JP2002356728A - Copper and copper alloy, and manufacturing method thereof - Google Patents

Copper and copper alloy, and manufacturing method thereof

Info

Publication number
JP2002356728A
JP2002356728A JP2002040670A JP2002040670A JP2002356728A JP 2002356728 A JP2002356728 A JP 2002356728A JP 2002040670 A JP2002040670 A JP 2002040670A JP 2002040670 A JP2002040670 A JP 2002040670A JP 2002356728 A JP2002356728 A JP 2002356728A
Authority
JP
Japan
Prior art keywords
copper
alloy
rolling
cold rolling
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002040670A
Other languages
Japanese (ja)
Other versions
JP4225733B2 (en
Inventor
Yasuo Tomioka
靖夫 富岡
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2002040670A priority Critical patent/JP4225733B2/en
Publication of JP2002356728A publication Critical patent/JP2002356728A/en
Application granted granted Critical
Publication of JP4225733B2 publication Critical patent/JP4225733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide copper or a copper alloy with excellent balance between the strength and the workability. SOLUTION: The copper or the copper alloy has fine grains of the grain size of <=1 μm and shows the elongation of >=2% in the tensile test after the final cold rolling by performing the rolling of η>=3, where η is the rolling degree in the final cold rolling and expressed by η=ln(T0 /T1 ), where T0 is the thickness before rolling and T1 is the thickness after the rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は微細結晶粒をもつ銅およ
び銅合金およびその製造方法に係り、特に、種端子、コ
ネクター、半導体集積回路のリードフレームといった電
子機器用として使われる際に、曲げ加工等の加工に際し
て特性を向上させる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to copper and copper alloys having fine crystal grains and a method for producing the same, and more particularly, to a method of bending when used for electronic devices such as seed terminals, connectors, and lead frames of semiconductor integrated circuits. The present invention relates to a technique for improving characteristics in processing such as processing.

【0002】[0002]

【従来の技術】近年、端子やコネクターといった電子機
器類及びその部品の小型化、薄肉化傾向に伴って、これ
らの材料である銅あるいは銅合金には高い強度を有する
ことが望まれている。端子やコネクター材においては、
電気的接続を保つために接触圧を高める必要があり、こ
のためには材料の強度の高いことが必要である。またリ
ードフレームにおいては、半導体回路の高集積化にとも
なう多ピン化や薄肉化が要望されている。このため、リ
ードフレームの搬送などの取扱い時の変形を防止するた
めに、要求される強度レベルは一層厳しくなってきてい
る。
2. Description of the Related Art In recent years, as electronic devices such as terminals and connectors and their components have been miniaturized and thinned, it has been desired that copper or a copper alloy as these materials have high strength. In the terminal and connector materials,
In order to maintain the electrical connection, it is necessary to increase the contact pressure, which requires a high strength of the material. Further, in a lead frame, there is a demand for increasing the number of pins and reducing the thickness of the semiconductor circuit in accordance with higher integration of the semiconductor circuit. For this reason, in order to prevent deformation during handling such as transport of the lead frame, the required strength level has become more severe.

【0003】また、電子機器類およびその部品の小型化
にともなって、成形性の自由度があることへの要求が高
まっており、コネクター材料などの加工性が一段と重要
視されるようになり、中でも曲げ性のより優れたものが
要求されるようになってきている。また、半導体リード
フレームのアウターリードにおいては、ガルウイング状
の曲げ加工を施される場合にも優れた曲げ性が要求され
る。
Also, with the miniaturization of electronic devices and their components, the demand for flexibility in moldability has been increasing, and workability of connector materials and the like has become more important. Above all, those having better bendability have been required. In addition, the outer leads of the semiconductor lead frame are required to have excellent bendability even when a gull-wing-shaped bending process is performed.

【0004】材料に曲げ変形を与えた際に、曲げ部にク
ラックを生じない良好な曲げ性を得るためには、材料の
延性を高めること、あるいは結晶粒径を小さくすること
が必要である。さらに、電子機器用として用いられる銅
合金にとって、電気信号を伝達すると同時に、通電時に
発生する熱を外部に放出する機能が必要であり、導電性
とともに熱伝導性が高いことが要求される。特に、近年
の電気信号の高周波化に対応するために、導電性向上へ
の要求がますます高まっている。
[0004] In order to obtain good bendability without causing cracks in a bent portion when a material is subjected to bending deformation, it is necessary to increase the ductility of the material or to reduce the crystal grain size. Further, a copper alloy used for electronic devices needs to have a function of transmitting an electric signal and simultaneously releasing heat generated during energization to the outside, and is required to have high thermal conductivity as well as electrical conductivity. In particular, in order to cope with the recent increase in the frequency of electric signals, there is an increasing demand for improved conductivity.

