JPH11307453A - Formation of single crystalline thin film - Google Patents

Formation of single crystalline thin film

Info

Publication number
JPH11307453A
JPH11307453A JP11696798A JP11696798A JPH11307453A JP H11307453 A JPH11307453 A JP H11307453A JP 11696798 A JP11696798 A JP 11696798A JP 11696798 A JP11696798 A JP 11696798A JP H11307453 A JPH11307453 A JP H11307453A
Authority
JP
Japan
Prior art keywords
thin film
susceptor
gas
reactor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11696798A
Other languages
Japanese (ja)
Inventor
Genichi Ogawa
元一 小川
Hisashi Sakai
久 坂井
Shigeo Aono
重雄 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11696798A priority Critical patent/JPH11307453A/en
Publication of JPH11307453A publication Critical patent/JPH11307453A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a formation method of a single crystalline thin film which restrains problems of a conventional method such as lowering of purity of a single crystalline thin film to be formed and lowering of operation rate of a device due to washing of a reaction furnace. SOLUTION: In this formation method, a single crystalline thin film is formed on a coating substrate 2 installed on a susceptor 3, while organic metallic gas is made to flow inside a reaction furnace. When a radius of the susceptor 3 is (a) and a distance from an outer circumference of the susceptor 3 to an inner wall of the reaction furnace is (b), a relation of a>=n is set and the single crystalline thin film is formed while barrier gas such as hydrogen gas and nitrogen gas of 100 cc/cm<2> or more is supplied from an upper part of the reaction furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MOCVD(Meta
l Organic Chemical Vapor Deposition )装置を用いて
単結晶薄膜を成長させる単結晶薄膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for forming a single crystal thin film by growing a single crystal thin film using an Organic Chemical Vapor Deposition apparatus.

【0002】[0002]

【従来技術】従来の単結晶薄膜の形成方法に用いられる
MOCVD装置を図4に示す。反応炉1内に、基板2を
載置するためのサセプタ3と、基板2を加熱するための
ヒーター4を設け、反応炉1 の上部に原料ガスを供給す
るための原料ガス供給口5を設けると共に、反応炉1 の
下部に排気口6を設けている。
2. Description of the Related Art FIG. 4 shows an MOCVD apparatus used in a conventional method for forming a single crystal thin film. A susceptor 3 for mounting the substrate 2 and a heater 4 for heating the substrate 2 are provided in the reactor 1, and a source gas supply port 5 for supplying a source gas is provided above the reactor 1. At the same time, an exhaust port 6 is provided at the lower part of the reactor 1.

【0003】反応炉1 内に水素ガスや窒素ガスなどのキ
ャリアガスを毎分0.1〜10リットル導入し、このキ
ャリアガスにトリメチルガリウムとアルシンを流し、サ
セプタ3 上の基板2 の温度をヒーター4で所望の温度に
昇温し、また、必要に応じてサセプタ3 を回転させて、
原料ガス5を反応炉1内に導入することで、基板2 上に
単結晶薄膜を成膜するものである。
[0003] A carrier gas such as hydrogen gas or nitrogen gas is introduced into a reaction furnace 1 at a rate of 0.1 to 10 liters per minute, and trimethylgallium and arsine are flowed into the carrier gas, and the temperature of the substrate 2 on the susceptor 3 is increased by a heater. The temperature is raised to a desired temperature in 4 and, if necessary, the susceptor 3 is rotated,
The source gas 5 is introduced into the reaction furnace 1 to form a single-crystal thin film on the substrate 2.

【0004】反応炉1 内の大気開放を防ぐために、必要
に応じてゲートバルブ9を介してローディングチャンバ
ー7を設ける。なお、ローディングチャンバー7内は排
気口8から真空排気され、高真空に保たれる。
In order to prevent the inside of the reaction furnace 1 from being opened to the atmosphere, a loading chamber 7 is provided via a gate valve 9 if necessary. The inside of the loading chamber 7 is evacuated from the exhaust port 8 and kept at a high vacuum.

【0005】[0005]

【発明が解決しようとする課題】ところが、この従来の
単結晶薄膜の形成方法に用いられるMOCVD装置で
は、サセプタ3 の外周部と反応炉1の内壁までの距離が
短いために、単結晶薄膜の成膜を繰り返すにしたがっ
て、反応炉1の内壁に不要な残留膜11が堆積する。
However, in the MOCVD apparatus used in the conventional method for forming a single-crystal thin film, the distance between the outer peripheral portion of the susceptor 3 and the inner wall of the reaction furnace 1 is short. As the film formation is repeated, an unnecessary residual film 11 is deposited on the inner wall of the reactor 1.

【0006】この残留膜11から、その後の単結晶薄膜
の成膜時に脱ガスが生じ、成膜中の単結晶薄膜中に混入
して不純物として取り込まれるため、単結晶薄膜の特性
を劣化させるという問題があった。
From the residual film 11, degassing occurs during the subsequent formation of the single-crystal thin film, and is mixed into the single-crystal thin film being formed and taken in as an impurity, thereby deteriorating the characteristics of the single-crystal thin film. There was a problem.

【0007】成長を繰り返すにしたがって、反応炉1の
内壁に付着する残留膜11の膜厚は厚くなり、成長させ
る単結晶薄膜の純度が低下したり、多くのパーティクル
が残留膜11から単結晶薄膜に付着するため、定期的に
反応炉1の洗浄を行なう必要があり、装置の稼働率を大
幅に低下させていた。
[0007] As the growth is repeated, the thickness of the residual film 11 attached to the inner wall of the reactor 1 becomes thicker, the purity of the single crystal thin film to be grown is reduced, and many particles are removed from the residual film 11 by the single crystal thin film. Therefore, it is necessary to periodically clean the reactor 1, which greatly reduces the operation rate of the apparatus.

【0008】本発明はこのような従来方法の問題点に鑑
みてなされたものであり、成長させる単結晶薄膜の純度
が低下したり、反応炉の洗浄のために装置の稼働率が低
下するという従来方法の問題点を解消した単結晶薄膜の
形成方法を提供することを目的とする。
[0008] The present invention has been made in view of such problems of the conventional method, and it is said that the purity of a single crystal thin film to be grown is reduced, and that the operation rate of an apparatus for cleaning a reactor is reduced. It is an object of the present invention to provide a method for forming a single crystal thin film which has solved the problems of the conventional method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る単結晶薄膜の形成方法では、反応炉内
に有機金属ガスを流しながらサセプタ上に設置した被着
基板上に単結晶薄膜を成長させる単結晶薄膜の形成方法
において、前記サセプタの半径をaとし、このサセプタ
外周から前記反応炉内壁までの距離をbとしたとき、a
≦bなる関係に設定すると共に、前記反応炉の上部から
水素ガスや窒素ガスなどのバリアガスを100cc/c
2 以上供給しながら前記単結晶薄膜を成長させる。
In order to achieve the above object, a method for forming a single crystal thin film according to the present invention comprises a method of forming a single crystal thin film on a substrate to be mounted on a susceptor while flowing an organic metal gas into a reaction furnace. In the method for forming a single crystal thin film for growing a crystal thin film, when a radius of the susceptor is a and a distance from the outer periphery of the susceptor to the inner wall of the reactor is b, a
≤ b and a barrier gas such as hydrogen gas or nitrogen gas is supplied from the upper part of the reactor at a rate of 100 cc / c.
The single crystal thin film is grown while supplying m 2 or more.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づき詳細に説明する。図1は、本発明に係る単結
晶薄膜の形成方法で用いられるMOCVD装置を示す断
面図であり、1は反応炉、2は基板、3はサセプタ、4
はヒータ、5は原料ガス供給口、6は排気口、7はロー
ディングチャンバ、8は排気口、9はゲートバルブ、1
0はバリアガス供給口である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an MOCVD apparatus used in the method for forming a single crystal thin film according to the present invention.
Is a heater, 5 is a source gas supply port, 6 is an exhaust port, 7 is a loading chamber, 8 is an exhaust port, 9 is a gate valve, 1
0 is a barrier gas supply port.

【0011】石英などから成る反応炉1内には底部から
支持棒3aが挿入され、この支持棒3a上にカーボンな
どから成るサセプタ3が支持され、その上に単結晶シリ
コンや単結晶ガリウム砒素などの単結晶半導体基板、或
いは単結晶サファイアなどの単結晶絶縁基板2が載せら
れる。上記支持棒3aは図示しないモータにより回転さ
れる。サセプタ3の下部には抵抗加熱式ヒータ4が配置
される。なお、このヒータ4は抵抗加熱式のものに限ら
ず、誘導加熱式のものでもよい。
A support rod 3a is inserted from the bottom into a reaction furnace 1 made of quartz or the like, and a susceptor 3 made of carbon or the like is supported on the support rod 3a. A single crystal semiconductor substrate or a single crystal insulating substrate 2 such as single crystal sapphire is mounted. The support rod 3a is rotated by a motor (not shown). Below the susceptor 3, a resistance heater 4 is arranged. The heater 4 is not limited to the resistance heating type, but may be an induction heating type.

【0012】反応炉1の上部には、原料ガス供給口5が
設けられている。そして、反応炉1の底には原料ガスの
排気口6が設けられている。また、反応炉1の入口部に
はゲートバルブ9を介してローディングチャンバ7を設
ける。
A source gas supply port 5 is provided in the upper part of the reaction furnace 1. An exhaust port 6 for a source gas is provided at the bottom of the reaction furnace 1. A loading chamber 7 is provided at the inlet of the reaction furnace 1 via a gate valve 9.

【0013】このようなMOCVD装置のヒータ4でサ
セプタ3を400〜800℃に加熱し、それによって被
着基板2を同温度に加熱した状態で供給口5から反応ガ
スを供給し、基板2上に化合物半導体を反応成長させ
る。
The susceptor 3 is heated to 400 to 800 ° C. by the heater 4 of the MOCVD apparatus, and the reaction gas is supplied from the supply port 5 while the substrate 2 is heated to the same temperature. A compound semiconductor is grown by reaction.

【0014】本発明の単結晶薄膜の形成方法では、サセ
プタ3の半径をaとし、サセプタ3の外周から反応炉1
の内壁までの距離をbとした時、a≦bなる関係にする
と共に、反応炉1の上部から、水素ガスや窒素ガスのバ
リアガスをバリアガス供給口10から100cc/cm
2 以上供給しながら半導体薄膜を形成する。
In the method for forming a single-crystal thin film of the present invention, the radius of the susceptor 3 is a, and the reactor 1
When the distance to the inner wall is b, the relationship a ≦ b is satisfied, and a barrier gas such as hydrogen gas or nitrogen gas is supplied from the upper portion of the reactor 1 through the barrier gas supply port 10 to 100 cc / cm.
A semiconductor thin film is formed while supplying two or more.

【0015】反応炉1の内壁に付着する残留GaAs膜
の最大値をDとしたときのb/aとDとの関係を図2に
示す。なお、図2は、サセプタの半径が60mmで、キ
ャリアガスとして水素ガスを毎分2リットル導入し、そ
こに毎分0.8ccのトリメチルガリウムと毎分35c
cのアルシンガスを供給することで、5μmのGaAs
を50回成長し、トータルの膜厚で250μmのGaA
sを成長した後の値である。また、このとき、図1のバ
リアガス供給口10からの水素ガスの単位面積当たりの
流量Fは100cc/cm2 である。図2から明らかな
ように、b/aが0.5のときは残留GaAs膜の最大
値Dは4000μm程度あったものが、b/aが0.7
5のときは残留GaAs膜の最大値Dは2000μm程
度になり、さらにb/aが1のときは残留GaAs膜の
最大値Dはほぼ50μmになる。
FIG. 2 shows the relationship between b / a and D when the maximum value of the residual GaAs film adhering to the inner wall of the reactor 1 is D. FIG. 2 shows a case where the susceptor has a radius of 60 mm, hydrogen gas is introduced at a rate of 2 liters per minute as a carrier gas, and 0.8 cc of trimethylgallium per minute and 35 c
By supplying arsine gas of c, 5 μm GaAs
Is grown 50 times and the total film thickness is 250 μm GaAs.
This is the value after growing s. At this time, the flow rate F of hydrogen gas per unit area from the barrier gas supply port 10 in FIG. 1 is 100 cc / cm 2 . As is clear from FIG. 2, when b / a is 0.5, the maximum value D of the residual GaAs film was about 4000 μm, but b / a was 0.7.
When the value is 5, the maximum value D of the residual GaAs film is about 2000 μm, and when b / a is 1, the maximum value D of the residual GaAs film is approximately 50 μm.

【0016】また、b/a=1の場合において、図1の
バリアガス供給口10からの水素ガスの単位面積当たり
の流量F(cc/cm2 )と残留GaAs膜の最大値D
との関係を図3に示す。図3から明らかなように、水素
ガスの単位面積当たりの流量Fが50cc/cm2 のと
きは残留GaAs膜の最大値Dは1000μm、また水
素ガスの単位面積当たりの流量Fが75cc/cm2
ときは残留GaAs膜の最大値Dは400μm、また水
素ガスの単位面積当たりの流量Fが100cc/cm2
のときは残留GaAs膜の最大値Dは50μm、さらに
水素ガスの単位面積当たりの流量Fが150cc/cm
2 のときは残留GaAs膜の最大値Dは40μmにな
る。
When b / a = 1, the flow rate F (cc / cm 2 ) of hydrogen gas per unit area from the barrier gas supply port 10 in FIG. 1 and the maximum value D of the residual GaAs film are determined.
Is shown in FIG. As is apparent from FIG. 3, when the flow rate F of hydrogen gas per unit area is 50 cc / cm 2 , the maximum value D of the residual GaAs film is 1000 μm, and the flow rate F of hydrogen gas per unit area is 75 cc / cm 2. In this case, the maximum value D of the residual GaAs film is 400 μm, and the flow rate F of hydrogen gas per unit area is 100 cc / cm 2.
In this case, the maximum value D of the residual GaAs film is 50 μm, and the flow rate F of hydrogen gas per unit area is 150 cc / cm.
In the case of 2 , the maximum value D of the residual GaAs film is 40 μm.

【0017】したがって、b/aを1以下に設定すると
ともに、水素ガスの単位面積当たりの流量Fを100c
c/cm2 以下にすると、残留ガスが反応炉1の内壁に
付着して、残留膜が堆積することを極力低減できる。
Therefore, b / a is set to 1 or less, and the flow rate F of hydrogen gas per unit area is set to 100c.
When it is set to c / cm 2 or less, it is possible to reduce as much as possible residual gas adhering to the inner wall of the reactor 1 and depositing a residual film.

【0018】図4の従来例によるMOCVD装置を用い
る場合、一回の成膜で5μmのGaAs膜を成長する場
合、図4に示す反応炉1内の内壁に付着する残留膜11
の膜厚の最大値をDとすると、GaAs膜の成長を繰り
返し50回成長した後のDは2000μm以上にもな
る。その結果、GaAs膜中の不純物濃度が上昇した
り、パーティクルが多く導入されるようになるため、反
応炉1を分解洗浄して、内壁の残留膜11を除去する必
要がある。
When the conventional MOCVD apparatus shown in FIG. 4 is used and a 5 μm GaAs film is grown by one film formation, the residual film 11 adhered to the inner wall in the reactor 1 shown in FIG.
Assuming that the maximum value of the film thickness of D is D, the D after the GaAs film is repeatedly grown 50 times becomes 2000 μm or more. As a result, the impurity concentration in the GaAs film increases and a large amount of particles are introduced. Therefore, it is necessary to disassemble and clean the reaction furnace 1 to remove the residual film 11 on the inner wall.

【0019】これに対し、本発明に係る単結晶薄膜の形
成方法では、5μmのGaAsを50回成長した後の反
応炉1の内壁の残留膜11の最大膜厚は100μm以下
である。従って、反応炉1を分解洗浄する頻度を1/2
0以下に低減し、装置稼動率を大幅に向上させることが
できる。さらに、パーティクルの少ない、高純度のGa
As膜を成長できる特徴をもつ。
On the other hand, in the method for forming a single crystal thin film according to the present invention, the maximum thickness of the residual film 11 on the inner wall of the reactor 1 after growing 5 μm GaAs 50 times is 100 μm or less. Therefore, the frequency of disassembling and cleaning the reactor 1 is reduced by half.
0 or less, and the operation rate of the apparatus can be greatly improved. Furthermore, high-purity Ga with few particles
It has the characteristic that an As film can be grown.

【0020】なお、本発明はGaAsの成長のみに限定
されるものではなく、その他の化合物半導体の成長に適
用しても同様の効果が得られるものである。
It should be noted that the present invention is not limited to the growth of GaAs alone, and the same effects can be obtained even when applied to the growth of other compound semiconductors.

【0021】[0021]

【発明の効果】以上のように、本発明に係る単結晶薄膜
の形成方法によれば、サセプタの半径をaとし、このサ
セプタ外周から反応炉内壁までの距離をbとしたとき、
a≦bなる関係に設定すると共に、反応炉の上部から水
素ガスや窒素ガスのバリアガスを100cc/cm2
上供給することから、成長を繰り返すにしたがって、反
応炉の内壁に堆積する残留膜の膜厚を大幅に低減できる
ことから、MOCVD装置の反応炉を分解洗浄する頻度
を低減させ、装置の稼働率を大幅に向上させることがで
きる。
As described above, according to the method for forming a single crystal thin film according to the present invention, when the radius of the susceptor is a and the distance from the outer periphery of the susceptor to the inner wall of the reactor is b,
Since a is set to satisfy a ≦ b and a barrier gas such as hydrogen gas or nitrogen gas is supplied from the upper part of the reactor at 100 cc / cm 2 or more, a film of a residual film deposited on the inner wall of the reactor as the growth is repeated. Since the thickness can be greatly reduced, the frequency of disassembling and cleaning the reaction furnace of the MOCVD apparatus can be reduced, and the operation rate of the apparatus can be greatly improved.

【0022】また、単結晶薄膜の成長時に膜中に取り込
まれる不純物濃度とパーティクルを大幅に低減でき、高
純度の単結晶薄膜を得ることができる。
Further, the concentration of impurities and particles taken into the single crystal thin film during its growth can be greatly reduced, and a high-purity single crystal thin film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るMOCVD装置の一実施形態を示
す断面図である。
FIG. 1 is a sectional view showing an embodiment of a MOCVD apparatus according to the present invention.

【図2】サセプタの半径a、反応炉の内壁とサセプタ間
の間隔b、および反応炉の内壁に付着する残留膜厚Dと
の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a radius a of a susceptor, a distance b between an inner wall of a reactor and a susceptor, and a residual film thickness D adhered to an inner wall of the reactor.

【図3】水素ガスの単位面積当たりの流量Fと残留膜厚
Dとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a flow rate F of hydrogen gas per unit area and a residual film thickness D.

【図4】従来のMOCVD装置を示す断面図である。FIG. 4 is a sectional view showing a conventional MOCVD apparatus.

【符号の説明】[Explanation of symbols]

1‥‥‥成長炉、2‥‥‥基板、3‥‥‥サセプタ、4
‥‥‥ヒータ、5‥‥‥原料ガス、6‥‥‥排気口、7
‥‥‥ローディングチャンバー、8‥‥‥排気口、9‥
‥‥ゲートバルブ、10‥‥‥バリアガス、11‥‥‥
残留膜
1 ‥‥‥ growth furnace, 2 ‥‥‥ substrate, 3 ‥‥‥ susceptor, 4
{Heater, 5} Raw material gas, 6} Exhaust port, 7
‥‥‥ Loading chamber, 8 ‥‥‥ Exhaust port, 9 ‥
{Gate valve, 10} Barrier gas, 11}
Residual film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応炉内に有機金属ガスを流しながらサ
セプタ上に設置した被着基板上に単結晶薄膜を成長させ
る単結晶薄膜の形成方法において、前記サセプタの半径
をaとし、このサセプタ外周から前記反応炉内壁までの
距離をbとしたとき、a≦bなる関係に設定すると共
に、前記反応炉の上部から水素ガスや窒素ガスなどのバ
リアガスを100cc/cm2 以上供給しながら前記単
結晶薄膜を成長させることを特徴とする単結晶薄膜の形
成方法。
1. A method for forming a single crystal thin film on a substrate to be deposited on a susceptor while flowing an organic metal gas in a reactor, wherein the susceptor has a radius of a, When the distance from the reaction furnace to the inner wall of the reactor is b, the relationship is set as a ≦ b, and the single crystal is supplied while supplying a barrier gas such as hydrogen gas or nitrogen gas at 100 cc / cm 2 or more from the upper part of the reactor. A method for forming a single crystal thin film, comprising growing a thin film.
JP11696798A 1998-04-27 1998-04-27 Formation of single crystalline thin film Pending JPH11307453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11696798A JPH11307453A (en) 1998-04-27 1998-04-27 Formation of single crystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11696798A JPH11307453A (en) 1998-04-27 1998-04-27 Formation of single crystalline thin film

Publications (1)

Publication Number Publication Date
JPH11307453A true JPH11307453A (en) 1999-11-05

Family

ID=14700195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11696798A Pending JPH11307453A (en) 1998-04-27 1998-04-27 Formation of single crystalline thin film

Country Status (1)

Country Link
JP (1) JPH11307453A (en)

Similar Documents

Publication Publication Date Title
JP4121555B2 (en) Apparatus and method for epitaxial growth of objects by CVD
JP2003086518A (en) Cvd method of silicon carbide film, cvd unit and susceptor for cvd unit
US3941647A (en) Method of producing epitaxially semiconductor layers
JP2002362998A (en) Method and device for producing silicon carbide single crystal
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JPH11307453A (en) Formation of single crystalline thin film
JPH0883773A (en) Thin film forming device
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP3955392B2 (en) Crystal growth apparatus and crystal growth method
JPS6010621A (en) Depressurized epitaxial growing equipment
JPH0637355B2 (en) Method for producing silicon carbide single crystal film
KR20080110481A (en) Vapor phase growing apparatus and vapor phase growing method
JPH0345957Y2 (en)
JP2649693B2 (en) Vapor phase growth equipment
JP2514359Y2 (en) Vacuum baking device for susceptor purification
JP3070130B2 (en) Vertical vacuum deposition equipment
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JPH0235814Y2 (en)
JPH08310896A (en) Vapor growth apparatus
JP4427694B2 (en) Film forming apparatus and film forming method
JPH08274031A (en) Method and apparatus for manufacturing semiconductor device
JPH1192280A (en) Silicon epitaxial vapor-phase growth apparatus
JP2011157235A (en) Apparatus and method for producing crystal
JPH0529637B2 (en)
JPH053159A (en) Chemical compound semiconductor crystal vapor growth device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Effective date: 20040426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A02