JP2002357660A - カロリーメータ - Google Patents

カロリーメータ

Info

Publication number
JP2002357660A
JP2002357660A JP2001165313A JP2001165313A JP2002357660A JP 2002357660 A JP2002357660 A JP 2002357660A JP 2001165313 A JP2001165313 A JP 2001165313A JP 2001165313 A JP2001165313 A JP 2001165313A JP 2002357660 A JP2002357660 A JP 2002357660A
Authority
JP
Japan
Prior art keywords
calorimeter
heat
resistor
absorber
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001165313A
Other languages
English (en)
Other versions
JP4646441B2 (ja
Inventor
Keiichi Tanaka
啓一 田中
Toshimitsu Morooka
利光 師岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001165313A priority Critical patent/JP4646441B2/ja
Priority to US10/158,350 priority patent/US6726356B2/en
Publication of JP2002357660A publication Critical patent/JP2002357660A/ja
Application granted granted Critical
Publication of JP4646441B2 publication Critical patent/JP4646441B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/12Calorimetric dosimeters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】 【課題】 本発明の目的は、微小な熱量を電気信号に変
換するカロリーメータに関し、特に超伝導転移端を用い
ることによりエネルギー分解能・計数率を向上させた放
射線検出器を得ることである。 【解決手段】 放射線を吸収し熱を発生させる吸収体
が、熱により抵抗値を変化させる抵抗体の上に形成され
ており、前記抵抗体が熱の逃げをコントロールするメン
ブレン上に形成されている超伝導転移端を用いたカロリ
ーメータにおいて、カロリーメータに発生した活性電子
を外部に逃がすための熱放出装置を設けていることを特
徴とするカロリーメータ