【0005】銅合金の導電性は強度と相反する関係にあ
り、強度を高めるために合金元素を添加すると導電性が
低下するため、用途に応じて強度と導電性、さらに価格
とのバランスの適した合金が用いられている。これま
で、この強度と導電性をバランス良く有する合金の開発
が盛んに行われてきており、一般的にはCu−Ni−S
i合金やCu−Cr−Zr合金といった第2相粒子を含
む析出強化型の銅合金が両者のバランスの優れた高機能
材として用いられるようになってきている。
[0005] The conductivity of a copper alloy is in a relationship opposite to the strength. When an alloy element is added to increase the strength, the conductivity decreases. Therefore, the balance between the strength and the conductivity and the price are suitable for the intended use. Alloys are used. Until now, alloys having this strength and conductivity in a well-balanced manner have been actively developed, and generally, Cu-Ni-S
Precipitation-strengthened copper alloys containing second phase particles, such as i-alloys and Cu-Cr-Zr alloys, have come to be used as high-performance materials with an excellent balance between the two.

【0006】[0006]

【発明が解決しようとする課題】このように、電子機器
用の銅または銅合金の機械特性にとって、高い強度と良
好な加工性を有することが望まれる。ところが、まず強
度と延性は相反する関係にあり、それぞれの合金系にお
いて、加工硬化による強度上昇を得るために圧延加工を
行うと延性が低下するため、圧延のままでは良好な加工
性は得られなかった。一方、結晶粒径を微細化すること
は、ホールペッチ(Hall-Petch)の式で示される強度の
上昇が期待される上に、曲げ性の向上にもつながるため
に、焼鈍再結晶時に結晶粒径が小さくなるようにコント
ロールすることが一般的であった。
As described above, for the mechanical properties of copper or copper alloy for electronic equipment, it is desired to have high strength and good workability. However, first, strength and ductility have a contradictory relationship, and in each alloy system, ductility decreases when rolling is performed to obtain an increase in strength due to work hardening. Did not. On the other hand, reducing the crystal grain size is not only expected to increase the strength represented by the Hall-Petch equation, but also leads to improvement in bendability. Was generally controlled so as to be smaller.

【0007】しかしながら、この方法において結晶粒を
微細化するために焼鈍温度を低くしていくと、部分的に
未再結晶粒が残存するようになるため、実質的には2〜
3μm程度の再結晶粒を得るのが限界であり、さらなる
結晶粒微細化の手法が待たれていた。さらに、再結晶し
たままでは、通常は強度レベルが低く実用には向かない
ため、その後ある程度の圧延加工を加える必要があり、
これにより上記のような延性の低下を招いていた。この
ため、一般的には圧延加工のあとに、延性回復のため歪
取焼鈍のプロセスを行うことを必要としていた。このプ
ロセスのため、圧延加工で得た強度が低下することを余
儀なくされる上、歪取焼鈍後においても十分な延性が得
られず、最近の極端に厳しい曲げ変形要求には対応でき
ない場合もあった。
However, in this method, if the annealing temperature is lowered in order to refine the crystal grains, unrecrystallized grains partially remain, and therefore, substantially, 2 to 2
The limit is to obtain recrystallized grains of about 3 μm, and a technique for further refinement of crystal grains has been awaited. Furthermore, since the strength level is usually unsuitable for practical use when recrystallized, it is necessary to add some rolling afterwards,
As a result, the ductility was reduced as described above. For this reason, it has generally been necessary to perform a strain relief annealing process for recovering ductility after rolling. Due to this process, the strength obtained by the rolling process is inevitably reduced, and sufficient ductility is not obtained even after strain relief annealing. Was.

【0008】ところで、近年、焼鈍プロセスではなく、
強いせん断加工を材料に加えることにより微細結晶粒と
それによる高い延性を得る方法について、伊藤らによる
報告(ARB(Accumulative Roll-Bonding)、日本金属学
会誌、64(2000)、429)や、堀田による報告
(ECAP(Equal-Channel Angular Press)、金属学会セ
ミナーテキスト 結晶粒微細化へのアプローチ、(20
00)、日本金属学会、39)などのように、加工方法
による研究がなされている。しかしながら、これらの加
工方法では、電子機器用の材料として使用できるほどの
量を作ることができないため、工業生産には向かない。
In recent years, instead of the annealing process,
A report by Ito et al. (ARB (Accumulative Roll-Bonding), Journal of the Japan Institute of Metals, 64 (2000), 429), how to obtain fine crystal grains and high ductility by adding strong shearing to the material, and Hotta (ECAP (Equal-Channel Angular Press), Seminar text of the Institute of Metals, Approach to grain refinement, (20
00), The Japan Institute of Metals, 39), etc. However, these processing methods are not suitable for industrial production because they cannot produce an amount that can be used as a material for electronic devices.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記問題
点を解決するために鋭意研究を重ねた結果、焼鈍ではな
く圧延プロセスの条件を制御することにより、これまで
得られなかったレベルの微細な結晶粒を得ることを見い
出した。すなわち、通常の加工度で冷間圧延された材料
の組織では、その後の焼鈍により再結晶が生じると、再
結晶粒界がセルを通過する際に不連続的に転位の消失が
生じ、大きさが不均一で断続的に大きな結晶粒が生成さ
れる。これを静的再結晶と称している。本発明者等の検
討によれば、冷間圧延の加工度を極端に高くすることに
より、通常は高温領域で発現される動的再結晶が冷間圧
延においても発現され、しかも加工中に形成されるサブ
グレインが高角粒界に変わることにより発現される動的
連続再結晶であることが判明している。この機構を利用
することにより丸みを帯びた1μm以下の均一な結晶粒
径が得られる。この方法によると、延性の低下を防ぐた
めに強度を犠牲にすることなく微細結晶粒が得られる
上、最終冷間圧延直後でも2%以上の伸びが得られるこ
とが判明し、冷間圧延のままでも許容できる曲げ性を得
ることができた。また、最終冷間圧延後さらに歪取焼鈍
を加えることにより伸びがさらに向上するため、極端に
厳しい曲げを受ける場合においても対応が可能となっ
た。さらに、このような製造方法によれば、電子機器用
材料として工業的に量産することも可能である。なお、
連続再結晶については後にさらに詳細に説明する。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by controlling the conditions of the rolling process instead of the annealing, the level which has not been attained until now has been obtained. To obtain fine crystal grains. That is, in the structure of a material cold-rolled at a normal working ratio, when recrystallization occurs due to subsequent annealing, dislocation disappears discontinuously when a recrystallized grain boundary passes through a cell, and Are uneven and large crystal grains are generated intermittently. This is called static recrystallization. According to the study of the present inventors, by making the working degree of cold rolling extremely high, dynamic recrystallization usually exhibited in a high temperature region is also exhibited in cold rolling, and moreover, it is formed during working. It has been found that this is a dynamic continuous recrystallization that occurs when the sub-grains are converted to high-angle grain boundaries. By utilizing this mechanism, a rounded uniform crystal grain size of 1 μm or less can be obtained. According to this method, it is found that fine crystal grains can be obtained without sacrificing strength in order to prevent a decrease in ductility, and that elongation of 2% or more can be obtained immediately after final cold rolling. However, acceptable bendability was obtained. In addition, since elongation is further improved by adding strain relief annealing after the final cold rolling, it is possible to cope with extremely severe bending. Furthermore, according to such a manufacturing method, it is possible to mass-produce the material for electronic equipment industrially. In addition,
The continuous recrystallization will be described later in more detail.

【0010】本発明の銅および銅合金は上記知見に基づ
いてなされたもので、最終冷間圧延により動的連続再結
晶を生じさせることにより、最終冷間圧延後に、曲線部
分が主体となる結晶粒界からなる粒径1μm以下の微細
な結晶粒の組織を有し、引張試験により2%以上の伸び
を示すことを特徴としている。
[0010] The copper and copper alloy of the present invention have been made based on the above-mentioned findings, and a dynamic continuous recrystallization is performed by final cold rolling, so that after the final cold rolling, a crystal mainly composed of a curved portion is obtained. It is characterized by having a structure of fine crystal grains having a grain size of 1 μm or less composed of grain boundaries and exhibiting an elongation of 2% or more in a tensile test.

【0011】また、本発明の銅および銅合金の製造方法
は、最終冷間圧延における加工度ηが下記式で表される
場合に、η≧3なる圧延加工を施すことにより、上記最
終冷間圧延後に、粒径1μm以下の微細な結晶粒の組織
を有し、引張試験による2%以上の伸びを示すことを特
徴としている。
Further, in the method for producing copper and copper alloy of the present invention, when the working ratio η in the final cold rolling is represented by the following equation, the rolling process is performed so that η ≧ 3. After rolling, it has a structure of fine crystal grains having a grain size of 1 μm or less, and exhibits an elongation of 2% or more in a tensile test.

【数2】η=ln(T/T) T:圧延前の板厚、T:圧延後の板厚Η = ln (T 0 / T 1 ) T 0 : thickness before rolling, T 1 : thickness after rolling

【0012】次に、上記数値限定の根拠を本発明の作用
とともに説明する。 A.最終冷間圧延加工度、伸び、結晶粒径 最終冷間圧延したままの材料で良好な曲げ性を得るため
には延性が高いことが必要である。曲げ部にクラックを
生じない良好な曲げ性を得るためには、引張試験におけ
る破断伸びは、ゲージ長さが50mmのときで2%以上
が必要である。最終冷間圧延のままで2%以上の破断伸
びを得るためには、最終冷間圧延後の結晶粒径を1μm
以下とする必要がある。結晶粒径をそのように小さくす
ることで冷間圧延のままで伸びが得られるのは、連続再
結晶粒が形成される際に、転位が粒界に堆積することに
より非平衡状態の粒界構造が形成され、これにより粒界
すべりが発現されて延性が向上するからである。
Next, the reason for the above numerical limitation will be described together with the operation of the present invention. A. Final cold-rolling workability, elongation, crystal grain size In order to obtain good bendability with a material as final cold-rolled, high ductility is required. In order to obtain good bendability that does not cause cracks in the bent portion, the elongation at break in a tensile test needs to be 2% or more when the gauge length is 50 mm. In order to obtain a breaking elongation of 2% or more in the final cold rolling, the crystal grain size after the final cold rolling is 1 μm.
It is necessary to: Elongation can be obtained as it is in cold rolling by reducing the crystal grain size in such a way. When continuous recrystallized grains are formed, dislocations are deposited on the grain boundaries, and the grain boundaries in non-equilibrium state This is because a structure is formed, whereby grain boundary sliding is developed and ductility is improved.

【0013】最終冷間圧延後の結晶粒径と伸びは冷間圧
延加工度の影響を受ける。製品板厚に達するまでの最終
冷間圧延加工による加工度ηを下記式で表す。
The grain size and elongation after the final cold rolling are affected by the degree of cold rolling. The working ratio η by final cold rolling until reaching the product sheet thickness is represented by the following equation.

【数3】η=ln(T/T) T:圧延前の板厚、T:圧延後の板厚Η = ln (T 0 / T 1 ) T 0 : thickness before rolling, T 1 : thickness after rolling

【0014】この場合において、ηが小さいと圧延組織
が残存し、鮮明な微細結晶粒が得られないか、得られた
場合においても結晶粒径が大きくなって粒界すべりを起
こせないために良好な延性が得られない。本発明者等の
検討によれば、1μm以下の微細な結晶粒径を得るため
にはηを3以上とすれば良いことが判明している。
In this case, if η is small, the rolled structure remains and clear fine crystal grains are not obtained, or even if obtained, the crystal grain size becomes large and grain boundary sliding does not occur, which is favorable. No good ductility can be obtained. According to studies by the present inventors, it has been found that η should be 3 or more in order to obtain a fine crystal grain size of 1 μm or less.

【0015】これまでの通常の加工度で冷間圧延された
材料の組織は、結晶粒内に導入された転位が互いにもつ
れてセル構造をとることがあったが、この場合にはセル
の方位どうしの傾角が15°以下と低いため、結晶粒界
としての性質はもたなかった。このため、図1に示すよ
うに、冷間圧延後の焼鈍により再結晶が生じると、上述
のように、大きさが不均一で断続的に大きな結晶粒が生
成される静的再結晶が生じる。
In the structure of a material that has been cold-rolled at a normal working ratio, the dislocations introduced into the crystal grains may be entangled with each other to form a cell structure. Since the angle of inclination between them was as low as 15 ° or less, they did not have properties as crystal grain boundaries. For this reason, as shown in FIG. 1, when recrystallization occurs due to annealing after cold rolling, as described above, static recrystallization in which non-uniform and intermittently large crystal grains are generated occurs. .

【0016】これに対し、冷間圧延の加工度を極端に高
くとることで微細な結晶粒が得られるのは、加工度が高
くなるとマトリックス中に局所的にせん断変形を受けた
領域が材料全体にわたって無数に発生し、図1に示すよ
うに、下部組織であるサブグレイン構造が非常に発達
し、マトリックスとの大きな方位差を埋めるために多く
の転位が導入されてそれらが粒界に堆積するからであ
り、この場合には15°以上の大きな傾角をもつ結晶粒
界(高傾角粒界)が生成する。すなわち、元々は結晶粒
の下部組織であるサブグレイン構造がそのまま結晶粒と
して形成され、この場合には結晶粒界は静的再結晶の場
合と大きく異なり、粒界に直線性がなく、曲線部分を主
体とする結晶粒界を形成することが特徴である。この動
的連続再結晶は、冷間圧延時に形成される場合が多いが
意図的に低温焼鈍を行い、通常の回復域に持ち来たすこ
とによりさらに明瞭な高角粒界が発達することも判明し
ている。その場合には後述のように延性がさらに向上す
ることが判明している。
On the other hand, fine grains can be obtained by setting the workability of the cold rolling extremely high because the region which locally undergoes shear deformation in the matrix when the workability is increased becomes the entire material. As shown in FIG. 1, the subgrain structure as a substructure is very developed, and many dislocations are introduced to fill a large misorientation with the matrix, and they are deposited at grain boundaries, as shown in FIG. In this case, a crystal grain boundary having a large inclination angle of 15 ° or more (high inclination angle grain boundary) is generated. In other words, the sub-grain structure, which is the underlying structure of the crystal grains, is originally formed as it is as the crystal grains. In this case, the crystal grain boundaries are significantly different from those in the case of static recrystallization, and the grain boundaries do not have linearity, and the curved portions It is characterized by forming a crystal grain boundary mainly composed of This dynamic continuous recrystallization is often formed at the time of cold rolling, but it has been found that a clearer high-angle grain boundary develops by intentionally performing low-temperature annealing and bringing it to a normal recovery zone. I have. In that case, it has been found that ductility is further improved as described later.

【0017】この機構においては、Cuマトリックス中
に析出物、分散物などの第2相粒子が存在する場合に
は、圧延による塑性歪み導入により導入される転位が第
2相粒子の周囲に転位ループ等を形成するなどして転位
が増殖され、転位密度が大幅に増大する。この状況では
上記サブグレインの粒径の微細化がさらに促進され、さ
らなる高強度化が図られる。なお、この際の最終冷間圧
延では、途中で焼鈍により回復または再結晶を起こさな
い限り、板厚の範囲に応じて圧延機を代えて複数の圧延
機で冷間圧延することや、表面性状を整えるために酸洗
や研磨を行うことは差し支えない。
In this mechanism, when a second phase particle such as a precipitate or a dispersion is present in the Cu matrix, the dislocation introduced by the introduction of plastic strain by rolling causes a dislocation loop around the second phase particle. The dislocations are multiplied by, for example, forming a dislocation, and the dislocation density is greatly increased. In this situation, the sub-grain is further promoted to have a smaller particle size, and the strength is further increased. In this case, in the final cold rolling, as long as recovery or recrystallization does not occur due to annealing in the middle, cold rolling with a plurality of rolling mills instead of rolling mills according to the range of sheet thickness, Pickling or polishing may be carried out in order to adjust the quality.

【0018】B.歪取焼鈍 上記最終冷間圧延材を歪取焼鈍すればさらに延性が向上
するため、さらに良好な曲げ性が得られる。焼鈍条件と
しては、強度が極端に低下して製品価値を失うことのな
い程度の適度の焼鈍条件に設定する必要がある。その焼
鈍条件は合金系により異なるが、80〜500℃の温度
範囲、5〜60分の範囲において適度な焼鈍条件を選択
することで、容易に6%以上の伸びを得ることができ、
厳しい曲げ加工にも対応が可能となる。
B. Strain relief annealing If the final cold-rolled material is strain relief annealed, ductility is further improved, so that better bendability can be obtained. As the annealing conditions, it is necessary to set appropriate annealing conditions such that the strength is not extremely reduced and the product value is not lost. The annealing conditions vary depending on the alloy system, but by selecting appropriate annealing conditions in a temperature range of 80 to 500 ° C and a range of 5 to 60 minutes, elongation of 6% or more can be easily obtained,
It can respond to severe bending.

【0019】本発明に係る銅合金としては、Ni2Si
などのNiとSiとの金属間化合物を有するNi:1.
0〜4.8質量%、Si:0.2〜1.4質量%、C
u:残部のCu−Ni−Si系合金と、Cr粒並びにC
uとZrの金属間化合物を有するCr:0.02〜0.
4質量%、Zr:0.01〜0.25質量%、Cu:残
部のCu−Cr−Zr系合金などが特に好適であるが、
上記銅合金系に副成分として、Sn、Fe、Ti、P、
Mn、Zn、In、MgおよびAgの一種以上を総量で
0.005〜2質量%添加しても良い。さらに、他の種
類の析出物、分散物などの第2相粒子を有する銅合金で
あっても良い。
As the copper alloy according to the present invention, Ni2Si
Having an intermetallic compound of Ni and Si, such as Ni: 1.
0 to 4.8% by mass, Si: 0.2 to 1.4% by mass, C
u: remainder Cu-Ni-Si alloy, Cr grains and C
Cr having an intermetallic compound of u and Zr: 0.02 to Cr.
4% by mass, Zr: 0.01 to 0.25% by mass, Cu: The balance is particularly preferably Cu-Cr-Zr-based alloy.
Sn, Fe, Ti, P,
One or more of Mn, Zn, In, Mg and Ag may be added in a total amount of 0.005 to 2% by mass. Further, a copper alloy having second phase particles such as other types of precipitates and dispersions may be used.

【0020】[0020]

【実施例】次に、本発明の効果を実施例により更に具体
的に説明する。まず、電気銅あるいは無酸素銅を原料と
し、必要により他の添加元素とともに真空溶解炉中に所
定量投入したあと、溶湯温度1250℃で出湯し表1〜
3に示す成分組成のインゴットを得た。なお、表1には
Cu−Ni−Si合金の成分、表2にはCu−Cr−Z
r系合金の成分、表3には他の銅合金の成分を示す。
Next, the effects of the present invention will be described more specifically with reference to examples. First, a predetermined amount was put into a vacuum melting furnace together with other additive elements as necessary, using electrolytic copper or oxygen-free copper as a raw material.
An ingot having the component composition shown in No. 3 was obtained. Table 1 shows the components of the Cu-Ni-Si alloy, and Table 2 shows the components of Cu-Cr-Z.
Table 3 shows the components of the r-based alloy and the components of other copper alloys.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】次に、これらのインゴットを950℃の温
度での熱間圧延を行うことにより厚さ10mmの板にし
た。その後、表層の酸化層を機械研磨により除去し、冷
間圧延により5mmの板とした後、時効析出型銅合金の
場合には溶体化処理を、それ以外の場合には1回目の再
結晶焼鈍を行った。その後さらに冷間圧延を行い中間厚
さ1.1〜3.8mmの板を得た後、この板厚において
時効処理または2回目の再結晶焼鈍を行った。時効処理
を行う場合には、それぞれの合金組成において製品での
強度が最も高くなる様に時効温度条件を調整し、また、
再結晶させる場合には、結晶粒径が5〜15μmとなる
ように温度条件を調整して行った。その後、最終冷間圧
延により厚さ0.15mmの板を作製し、評価実験用サ
ンプルとした。それぞれの最終冷間圧延条件を表1〜表
3に併記した。
Next, these ingots were subjected to hot rolling at a temperature of 950 ° C. to form plates having a thickness of 10 mm. Thereafter, the oxide layer on the surface layer was removed by mechanical polishing, and a 5 mm plate was formed by cold rolling. Then, in the case of an aging-precipitation type copper alloy, a solution treatment was performed. Otherwise, the first recrystallization annealing was performed. Was done. Thereafter, further cold rolling was performed to obtain a sheet having an intermediate thickness of 1.1 to 3.8 mm, and then aging treatment or second recrystallization annealing was performed at this sheet thickness. When performing aging treatment, adjust the aging temperature conditions so that the strength of the product in each alloy composition is the highest, and
In the case of recrystallization, the temperature condition was adjusted so that the crystal grain size was 5 to 15 μm. Thereafter, a plate having a thickness of 0.15 mm was produced by final cold rolling, and used as a sample for evaluation experiment. Tables 1 to 3 show the final cold rolling conditions.

【0025】得られた板材から各種の試験片を採取して
材料試験を行い、「結晶粒径」、「強度」、「伸び」、
「曲げ性」および「導電性」について評価した。「結晶
粒径」については、透過電子顕微鏡により明視野像の観
察を行い、得られた写真上でJIS H 0501の切
断法によって求めた。なお、結晶粒を観察した結果を図
1に示す。「強度」、「伸び」についてはJIS Z
2241に規定された引張試験に従って5号試験片を用
いることにより行い、引張強さ、破断伸びをそれぞれ測
定することにより求めた。「曲げ性」については、W曲
げ試験機によって曲げ加工を施し、その曲げ部を光学顕
微鏡にて50倍の倍率で観察することにより割れの有無
を調査して評価し、割れの発生のない場合を○、割れが
発生した場合を×で表示した。「導電性」は四端子法を
用いて導電率を測定することによって求めた。
Various test pieces were sampled from the obtained plate material and subjected to a material test to determine “crystal grain size”, “strength”, “elongation”,
"Bendability" and "conductivity" were evaluated. The “crystal grain size” was obtained by observing a bright-field image with a transmission electron microscope and obtaining the obtained photograph by a cutting method according to JIS H0501. FIG. 1 shows the result of observing the crystal grains. "Strength" and "elongation" are JIS Z
The test was performed by using a No. 5 test piece in accordance with the tensile test specified in 2241, and the tensile strength and the elongation at break were measured and measured. "Bendability" is evaluated by examining the presence or absence of cracks by performing bending using a W bending tester and observing the bent portion with an optical microscope at a magnification of 50 times. Is indicated by ○, and the case where cracks are generated is indicated by ×. "Conductivity" was determined by measuring conductivity using a four-terminal method.

【0026】以上の評価結果を表1,2,4に示す。本
発明合金は優れた強度、伸び、曲げ性を有していること
がわかる。これに対し、比較例6〜8、14〜16、3
3〜34は最終圧延の加工度が低いために所望の組織が
得られず、延性が低下して良好な曲げ性が得られなかっ
た例である。なお、図2は本発明例No.12の透過電
子顕微鏡写真であり、形成された連続再結晶の平均結晶
粒径は1μm以下であり、その結晶粒界は曲線部分を主
体とする丸みを帯びたものとなっている。なお、比較の
ために、比較例No.6の透過電子顕微鏡写真を図3に
示すが、結晶粒界はほぼ直線状となっている。
The above evaluation results are shown in Tables 1, 2 and 4. It can be seen that the alloy of the present invention has excellent strength, elongation and bendability. On the other hand, Comparative Examples 6 to 8, 14 to 16, 3
Nos. 3 to 34 are examples in which the desired structure was not obtained due to the low workability of the final rolling, and the ductility was lowered and good bendability was not obtained. Note that FIG. 12 is a transmission electron micrograph of Example 12, in which the formed continuous recrystallization has an average crystal grain size of 1 μm or less, and its crystal grain boundary is rounded mainly in a curved portion. For comparison, Comparative Example No. FIG. 3 shows a transmission electron micrograph of Sample No. 6 in which the grain boundaries are almost straight.

【0027】[0027]

【表4】 [Table 4]

【0028】次に、本発明例9、22、26、30およ
び比較例33、34で作製した素材をさらに歪取焼鈍
し、引張試験を行った。その結果を表5に示す。本発明
例の合金では、歪取焼鈍により比較例の合金に比べて伸
びがさらに向上することが判る。これによりさらに過酷
な加工に耐えられることが期待される。
Next, the materials prepared in Examples 9, 22, 26, and 30 of the present invention and Comparative Examples 33 and 34 were further subjected to strain relief annealing and subjected to a tensile test. Table 5 shows the results. It can be seen that the elongation of the alloy of the present invention is further improved by the strain relief annealing as compared with the alloy of the comparative example. This is expected to withstand more severe processing.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
強度、加工性のバランスに優れた銅または銅合金を得る
ことができ、端子、コネクター、リードフレーム、プリ
ント基板といった電子機器用素材の性能を大幅に向上さ
せることができる。
As described above, according to the present invention,
Copper or a copper alloy having an excellent balance between strength and workability can be obtained, and the performance of electronic device materials such as terminals, connectors, lead frames, and printed circuit boards can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 再結晶の過程を説明するための模式図であ
る。
FIG. 1 is a schematic diagram for explaining a recrystallization process.

【図2】 実施例における本発明例の合金の組織を示す
透過電子顕微鏡写真である。
FIG. 2 is a transmission electron micrograph showing the structure of the alloy of the present invention in an example.

【図3】 実施例における本発明例の合金の組織を示す
透過電子顕微鏡写真である。
FIG. 3 is a transmission electron micrograph showing the structure of the alloy of the present invention in an example.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 最終冷間圧延により動的連続再結晶を生
じさせることにより、上記最終冷間圧延後に、曲線部分
が主体となる結晶粒界からなる粒径1μm以下の微細な
結晶粒の組織を有し、引張試験により2%以上の伸びを
示すことを特徴とする銅および銅合金。
1. A structure of fine crystal grains having a grain size of 1 μm or less consisting of a grain boundary mainly composed of a curved portion after the final cold rolling by causing dynamic continuous recrystallization by final cold rolling. And copper and a copper alloy having an elongation of 2% or more in a tensile test.
【請求項2】 最終冷間圧延における加工度ηが下記式
で表される場合に、η≧3なる圧延加工を施すことによ
り、上記最終冷間圧延後に、粒径1μm以下の微細な結
晶粒の組織を有し、引張試験による2%以上の伸びを示
すことを特徴とする銅および銅合金の製造方法。 【数1】η=ln(T/T) T:圧延前の板厚、T:圧延後の板厚
2. When the working degree η in the final cold rolling is represented by the following formula, by performing rolling processing in which η ≧ 3, fine crystal grains having a grain size of 1 μm or less after the final cold rolling are obtained. A method for producing copper and a copper alloy, which has the following structure and exhibits an elongation of 2% or more by a tensile test. Η = ln (T 0 / T 1 ) T 0 : thickness before rolling, T 1 : thickness after rolling
【請求項3】 請求項1または2に記載の銅および銅合
金に対し歪取焼鈍を施すことにより、引張試験による伸
びを6%以上とすることを特徴とする請求項1または2
に記載の銅および銅合金の製造方法。
3. The copper and copper alloy according to claim 1 or 2, which are subjected to strain relief annealing so that elongation in a tensile test is 6% or more.
2. The method for producing copper and copper alloy according to item 1.
【請求項4】 請求項2〜3のいずれかに記載の製造方
法で製造された銅および銅合金。
4. Copper and a copper alloy produced by the production method according to claim 2. Description:
【請求項5】 前記銅合金がCu−Ni−Si系合金ま
たはCu−Cr−Zr系合金であることを特徴とする請
求項1〜4のいずれかに記載の銅および銅合金の製造方
法。
5. The method according to claim 1, wherein the copper alloy is a Cu—Ni—Si alloy or a Cu—Cr—Zr alloy.
【請求項6】 前記銅合金がCu−Ni−Si系合金ま
たはCu−Cr−Zr系合金であることを特徴とする請
求項4に記載の銅および銅合金。
6. The copper and copper alloy according to claim 4, wherein the copper alloy is a Cu—Ni—Si alloy or a Cu—Cr—Zr alloy.
JP2002040670A 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate Expired - Fee Related JP4225733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040670A JP4225733B2 (en) 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001091179 2001-03-27
JP2001-91179 2001-03-27
JP2002040670A JP4225733B2 (en) 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate

Publications (2)

Publication Number Publication Date
JP2002356728A true JP2002356728A (en) 2002-12-13
JP4225733B2 JP4225733B2 (en) 2009-02-18

Family

ID=26612249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040670A Expired - Fee Related JP4225733B2 (en) 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate

Country Status (1)

Country Link
JP (1) JP4225733B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089763A (en) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd Copper alloy and its production method
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006169548A (en) * 2004-12-13 2006-06-29 Dowa Mining Co Ltd Copper alloy material and producing method thereof
JP2007084928A (en) * 2005-08-26 2007-04-05 Hitachi Cable Ltd Backing plate made of copper alloy, and method for producing the copper alloy
US7338631B2 (en) 2004-04-14 2008-03-04 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
JP2008050655A (en) * 2006-08-24 2008-03-06 Hitachi Cable Ltd Backing plate made of copper alloy, and manufacturing method therefor
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
US8876990B2 (en) 2009-08-20 2014-11-04 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338631B2 (en) 2004-04-14 2008-03-04 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
US7485200B2 (en) 2004-04-14 2009-02-03 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
JP2006089763A (en) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd Copper alloy and its production method
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP4584692B2 (en) * 2004-11-30 2010-11-24 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP2006169548A (en) * 2004-12-13 2006-06-29 Dowa Mining Co Ltd Copper alloy material and producing method thereof
JP2007084928A (en) * 2005-08-26 2007-04-05 Hitachi Cable Ltd Backing plate made of copper alloy, and method for producing the copper alloy
JP2008050655A (en) * 2006-08-24 2008-03-06 Hitachi Cable Ltd Backing plate made of copper alloy, and manufacturing method therefor
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
US8876990B2 (en) 2009-08-20 2014-11-04 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
JPWO2013146762A1 (en) * 2012-03-29 2015-12-14 大電株式会社 Microcrystalline metal conductor and method for producing the same

Also Published As

Publication number Publication date
JP4225733B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
US20080277032A1 (en) Copper, copper alloy, and manufacturing method therefor
JP2010126783A (en) Copper alloy sheet or strip for electronic material
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
KR102005332B1 (en) Method for manufacturing Cu-Co-Si-Fe-P alloy having Excellent Bending Formability
JP2006283106A (en) Production method of chromium-containing copper alloy, chromium-containing copper alloy and drawn copper article
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP2012201977A (en) Cu-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4642119B2 (en) Copper alloy and method for producing the same
JP2002356728A (en) Copper and copper alloy, and manufacturing method thereof
JP2005163127A (en) Method of producing copper alloy sheet for high strength electrical/electronic component
KR102421870B1 (en) Cu-Ni-Si-Mn-Sn based Copper alloy material with excellent strength, electrical conductivity and bendability, and method for preparing the same
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JP2022042515A (en) Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
JP4630025B2 (en) Method for producing copper alloy material
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP4679040B2 (en) Copper alloy for electronic materials
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070412

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees