in the present invention, the introduction of the etching gas in the above-described two stages allows the supersaturation of the silicon-containing gas and the carbon-containing gas to be eliminated and desaturated to be performed in a stepwise manner. Can be. Thereby, it is possible to prevent the silicon carbide single crystal from being deposited on the exhaust system while preventing the growth crystal from being etched. Therefore, the grown crystal can be grown for a long time.
In addition, by introducing a multi-stage etching gas as needed, crystal growth with more excellent controllability can be achieved.

【0014】第2の発明は,筒状の周壁を有する反応容
器と,該反応容器内に配置された,炭化珪素単結晶より
なる基板結晶を支持する台座と,該台座に支持された上
記基板結晶に向けて珪素を含有する珪素含有ガスと炭素
を含有する炭素含有ガスを供給する反応ガス供給手段
と,上記台座と上記周壁の間を通過して余剰の上記珪素
含有ガス及び上記炭素含有ガスを排出する排気通路とを
有する炭化珪素単結晶の製造装置において,上記基板結
晶と上記台座との境界面の外周近傍に,炭化珪素をエッ
チングする効果のあるエッチングガスを導入する第1エ
ッチングガス導入手段と,上記基板結晶上において成長
した炭化珪素単結晶である成長結晶の端面の外周近傍
に,炭化珪素をエッチングする効果のあるエッチングガ
スを導入する第2エッチングガス導入手段とを有するこ
とを特徴とする炭化珪素単結晶の製造装置にある(請求
項5)。
According to a second aspect of the present invention, there is provided a reaction vessel having a cylindrical peripheral wall, a pedestal for supporting a substrate crystal made of silicon carbide single crystal disposed in the reaction vessel, and the substrate supported on the pedestal. Reaction gas supply means for supplying a silicon-containing gas containing silicon and a carbon-containing gas containing carbon toward the crystal; and an excess of the silicon-containing gas and the carbon-containing gas which pass between the pedestal and the peripheral wall. A first etching gas for introducing an etching gas having an effect of etching silicon carbide into the vicinity of an outer periphery of a boundary surface between the substrate crystal and the pedestal in the apparatus for manufacturing a silicon carbide single crystal having an exhaust passage for discharging gas. Means and a second etching gas for introducing an etching gas having an effect of etching silicon carbide in the vicinity of the outer periphery of the end face of the grown crystal which is a silicon carbide single crystal grown on the substrate crystal. In apparatus for producing a silicon carbide single crystal and having a Ngugasu introducing means (claim 5).

【0015】本発明の製造装置においては,上記第1及
び第2エッチングガス導入手段を有している。そのた
め,上記エッチングガスの導入を,2段階で行うことが
できる。それ故,上記のごとく優れた製造方法を実行す
ることができ,炭化珪素単結晶の成長結晶の長時間にわ
たる成長を可能にすることができる。
The manufacturing apparatus of the present invention has the first and second etching gas introducing means. Therefore, the introduction of the etching gas can be performed in two stages. Therefore, an excellent manufacturing method can be performed as described above, and a silicon carbide single crystal can be grown for a long time.

【0016】[0016]

【発明の実施の形態】上記第1の発明(請求項1)にお
いて,上記基板結晶と上記台座との境界面の外周近傍に
おいては,上記台座の内部から外部へ向けて上記エッチ
ングガスを吐出することにより導入することが好ましい
(請求項2)。この場合には,上記台座が移動する場合
でも常にエッチングガスの導入位置を一定にすることが
でき,安定したエッチング効果が得られる。
In the first invention (claim 1), the etching gas is discharged from the inside of the pedestal to the outside near the outer periphery of the boundary between the substrate crystal and the pedestal. It is preferable to introduce it by adding (claim 2). In this case, even when the pedestal moves, the position where the etching gas is introduced can always be kept constant, and a stable etching effect can be obtained.

【0017】また,上記成長結晶の端面の外周近傍にお
いては,上記周壁から内方へ向けて上記エッチングガス
を吐出することにより導入することが好ましい(請求項
3)。この場合には,上記成長結晶の端面の外周へのエ
ッチングガスの供給を成長端の位置に応じて容易に調整
することができる。
Further, in the vicinity of the outer periphery of the end face of the grown crystal, it is preferable to introduce the etching gas by discharging the etching gas inward from the peripheral wall. In this case, the supply of the etching gas to the outer periphery of the end face of the grown crystal can be easily adjusted according to the position of the growth end.

【0018】また,上記エッチングガスは,水素,ハロ
ゲンガス,ハロゲン化水素のうち1種もしくは複数のガ
スを含有する混合ガスであることが好ましい(請求項
4)。これらのガスを用いれば,上記珪素含有ガス及び
炭素含有ガスにおける珪素と炭素の過飽和度の調整を容
易に行うことができると共に,炭化珪素単結晶のエッチ
ング効果を容易に得ることができる。
It is preferable that the etching gas is a mixed gas containing one or more of hydrogen, halogen gas, and hydrogen halide. When these gases are used, the degree of supersaturation of silicon and carbon in the silicon-containing gas and the carbon-containing gas can be easily adjusted, and the effect of etching a silicon carbide single crystal can be easily obtained.

【0019】上記第2の発明(請求項5)においては,
上記第1エッチングガス導入手段は,上記台座の外周面
から外方に向かって開口する第1ガス噴出口を有するこ
とが好ましい(請求項6)。これにより,エッチングガ
スの導入経路を上記台座の内部に設けることができ,エ
ッチングガスの導入位置を一定にするための設備構造を
簡単にすることができる。
In the second invention (claim 5),
It is preferable that the first etching gas introducing means has a first gas ejection port that opens outward from an outer peripheral surface of the pedestal. Thus, the introduction path of the etching gas can be provided inside the pedestal, and the equipment structure for making the introduction position of the etching gas constant can be simplified.

【0020】また,上記第2エッチングガス導入手段
は,上記反応容器の上記周壁の内周面から内方に向かっ
て開口する第2ガス噴出口を有していることが好ましい
(請求項7)。この場合には,エッチングガスの導入経
路を上記周壁の外方に設けることができ,エッチングガ
スの導入位置を一定にするための設備構造を簡単にする
ことができる。
Further, it is preferable that the second etching gas introducing means has a second gas ejection port which opens inward from an inner peripheral surface of the peripheral wall of the reaction vessel. . In this case, the introduction path of the etching gas can be provided outside the peripheral wall, and the equipment structure for keeping the introduction position of the etching gas constant can be simplified.

【0021】[0021]

【実施例】(実施例1)本発明の炭化珪素単結晶の製造
方法及び製造装置に係る実施例につき,図1を用いて説
明する。本例の炭化珪素単結晶の製造装置1は,図1に
示すごとく,円筒状の周壁20を有する反応容器2と,
該反応容器2内に配置された,炭化珪素単結晶よりなる
基板結晶7を支持する台座3と,該台座3に支持された
上記基板結晶7に向けて珪素を含有する珪素含有ガス8
1と炭素を含有する炭素含有ガス82を供給する反応ガ
ス供給手段と,上記台座3と上記周壁20の間を通過し
て余剰の上記珪素含有ガス及び上記炭素含有ガスを排出
する排気通路23とを有する。
(Embodiment 1) An embodiment of a method and apparatus for manufacturing a silicon carbide single crystal of the present invention will be described with reference to FIG. As shown in FIG. 1, a silicon carbide single crystal manufacturing apparatus 1 of the present embodiment includes a reaction vessel 2 having a cylindrical peripheral wall 20;
A pedestal 3 for supporting a substrate crystal 7 made of silicon carbide single crystal, which is arranged in the reaction vessel 2, and a silicon-containing gas 8 containing silicon toward the substrate crystal 7 supported on the pedestal 3.
A reaction gas supply means for supplying a carbon-containing gas 82 containing carbon 1 and carbon; and an exhaust passage 23 for discharging excess silicon-containing gas and carbon-containing gas passing between the pedestal 3 and the peripheral wall 20. Having.

【0022】上記基板結晶7と上記台座3との境界面3
7の外周近傍に,炭化珪素をエッチングする効果のある
エッチングガス9を導入する第1エッチングガス導入手
段41と,基板結晶7上において成長した炭化珪素単結
晶である成長結晶75の端面750の外周近傍に,炭化
珪素をエッチングする効果のあるエッチングガス9を導
入する第2エッチングガス導入手段42とを有する。
Interface 3 between substrate crystal 7 and pedestal 3
A first etching gas introducing means 41 for introducing an etching gas 9 having an effect of etching silicon carbide in the vicinity of an outer periphery of silicon carbide 7, and an outer periphery of an end face 750 of a grown crystal 75 which is a silicon carbide single crystal grown on substrate crystal 7. In the vicinity, there is provided second etching gas introducing means 42 for introducing an etching gas 9 having an effect of etching silicon carbide.

【0023】本例の第1エッチングガス導入手段41
は,台座3の外周面30から外方に向かって開口する第
1ガス噴出口410を有する。そして,この第1ガス噴
出口410に通じるように,台座3の内部にはエッチン
グガス導入管415を設け,これに図示しないエッチン
グガス供給源を接続してある。また,上記台座3は,成
長結晶75の成長に応じて上昇するように構成されてい
る。そして上記第1ガス噴出口410は,もちろん,台
座3の上昇と共に上昇する。
The first etching gas introducing means 41 of this embodiment
Has a first gas ejection port 410 that opens outward from the outer peripheral surface 30 of the pedestal 3. An etching gas introduction pipe 415 is provided inside the pedestal 3 so as to communicate with the first gas ejection port 410, and an etching gas supply source (not shown) is connected to this. The pedestal 3 is configured to rise as the growing crystal 75 grows. Then, the first gas outlet 410 rises as the pedestal 3 rises.

【0024】また,本例の第2エッチングガス導入手段
42は,反応容器2の上記周壁20の内周面から内方に
向かって開口する第2ガス噴出口420を有している。
この第2ガス噴出口420は,成長結晶75の成長端面
750の外周に向いて開口している。上記第2ガス噴出
口420に通じるエッチングガス導入管425は,図示
しないエッチングガス供給源を接続されている。
Further, the second etching gas introducing means 42 of this embodiment has a second gas outlet 420 which opens inward from the inner peripheral surface of the peripheral wall 20 of the reaction vessel 2.
The second gas outlet 420 opens toward the outer periphery of the growth end face 750 of the growth crystal 75. An etching gas supply pipe (not shown) is connected to the etching gas introduction pipe 425 communicating with the second gas ejection port 420.

【0025】また,本例の製造装置1は,上記反応容器
2の周囲を石英管15により覆い,さらにその外方にお
ける上記反応容器2に対応する部分には,加熱用の高周
波コイル18を設置してある。そして,上記石英管15
の下端には上記珪素含有ガス81及び炭素含有ガス82
を供給する供給管を備えた下蓋(図示略)が設けられ,
石英管15の上端には,各種ガスを排気するための排気
口を備えた上蓋(図示略)が設けられている。
Further, in the manufacturing apparatus 1 of this embodiment, the periphery of the reaction vessel 2 is covered with a quartz tube 15, and a high-frequency coil 18 for heating is installed in a portion corresponding to the reaction vessel 2 outside thereof. I have. Then, the quartz tube 15
The silicon-containing gas 81 and the carbon-containing gas 82
A lower lid (not shown) equipped with a supply pipe for supplying
An upper lid (not shown) having an exhaust port for exhausting various gases is provided at the upper end of the quartz tube 15.

【0026】また,本例では,上記基板結晶7として,
4H−SiC単結晶基板を用い,上記台座3の下端に配
設した。また,上記珪素含有ガス81としてはSiH4
ガスを,上記炭素含有ガス82としてはC38を用い
た。そしてこれらのガス81,82を図1に示すごとく
は反応容器2下方から導入し,基板結晶7上でSiCを
成長させる。
In this embodiment, as the substrate crystal 7,
A 4H-SiC single crystal substrate was used and disposed at the lower end of the pedestal 3. The silicon-containing gas 81 is SiH 4
The gas used was C 3 H 8 as the carbon-containing gas 82. These gases 81 and 82 are introduced from below the reaction vessel 2 as shown in FIG. 1 to grow SiC on the substrate crystal 7.

【0027】成長に使われなかったガス及び原料ガスが
分解して生成したH2ガスは,成長結晶75の側面を通
過して排気口へと向かう。ここで,本例の製造装置1
は,上記第1エッチングガス導入手段41及び第2エッ
チング手段42を有している。これらを利用して,基板
結晶7と台座3との境界面37の外周近傍へは,上記第
1エッチングガス導入手段41からエッチングガス9を
導入する。また,基板結晶7上において成長した炭化珪
素単結晶である成長結晶75の成長端面750の外周近
傍には,上記第2エッチングガス導入手段42からエッ
チングガス9を導入する。
The gas not used for the growth and the H 2 gas generated by the decomposition of the source gas pass through the side surface of the grown crystal 75 and go to the exhaust port. Here, the manufacturing apparatus 1 of this example
Has the first etching gas introducing means 41 and the second etching means 42. Utilizing these, the etching gas 9 is introduced from the first etching gas introduction means 41 to the vicinity of the outer periphery of the boundary 37 between the substrate crystal 7 and the pedestal 3. Further, the etching gas 9 is introduced from the second etching gas introduction means 42 to the vicinity of the outer periphery of the growth end face 750 of the growth crystal 75 which is a silicon carbide single crystal grown on the substrate crystal 7.

【0028】これにより,エッチングガス9は,成長端
面レベルでは外周方向から,基板結晶と台座との界面レ
ベルでは台座から導入されるので,結晶成長とともに台
座3を移動させても相対的な導入位置が変化せず,定常
的なエッチングガス導入が行える。なお,エッチングガ
スの導入方向は中心軸方向(径方向)でも,接線方向
(スワール方向)でも良い。
As a result, the etching gas 9 is introduced from the outer peripheral direction at the growth end face level and from the pedestal at the interface level between the substrate crystal and the pedestal. Does not change, and constant etching gas introduction can be performed. Note that the direction of introduction of the etching gas may be the center axis direction (radial direction) or the tangential direction (swirl direction).

【0029】本例の成長条件は,基板温度2000〜2
500℃,SiH4流量=50〜800sccm,C3
8流量=10〜300sccm,SiH4,C38のキャ
リアガスとしてのAr=1〜10SLM,圧力=100
〜400Torrであり,成長速度は0.5〜3mm/
hである。また,上記エッチングガス9としては,H2
を用い,上記第2エッチングガス導入手段42において
は5〜10SLM,第1エッチングガス導入手段41に
おいては10〜30SLM導入した。
The growth conditions in this embodiment are as follows.
500 ° C., SiH 4 flow rate = 50-800 sccm, C 3 H
8 Flow rate = 10 to 300 sccm, Ar = 1 to 10 SLM as a carrier gas of SiH 4 and C 3 H 8 , pressure = 100
~ 400 Torr and the growth rate is 0.5 ~ 3mm /
h. The etching gas 9 is H 2
The second etching gas introducing means 42 introduced 5 to 10 SLM, and the first etching gas introducing means 41 introduced 10 to 30 SLM.

【0030】本例では,30時間の成長を実施した結
果,成長結晶75の側壁における大きなエッチングは見
られず,また,排気口においても結晶の堆積は見られな
かったため,長時間にわたる結晶成長が可能であること
が確認できた。この結果から,上記2つのエッチングガ
ス導入手段41,42を用いて2段階のエッチングガス
導入を行うことが,非常に有効であることがわかる。そ
して,この2段階のエッチングガス導入による作用効果
は次のように考えられる。
In this example, as a result of the growth for 30 hours, no large etching was observed on the side wall of the grown crystal 75, and no crystal deposition was observed even at the exhaust port. It was confirmed that it was possible. From this result, it is understood that it is very effective to perform the two-stage etching gas introduction using the two etching gas introduction units 41 and 42. The operation and effect of the two-stage etching gas introduction are considered as follows.

【0031】すなわち,基板結晶7上において成長した
炭化珪素単結晶である成長結晶75の成長端面750の
外周近傍に,エッチングガス9を導入することにより,
未だ反応性を有する余剰の珪素含有ガス81及び炭素含
有ガス82の混合ガスの状態が,珪素と炭素の過飽和度
が高く,結晶成長の進む状態から,過飽和度がゼロの状
態に近づく。これにより,上記余剰のガスとエッチング
ガスの混合ガスは,新たな結晶成長を抑制し,かつ,既
に得られている成長結晶をエッチングしてしまうことを
も抑制する状態に変化する。
That is, by introducing the etching gas 9 into the vicinity of the outer periphery of the growth end face 750 of the growth crystal 75 which is a silicon carbide single crystal grown on the substrate crystal 7,
The state of the mixed gas of the surplus silicon-containing gas 81 and the carbon-containing gas 82, which still has reactivity, approaches a state where the supersaturation of silicon and carbon is high and crystal growth progresses, and the supersaturation is close to zero. As a result, the mixed gas of the surplus gas and the etching gas changes to a state that suppresses new crystal growth and also suppresses etching of the already-grown grown crystal.

【0032】次に,上記混合ガスは,成長結晶75の側
面を通過した後,上記基板結晶7と台座3との境界面3
7の外周近傍において,さらに導入されたエッチングガ
ス9と混ざる。これにより,既に過飽和状態がゼロに近
づいていた上記混合ガスは,さらに導入されたエッチン
グガス9によって十分に未飽和の状態に変化し,また,
上記エッチングガス9によって炭化珪素結晶をエッチン
グする能力をも有するものとなる。そのため,この段階
における上記混合ガスは,新たな炭化珪素結晶の成長を
確実に抑制し,かつ,新たに炭化珪素結晶が堆積しよう
としても,上記エッチングガスのエッチング力によって
その堆積を確実に妨げる。
Next, the mixed gas passes through the side surface of the growth crystal 75 and then passes through the boundary surface 3 between the substrate crystal 7 and the pedestal 3.
In the vicinity of the outer periphery of 7, the etching gas 9 is further mixed with the introduced etching gas 9. As a result, the mixed gas whose supersaturated state has already approached zero is changed to a sufficiently unsaturated state by the further introduced etching gas 9.
The etching gas 9 also has the ability to etch silicon carbide crystals. Therefore, the mixed gas at this stage surely suppresses the growth of new silicon carbide crystals and, even if new silicon carbide crystals are to be deposited, prevents the deposition by the etching power of the etching gas.

【0033】このように,本例においては,上記2段階
のエッチングガス9の導入を行うことによって,珪素含
有ガス81と炭素含有ガス82の上記過飽和の解消と,
未飽和化とを段階的に行うことができる。これにより,
上記成長結晶75のエッチングを防止しつつ,排気系統
への炭化珪素結晶の堆積を防止することができたのだと
考えられる。
As described above, in the present embodiment, the introduction of the etching gas 9 in the above-mentioned two stages eliminates the supersaturation of the silicon-containing gas 81 and the carbon-containing gas 82, and
The desaturation can be performed stepwise. This gives
It is considered that the silicon carbide crystal could be prevented from being deposited on the exhaust system while the growth crystal 75 was prevented from being etched.

【0034】(実施例2)本例では,実施例1と同様な
構成の製造装置を用い,エッチングガス9としてHCl
を用いた点だけを変更した。この場合もエッチングガス
としてH2を用いた場合と同様に成長結晶75の側壁に
おける大きなエッチングは見られず,また,排気口にお
いても結晶の堆積は見られなかった。そのため,多段に
エッチングガス9を導入することにより,長時間の成長
が可能であることが確認できた。
(Embodiment 2) In this embodiment, a manufacturing apparatus having the same structure as in Embodiment 1 is used, and HCl is used as an etching gas 9.
Only the point using was changed. Also in this case, as in the case where H 2 was used as an etching gas, no large etching was observed on the side wall of the grown crystal 75, and no crystal deposition was observed at the exhaust port. Therefore, it was confirmed that long-term growth was possible by introducing the etching gas 9 in multiple stages.

【0035】(比較例)本比較例では,実施例1におけ
る,第1エッチングガス導入手段41によるエッチング
ガス9の導入を中止し,第2エッチングガス導入手段4
2からのみエッチングガス9を導入し,その他は実施例
1と同様にして成長実験を行った。その結果,本比較例
においては,成長時間の進行とともに台座側壁部にSi
Cが堆積し,排気口が閉塞を始めた。
(Comparative Example) In this comparative example, the introduction of the etching gas 9 by the first etching gas introduction means 41 in the first embodiment is stopped, and the second etching gas introduction means 4
A growth experiment was conducted in the same manner as in Example 1 except that the etching gas 9 was introduced only from Step 2. As a result, in this comparative example, as the growth time progressed, Si
C was deposited and the exhaust port began to block.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における,炭化珪素単結晶の製造装置
の構成を示す説明図。
FIG. 1 is an explanatory view showing a configuration of a silicon carbide single crystal manufacturing apparatus according to a first embodiment.

【符号の説明】[Explanation of symbols]

1...炭化珪素単結晶の製造装置, 15...石英管, 2...反応容器, 20...周壁, 3...台座, 41...第1エッチングガス導入手段, 42...第2エッチングガス導入手段, 7...基板結晶(種結晶), 81...珪素含有ガス, 82...炭素含有ガス, 83...キャリアガス, 9...エッチングガス, 1. . . 14. an apparatus for producing a silicon carbide single crystal, . . 1. quartz tube, . . Reaction vessel, 20. . . Peripheral wall, 3. . . Pedestal, 41. . . First etching gas introduction means, 42. . . 6. second etching gas introduction means; . . 81. substrate crystal (seed crystal) . . Silicon-containing gas, 82. . . Carbon-containing gas, 83. . . 8. carrier gas; . . Etching gas,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 大輔 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 恩田 正一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 松井 正樹 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G077 AA02 AA03 BE08 DB07 EG21 HA06 TB02 TB13 5F045 AA03 AB06 AC01 AC16 AD18 AE25 AF02 DP05 DQ04 EC02 EE12 EE13 EF02 EF04 EF08 EF20 EK02 EM10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Daisuke Nakamura 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. 1-chome Inside Denso Corporation (72) Inventor Masaki Matsui 1-1-1 Showa-cho, Kariya City, Aichi Prefecture F-term (reference) 4G077 AA02 AA03 BE08 DB07 EG21 HA06 TB02 TB13 5F045 AA03 AB06 AC01 AC16 AD18 AE25 AF02 DP05 DQ04 EC02 EE12 EE13 EF02 EF04 EF08 EF20 EK02 EM10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 筒状の周壁を有する反応容器内に,炭化
珪素単結晶よりなる基板結晶を支持する台座を配置し,
該台座に支持された上記基板結晶に向けて珪素を含有す
る珪素含有ガスと炭素を含有する炭素含有ガスを供給し
て上記基板結晶上において炭化珪素単結晶を成長させる
と共に,上記台座と上記周壁の間を通過して余剰の上記
珪素含有ガス及び上記炭素含有ガスを排出する炭化珪素
単結晶の製造方法において,上記基板結晶と上記台座と
の境界面の外周近傍と,上記基板結晶上において成長し
た炭化珪素単結晶である成長結晶の成長端面の外周近傍
に,炭化珪素をエッチングする効果のあるエッチングガ
スを導入することを特徴とする炭化珪素単結晶の製造方
法。
A pedestal for supporting a substrate crystal made of silicon carbide single crystal is disposed in a reaction vessel having a cylindrical peripheral wall,
A silicon-containing gas containing silicon and a carbon-containing gas containing carbon are supplied to the substrate crystal supported on the pedestal to grow a silicon carbide single crystal on the substrate crystal. In the method for producing a silicon carbide single crystal for discharging surplus silicon-containing gas and carbon-containing gas after passing through a space between the substrate crystal and the vicinity of an outer periphery of a boundary surface between the substrate crystal and the pedestal, A method for producing a silicon carbide single crystal, characterized in that an etching gas having an effect of etching silicon carbide is introduced in the vicinity of the outer periphery of a growth end face of a grown crystal as a silicon carbide single crystal.
【請求項2】 請求項1において,上記基板結晶と上記
台座との境界面の外周近傍においては,上記台座の内部
から外部へ向けて上記エッチングガスを吐出することに
より導入することを特徴とする炭化珪素単結晶の製造方
法。
2. The method according to claim 1, wherein the etching gas is introduced by discharging the etching gas from the inside of the pedestal to the outside in the vicinity of the outer periphery of the boundary between the substrate crystal and the pedestal. A method for producing a silicon carbide single crystal.
【請求項3】 請求項1又は2において,上記成長結晶
の端面の外周近傍においては,上記周壁から内方へ向け
て上記エッチングガスを吐出することにより導入するこ
とを特徴とする炭化珪素単結晶の製造方法。
3. The silicon carbide single crystal according to claim 1, wherein the etching gas is introduced by discharging the etching gas inward from the peripheral wall in the vicinity of the outer periphery of the end face of the grown crystal. Manufacturing method.
【請求項4】 請求項1〜3のいずれか1項において,
上記エッチングガスは,水素,ハロゲンガス,ハロゲン
化水素のうち1種もしくは複数のガスを含有する混合ガ
スであることを特徴とする炭化珪素単結晶の製造方法。
4. The method according to claim 1, wherein:
The method of manufacturing a silicon carbide single crystal, wherein the etching gas is a mixed gas containing one or more of hydrogen, halogen gas, and hydrogen halide.
【請求項5】 筒状の周壁を有する反応容器と,該反応
容器内に配置された,炭化珪素単結晶よりなる基板結晶
を支持する台座と,該台座に支持された上記基板結晶に
向けて珪素を含有する珪素含有ガスと炭素を含有する炭
素含有ガスを供給する反応ガス供給手段と,上記台座と
上記周壁の間を通過して余剰の上記珪素含有ガス及び上
記炭素含有ガスを排出する排気通路とを有する炭化珪素
単結晶の製造装置において,上記基板結晶と上記台座と
の境界面の外周近傍に,炭化珪素をエッチングする効果
のあるエッチングガスを導入する第1エッチングガス導
入手段と,上記基板結晶上において成長した炭化珪素単
結晶である成長結晶の端面の外周近傍に,炭化珪素をエ
ッチングする効果のあるエッチングガスを導入する第2
エッチングガス導入手段とを有することを特徴とする炭
化珪素単結晶の製造装置。
5. A reaction vessel having a cylindrical peripheral wall, a pedestal disposed in the reaction vessel for supporting a substrate crystal made of a silicon carbide single crystal, and facing the substrate crystal supported on the pedestal. Reaction gas supply means for supplying a silicon-containing gas containing silicon and a carbon-containing gas containing carbon, and an exhaust gas passing between the pedestal and the peripheral wall to discharge excess silicon-containing gas and carbon-containing gas. A first etching gas introducing means for introducing an etching gas having an effect of etching silicon carbide in the vicinity of an outer periphery of a boundary surface between the substrate crystal and the pedestal; A second step of introducing an etching gas having an effect of etching silicon carbide into the vicinity of the outer periphery of an end face of the grown crystal which is a silicon carbide single crystal grown on the substrate crystal.
An apparatus for producing a silicon carbide single crystal, comprising: means for introducing an etching gas.
【請求項6】 請求項5において,上記第1エッチング
ガス導入手段は,上記台座の外周面から外方に向かって
開口する第1ガス噴出口を有することを特徴とする炭化
珪素単結晶の製造装置。
6. The method of manufacturing a silicon carbide single crystal according to claim 5, wherein said first etching gas introducing means has a first gas outlet opening outward from an outer peripheral surface of said pedestal. apparatus.
【請求項7】 請求項5又は6において,上記第2エッ
チングガス導入手段は,上記反応容器の上記周壁の内周
面から内方に向かって開口する第2ガス噴出口を有して
いることを特徴とする炭化珪素単結晶の製造装置。
7. The second etching gas introducing means according to claim 5, wherein the second etching gas introducing means has a second gas jet opening which opens inward from an inner peripheral surface of the peripheral wall of the reaction vessel. An apparatus for producing a silicon carbide single crystal.
JP2001171587A 2001-06-06 2001-06-06 Method and apparatus for producing silicon carbide single crystal Expired - Lifetime JP4742448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171587A JP4742448B2 (en) 2001-06-06 2001-06-06 Method and apparatus for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171587A JP4742448B2 (en) 2001-06-06 2001-06-06 Method and apparatus for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2002362998A true JP2002362998A (en) 2002-12-18
JP4742448B2 JP4742448B2 (en) 2011-08-10

Family

ID=19013337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171587A Expired - Lifetime JP4742448B2 (en) 2001-06-06 2001-06-06 Method and apparatus for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4742448B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464735A2 (en) * 2003-04-04 2004-10-06 Denso Corporation Equipment and method for manufacturing silicon carbide single crystal
JP2004323351A (en) * 2003-04-24 2004-11-18 Okmetic Oyj Manufacturing apparatus and manufacturing method for single crystal by gas phase growth method
JP2006089365A (en) * 2004-08-27 2006-04-06 Denso Corp METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2006193384A (en) * 2005-01-14 2006-07-27 Denso Corp Production method for silicon carbide single crystal
JP2006527157A (en) * 2003-06-13 2006-11-30 エルピーイー・ソチエタ・ペル・アチオニ System for growing silicon carbide crystals
JP2007525402A (en) * 2004-03-01 2007-09-06 クリー インコーポレイテッド Reduction of carrot-like defects in silicon carbide epiquity
JP2008230924A (en) * 2007-03-22 2008-10-02 Denso Corp Apparatus and method for producing silicon carbide single crystal
EP2339053A2 (en) 2009-12-24 2011-06-29 Denso Corporation Manufacturing apparatus and manufacturing method of silicon carbide single crystal
JP2011126752A (en) * 2009-12-21 2011-06-30 Denso Corp Method and apparatus for producing silicon carbide single crystal
CN102534795A (en) * 2010-12-16 2012-07-04 株式会社电装 Apparatus and method for manufacturing silicon carbide single crystal
CN102534770A (en) * 2010-12-16 2012-07-04 株式会社电装 Apparatus for manufacturing silicon carbide single crystal
JP2013035729A (en) * 2011-08-10 2013-02-21 Denso Corp Silicon carbide single-crystal manufacturing apparatus
JP2013035730A (en) * 2011-08-10 2013-02-21 Denso Corp Silicon carbide single crystal manufacturing apparatus
JP2014111546A (en) * 2014-03-19 2014-06-19 Denso Corp Production apparatus of silicon carbide single crystal
JP2014203863A (en) * 2013-04-02 2014-10-27 株式会社豊田中央研究所 Surface treatment device
US9644286B2 (en) 2011-07-28 2017-05-09 Denso Corporation Silicon carbide single crystal manufacturing apparatus
JP2018060937A (en) * 2016-10-06 2018-04-12 昭和電工株式会社 SiC EPITAXIAL WAFER MANUFACTURING METHOD AND SiC EPITAXIAL WAFER MANUFACTURING APPARATUS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161172A (en) * 1986-12-24 1988-07-04 Nissin Electric Co Ltd Vapor growth device
JPH0532484A (en) * 1991-07-29 1993-02-09 Ulvac Japan Ltd Prevention of attachment of active substance to inner wall face of reactor
JPH05190471A (en) * 1992-01-16 1993-07-30 Tokyo Electron Ltd Treatment apparatus for forming film
JPH0952796A (en) * 1995-08-18 1997-02-25 Fuji Electric Co Ltd Method for growing silicon carbide crystal and silicon carbide semiconductor device
WO1998014644A1 (en) * 1996-10-01 1998-04-09 Abb Research Ltd. A device for epitaxially growing objects and method for such a growth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161172A (en) * 1986-12-24 1988-07-04 Nissin Electric Co Ltd Vapor growth device
JPH0532484A (en) * 1991-07-29 1993-02-09 Ulvac Japan Ltd Prevention of attachment of active substance to inner wall face of reactor
JPH05190471A (en) * 1992-01-16 1993-07-30 Tokyo Electron Ltd Treatment apparatus for forming film
JPH0952796A (en) * 1995-08-18 1997-02-25 Fuji Electric Co Ltd Method for growing silicon carbide crystal and silicon carbide semiconductor device
WO1998014644A1 (en) * 1996-10-01 1998-04-09 Abb Research Ltd. A device for epitaxially growing objects and method for such a growth

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464735A2 (en) * 2003-04-04 2004-10-06 Denso Corporation Equipment and method for manufacturing silicon carbide single crystal
EP2431505A3 (en) * 2003-04-04 2012-07-25 Denso Corporation Equipment for manufacturing silicon carbide single crystal
EP1464735A3 (en) * 2003-04-04 2009-04-22 Denso Corporation Equipment and method for manufacturing silicon carbide single crystal
US7217323B2 (en) 2003-04-04 2007-05-15 Denso Corporation Equipment and method for manufacturing silicon carbide single crystal
JP2004323351A (en) * 2003-04-24 2004-11-18 Okmetic Oyj Manufacturing apparatus and manufacturing method for single crystal by gas phase growth method
EP1471168B2 (en) 2003-04-24 2011-08-10 Norstel AB Device and method for producing single crystals by vapour deposition
US7361222B2 (en) 2003-04-24 2008-04-22 Norstel Ab Device and method for producing single crystals by vapor deposition
JP2006527157A (en) * 2003-06-13 2006-11-30 エルピーイー・ソチエタ・ペル・アチオニ System for growing silicon carbide crystals
JP2007525402A (en) * 2004-03-01 2007-09-06 クリー インコーポレイテッド Reduction of carrot-like defects in silicon carbide epiquity
US9903046B2 (en) 2004-03-01 2018-02-27 Cree, Inc. Reduction of carrot defects in silicon carbide epitaxy
JP2006089365A (en) * 2004-08-27 2006-04-06 Denso Corp METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2006193384A (en) * 2005-01-14 2006-07-27 Denso Corp Production method for silicon carbide single crystal
JP4604728B2 (en) * 2005-01-14 2011-01-05 株式会社デンソー Method for producing silicon carbide single crystal
JP2008230924A (en) * 2007-03-22 2008-10-02 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2011126752A (en) * 2009-12-21 2011-06-30 Denso Corp Method and apparatus for producing silicon carbide single crystal
EP2339053A2 (en) 2009-12-24 2011-06-29 Denso Corporation Manufacturing apparatus and manufacturing method of silicon carbide single crystal
JP2012126612A (en) * 2010-12-16 2012-07-05 Denso Corp Apparatus for manufacturing silicon carbide single crystal
KR101447476B1 (en) 2010-12-16 2014-10-06 가부시키가이샤 덴소 Apparatus for manufacturing silicon carbide single crystal
CN102534770A (en) * 2010-12-16 2012-07-04 株式会社电装 Apparatus for manufacturing silicon carbide single crystal
CN102534795A (en) * 2010-12-16 2012-07-04 株式会社电装 Apparatus and method for manufacturing silicon carbide single crystal
CN107254715A (en) * 2010-12-16 2017-10-17 株式会社电装 Manufacture the device of single-crystal silicon carbide
EP2465979A3 (en) * 2010-12-16 2013-11-20 Denso Corporation Apparatus for manufacturing silicon carbide single crystal
EP2465980A3 (en) * 2010-12-16 2013-11-27 Denso Corporation Apparatus and method for manufacturing silicon carbide single crystal
CN106948007A (en) * 2010-12-16 2017-07-14 株式会社电装 The apparatus and method for manufacturing single-crystal silicon carbide
KR101437378B1 (en) * 2010-12-16 2014-09-05 가부시키가이샤 덴소 Apparatus and method for manufacturing silicon carbide single crystal
JP2012126613A (en) * 2010-12-16 2012-07-05 Denso Corp Apparatus and method for producing silicon carbide single crystal
US9328431B2 (en) 2010-12-16 2016-05-03 Denso Corporation Apparatus for manufacturing a silicon carbide single crystal comprising a mounting portion and a purge gas introduction system
US8882911B2 (en) 2010-12-16 2014-11-11 Denso Corporation Apparatus for manufacturing silicon carbide single crystal
US9644286B2 (en) 2011-07-28 2017-05-09 Denso Corporation Silicon carbide single crystal manufacturing apparatus
JP2013035730A (en) * 2011-08-10 2013-02-21 Denso Corp Silicon carbide single crystal manufacturing apparatus
JP2013035729A (en) * 2011-08-10 2013-02-21 Denso Corp Silicon carbide single-crystal manufacturing apparatus
JP2014203863A (en) * 2013-04-02 2014-10-27 株式会社豊田中央研究所 Surface treatment device
JP2014111546A (en) * 2014-03-19 2014-06-19 Denso Corp Production apparatus of silicon carbide single crystal
JP2018060937A (en) * 2016-10-06 2018-04-12 昭和電工株式会社 SiC EPITAXIAL WAFER MANUFACTURING METHOD AND SiC EPITAXIAL WAFER MANUFACTURING APPARATUS

Also Published As

Publication number Publication date
JP4742448B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP2002362998A (en) Method and device for producing silicon carbide single crystal
EP0835336B2 (en) A device and a method for epitaxially growing objects by cvd
KR101447476B1 (en) Apparatus for manufacturing silicon carbide single crystal
JP2004323351A (en) Manufacturing apparatus and manufacturing method for single crystal by gas phase growth method
US20070056507A1 (en) Sublimation chamber for phase controlled sublimation
KR101030422B1 (en) Susceptor
US9644286B2 (en) Silicon carbide single crystal manufacturing apparatus
JP4962074B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
EP2465980B1 (en) Apparatus and method for manufacturing silicon carbide single crystal
KR100372333B1 (en) Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition
JP7002731B2 (en) Vapor deposition equipment
JP4719541B2 (en) Semiconductor thin film growth equipment
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP2020178035A (en) Susceptor, regeneration method of the same, and film formation method
JPS5837388B2 (en) Kisouseichiyouhouhou
WO2019225697A1 (en) Apparatus for manufacturing silicon nitride single crystal, and method for manufacturing silicon nitride single crystal
JP6547444B2 (en) Epitaxial growth method of silicon carbide semiconductor
JP4135543B2 (en) Method for growing silicon carbide crystal
JPS63282195A (en) Raw gas injection nozzle for device for epitaxial growth
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JP2022121078A (en) Susceptor, deposition device and substrate deposition method
JP2514359Y2 (en) Vacuum baking device for susceptor purification
KR101088678B1 (en) Method of forming a thin film
JPH11307453A (en) Formation of single crystalline thin film
JP2004253413A (en) Compound semiconductor vapor growth device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4742448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term