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は微小な熱量を電気
信号に変換するカロリーメータに関し、特に超伝導転移
端を用いることによりエネルギー分解能・計数率を向上
させた放射線検出器に関する。
【0002】
【従来の技術】カロリーメータは、外部から入射される
熱を電流や電圧の電気信号に変換する熱量計であり、応
用の一つとして放射線のエネルギーを微小熱量として検
出する試みが行われてきた。参考文献として、例えば
「S.H.Moseley et.al. Journalof Applied Physics
56 1275(1984)」がある。カロリーメータは、熱の流
量を制御するためのメンブレン上に、熱を吸収する吸収
体(半導体)と吸収体で発生した熱を電気信号に変換す
る温度計(半導体)が設けられている。放射線を検出す
るカロリーメータは量子効率が100%に近い、すなわち
放射線のエネルギーがほぼ100%近く電気信号に変換され
るため、効率の無駄がない利点がある。この優位点があ
るため、カロリーメータは放射線検出器として適してい
る。カロリーメータのエネルギー分解能は、素子のフォ
ノンノイズに支配されており極低温、例えば1K以下にす
ることノイズの効果を低減することができ、エネルギー
分解能向上が図られてきた。
【0003】放射線により発生するパルスの応答速度
(放射線がカロリーメータに入射しパルスが発生した
後、もとの安定状態に戻る間での時間)はC/Gで与えら
れる(C:カロリーメータの熱容量、G:外部に熱を逃が
すためのメンブレンの熱コンダクタンス)。これはカロ
リーメータで発生した熱がメンブレンを伝わり逃げてい
く時間を表している。
【0004】1995年に、超伝導転移端で自己フィードバ
ック機能を持たせることにより、従来のカロリーメータ
より高エネルギー分解能・高計数率をもつ超伝導カロリ
ーメータ(以後TES(Transition Edge Sensorと呼ぶ)が
報告された(K.D.Irwin, Applied Physics letters
66, 1998(1995))。超伝導は図5に示すように転移温度
で常伝導から超伝導へと転位する。この転位する温度領
域を超伝導転移端と呼ぶ。超伝導転移端は、温度変化に
対して抵抗変化が大きいことが特徴である。外部から熱
が入射するとTESは微小な温度変化をし、その結果大き
な抵抗変化が得られる。TESを超伝導転移端において、
定電圧駆動させると、放射線の吸収に伴いTESの抵抗値
が変化し、抵抗変化に応じた電流信号が発生する。放射
線のエネルギーと信号電流の波高値は一対一の関係があ
り、波高値を読みとることにより、TESに入射した放射
線のエネルギーを検出することができる。自己フィード
バック機能は、TE S内に発生した熱(活性電子)を従来
より高速に逃がすことを可能とし、カロリーメータの高
速化を実現した。また、自己フィードバック機能によ
り、ノイズが低減され高エネルギー分解能を実現した。
さらに特徴的な点は、TESの材料をすべて金属で構成す
ることができ、熱容量の低減化、電子の拡散時間の短縮
化を可能とした。従来報告されている例では、エネルギ
ー分解能を4.5eVの場合、200〜300μsが報告されてい
る。
【0005】
【発明が解決しようとする課題】TESは超伝導転移端を
利用し、自己フィードバック機能を持たせたカロリーメ
ータであり、半導体を利用したカロリーメータと比較
し、高エネルギー・高速化を実現した。しかし、エネル
ギー分解能を10eV以下に設計した場合、放射線によりTE
Sに発生するパルスの立下り時間を100μs以内にするこ
とは困難であった。理由は次の通りである。
【0006】カロリーメータのエネルギー分解能は、パ
ルスは波高値のばらつきにより決定される。X線により
発生する活性電子がTESを均一に昇温させる前に、活性
電子がTESの外部へと拡散されるため、波高値のばらつ
きが大きくなりエネルギー分解能が劣化する。活性電子
がTES内を均一に昇温させる工程はパルスの立ち上がり
時間に関係し、TES外部へと活性電子が拡散する工程は
立ち下がり時間に関係する。そのためエネルギー分解能
を向上させるためには、パルスの立ち上がり時間に対し
て、活性電子がメンブレンを伝導して逃げる時間(τ0=C
/G)を長くしなくてはならない。ここでCはカロリーメー
タの熱容量、Gはメンブレンの熱コンダクタンスを表
す。たとえば立ち上がり時間を1μsとしたときには、τ
0は1ms以上にしたほうがよい。計数率を向上させるため
に、均一にカロリーメータが昇温された後は、できるだ
け早く活性電子を外部に逃がし、元の定常状態にもどる
必要がある。つまりパルスの立下り時間を短くする必要
がある。計数率とは、パルスの時定数を4倍した逆数で
あり、1秒あたりにパルスをカウントできる数を表す。
エネルギー分解能を向上させたい場合、4倍ではなくさ
らに大きな値を選ぶ場合がある。
【0007】超伝導転移端を用いたカロリーメータは、
従来のカロリーメータに自己フィードバック機能を持た
せることにより、パルスの時定数をτ=τ0/(1+A)と短く
することに成功した。Aはフィードバック定数である。
この方式は、パルスの立ち上がり時間に対してメンブレ
ンを伝わり熱が逃げていく時間は長いが、昇温された後
電子を外部へ逃がす時間は自己フィードバックにより向
上させる点が半導体を用いたカロリーメータと違う大き
な利点である。
【0008】以上のことから、カロリーメータのパルス
時定数を短くするためには、 1) 電子の拡散時間に対してメンブレンを伝わり逃げ
る熱の時間が十分に長いこと、 2) 昇温後できるだけ高速にカロリーメータ内にある
電子を外部へ逃がすこと、が重要である。
【0009】超伝導転移端を用いたカロリーメータの場
合、エネルギー分解能を10eV以下にすると、フィードバ
ック定数Aは10 0以下となってしまう問題があった。そ
のためパルスの時定数を100以下にすることは困難であ
った。
【0010】
【課題を解決するための手段】このような課題を解決す
るために、放射線を吸収し熱を発生させる吸収体が、熱
により抵抗値を変化させる抵抗体の上に形成されてお
り、抵抗体が熱の逃げをコントロールするメンブレン上
に形成されている超伝導転移端を用いたカロリーメータ
において、カロリーメータに発生した活性電子を外部に
逃がすためのデバイスを設けていることを特徴とするカ
ロリーメータとする。
【0011】この結果、エネルギー分解能を向上させる
ために吸収体で発生した熱がフォノンとなってメンブレ
ンを伝わり逃げていく時間(C/G)が長い場合でも、強制
的にTES内部にある活性電子をカロリーメータの外部に
逃がすことができるため、パルスの時定数を短くするこ
とができる。そのためカロリーメータの高速化を実現す
ることができる。また、時定数(C/G)を吸収体で発生し
た活性電子がカロリーメータ内部を拡散する時間より十
分大きく設定できるため、パルスの波高値のばらつきが
抑制でき、高エネルギー分解能を実現することができ
る。
【0012】また、活性電子を外部に逃がすためのデバ
イスとしてデバイスが吸収体の一部と薄い絶縁膜と超伝
導体の3層構造を有するSIN接合素子であることを特徴
とするカロリーメータとする。
【0013】吸収体が常伝導体である場合、吸収体と薄
い絶縁膜と超伝導体の3層構造はSIN(Superconducting-
Insulator-Normal)接合と呼ばれる。この構造を用いる
と電圧を印加したときの応答は1μsにすることがで
き、吸収体で発生した活性電子を吸収体から超伝導体へ
高速に電流を流すことができる。この結果、吸収体と超
伝導体の間に電圧を加えることにより、吸収体から超伝
導体へ流れる電荷量を調整できるデバイスができ、高速
応答可能なカロリーメータを得ることができる。
【0014】また、放射線を吸収し熱を発生させる吸収
体が、熱により抵抗値を変化させる抵抗体の上に形成さ
れており、抵抗体が熱の逃げをコントロールするメンブ
レン上に形成されている超伝導転移端を用いたカロリー
メータにおいて、メンブレンの熱コンダクタンス調整器
を設けているカロリーメータとする。
【0015】カロリーメータの応答速度を向上させるた
めには、応答速度はカロリーメータの熱容量を熱コンダ
クタンスで割った値(C/G)であるため熱コンダクタンス
を大きくした方がよい。しかし、エネルギー分解能を向
上させるためにはカロリーメータの熱化を均一にする必
要があり、熱コンダクタンスを小さくしたほうがよい。
本発明は、放射線吸収によるカロリーメータの熱化の過
程では熱コンダクタンスを小さくし、熱化に伴い発生す
る活性電子を早く外部へ放出する過程では熱コンダクタ
ンスを大きくする熱コンダクタンス調整器を有してい
る。その結果、始め熱コンダクタンスを小さくすること
によりカロリーメータの波高値のばらつきを小さくする
ことができ、カロリーメータの高エネルギー分解能を実
現することができる。また、熱化により発生する電子を
すみやかに外部へ放出することにより、放射線を吸収す
る前の定常状態へ戻すことができ、高速応答・高計数率
を実現することができる。特に熱コンダクタンスを調整
するためには、カロリーメータから外部への熱の流量を
調整する必要がある。熱コンダクタンス調整器として抵
抗を用い、抵抗加熱によりメンブレンの温度を上げると
カロリーメータと外部との温度勾配を小さくすることが
でる。そのためカロリーメータから外部への熱流量が小
さくなる。抵抗加熱を切ると温度勾配は大きくなり、カ
ロリーメータから外部への熱流量が大きくなる。その結
果、熱コンダクタンス調整器として抵抗を用いると、簡
便に熱流量を制御することができ、熱化により発生する
電子をすみやかに外部へ放出することにより、放射線を
吸収する前の定常状態へ戻すことができ、高速応答・高
計数率を実現することができる。
【0016】(実施例1)図1(a)は、放射線を吸収し
熱を発生させる吸収体が、熱により抵抗値を変化させる
抵抗体の上に形成されており、抵抗体が熱の逃げをコン
トロールするメンブレン上に形成されている超伝導転移
端を用いたカロリーメータにおいて、吸収体の一部が抵
抗体と異なる超伝導体と薄い絶縁膜を挟む接合が抵抗体
と並列に配置されているカロリーメータの模式図であ
る。図1(b)は、図1(a)のA−A’線に沿った断面図で
ある。
【0017】本カロリーメータは、メンブレン6上に抵
抗体1と超伝導体5が形成されており、抵抗体1の上に
吸収体2が、超伝導体5の上には絶縁膜A4を挟んで吸
収体2が形成されており、抵抗体1には超伝導配線3が
設けられている。
【0018】抵抗体1は、超伝導体単層または超伝導体
と常伝導体の2層からなるバイレイヤーを用いることが
できる。バイレイヤーを用いた場合、超伝導体と常伝導
体の膜厚比を変化させることにより、任意の超伝導転移
温度を設定することができる。例えば常伝導体として金
を、超伝導体としてチタンを用いることができる。厚み
100nmのチタン薄膜の超伝導転移温度は約0.6Kである
が、金を数十ナノメートル積層することにより超伝導転
移温度を0.4〜0.5Kにすることができる。超伝導配線3と
超伝導体5は、例えばニオブを用いることができる。絶
縁膜A4は、吸収体2から超伝導体5へトンネル電流が流
れる程度に薄くする必要があり、数ナノメートル程度に
したほうがよい。絶縁膜B7は、吸収体2から超伝導体5に
トンネル電流が流れない厚さに設定する。したがって吸
収体2から超伝導体5へ流れるトンネル電流の面積は、絶
縁膜A4の面積となる。絶縁膜A4が、常伝導体である吸
収体2と超伝導体5により挟まれた3層構造は、Superc
onductor-Insulator-Normal(SIN)接合9と呼ばれる。
【0019】放射線を検出するときに抵抗体1は定電圧
状態にあり、抵抗体1で発生するジュール熱とメンブレ
ン6を伝達し外部の熱槽へと逃げる熱との熱バランス状
態に保たれている。抵抗体1の温度は、超伝導転移温度
近傍になるように熱バランスされている。定電圧値を
V0、抵抗体1の抵抗値をR、抵抗体の超伝導転移温度を
Tc、熱槽の温度をTb、メンブレン6の熱コンダクタンス
をGとすると、次の関係式が成り立つ。
【0020】
【数1】
【0021】カロリーメータの駆動方法に関する文献
は、例えばK.D.Irwin, Applied Physics Letters 6
6, 1998(1995)がある。抵抗体1で発熱しているときの
吸収体2の電位をV1としたときに、超伝導体5の電位もV1
となるように外部電源から電圧を供給する。このとき吸
収体2と超伝導体5の電位は等しいため、トンネル電流は
流れない。また、抵抗体1を流れる自由電子のエネルギ
ーはkBTcで与えられる。k Bはボルツマン定数を表す。超
伝導転移温度が0.4Kの場合kBTc=0.035meVとなり、ニオ
ブのエネルギーギャップ:Δ=3meVより十分小さいた
め、熱ゆらぎによる電流もほとんど無視することができ
る。
【0022】放射線が吸収体2に吸収されると活性電子
を発生させる。吸収体2が金属の場合、放射線のエネル
ギーは活性電子のエネルギーに変換される。活性電子は
吸収体2と抵抗体1に拡散し、抵抗体1の温度を上昇させ
る。入射する放射線のエネルギーをEin、フェルミ準位
近傍の状態密度をg(Ef)、カロリーメータの体積をVとす
る。温度Tのとき単位体積の電子数Nは、
【0023】
【数2】
【0024】で与えられる。g(E)は状態密度を、kはボ
ルツマン定数を表す。EFは温度Tのときのフェルミエネ
ルギーを表し、
【0025】
【数3】
【0026】で表される。EF(0)は温度が0Kのフェルミ
エネルギーを表す。温度がTからT+ΔTに変化したとき、
フェルミ準位より低い準位にある電子が活性化され、式
(1)は次のように表される。
【0027】
【数4】
【0028】放射線により活性化された電子の数ΔN
は、ΔTがTに比べ十分小さく、状態密度のエネルギー微
分は温度が上昇してもほとんど変化しない場合、
【0029】
【数5】
【0030】で与えられる。また状態密度のエネルギー
微分は
【0031】
【数6】
【0032】で与えられる。式(4)、(5)からΔN
は、
【0033】
【数7】
【0034】で与えられる。Vは金属の体積である。ま
た、単位体積あたりの電子比熱Ceを式(7)に代入する
と、
【0035】
【数8】
【0036】電子の増加分は式(7)で与えられる。例
えばカロリーメータの動作温度が0.4Kである場合、式
(2)左辺第2項は無視することができ、0Kのフェル
ミ準位と変わらない。金の場合、約5.51eVである。縦50
0μm、横500μm,高さ300nmの金の吸収体に5.9keV入射
エネルギーEinが入射した場合、3.6×1015個の活性電子
が発生する。
【0037】図2に示すX線パルス8は、放射線の吸収
により変化したカロリーメータに流れる電流の変化を表
し、電流の変化は超伝導量子干渉素子:Superconductin
g Quantum Interference Device (SQUID)により検出
される。パルス8の波高値を検出したあとに、超伝導体
5に超伝導体5のエネルギーギャップ程度の電圧を印可
する。吸収体2から超伝導体5へトンネルする電荷量Q
は、次の式で与えられる。
【0038】
【数9】
【0039】RNはSIN接合6が常伝導状態にある抵抗値
を、eは電荷量を表す。印加する電圧を固定した場合、
活性電子(Q=Ne)が吸収体2から超伝導体5へトンネル
する時間Δtは次の式で与えられる。
【0040】
【数10】
【0041】Δtと電圧の関係を図3に示す。例えば、RN
=3Ω・T=0.4 K・Δ=3meV・V=2.5mV・N=3.6×1015個とし
た場合Δt=2.2μsとなる。すなわち電圧V1が印加されて
いる超伝導体5に電圧2.5mVを2.2μs印加することによ
り、活性電子はSIN接合9を介して逃げることができ、
その結果パルスの時定数を短くすることができる。従来
のカロリーメータの場合、活性電子を外部へ逃がすため
に要した時間は100μs以上であった。本発明を用いると
数μs程度に小さくすることができる。また、印加電圧
Vを調整することにより、Δtを増減させることができ、
必要に応じた時定数を得ることができる。この結果、吸
収体と超伝導体の間に電圧を加えることにより、吸収体
から超伝導体へ流れる電荷量を調整できるデバイスがで
き、高速応答可能なカロリーメータを得ることができ
る。 (実施例2)図4は、放射線を吸収し熱を発生させる吸
収体が、熱により抵抗値を変化させる抵抗体の上に形成
されており、抵抗体が熱の逃げをコントロールするメン
ブレン上に形成されている超伝導転移端を用いたカロリ
ーメータにおいて、メンブレンの熱コンダクタンス調整
器を設けているカロリーメータの模式図である。
【0042】本カロリーメータは、メンブレン51上に
抵抗体52と超伝導配線53が形成されており、抵抗体
52の上に吸収体54が設けられている。
【0043】抵抗体52は、超伝導体単層または超伝導
体と常伝導体の2層からなるバイレイヤーを用いること
ができる。バイレイヤーを用いた場合、超伝導体と常伝
導体の膜厚比を変化させることにより、任意の超伝導転
移温度を設定することができる。例えば常伝導体として
金を、超伝導体としてチタンを用いることができる。厚
み100nmのチタン薄膜の超伝導転移温度は約0.6Kである
が、金を数十ナノメートル積層することにより超伝導転
移温度を例えば0.4〜0.5Kにすることができる。超伝導
配線53は、例えばニオブを用いることができる。
【0044】カロリーメータの動作時は、抵抗体52に
流れる電流により発生するジュール熱と、抵抗体52か
らメンブレン51を通して外部へ放出される熱と熱的に
平衡状態を保っている。カロリーメータは冷凍機内で使
用されるため、できるだけ発熱しない設計にしなくては
ならない。抵抗体52で発生するジュール熱を小さくす
るためには、熱コンダクタンスを小さくしなくてはなら
ない。熱コンダクタンスを小さくする手段として、メン
ブレン51の断面積を小さくする、又はメンブレン51
中に抵抗を設けて加熱させ、抵抗体と外部との熱勾配を
調整する方法がある。断面積をカロリーメータの動作中
に任意に変えることはできない。熱勾配を調整する方法
は、抵抗55に発生する温度を変えるだけでよいため、
カロリーメータ動作中にメンブレン51の熱コンダクタ
ンスを変化させる手段として適している。
【0045】カロリーメータの応答速度を向上させるた
めには、応答速度はカロリーメータの熱容量を熱コンダ
クタンスで割った値であるため熱コンダクタンスを大き
くした方がよい。しかし、エネルギー分解能を向上させ
るためにはカロリーメータの熱化を均一にする必要があ
り、熱コンダクタンスを小さくしたほうがよい。熱コン
ダクタンスは式(11)で与えられるように、温度とメ
ンブレン51の形状に依存するパラメータの積で与えら
れる。
【0046】
【数11】
【0047】Gは熱コンダクタンスを、nは抵抗体52中
の活性電子とメンブレン51との熱インピーダンスに依
存するパラメータであり、Kはメンブレン51の形状に
依存するパラメータであり、Tは温度を、φは抵抗体5
2と外部との温度差を表すパラメータである。特に熱コ
ンダクタンスを調整するためには、カロリーメータから
外部への熱の流量を調整する、すなわち抵抗体52と外
部との温度差を調整する必要がある。熱コンダクタンス
調整器として抵抗を用い、抵抗加熱によりメンブレンの
温度を上げるとカロリーメータと外部との温度勾配を小
さくすることがでる。そのためカロリーメータから外部
への熱流量が小さくなる。抵抗加熱を切ると温度勾配は
大きくなり、カロリーメータから外部への熱流量が大き
くなる。熱コンダクタンスは、温度が高くなるにつれ、
大きくなることがわかる。放射線をカロリーメータが吸
収するときは、熱コンダクタンスを小さくしたいため、
メンブレン51中に作製された抵抗55を加熱し、抵抗
体52と外部との温度を小さくすればよい。また、放射
線吸収に伴い発生する信号が得られたあと、熱コンダク
タンスを大きくするために抵抗55の過熱を停止する。
以上により本発明によると、吸収によるカロリーメータ
の熱化の過程では熱コンダクタンスを小さくし、熱化に
伴い発生する活性電子を早く外部へ放出する過程では熱
コンダクタンスを大きくすることが可能である。また、
始め熱コンダクタンスを小さくすることによりカロリー
メータの波高値のばらつきを小さくすることができ、カ
ロリーメータの高エネルギー分解能を実現することがで
きる。また、熱化により発生する電子をすみやかに外部
へ放出することにより、放射線を吸収する前の定常状態
へ戻すことができ、高速応答・高計数率を実現すること
ができる。以上により、熱コンダクタンス調整器として
抵抗を用いると、簡便に熱流量を制御することができ、
熱化により発生する電子をすみやかに外部へ放出するこ
とにより、放射線を吸収する前の定常状態へ戻すことが
でき、高速応答・高計数率を実現することができる。
【0048】
【発明の効果】放射線を吸収し熱を発生させる吸収体
が、熱により抵抗値を変化させる抵抗体の上に形成され
ており、抵抗体が熱の逃げをコントロールするメンブレ
ン上に形成されている超伝導転移端を用いたカロリーメ
ータにおいて、カロリーメータに発生した活性電子を外
部に逃がすためのデバイスを設けていることを特徴とす
るカロリーメータとする。
【0049】この結果、エネルギー分解能を向上させる
ために吸収体で発生した熱がフォノンとなってメンブレ
ンを伝わり逃げていく時間(C/G)が長い場合でも、強制
的にTES内部にある活性電子をカロリーメータの外部に
逃がすことができるため、パルスの時定数を短くするこ
とができる。そのためカロリーメータの高速化を実現す
ることができる。また、時定数(C/G)を吸収体で発生し
た活性電子がカロリーメータ内部を拡散する時間より十
分大きく設定できるため、パルスの波高値のばらつきが
抑制でき、高エネルギー分解能を実現することができ
る。
【0050】また、活性電子を外部に逃がすためのデバ
イスとしてデバイスが吸収体の一部と薄い絶縁膜と超伝
導体の3層構造を有するSIN接合素子であることを特徴
とするカロリーメータとする。
【0051】吸収体が常伝導体である場合、吸収体と薄
い絶縁膜と超伝導体の3層構造はSIN(Superconducting-
Insulator-Normal)接合と呼ばれる。この構造を用いる
と電圧を印加したときの応答は1μsにすることがで
き、吸収体で発生した活性電子を吸収体から超伝導体へ
高速に電流を流すことができる。この結果、吸収体と超
伝導体の間に電圧を加えることにより、吸収体から超伝
導体へ流れる電荷量を調整できるデバイスができ、高速
応答可能なカロリーメータを得ることができる。
【0052】また、放射線を吸収し熱を発生させる吸収
体が、熱により抵抗値を変化させる抵抗体の上に形成さ
れており、抵抗体が熱の逃げをコントロールするメンブ
レン上に形成されている超伝導転移端を用いたカロリー
メータにおいて、メンブレンの熱コンダクタンス調整器
を設けているカロリーメータとする。
【0053】カロリーメータの応答速度を向上させるた
めには、応答速度はカロリーメータの熱容量を熱コンダ
クタンスで割った値であるため熱コンダクタンスを大き
くした方がよい。しかし、エネルギー分解能を向上させ
るためにはカロリーメータの熱化を均一にする必要があ
り、熱コンダクタンスを小さくしたほうがよい。本発明
は、放射線吸収によるカロリーメータの熱化の過程では
熱コンダクタンスを小さくし、熱化に伴い発生する活性
電子を早く外部へ放出する過程では熱コンダクタンスを
大きくする熱コンダクタンス調整器を有している。その
結果、始め熱コンダクタンスを小さくすることによりカ
ロリーメータの波高値のばらつきを小さくすることがで
き、カロリーメータの高エネルギー分解能を実現するこ
とができる。また、熱化により発生する電子をすみやか
に外部へ放出することにより、放射線を吸収する前の定
常状態へ戻すことができ、高速応答・高計数率を実現す
ることができる。特に熱コンダクタンスを調整するため
には、カロリーメータから外部への熱の流量を調整する
必要がある。熱コンダクタンス調整器として抵抗を用
い、抵抗加熱によりメンブレンの温度を上げるとカロリ
ーメータと外部との温度勾配を小さくすることがでる。
そのためカロリーメータから外部への熱流量が小さくな
る。抵抗加熱を切ると温度勾配は大きくなり、カロリー
メータから外部への熱流量が大きくなる。その結果、熱
コンダクタンス調整器として抵抗を用いると、簡便に熱
流量を制御することができ、熱化により発生する電子を
すみやかに外部へ放出することにより、放射線を吸収す
る前の定常状態へ戻すことができ、高速応答・高計数率
を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に関わるカロリーメータ
示す概略図である。
【図2】本発明の実施の形態1に関わるカロリーメータ
の電流-時間特性を示す概略図である。
【図3】本発明の実施の形態1に関わるカロリーメータ
のX線パルスを示す概略図である。
【図4】本発明の実施の形態2に関わるカロリーメータ
示す概略図である。
【図5】超伝導体の抵抗-電圧を示す概略図である。
【符号の説明】
1 抵抗体 2 吸収体 3 超伝導配線 4 絶縁膜A 5 超伝導体 6 メンブレン 7 絶縁膜B 8 X線パルス 51 メンブレン 52 抵抗体 53 超伝導配線 54 吸収体 55 抵抗
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M113 AA08 AA14 AA23 AC24 CA12

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】放射線を吸収し熱を発生させる吸収体が、
    熱により抵抗値を変化させる抵抗体の上に形成されてお
    り、前記抵抗体が熱の逃げをコントロールするメンブレ
    ン上に形成されている超伝導転移端を用いたカロリーメ
    ータにおいて、カロリーメータに発生した活性電子を外
    部に逃がすための熱放出装置を設けていることを特徴と
    するカロリーメータ。
  2. 【請求項2】前記熱放出装置が、前記吸収体の一部と薄
    い絶縁膜と超伝導体の3層構造であることを特徴とする
    請求項1に記載のカロリーメータ。
  3. 【請求項3】放射線を吸収し熱を発生させる吸収体が、
    熱により抵抗値を変化させる抵抗体の上に形成されてお
    り、前記抵抗体が熱の逃げをコントロールするメンブレ
    ン上に形成されている超伝導転移端を用いたカロリーメ
    ータにおいて、メンブレンの熱コンダクタンス調整器を
    設けていることを特徴とするカロリーメータ。
  4. 【請求項4】前記調整器がメンブレン上に形成された抵
    抗であることを特徴とする請求項3に記載のカロリーメ
    ータ。
JP2001165313A 2001-05-31 2001-05-31 カロリーメータ Expired - Fee Related JP4646441B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001165313A JP4646441B2 (ja) 2001-05-31 2001-05-31 カロリーメータ
US10/158,350 US6726356B2 (en) 2001-05-31 2002-05-30 Calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165313A JP4646441B2 (ja) 2001-05-31 2001-05-31 カロリーメータ

Publications (2)

Publication Number Publication Date
JP2002357660A true JP2002357660A (ja) 2002-12-13
JP4646441B2 JP4646441B2 (ja) 2011-03-09

Family

ID=19007999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165313A Expired - Fee Related JP4646441B2 (ja) 2001-05-31 2001-05-31 カロリーメータ

Country Status (2)

Country Link
US (1) US6726356B2 (ja)
JP (1) JP4646441B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095659A1 (ja) * 2005-03-07 2006-09-14 Japan Science And Technology Agency 中性子検出装置及び中性子イメージングセンサ
JP2010249753A (ja) * 2009-04-17 2010-11-04 Japan Atomic Energy Agency 物質中の超ウラン元素の分析方法
US7935913B2 (en) 2003-09-18 2011-05-03 Dainippon Screen Mfg. Co., Ltd. Apparatus and method for thermal processing of substrate
CN113340472A (zh) * 2021-04-19 2021-09-03 国网上海市电力公司 超导电缆中间接头漏热测量及计算方法与装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264441A (ja) * 2000-01-14 2001-09-26 Seiko Instruments Inc カロリーメーターとその製造方法
KR100814414B1 (ko) * 2003-09-01 2008-03-18 학교법인 포항공과대학교 발열량 측정장치 및 방법
US6988826B2 (en) * 2004-05-17 2006-01-24 General Electric Company Nano-calorimeter device and associated methods of fabrication and use
US7220965B1 (en) * 2004-11-19 2007-05-22 Vitali Souchkov Warm AC biasing in TES microcalorimeter readout via transformer
WO2013177677A1 (en) * 2012-05-29 2013-12-05 THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARINING/McGILL UNIVERSITY Method and system for calorimetry probe
US9523777B2 (en) * 2014-04-10 2016-12-20 Uchicago Argonne, Llc Thermal kinetic inductance detector
US10099067B2 (en) 2014-12-19 2018-10-16 Sun Nuclear Corporation Radiation therapy dose calculation
US10617891B2 (en) 2015-04-23 2020-04-14 Sun Nuclear Corporation Radiation detector calibration
GB201513158D0 (en) * 2015-07-27 2015-09-09 Royal Surrey County Hospital The And University Of Surrey And Nat Physical Lab Microdosimeter
WO2018023049A1 (en) 2016-07-28 2018-02-01 Sun Nuclear Corporation Beam angle direction determination
WO2018160763A1 (en) 2017-02-28 2018-09-07 Sun Nuclear Corporation Radiation therapy treatment verification with electronic portal imaging device transit images
US10782421B2 (en) * 2018-03-23 2020-09-22 Government Of The United States Of America, As Represented By The Secretary Of Commerce Photonic calorimeter and process for performing calorimetry
US11278744B2 (en) 2018-09-28 2022-03-22 Sun Nuclear Corporation Systems and methods to account for tilt of a radiation measurement system
US11600004B2 (en) 2019-07-10 2023-03-07 Sun Nuclear Corporation Image-based radiation therapy quality assurance
US12011616B2 (en) 2019-07-10 2024-06-18 Sun Nuclear Corporation Image-based radiation therapy quality assurance
WO2021007459A1 (en) 2019-07-10 2021-01-14 Sun Nuclear Corporation Scintillator-based radiation therapy quality assurance
CN112964396B (zh) * 2021-02-08 2022-08-02 中国科学院力学研究所 一种基于辐射测温的量热计

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415686A (en) * 1987-07-09 1989-01-19 Nippon Steel Corp Radiation detecting element
US5634718A (en) * 1994-07-27 1997-06-03 The United States Of America As Represented By The Secretary Of Commerce Particle calorimeter with normal metal base layer
US5880468A (en) * 1996-08-26 1999-03-09 The United States Of America As Represented By The Secretary Of Commerce Superconducting transition-edge sensor
JP2000284054A (ja) * 1999-03-31 2000-10-13 Seiko Instruments Inc 超伝導放射線検出器とその製造方法とそれを用いた装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641961A (en) * 1995-12-28 1997-06-24 Stanford University Application of electrothermal feedback for high resolution cryogenic particle detection using a transition edge sensor
US5880467A (en) * 1997-03-05 1999-03-09 The United States Of America As Represented By The Secretary Of Commerce Microcalorimeter x-ray detectors with x-ray lens
US6239431B1 (en) * 1998-11-24 2001-05-29 The United States Of America As Represented By The Secretary Of Commerce Superconducting transition-edge sensor with weak links
US6455849B1 (en) * 1999-10-05 2002-09-24 The United States Of America As Represented By The Secretary Of Commerce Normal metal boundary conditions for multi-layer TES detectors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415686A (en) * 1987-07-09 1989-01-19 Nippon Steel Corp Radiation detecting element
US5634718A (en) * 1994-07-27 1997-06-03 The United States Of America As Represented By The Secretary Of Commerce Particle calorimeter with normal metal base layer
US5880468A (en) * 1996-08-26 1999-03-09 The United States Of America As Represented By The Secretary Of Commerce Superconducting transition-edge sensor
JP2000284054A (ja) * 1999-03-31 2000-10-13 Seiko Instruments Inc 超伝導放射線検出器とその製造方法とそれを用いた装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935913B2 (en) 2003-09-18 2011-05-03 Dainippon Screen Mfg. Co., Ltd. Apparatus and method for thermal processing of substrate
WO2006095659A1 (ja) * 2005-03-07 2006-09-14 Japan Science And Technology Agency 中性子検出装置及び中性子イメージングセンサ
JPWO2006095659A1 (ja) * 2005-03-07 2008-08-14 独立行政法人科学技術振興機構 中性子検出装置及び中性子イメージングセンサ
US7767965B2 (en) 2005-03-07 2010-08-03 Japan Science And Technology Agency Neutron detector and neutron imaging sensor
JP4669996B2 (ja) * 2005-03-07 2011-04-13 独立行政法人科学技術振興機構 中性子検出装置及び中性子イメージングセンサ
JP2010249753A (ja) * 2009-04-17 2010-11-04 Japan Atomic Energy Agency 物質中の超ウラン元素の分析方法
CN113340472A (zh) * 2021-04-19 2021-09-03 国网上海市电力公司 超导电缆中间接头漏热测量及计算方法与装置

Also Published As

Publication number Publication date
JP4646441B2 (ja) 2011-03-09
US6726356B2 (en) 2004-04-27
US20030043879A1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
JP2002357660A (ja) カロリーメータ
Irwin et al. X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback
Kadin et al. Nonequilibrium photon‐induced hotspot: A new mechanism for photodetection in ultrathin metallic films
Annunziata et al. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors
US6239431B1 (en) Superconducting transition-edge sensor with weak links
Giazotto et al. Ultrasensitive proximity Josephson sensor with kinetic inductance readout
Miniussi et al. Performance of an X-ray Microcalorimeter with a 240 μm Absorber and a 50 μm TES Bilayer
Zhang et al. Non-Ohmic effects in hopping conduction in doped silicon and germanium between 0.05 and 1 K
US20040030505A1 (en) Calorimeter
Irwin et al. A hot-electron microcalorimeter for X-ray detection using a superconducting transition edge sensor with electrothermal feedback
Hatakeyama et al. Development of hard X-ray and gamma-ray spectrometer using superconducting transition edge sensor
Rajteri et al. TES microcalorimeters for PTOLEMY
JP4314921B2 (ja) 放射線検出器
JP3303786B2 (ja) ボロメータ型赤外線センサ
van den Berg et al. High-resolution hard X-ray and gamma-ray spectrometers based on superconducting absorbers coupled to superconducting transition edge sensors
Spielman et al. Photoconducting x‐ray detectors for Z‐pinch experiments
JP2004226147A (ja) 超伝導放射線検出器
Pressler et al. Intermediate states of superconducting thermometers for x-ray microcalorimeters
JP4667614B2 (ja) カロリメータとその駆動方法
Perinati et al. Experimental evidence of an incomplete thermalization of the energy in an x-ray microcalorimeter with a Ta∕ Au absorber
Miura et al. Development of a Small-Pixel Ir-TES for Optical Applications
RU2749575C1 (ru) Металл-Диэлектрик-Металл-Диэлектрик-Металл фотодетектор
Forster et al. Calorimetric particle detectors with superconducting absorber materials
Ariyoshi et al. Development of dielectric microcalorimeter
Krčmar et al. Irreversible thermodynamics and Shockley recombination velocity: Application to photoabsorption near a surface

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees