JP2002349575A - Oil impregnated sintered bearing and manufacturing method therefor - Google Patents

Oil impregnated sintered bearing and manufacturing method therefor

Info

Publication number
JP2002349575A
JP2002349575A JP2001160332A JP2001160332A JP2002349575A JP 2002349575 A JP2002349575 A JP 2002349575A JP 2001160332 A JP2001160332 A JP 2001160332A JP 2001160332 A JP2001160332 A JP 2001160332A JP 2002349575 A JP2002349575 A JP 2002349575A
Authority
JP
Japan
Prior art keywords
based metal
copper
powder
iron
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001160332A
Other languages
Japanese (ja)
Inventor
Kenji Nishio
憲二 西尾
Takeshi Tanaka
猛 田中
Teruo Shimizu
輝夫 清水
Kosaku Fujita
耕作 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Mitsubishi Materials Corp
Original Assignee
Asmo Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd, Mitsubishi Materials Corp filed Critical Asmo Co Ltd
Priority to JP2001160332A priority Critical patent/JP2002349575A/en
Publication of JP2002349575A publication Critical patent/JP2002349575A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

PROBLEM TO BE SOLVED: To provide an oil impregnated sintered bearing capable of ensuring a low friction performance at the time of starting and reducing cost. SOLUTION: Raw material particulates obtained by formulating particulates of copper based metal 60, particulates of iron based metal 61 in which a copper component is less and an iron component is more than the copper based metal 60 and a particle diameter is large and tin 62 having a particle diameter being larger than that of the copper based metal 60 and being smaller than that of the iron based metal 61 are compression-molded in a metal mold to a particulate compression molded body and are sintered. A surface of the bearing 15, particularly a skin layer of an inner periphery surface 15a of the bearing contacted with a rotation shaft is formed by the copper based metal 60 and other parts of the bearing 15 are formed by the iron based metal 61.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軸受及びその製造
方法に係り、詳しくは焼結され潤滑油が含浸される、い
わゆる焼結含油軸受及びその製造方法に関するものであ
る。
The present invention relates to a bearing and a method of manufacturing the same, and more particularly to a so-called sintered oil-impregnated bearing which is sintered and impregnated with lubricating oil and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、軸受として、潤滑油の補給回数の
低減などを図るために、潤滑油を多孔質材に含浸させ
て、自己給油作用を有したいわゆる焼結含油軸受が知ら
れている。この軸受は、回転軸を回転支持する軸受孔が
形成され、潤滑油によって回転軸の外周面と軸受孔の内
周面とがスムーズに摺動され、回転軸の発熱などにより
潤滑油が軸受から誘出されることにより自己給油作用が
生じるようになっている。
2. Description of the Related Art Conventionally, a so-called sintered oil-impregnated bearing having a self-lubricating effect by impregnating a porous material with a lubricating oil in order to reduce the number of times of lubricating oil replenishment is known as a bearing. . In this bearing, a bearing hole that supports the rotation shaft is formed, and the outer peripheral surface of the rotation shaft and the inner peripheral surface of the bearing hole are smoothly slid by the lubricating oil. The self-refueling effect is caused by being elicited.

【0003】しかしながら、この焼結含油軸受には、回
転軸の負荷が大きくなると、潤滑油が回転軸に圧せられ
て多孔質の内周面に圧入され、回転軸と内周面との間の
油膜が不足するという問題があった。特に、パワーウィ
ンド用モータの出力軸の軸受として使用し、長期にわた
り出力軸に荷重がかかった状態で静止している場合、回
転軸及び軸受の間の油膜が不十分となって、起動時に異
常摩耗が起きることがあった。そこで、従来は、比較的
低摩擦である銅系の材料のみで構成した軸受や、銅系の
材料に黒鉛や硫化モリブデン(MoS2)などの固体潤
滑材を加えた材料で製造した軸受が用いられていた。
However, in this sintered oil-impregnated bearing, when the load on the rotating shaft increases, the lubricating oil is pressed against the rotating shaft and pressed into the porous inner peripheral surface, and the gap between the rotating shaft and the inner peripheral surface is increased. There is a problem that the oil film is insufficient. In particular, when used as a bearing for the output shaft of a motor for a power window and when the output shaft is stationary with a load applied for a long period of time, the oil film between the rotating shaft and the bearing becomes insufficient, causing abnormalities at startup. Wear sometimes occurred. Conventionally, therefore, a bearing made of only a copper-based material having relatively low friction or a bearing made of a material obtained by adding a solid lubricant such as graphite or molybdenum sulfide (MoS 2 ) to a copper-based material is used. Had been.

【0004】[0004]

【発明が解決しようとする課題】ところが、銅系の材料
及びこれに黒鉛や硫化モリブデンなどを加えた材料は高
価であり、銅系の材料で製造された軸受は高価となって
いた。
However, copper-based materials and materials obtained by adding graphite, molybdenum sulfide, and the like thereto are expensive, and bearings made of copper-based materials are expensive.

【0005】本発明は、上記問題点を解消するためにな
されたものであって、その目的は、起動時の低摩擦性能
を確保でき、コストの低減を図ることができる焼結含油
軸受及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the invention is to provide a sintered oil-impregnated bearing and a sintered oil-impregnated bearing capable of ensuring low friction performance at the time of starting and reducing costs. It is to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1に記載の発明は、銅系金属の粉体と、前
記銅系金属よりも銅成分が少なく鉄成分が多いとともに
粒径が大きい鉄系金属の粉体との調合粉体からなる原材
料粉体を圧縮成形し、焼結してなることを要旨とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the invention according to claim 1 comprises a powder of a copper-based metal and a copper-based metal having a lower copper content and a higher iron content than the copper-based metal. The gist of the present invention is that a raw material powder composed of a powder blended with a powder of an iron-based metal having a large particle size is compression molded and sintered.

【0007】請求項2に記載の発明は、銅系金属の粉体
と、前記銅系金属よりも銅成分が少なく鉄成分が多いと
ともに粒径が大きい鉄系金属の粉体と、前記銅系金属の
粒径より大きい且つ前記鉄系金属の粒径より小さい粒径
を有し、前記銅系金属及び鉄系金属の融点より低い融点
を持つ低溶融温度金属との調合粉体からなる原材料粉体
を圧縮成形し、焼結してなることを要旨とする。
According to a second aspect of the present invention, there is provided a powder of a copper-based metal, a powder of an iron-based metal having a smaller copper content than the copper-based metal, a larger iron content, and a larger particle size; Raw material powder comprising a powder blended with a low melting temperature metal having a particle size larger than the metal particle size and smaller than the particle size of the iron-based metal, and having a melting point lower than the melting points of the copper-based metal and the iron-based metal The gist is that the body is compression molded and sintered.

【0008】請求項3に記載の発明は、銅系金属の粉体
と、前記銅系金属よりも銅成分が少なく鉄成分が多いと
ともに粒径が大きい鉄系金属の粉体との調合粉体からな
る第1の原材料粉体を、回転軸に接触する内周面を含む
一部分に圧縮成形し、鉄系金属の粉体のみからなる第2
の原材料粉体を、その他の部分に圧縮成形し、一体に圧
縮成形された両部分の粉体圧縮成形体を焼結してなるこ
とを要旨とする。
According to a third aspect of the present invention, there is provided a powder mixture of a copper-based metal powder and a powder of an iron-based metal having a smaller copper content and a larger iron content and a larger particle diameter than the copper-based metal. The first raw material powder composed of the following is compression-molded into a part including the inner peripheral surface that comes into contact with the rotating shaft, and the second raw material powder composed of only the iron-based metal powder is formed.
The gist of the present invention is that the raw material powder is compression-molded into other parts, and the powder compression-molded bodies of both parts which are compression-molded integrally are sintered.

【0009】請求項4に記載の発明は、請求項1乃至3
のいずれか1に記載の焼結含油軸受において、前記鉄系
金属の粒径は前記銅系金属の粒径の5倍以上に設定され
ていることを要旨とする。
The invention described in claim 4 is the first to third aspects of the present invention.
In the sintered oil-impregnated bearing according to any one of the above, the gist is that the particle diameter of the iron-based metal is set to be five times or more the particle diameter of the copper-based metal.

【0010】請求項5に記載の発明は、請求項1乃至4
のいずれか1に記載の焼結含油軸受において、前記銅系
金属の粒径は、10〜30μmであることを要旨とす
る。請求項6に記載の発明は、回転軸に接触する内周面
の少なくとも一部を構成する銅系金属の粉体と、その他
の部分を構成し前記銅系金属よりも銅成分が少なく鉄成
分を有する粒径の大きな鉄系金属の粉体とを原材料粉体
に調合する粉体調合工程と、前記原材料粉体を、金型内
に充填し、粉体圧縮成形体に圧縮成形する成形工程と、
前記粉体圧縮成形体を焼結する焼結工程と、焼結した前
記粉体圧縮成形体に潤滑油を含浸させる潤滑油含浸工程
とを備えたことを要旨とする。
[0010] The invention described in claim 5 provides the invention according to claims 1 to 4.
In the sintered oil-impregnated bearing according to any one of the above, the gist is that the particle diameter of the copper-based metal is 10 to 30 μm. The invention according to claim 6 is a powder of a copper-based metal constituting at least a part of an inner peripheral surface that is in contact with a rotating shaft, and an iron component constituting the other part and having a less copper component than the copper-based metal. A powder blending step of blending a powder of an iron-based metal having a large particle size into a raw material powder, and a molding step of filling the raw material powder in a mold and compression molding into a powder compression molded body When,
The gist of the present invention includes a sintering step of sintering the powder compression molded body, and a lubricating oil impregnation step of impregnating the sintered powder compression molded body with lubricating oil.

【0011】(作用)請求項1及び2に記載の発明によ
れば、焼結含油軸受は、銅系金属の粉体と、銅系金属よ
りも銅成分が少なく鉄成分が多いとともに粒径が大きい
鉄系金属の粉体との調合粉体からなる原材料粉体を圧縮
成形し、焼結してなる。従って、原材料粉体を圧縮成形
するとき、粒径の小さい銅系金属粒子が粒径の大きい鉄
系金属間の隙間を通過し粉体圧縮成形体(つまり焼結含
油軸受)の表面(表層)に現れやすくなる。その結果、
焼結含油軸受の表面、特に回転軸と接触する内周面部分
は銅系金属にて形成され、その他の部分は鉄系金属にて
形成される。これにより、回転軸と焼結含油軸受の内周
面部分とは、低摩擦力で接触することができ、起動時の
異常摩擦を抑える。また、焼結含油軸受のその他の部分
は安価な鉄系金属よりなるので、焼結含油軸受を安価に
製造することができる。
According to the first and second aspects of the present invention, the sintered oil-impregnated bearing comprises a copper-based metal powder and a copper-based metal having a smaller amount of a copper component than the copper-based metal and a large particle size of an iron component. A raw material powder composed of a powder blended with a large iron-based metal powder is compression-molded and sintered. Therefore, when the raw material powder is compression-molded, the copper-based metal particles having a small particle diameter pass through the gap between the iron-based metals having a large particle diameter, and the surface (surface layer) of the powder compression-molded body (that is, the sintered oil-impregnated bearing). More likely to appear. as a result,
The surface of the sintered oil-impregnated bearing, in particular, the inner peripheral surface portion in contact with the rotating shaft is formed of a copper-based metal, and the other portions are formed of an iron-based metal. Thereby, the rotating shaft and the inner peripheral surface portion of the sintered oil-impregnated bearing can be brought into contact with a low frictional force, thereby suppressing abnormal friction during startup. Further, since the other parts of the sintered oil-impregnated bearing are made of inexpensive iron-based metal, the sintered oil-impregnated bearing can be manufactured at low cost.

【0012】さらに、請求項2に記載の発明によれば、
圧縮成形により銅系金属の粒径より大きい且つ鉄系金属
の粒径より小さい粒径を有する低溶融温度金属が銅系金
属層と鉄系金属層との間に位置し、焼結によりその低溶
融温度金属が先に溶解し、銅系金属と鉄系金属を結合さ
せるとともに、焼結含油軸受内部を多孔質にすることが
できる。
Further, according to the second aspect of the present invention,
The low melting temperature metal having a particle size larger than the particle size of the copper-based metal and smaller than the particle size of the iron-based metal is located between the copper-based metal layer and the iron-based metal layer by the compression molding, and the low melting temperature metal is sintered. The melting temperature metal is melted first, and the copper-based metal and the iron-based metal can be combined, and the inside of the sintered oil-impregnated bearing can be made porous.

【0013】請求項3に記載の発明によれば、回転軸に
接触する内周面が銅系金属から構成するよう該内周面を
含む焼結含油軸受の一部分は、銅系金属の粉体と、銅系
金属よりも銅成分が少なく鉄成分が多いとともに粒径が
大きい鉄系金属の粉体との調合粉体からなる第1の原材
料粉体にて圧縮成形する。その他の部分は、鉄系金属の
粉体のみからなる第2の原材料粉体にて圧縮成形する。
回転軸と接触しない焼結含油軸受のその他の部分を安価
な鉄系金属にて成形することによって焼結含油軸受の製
造コストを低減できる。
According to the third aspect of the present invention, a part of the sintered oil-impregnated bearing including the inner peripheral surface so that the inner peripheral surface in contact with the rotating shaft is made of copper-based metal is made of powder of copper-based metal. Then, compression molding is performed using a first raw material powder composed of a powder mixture of an iron-based metal powder having a smaller copper content than the copper-based metal, a larger iron content, and a larger particle size. The other portions are compression-molded with the second raw material powder consisting of only iron-based metal powder.
The other parts of the sintered oil-impregnated bearing that are not in contact with the rotating shaft are formed of inexpensive iron-based metal, so that the manufacturing cost of the sintered oil-impregnated bearing can be reduced.

【0014】請求項4に記載の発明によれば、請求項1
〜3に記載の発明の作用に加えて、原材料粉体を圧縮成
形するとき、銅系金属粒子は、鉄系金属間の隙間を容易
に通過し、粉体圧縮成形体(つまり焼結含油軸受)の表
面(表層)に現れやすくなる。
According to the invention described in claim 4, according to claim 1 of the present invention,
In addition to the effects of the inventions described in (1) to (3), when the raw material powder is compression-molded, the copper-based metal particles easily pass through the gaps between the iron-based metals, and the powder compression-molded body (that is, the sintered oil-impregnated bearing) ) On the surface (surface layer).

【0015】請求項5に記載の発明によれば、請求項1
〜4に記載の発明の作用に加えて、銅系金属の粒径が1
0μm以下となるときの銅系金属粉体が舞いやすくなる
ことを防止でき、銅系金属の粒径が30μm以上となる
ときの銅系金属粒子間の摩擦力が大きくなることを防止
できる。その結果、製造時における銅系金属の取扱性を
向上できる。
According to the invention described in claim 5, according to claim 1,
In addition to the effects of the inventions described in the above-mentioned items 4, the particle diameter of the copper-based metal is 1
When the particle diameter of the copper-based metal becomes 0 μm or less, it is possible to prevent the copper-based metal powder from flying easily, and when the particle diameter of the copper-based metal becomes 30 μm or more, it is possible to prevent the frictional force between the copper-based metal particles from increasing. As a result, handleability of the copper-based metal during manufacturing can be improved.

【0016】請求項6に記載の発明によれば、回転軸と
接触する焼結含油軸受の内周面を銅系金属にて成形して
からその他の部分を鉄系金属にて成形する従来の製造方
法に比べ、製造工数を低減できることから、焼結含油軸
受の製造コストの低減を図ることができる。
According to the sixth aspect of the present invention, there is provided a conventional oil-impregnated bearing in which the inner peripheral surface of the sintered oil-impregnated bearing which is in contact with the rotating shaft is formed of a copper-based metal and then the other portions are formed of an iron-based metal. Since the number of manufacturing steps can be reduced as compared with the manufacturing method, the manufacturing cost of the sintered oil-impregnated bearing can be reduced.

【0017】[0017]

【発明の実施の形態】(第1の実施形態)以下、本発明
を具体化した焼結含油軸受の第1の実施形態を、自動車
のパワーウィンドの減速機付き小型モータに適用した場
合について、図1〜図8に従って説明する。図1は、本
発明の焼結含油軸受を用いた減速機付き小型モータの断
面図である。図2は、本実施形態の焼結含油軸受の断面
図である。図3は、同じく焼結含油軸受の平面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) Hereinafter, a first embodiment of a sintered oil-impregnated bearing embodying the present invention will be described with respect to a case where the first embodiment is applied to a small motor with a reduction gear of a power window of an automobile. This will be described with reference to FIGS. FIG. 1 is a sectional view of a small motor with a reduction gear using the sintered oil-impregnated bearing of the present invention. FIG. 2 is a sectional view of the sintered oil-impregnated bearing of the present embodiment. FIG. 3 is a plan view of the sintered oil-impregnated bearing.

【0018】図1に示すように、減速機付き小型モータ
11のハウジング12には、モータ13が一体的に取り
付けられている。このモータ13の金属製の回転軸14
は、焼結含油軸受(以下、単に軸受という)15により
回転可能に軸支されている。前記軸受15は、前記ハウ
ジング12に設けられた取付孔16に回動不能に嵌挿さ
れている。前記回転軸14の先端にはウォーム17が連
結され、該ウォーム17はハウジング12に対して回転
可能に支持されるウォームホイール18に噛合してい
る。従って、モータ13が回転すると、ウォームホイー
ル18がモータ13よりも低い回転速度で回転する。
As shown in FIG. 1, a motor 13 is integrally mounted on a housing 12 of a small motor 11 with a speed reducer. The metal rotating shaft 14 of the motor 13
Is rotatably supported by a sintered oil-impregnated bearing (hereinafter simply referred to as a bearing) 15. The bearing 15 is non-rotatably fitted into a mounting hole 16 provided in the housing 12. A worm 17 is connected to the tip of the rotating shaft 14, and the worm 17 meshes with a worm wheel 18 rotatably supported by the housing 12. Therefore, when the motor 13 rotates, the worm wheel 18 rotates at a lower rotation speed than the motor 13.

【0019】図2及び図3に示すように、前記軸受15
は、円筒状に形成され、前記回転軸14が貫挿するため
の内孔(内周面)15aと、前記ハウジング12の取付
孔16に嵌挿するための外周面15bと、切り欠き15
cを設けた一端面(図2での上端面)15dと、他端面
(図2での下端面)15eを備えている。前記上下端面
15d,15eにおける前記内孔15aの両開口端に
は、それぞれテーパ部15f,15gが設けられてい
る。
As shown in FIG. 2 and FIG.
Is formed in a cylindrical shape, and has an inner hole (inner peripheral surface) 15a through which the rotary shaft 14 passes, an outer peripheral surface 15b into which the mounting hole 16 of the housing 12 is inserted, and a notch 15
c is provided with one end face (upper end face in FIG. 2) 15d and the other end face (lower end face in FIG. 2) 15e. Tapered portions 15f, 15g are provided at both open ends of the inner hole 15a in the upper and lower end surfaces 15d, 15e, respectively.

【0020】図4は、焼結含油軸受の内部組織を示す要
部断面説明図である。前記軸受15は、銅系金属60、
鉄系金属61及び低溶融温度金属としての錫62の調合
粉体を圧縮成形・焼結させて形成されている。前記内外
周面15a,15b、上下端面15d,15e(図4に
おいて他端面15eのみ図示する)及びテーパ部15
f,15g(図4においてテーパ部15gのみ図示す
る)を形成する軸受15の表層は、銅系金属60により
構成されている。また、その他の部分としての前記表層
以外の軸受15の内部は、鉄系金属61及び錫62によ
り構成されている。
FIG. 4 is an explanatory sectional view of a main part showing an internal structure of the sintered oil-impregnated bearing. The bearing 15 includes a copper-based metal 60,
It is formed by compression molding and sintering a powder mixture of an iron-based metal 61 and tin 62 as a low melting temperature metal. The inner and outer peripheral surfaces 15a and 15b, upper and lower end surfaces 15d and 15e (only the other end surface 15e is shown in FIG. 4), and a tapered portion 15
The surface layer of the bearing 15 forming f, 15g (only the tapered portion 15g is shown in FIG. 4) is made of a copper-based metal 60. Further, the inside of the bearing 15 other than the surface layer as other portions is made of an iron-based metal 61 and tin 62.

【0021】なお、前記鉄系金属61は、前記銅系金属
60より銅成分が少なく鉄成分が多く含むものが用いら
れている。前記銅系金属60粒子の直径(以下、銅系金
属60の粒径という)は、10〜30μmに設定し、前
記鉄系金属61粒子の直径(以下、鉄系金属61の粒径
という)は、前記銅系金属60の粒径の5倍以上に設定
している。また、前記錫62粒子の直径(以下、錫62
の粒径という)は、前記銅系金属60の粒径より大きく
前記鉄系金属61の粒径より小さく設定している。
The iron-based metal 61 has a lower copper content and a higher iron content than the copper-based metal 60. The diameter of the copper-based metal 60 particles (hereinafter, referred to as the particle size of the copper-based metal 60) is set to 10 to 30 μm, and the diameter of the iron-based metal 61 particles (hereinafter, referred to as the particle size of the iron-based metal 61) is The grain size of the copper-based metal 60 is set to 5 times or more. The diameter of the tin 62 particles (hereinafter referred to as tin 62
Is larger than the particle size of the copper-based metal 60 and smaller than the particle size of the iron-based metal 61.

【0022】以下、本実施形態の軸受15の製造方法に
ついて図面に従って説明する。図5は、軸受15の製造
方法を説明する流れ図である。図6は、軸受15の成形
工程を説明する断面図である。
Hereinafter, a method for manufacturing the bearing 15 of the present embodiment will be described with reference to the drawings. FIG. 5 is a flowchart illustrating a method for manufacturing the bearing 15. FIG. 6 is a cross-sectional view illustrating a step of forming the bearing 15.

【0023】図5に示すように、まず、粉体調合工程S
11においては、銅系金属60、鉄系金属61及び錫6
2の粉体を調合して原材料粉体Fを準備する。次に、成
形工程S12においては、前記粉体調合工程S11で準
備された原材料粉体Fを、図6(a)に示すように、金
型20内に充填させ、図6(b)に示すように、粉体圧
縮成形体30に圧縮成形させる。詳述すると、前記金型
20は、円筒形状のダイ21と、該ダイ21の貫通孔2
1aを嵌挿する下パンチ22と、上パンチ23を備えて
いる。前記ダイ21の貫通孔21aの軸線方向の長さは
軸受15の軸線方向の長さより長くなっている。前記貫
通孔21aは、その内径が前記軸受15の外径と同じく
なるよう設けられている。
As shown in FIG. 5, first, a powder preparation step S
11, the copper-based metal 60, the iron-based metal 61 and the tin 6
The raw material powder F is prepared by mixing the powders of No. 2 and No. 2. Next, in the molding step S12, the raw material powder F prepared in the powder mixing step S11 is filled in a mold 20 as shown in FIG. 6A, and is shown in FIG. 6B. Thus, the powder compression molded body 30 is compression molded. More specifically, the mold 20 includes a cylindrical die 21 and a through hole 2 of the die 21.
1a is provided with a lower punch 22 for inserting the same, and an upper punch 23. The axial length of the through hole 21 a of the die 21 is longer than the axial length of the bearing 15. The through hole 21 a is provided so that the inner diameter thereof is the same as the outer diameter of the bearing 15.

【0024】前記下パンチ22は、前記貫通孔21aの
内径と同じ直径を有する大径部22aと、前記軸受15
の内径(内孔15aの直径)と同じ直径を有し前記大径
部22aの一端に延設される小径部22b、及び前記大
径部22aと小径部22bの間にテーパ状に形成される
段差部22cから構成されている。その段差部22c
は、そのテーパ角度が前記軸受15のテーパ部15gの
テーパ角度と同じなるよう形成されている。
The lower punch 22 includes a large-diameter portion 22a having the same diameter as the inner diameter of the through hole 21a,
A small diameter portion 22b having the same diameter as the inner diameter (diameter of the inner hole 15a) and extending at one end of the large diameter portion 22a, and a tapered shape between the large diameter portion 22a and the small diameter portion 22b. It is composed of a step 22c. The step 22c
Are formed so that the taper angle thereof is the same as the taper angle of the tapered portion 15g of the bearing 15.

【0025】前記上パンチ23は、中央に下パンチ嵌挿
孔23aを設け、円筒形状に形成されている。前記下パ
ンチ嵌挿孔23aの直径が前記小径部22bの外径(つ
まり内孔15aの内径)と同じに設定され、前記上パン
チ23の筒部外径が前記貫通孔21aの内径(つまり軸
受15の外径)と同じに設定されている。また、前記上
パンチ23の円筒部一端には、テーパ凸部23bが設け
られ、該テーパ凸部23bの所定位置には突起23cが
形成されている。前記テーパ凸部23bは、そのテーパ
角度が前記軸受15のテーパ部15fのテーパ角度と同
じなるよう形成され、前記突起23cは、前記軸受15
の切り欠き15cに対応した寸法にて形成されている。
The upper punch 23 has a lower punch insertion hole 23a at the center and is formed in a cylindrical shape. The diameter of the lower punch insertion hole 23a is set to be the same as the outer diameter of the small diameter portion 22b (that is, the inner diameter of the inner hole 15a), and the outer diameter of the cylindrical portion of the upper punch 23 is the inner diameter of the through hole 21a (that is, the bearing). 15 outer diameter). A tapered projection 23b is provided at one end of the cylindrical portion of the upper punch 23, and a projection 23c is formed at a predetermined position of the tapered projection 23b. The tapered projection 23b is formed such that the taper angle is the same as the taper angle of the tapered portion 15f of the bearing 15, and the projection 23c is
Is formed in a size corresponding to the notch 15c.

【0026】そして、図6(a)に示すように、前記下
パンチ22の小径部22bが前記ダイ21の貫通孔21
aを貫挿し、前記大径部22aが前記貫通孔21aに少
しだけ嵌挿することによって形成された空間Kに、先に
調合した原材料粉体Fを所定量にて充填させる。その
後、図6(b)に示すように、前記上パンチ23を、そ
の下パンチ嵌挿孔23aに前記小径部22bが貫挿し、
その外周が前記貫通孔21aに挿入しながら前記原材料
粉体Fを押圧させる。これにより、前記軸受15と同じ
形状及び寸法を有する粉体圧縮成形体30が圧縮成形さ
れる。前記軸受15のテーパ部15fは、前記テーパ凸
部23bの押圧によって成形され、前記テーパ部15g
は、前記段差部22cの押圧によって成形される。ま
た、前記軸受15の切り欠き15cは、前記突起23c
の押圧によって成形される。金型20内から前記粉体圧
縮成形体30を取り出し、成形工程は終了する。
As shown in FIG. 6A, the small diameter portion 22b of the lower punch 22 is
a, and the space K formed by slightly inserting the large diameter portion 22a into the through hole 21a is filled with the previously prepared raw material powder F in a predetermined amount. Thereafter, as shown in FIG. 6B, the upper punch 23 is inserted into the lower punch fitting hole 23a by the small diameter portion 22b.
The outer periphery presses the raw material powder F while being inserted into the through hole 21a. Thus, the powder compression molded body 30 having the same shape and dimensions as the bearing 15 is compression molded. The tapered portion 15f of the bearing 15 is formed by pressing the tapered convex portion 23b, and the tapered portion 15g is formed.
Is formed by pressing the step 22c. The notch 15c of the bearing 15 is provided with the protrusion 23c.
Is formed by pressing. The powder compression molded body 30 is taken out from the mold 20, and the molding step is completed.

【0027】次に、焼結工程S13においては、前記粉
体圧縮成形体30を、公知の方法により焼結させる。こ
のとき、低溶融温度金属の錫62の粒子が銅系金属60
の粒子及び鉄系金属61の粒子よりも先に溶解し、銅系
金属60と鉄系金属61を結合させるとともに、粉体圧
縮成形体30(つまり軸受15)内部は多孔質となる。
Next, in a sintering step S13, the powder compact 30 is sintered by a known method. At this time, tin particles of the low melting temperature metal tin 62
And the particles of the iron-based metal 61 are melted before the copper-based metal 60 and the iron-based metal 61 are bonded, and the inside of the powder compression molded body 30 (that is, the bearing 15) becomes porous.

【0028】その後、コイニング工程S14おいては、
前工程で焼結された粉体圧縮成形体30を公知の方法で
コイニングさせる。そして、最後に、潤滑油含浸工程S
15においては、多孔質となった前記粉体圧縮成形体3
0を公知の方法で潤滑油に含浸させることによって、軸
受15が製造される。
Thereafter, in the coining step S14,
The powder compression molded body 30 sintered in the previous step is coined by a known method. And finally, the lubricating oil impregnation step S
15, the porous powder compact 3
The bearing 15 is manufactured by impregnating the lubricating oil with O in a known manner.

【0029】そして、上記の製造方法にて製造される軸
受15は、その内外周面15a,15b、上下端面15
d,15e及びテーパ部15f,15gでの表層が銅系
金属60により構成され、その表層以外のその他の部分
は、鉄系金属61及び錫62により構成される。以下
に、前記軸受15の表層とその他の部分にそれぞれ異な
る構成物質が生成するメカニズムを説明する。
The bearing 15 manufactured by the above manufacturing method has inner and outer peripheral surfaces 15a and 15b, upper and lower end surfaces 15a and 15b.
The surface layers at d and 15e and the tapered portions 15f and 15g are made of a copper-based metal 60, and the other portions other than the surface layers are made of an iron-based metal 61 and tin 62. Hereinafter, the mechanism by which different constituent materials are formed on the surface layer and other portions of the bearing 15 will be described.

【0030】本実施形態では、前記鉄系金属61の粒径
は前記銅系金属60の粒径の5倍以上に設定され、前記
錫62の粒径は前記銅系金属60の粒径より大きく前記
鉄系金属61の粒径より小さく設定されている。そのた
め、上記圧縮成形工程においてこれら金属の調合粉体
(つまり原材料粉体F)が圧縮される際、粒径の最も小
さな銅系金属60は粉体圧縮成形体30の表面(表層)
に現れ、粒径の最も小さな鉄系金属61は粉体圧縮成形
体30の内部に入り込むようになる。前記銅系金属60
の粒径より大きく前記鉄系金属61の粒径より小さくな
る前記錫62は、粉体圧縮成形体30内において前記銅
系金属60層と前記鉄系金属61層との間に位置するよ
うになる。また、前記銅系金属60の粒径は前記鉄系金
属61の粒径より遥かに小さくなっているため、前記銅
系金属60粒子は、圧縮成形時の押圧力を受けて前記鉄
系金属61粒子間の隙間を通過し粉体圧縮成形体30
(つまり軸受15)の表面(表層)に現れやすくなる。
次に、前記鉄系金属61の粒径を前記銅系金属60の粒
径の5倍以上に設定した理由について図7及び図8に従
って説明する。
In the present embodiment, the particle size of the iron-based metal 61 is set to be at least five times the particle size of the copper-based metal 60, and the particle size of the tin 62 is larger than the particle size of the copper-based metal 60. The diameter is set smaller than the particle diameter of the iron-based metal 61. Therefore, when the compounded powder of these metals (that is, the raw material powder F) is compressed in the compression molding step, the copper-based metal 60 having the smallest particle size becomes the surface (surface layer) of the powder compression molded body 30.
And the iron-based metal 61 having the smallest particle diameter enters the inside of the powder compression molded body 30. The copper-based metal 60
The tin 62, which is larger than the particle size of the iron-based metal 61 and smaller than the particle size of the iron-based metal 61, is positioned between the copper-based metal 60 layer and the iron-based metal 61 layer in the powder compact 30. Become. Further, since the particle diameter of the copper-based metal 60 is much smaller than the particle diameter of the iron-based metal 61, the copper-based metal 60 particles receive the pressing force at the time of compression molding and receive the iron-based metal 61. The powder compression molded body 30 passing through the gap between the particles
(That is, the surface of the bearing 15).
Next, the reason why the particle size of the iron-based metal 61 is set to be five times or more the particle size of the copper-based metal 60 will be described with reference to FIGS.

【0031】図7は、互いに接触する3つの鉄系金属6
1粒子間の隙間を通過できる銅系金属60粒子の相対粒
径を計算するための説明図である。図8は、互いに接触
する4つの鉄系金属61粒子間の隙間を通過できる銅系
金属60粒子の相対粒径を計算するための説明図であ
る。図7に示すように、鉄系金属61粒子の半径をRと
し、銅系金属60粒子の半径をr1とした場合、三角形
の関数関係により、cosα=R/(R+r1)とな
る。前記角度αは30°であるため、√3(R+r1)
=2Rとなり、解くと、R=6.4r1となる。つま
り、この場合、鉄系金属61粒子の半径R(又は鉄系金
属61の粒径)が銅系金属60粒子の半径r1(又は銅
系金属60の粒径)の6.4倍以上であれば、銅系金属
60粒子は互いに接触する3つの鉄系金属61粒子間の
隙間を通過できるようになる。
FIG. 7 shows three ferrous metals 6 in contact with each other.
It is explanatory drawing for calculating the relative particle diameter of the copper-type metal 60 particle | grains which can pass through the clearance gap between 1 particles. FIG. 8 is an explanatory diagram for calculating the relative particle size of the copper-based metal 60 particles that can pass through the gap between the four iron-based metal 61 particles that are in contact with each other. As shown in FIG. 7, when the radius of the iron-based metal 61 particles is R and the radius of the copper-based metal 60 particles is r1, cosα = R / (R + r1) due to a triangular functional relationship. Since the angle α is 30 °, √3 (R + r1)
= 2R, and when solved, R = 6.4r1. That is, in this case, the radius R of the iron-based metal 61 particles (or the particle diameter of the iron-based metal 61) is 6.4 times or more the radius r1 of the copper-based metal 60 particles (or the particle diameter of the copper-based metal 60). For example, the copper-based metal 60 particles can pass through the gap between the three iron-based metal 61 particles that are in contact with each other.

【0032】また、図8に示すように、鉄系金属61粒
子の半径をRとし、銅系金属60粒子の半径をr2と
し、銅系金属60粒子中心から隣接する両鉄系金属61
粒子中心の連結線までの距離をh2とした場合、各粒子
中心を連結してなる三角形の関数関係により、cosβ
=R/(R+r2)となる。前記角度βは45°である
ため、R√2=R+r2となり、解くと、R=2.4r
2となる。つまり、この場合、鉄系金属61粒子の半径
R(又は鉄系金属61の粒径)が銅系金属60粒子の半
径r2(又は銅系金属60の粒径)の2.4倍以上であ
れば、銅系金属60粒子は互いに接触する4つの鉄系金
属61粒子間の隙間を通過できるようになる。
As shown in FIG. 8, the radius of the iron-based metal 61 particles is R, the radius of the copper-based metal 60 particles is r2, and the ferrous metal 61 adjacent to the center of the copper-based metal 60 particles is r2.
Assuming that the distance between the particle center and the connection line is h2, cos β
= R / (R + r2). Since the angle β is 45 °, R√2 = R + r2, and when solved, R = 2.4r
It becomes 2. That is, in this case, the radius R of the iron-based metal 61 particles (or the particle size of the iron-based metal 61) is 2.4 times or more the radius r2 of the copper-based metal 60 particles (or the particle size of the copper-based metal 60). For example, the copper-based metal 60 particles can pass through the gap between the four iron-based metal 61 particles that are in contact with each other.

【0033】そして、上記2つの場合における鉄系金属
61間の粒子空間を合わせて考える場合、銅系金属60
粒子の平均半径をrとすれば、R=r(6.4+2.
4)/2=4.4rとなる。それを鉄系金属61粒子間
の隙間が大きくなる方つまり銅系金属60粒子が鉄系金
属61粒子間の隙間を通過しやすい方へ整数化すると、
R=5rとなる。つまり、鉄系金属61粒子の半径R
(又は鉄系金属61の粒径)が銅系金属60粒子の半径
r(又は銅系金属60の粒径)の5倍以上であれば、銅
系金属60粒子は鉄系金属61粒子間の隙間を通過しや
すくなる。
When considering the particle space between the iron-based metals 61 in the above two cases together, the copper-based metal 60
Assuming that the average radius of the particles is r, R = r (6.4 + 2.
4) /2=4.4r. When this is converted to an integer in which the gap between the iron-based metal 61 particles becomes larger, that is, the copper-based metal 60 particle easily passes through the gap between the iron-based metal 61 particles,
R = 5r. That is, the radius R of the iron-based metal 61 particles
If (or the particle diameter of the iron-based metal 61) is at least 5 times the radius r (or the particle diameter of the copper-based metal 60) of the copper-based metal 60 particles, the copper-based metal 60 particles will It becomes easier to pass through the gap.

【0034】そして、本実施形態の軸受15及びその製
造方法によれば、以下のような効果を得ることができ
る。 (1)本実施形態では、軸受15の表面、特にモータ1
3の回転軸14と接触する軸受15の内周面15a表層
は銅系金属60にて形成され、軸受15のその他の部分
は鉄系金属61にて形成されている。そのため、回転軸
14と軸受15の内周部とは、低摩擦力で接触すること
ができ、起動時の異常摩擦を抑えるとともに、その他の
部分は安価な鉄系金属61よりなるので、軸受15を安
価に製造することができる。
According to the bearing 15 and the method of manufacturing the same according to the present embodiment, the following effects can be obtained. (1) In the present embodiment, the surface of the bearing 15, in particular, the motor 1
The surface layer of the inner peripheral surface 15a of the bearing 15 which is in contact with the rotating shaft 14 is formed of a copper-based metal 60, and the other parts of the bearing 15 are formed of an iron-based metal 61. Therefore, the rotating shaft 14 and the inner peripheral portion of the bearing 15 can come into contact with a low frictional force, suppressing abnormal friction at the time of starting, and the other portions are made of the inexpensive iron-based metal 61. Can be manufactured at low cost.

【0035】(2)本実施形態では、前記鉄系金属61
の粒径は前記銅系金属60の粒径の5倍以上に設定され
ている。従って、鉄系金属61と銅系金属60の調合粉
体を金型20にて粉体圧縮成形体30に圧縮成形すると
き、上記で詳述した理由とメカニズムで銅系金属60粒
子は粉体圧縮成形体30(つまり軸受15)の表面(表
層)に現れやすくなる。その結果、軸受15の表面、特
にモータ13の回転軸14と接触する軸受15の内周面
15aの内周部を銅系金属60にて成形してからその他
の部分を鉄系金属61にて成形する従来の製造方法に比
べ、製造工数を低減できる。
(2) In the present embodiment, the ferrous metal 61
Is set to be at least five times the particle size of the copper-based metal 60. Therefore, when the prepared powder of the iron-based metal 61 and the copper-based metal 60 is compression-molded into the powder compression-molded body 30 by the mold 20, the copper-based metal 60 particles are powdered for the reason and mechanism described in detail above. It tends to appear on the surface (surface layer) of the compression molded body 30 (that is, the bearing 15). As a result, the surface of the bearing 15, in particular, the inner peripheral portion of the inner peripheral surface 15 a of the bearing 15 in contact with the rotating shaft 14 of the motor 13 is formed of the copper-based metal 60, and the other portions are formed of the iron-based metal 61. The number of manufacturing steps can be reduced as compared with the conventional manufacturing method of molding.

【0036】(3)本実施形態では、低溶融温度金属と
しての錫62は、銅系金属60の粒径より大きく且つ鉄
系金属61の粒径より小さく設定されている。従って、
圧縮成形で形成される粉体圧縮成形体30内において錫
62は、銅系金属60層と鉄系金属61層との間に位置
するようになる。その結果、粉体圧縮成形体30を焼結
成形時において錫62の粒子が銅系金属60の粒子及び
鉄系金属61の粒子よりも先に溶解し、銅系金属60と
鉄系金属61を結合できるとともに、粉体圧縮成形体3
0(つまり軸受15)内部は多孔質となる。
(3) In the present embodiment, the tin 62 as the low melting temperature metal is set to be larger than the particle size of the copper-based metal 60 and smaller than the particle size of the iron-based metal 61. Therefore,
The tin 62 is located between the copper-based metal 60 layer and the iron-based metal 61 layer in the powder compression molded body 30 formed by compression molding. As a result, when the powder compression molded body 30 is sintered and formed, the tin 62 particles dissolve before the copper-based metal 60 particles and the iron-based metal 61 particles, and the copper-based metal 60 and the iron-based metal 61 are dissolved. Can be combined with the powder compact 3
0 (that is, the bearing 15) is porous.

【0037】(4)本実施形態では、銅系金属60の粒
径は、10〜30μmに設定している。従って、銅系金
属60の粒径が10μm以下となるときの銅系金属60
粉体が舞いやすくなることを防止でき、銅系金属60の
粒径が30μm以上となるときの銅系金属60粒子間の
摩擦力が大きくなることを防止できる。その結果、製造
時における銅系金属60の取扱性を向上できる。
(4) In the present embodiment, the particle size of the copper-based metal 60 is set to 10 to 30 μm. Therefore, when the particle diameter of the copper-based metal 60 becomes 10 μm or less,
It is possible to prevent the powder from fluttering easily, and prevent the frictional force between the copper-based metal 60 particles from increasing when the particle size of the copper-based metal 60 is 30 μm or more. As a result, the handleability of the copper-based metal 60 during manufacturing can be improved.

【0038】(第2の実施形態)以下、本発明を具体化
した焼結含油軸受の第2の実施形態を図9〜図14に従
って説明する。なお、本実施形態において、上述の第1
の実施形態と同様の部分については、同一の符号を付
し、その詳細な説明は省略する。
(Second Embodiment) A second embodiment of a sintered oil-impregnated bearing embodying the present invention will be described below with reference to FIGS. Note that, in the present embodiment, the first
The same reference numerals are given to the same portions as those of the embodiment, and the detailed description thereof will be omitted.

【0039】図9は、本実施形態の焼結含油軸受の断面
図である。図10は、同じく焼結含油軸受の平面図であ
る。焼結含油軸受としての軸受35は、ほぼ円筒状に形
成され、前記回転軸14が貫挿するための内孔36と、
前記ハウジング12の取付孔16に嵌挿するための外周
面35aと、一端面(図9での下端面)35bと、切り
欠き37を設けた他端面(図9での上端面)35cを備
えている。
FIG. 9 is a sectional view of the sintered oil-impregnated bearing of this embodiment. FIG. 10 is a plan view of the sintered oil-impregnated bearing. A bearing 35 as a sintered oil-impregnated bearing is formed in a substantially cylindrical shape, and has an inner hole 36 through which the rotary shaft 14 is inserted.
An outer peripheral surface 35a for fitting into the mounting hole 16 of the housing 12, one end surface (lower end surface in FIG. 9) 35b, and the other end surface (upper end surface in FIG. 9) 35c provided with the cutout 37 are provided. ing.

【0040】前記内孔36は、前記回転軸14と接触す
るための直孔部36aと、該直孔部36aの一端から前
記他端面35cに向かって拡開するテーパ状の斜孔部3
6bとから構成されている。前記上下端面35c,35
bにおける前記斜孔部36b及び直孔部36aの開口端
には、それぞれテーパ部35d,35eが設けられてい
る。
The inner hole 36 has a straight hole portion 36a for making contact with the rotary shaft 14, and a tapered inclined hole portion 3 expanding from one end of the straight hole portion 36a toward the other end surface 35c.
6b. The upper and lower end surfaces 35c, 35
b, tapered portions 35d and 35e are provided at the open ends of the oblique hole portion 36b and the straight hole portion 36a, respectively.

【0041】図11は、焼結含油軸受の内部組織を示す
要部断面説明図である。前記軸受35は、銅系金属6
0、鉄系金属61及び低溶融温度金属としての錫62の
調合粉体を圧縮成形・焼結させて形成されている。前記
直孔部36a側の内外周面、下端面35b及びテーパ部
35eの表層は、銅系金属60により構成されている
(図4に参照)。また、直孔部36a側のその他の部分
としての前記表層以外の内部と斜孔部36b側の部分
は、鉄系金属61により構成されている。つまり、図1
1に示すように、前記直孔部36aと斜孔部36bとの
境部から上の部分(斜孔部36b側の部分)は、すべて
鉄系金属61により構成されている。
FIG. 11 is an explanatory sectional view of a main part showing an internal structure of a sintered oil-impregnated bearing. The bearing 35 is made of a copper-based metal 6.
0, a compound powder of iron-based metal 61 and tin 62 as a low melting temperature metal is formed by compression molding and sintering. The inner and outer peripheral surfaces on the side of the straight hole portion 36a, the lower end surface 35b, and the surface layer of the tapered portion 35e are made of a copper-based metal 60 (see FIG. 4). Further, the inside other than the surface layer as the other portion on the side of the straight hole portion 36a and the portion on the side of the oblique hole portion 36b are made of an iron-based metal 61. That is, FIG.
As shown in FIG. 1, the portion above the boundary between the straight hole portion 36a and the oblique hole portion 36b (the portion on the oblique hole portion 36b side) is entirely made of the iron-based metal 61.

【0042】なお、前記鉄系金属61は、前記銅系金属
60より銅成分が少なく鉄成分が多く含むものが用いら
れている。前記銅系金属60の粒径は、10〜30μm
に設定し、前記鉄系金属61の粒径は、前記銅系金属6
0の粒径の5倍以上に設定している。また、前記錫62
の粒径は、前記銅系金属60の粒径より大きく前記鉄系
金属61の粒径より小さく設定している。
The iron-based metal 61 has a lower copper content than the copper-based metal 60 and a higher iron content. The particle size of the copper-based metal 60 is 10 to 30 μm.
And the particle size of the iron-based metal 61 is
It is set to be at least 5 times the particle size of 0. The tin 62
Is larger than the particle diameter of the copper-based metal 60 and smaller than the particle diameter of the iron-based metal 61.

【0043】以下、本実施形態の軸受35の製造方法に
ついて図面に従って説明する。図12は、軸受15の製
造方法を説明する流れ図である。図13及び14は、軸
受35の成形工程を説明する断面図である。
Hereinafter, a method of manufacturing the bearing 35 of the present embodiment will be described with reference to the drawings. FIG. 12 is a flowchart illustrating a method for manufacturing the bearing 15. 13 and 14 are cross-sectional views illustrating a step of forming the bearing 35.

【0044】図12に示すように、まず、粉体調合工程
S21においては、鉄系金属61のみの粉体を調合して
第2の原材料粉体F1を準備し、銅系金属60、鉄系金
属61及び錫62の粉体を調合して第1の原材料粉体F
2を準備する。
As shown in FIG. 12, first, in the powder preparation step S21, a powder of only the iron-based metal 61 is prepared to prepare a second raw material powder F1, and the copper-based metal 60 and the iron-based metal F61 are prepared. The first raw material powder F is prepared by mixing powders of metal 61 and tin 62.
Prepare 2

【0045】次に、成形工程S22においては、前記粉
体調合工程S21で準備された原材料粉体F1を、図1
3(a)に示すように、金型40内に充填させ、図13
(b)に示すように、粉体圧縮成形体51に圧縮成形さ
せる。その後、前記粉体調合工程S21で準備された原
材料粉体F2を、図14(a)に示すように、金型40
内に充填させ、図14(b)に示すように、前記粉体圧
縮成形体51と一体となる粉体圧縮成形体50に圧縮成
形させる。
Next, in a molding step S22, the raw material powder F1 prepared in the powder mixing step S21 is mixed with the raw material powder F1 shown in FIG.
As shown in FIG.
As shown in (b), the powder compression molded body 51 is compression molded. Thereafter, as shown in FIG. 14A, the raw material powder F2 prepared in the powder mixing step S21 is put into a mold 40.
Then, as shown in FIG. 14 (b), it is compression molded into a powder compression molded body 50 integral with the powder compression molded body 51.

【0046】詳述すると、前記金型40は、円筒形状の
ダイ41と、該ダイ41の貫通孔41aを嵌挿する下パ
ンチ42と、図13で示す第1の上パンチ43及び図1
4で示す第2の上パンチ44を備えている。前記ダイ4
1の貫通孔41aの軸線方向の長さは軸受35の軸線方
向の長さより長くなっている。前記貫通孔41aは、そ
の内径が前記軸受35の外径と同じくなるよう設けられ
ている。
More specifically, the mold 40 includes a cylindrical die 41, a lower punch 42 for inserting a through hole 41a of the die 41, a first upper punch 43 shown in FIG.
A second upper punch 44 is provided. The die 4
The axial length of one through hole 41 a is longer than the axial length of the bearing 35. The through hole 41a is provided such that the inner diameter thereof is the same as the outer diameter of the bearing 35.

【0047】前記下パンチ42は、前記貫通孔41aの
内径と同じ直径を有する大径部42aと、小径部42b
及び前記大径部42aと小径部42bの間にテーパ状に
形成される段差部42cとから構成されている。前記小
径部42bは、前記直孔部36aと同じ直径を有する円
柱部42dと、前記斜孔部36bに対応する円錐台部4
2eを備える。そして、前記段差部42cは、前記大径
部42aと円錐台部42eとの間に形成され、そのテー
パ角度が前記軸受35のテーパ部35dのテーパ角度と
同じなるように形成されている。また、前記段差部42
cの所定位置に突起45が設けられている。前記突起4
5は、前記軸受35の切り欠き37に対応した寸法にて
形成されている。
The lower punch 42 has a large-diameter portion 42a having the same diameter as the inner diameter of the through hole 41a, and a small-diameter portion 42b.
And a step portion 42c formed in a tapered shape between the large diameter portion 42a and the small diameter portion 42b. The small diameter portion 42b has a cylindrical portion 42d having the same diameter as the straight hole portion 36a, and a truncated cone portion 4 corresponding to the oblique hole portion 36b.
2e. The step portion 42c is formed between the large diameter portion 42a and the truncated cone portion 42e, and is formed so that the taper angle thereof is the same as the taper angle of the taper portion 35d of the bearing 35. In addition, the step 42
A projection 45 is provided at a predetermined position of c. The protrusion 4
5 is formed in a size corresponding to the notch 37 of the bearing 35.

【0048】前記第1の上パンチ43は、図13(a)
(b)に示すように、中央に下パンチ嵌挿孔43aを設
け、円筒形状に形成されている。前記下パンチ嵌挿孔4
3aの直径が前記円柱部42dの外径(つまり前記直孔
部36aの内径)と同じに設定され、前記第1の上パン
チ43の筒部外径が前記貫通孔41aの内径(つまり軸
受35の外径)と同じに設定されている。
The first upper punch 43 is formed as shown in FIG.
As shown in (b), a lower punch insertion hole 43a is provided in the center, and is formed in a cylindrical shape. The lower punch insertion hole 4
3a is set to be the same as the outer diameter of the cylindrical portion 42d (that is, the inner diameter of the straight hole portion 36a), and the outer diameter of the cylindrical portion of the first upper punch 43 is set to the inner diameter of the through hole 41a (that is, the bearing 35). Outside diameter).

【0049】前記第2の上パンチ44は、図14(a)
(b)に示すように、中央に下パンチ嵌挿孔44aを設
け、円筒形状に形成されている。前記下パンチ嵌挿孔4
4aの直径が前記円柱部42dの外径(つまり前記直孔
部36aの内径)と同じに設定され、前記第2の上パン
チ44の筒部外径が前記貫通孔41aの内径(つまり軸
受35の外径)と同じに設定されている。また、前記第
2の上パンチ44の円筒部一端には、テーパ凸部44b
が設けられている。前記テーパ凸部44bは、そのテー
パ角度が前記軸受35のテーパ部35eのテーパ角度と
同じなるよう形成されている。
The second upper punch 44 is shown in FIG.
As shown in (b), a lower punch fitting hole 44a is provided in the center, and is formed in a cylindrical shape. The lower punch insertion hole 4
4a is set equal to the outer diameter of the cylindrical portion 42d (that is, the inner diameter of the straight hole portion 36a), and the outer diameter of the cylindrical portion of the second upper punch 44 is set to the inner diameter of the through hole 41a (that is, the bearing 35a). Outside diameter). Further, one end of the cylindrical portion of the second upper punch 44 has a tapered convex portion 44b.
Is provided. The tapered convex portion 44b is formed so that the taper angle thereof is equal to the taper angle of the tapered portion 35e of the bearing 35.

【0050】そして、図13(a)に示すように、前記
下パンチ42の小径部42bが前記ダイ41の貫通孔4
1aを貫挿し、前記大径部42aが前記貫通孔41aに
少しだけ嵌挿することによって形成された空間K内に、
先に調合した原材料粉体F1を所定量にて充填させる。
その後、図13(b)に示すように、前記第1の上パン
チ43を、その下パンチ嵌挿孔43aに前記小径部42
bの円柱部42dが貫挿し、その筒部外周が前記貫通孔
41aに挿入しながら前記原材料粉体F1をある程度で
押圧させる。これにより、前記軸受35の斜孔部36b
側の部分と同じ形状及び寸法を有する粉体圧縮成形体5
1が圧縮成形される。前記軸受35のテーパ部35d
は、前記段差部42cに沿って押圧成形され、前記軸受
35の切り欠き37は、前記突起45に沿って押圧成形
される。
Then, as shown in FIG. 13A, the small diameter portion 42b of the lower punch 42 is
1a, and the large-diameter portion 42a is slightly inserted into the through hole 41a.
The previously prepared raw material powder F1 is filled in a predetermined amount.
Then, as shown in FIG. 13B, the first upper punch 43 is inserted into the lower punch fitting hole 43a by the small diameter portion 42.
The cylindrical portion 42d of b is inserted, and the outer periphery of the cylindrical portion presses the raw material powder F1 to some extent while being inserted into the through hole 41a. Thereby, the oblique hole 36b of the bearing 35
Powder compact 5 having the same shape and dimensions as the side part
1 is compression molded. Tapered portion 35d of the bearing 35
Is formed by pressing along the step 42c, and the notch 37 of the bearing 35 is formed by pressing along the protrusion 45.

【0051】次に、第1の上パンチ43をダイ41内か
ら外へ抜き出し、図14(a)に示すように、前記粉体
圧縮成形体51上方の前記空間K内に先に調合した原材
料粉体F2を所定量にて充填させる。その後、図14
(b)に示すように、前記第2の上パンチ44を、その
下パンチ嵌挿孔44aに前記小径部42bの円柱部42
dが貫挿し、その筒部外周が前記貫通孔41aに挿入し
ながら前記原材料粉体F2を強く押圧させる。これによ
り、前記軸受35の直孔部36a側の部分と同じ形状及
び寸法を有する粉体圧縮成形体が前記粉体圧縮成形体5
1と一体となるよう粉体圧縮成形体50に圧縮成形され
る。前記軸受15のテーパ部35eは、前記テーパ凸部
44bの押圧によって成形される。そして、金型40内
から前記粉体圧縮成形体50を取り出し、成形工程は終
了する。
Next, the first upper punch 43 is pulled out from the inside of the die 41, and as shown in FIG. 14A, the raw material previously prepared in the space K above the powder compression molded body 51. The powder F2 is filled in a predetermined amount. Then, FIG.
As shown in (b), the second upper punch 44 is inserted into the lower punch fitting insertion hole 44a in the cylindrical portion 42 of the small diameter portion 42b.
d is inserted, and the raw material powder F2 is strongly pressed while the outer periphery of the cylindrical portion is inserted into the through hole 41a. As a result, the powder compression molded body having the same shape and dimensions as the portion of the bearing 35 on the side of the straight hole portion 36a becomes the powder compression molded body 5
The powder compression molded body 50 is compression molded so as to be integrated with the powder compression molded body 50. The tapered portion 35e of the bearing 15 is formed by pressing the tapered convex portion 44b. Then, the powder compression molded body 50 is taken out from the mold 40, and the molding step is completed.

【0052】次に、焼結工程S23においては、前記粉
体圧縮成形体50を、公知の方法により焼結させる。こ
のとき、低溶融温度金属の錫62の粒子が銅系金属60
の粒子及び鉄系金属61の粒子よりも先に溶解し、銅系
金属60と鉄系金属61を結合させるとともに、粉体圧
縮成形体50(つまり軸受35、特に直孔部36a側部
分)の内部は多孔質となる。
Next, in a sintering step S23, the powder compression molded body 50 is sintered by a known method. At this time, tin particles of the low melting temperature metal tin 62
And the iron-based metal 61 are dissolved before the copper-based metal 60 and the iron-based metal 61 are bonded together, and the powder compression-molded body 50 (that is, the bearing 35, particularly, the portion near the straight hole 36 a) is melted. The inside becomes porous.

【0053】その後、コイニング工程S24おいては、
前工程で焼結された粉体圧縮成形体50を公知の方法で
コイニングさせる。そして、最後に、潤滑油含浸工程S
25においては、多孔質となった前記粉体圧縮成形体5
0を公知の方法で潤滑油に含浸させることによって、軸
受35が製造される。
Thereafter, in the coining step S24,
The powder compression molded body 50 sintered in the previous step is coined by a known method. And finally, the lubricating oil impregnation step S
25, the porous powder compact 5
The bearing 35 is manufactured by impregnating the lubricating oil with 0 in a known manner.

【0054】そして、上記の製造方法にて製造される軸
受35は、その直孔部36a側の内外周面、下端面35
b及びテーパ部35eの表層は、銅系金属60により構
成される。また、直孔部36a側のその他の部分として
の前記表層以外の内部と斜孔部36b側の部分は、鉄系
金属61により構成される。
The bearing 35 manufactured by the above-described manufacturing method has inner and outer peripheral surfaces and a lower end surface 35 on the side of the straight hole portion 36a.
b and the surface layer of the tapered portion 35 e are made of a copper-based metal 60. Further, the inside other than the surface layer as the other portion on the side of the straight hole portion 36a and the portion on the side of the oblique hole portion 36b are made of an iron-based metal 61.

【0055】従って、本実施形態においては、上記実施
形態の(1)〜(4)に記載の効果に加えて、以下の効
果を得ることができる。 (5)本実施形態では、回転軸14と接触する軸受35
の直孔部36a側の部分のみを、銅系金属60と鉄系金
属61及び錫62の調合粉体にて圧縮・焼結成形した。
回転軸14と接触しない軸受35の斜孔部36b側の部
分を安価な鉄系金属61にて成形することによって軸受
35の製造コストを低減できる。
Therefore, in this embodiment, the following effects can be obtained in addition to the effects described in (1) to (4) of the above embodiment. (5) In the present embodiment, the bearing 35 that comes into contact with the rotating shaft 14
Only the portion on the side of the straight hole portion 36a was compression-sintered and formed with a compounded powder of a copper-based metal 60, an iron-based metal 61 and tin 62.
By forming the portion of the bearing 35 on the side of the oblique hole 36b that does not contact the rotating shaft 14 with the inexpensive iron-based metal 61, the manufacturing cost of the bearing 35 can be reduced.

【0056】なお、上記各実施形態は以下のように変更
してもよい。 ○上記各実施形態では、鉄系金属61の粉体として例え
ば、鉄の粒子のみ含有するものに用いられてもよい。ま
た、鉄以外の金属が含有されたものとしてもよい。
The above embodiments may be modified as follows. In the above embodiments, the powder of the iron-based metal 61 may be, for example, a powder containing only iron particles. Further, a material other than iron may be contained.

【0057】○また、上記第2の実施形態では、鉄系金
属61から構成される斜孔部36b側の部分も含油でき
るような多孔質を形成してもよい。 ○上記各実施形態では、低溶融温度金属として錫62に
て実施したが、錫62以外のその他の低溶融温度金属に
て実施してもよい。また、鉄系金属61と銅系金属60
及び錫62の粉体内に、他の金属を加えても、例えば黒
鉛や硫化モリブデン(MoS2)などの固体潤滑材を加
えるようにしてもよい。
In the second embodiment, the porous material may be formed so that the portion on the side of the oblique hole 36b made of the iron-based metal 61 can also be oil-impregnated. In the above embodiments, the tin 62 is used as the low melting metal, but the low melting metal other than the tin 62 may be used. Also, an iron-based metal 61 and a copper-based metal 60
Other metals may be added to the powder of tin and tin 62, or a solid lubricant such as graphite or molybdenum sulfide (MoS 2 ) may be added.

【0058】○上記各実施形態では、切り欠き15c,
37を設ける代わりに、凸部を設けるようにしてもよ
い。 ○上記第2の実施形態では、斜孔部36b側の部分を圧
縮成形してから、直孔部36a側の部分を圧縮成形する
ようにしたが、直孔部36a側の部分を圧縮成形してか
ら、斜孔部36b側の部分を圧縮成形するように実施し
てもよい。
In the above embodiments, the notch 15c,
Instead of providing 37, a convex portion may be provided. In the second embodiment, the portion on the side of the oblique hole 36b is compression-molded, and then the portion on the side of the straight hole 36a is compression-molded. However, the portion on the side of the straight hole 36a is compression-molded. Thereafter, the portion on the side of the oblique hole portion 36b may be compression molded.

【0059】○上記各実施形態では、鉄系金属61の粒
径を銅系金属60の粒径の3〜5倍に設定してもよい。 ○上記各実施形態では、自動車のパワーウィンドの減速
機付き小型モータに適用する焼結含油軸受に具体化して
実施したが、その他の焼結含油軸受に具体化して実施し
てもよい。
In the above embodiments, the particle size of the iron-based metal 61 may be set to be 3 to 5 times the particle size of the copper-based metal 60. In each of the above embodiments, the oil-impregnated sintered bearing applied to a small motor with a reduction gear of a power window of an automobile has been embodied, but may be implemented in other oil-impregnated sintered bearings.

【0060】次に、上記実施形態及び別例から把握でき
る技術的思想について、それらの効果と共に以下に記載
する。 (1)銅系金属の粉体と、前記銅系金属よりも銅成分が
少なく鉄成分が多いとともに粒径が大きい鉄系金属の粉
体と、前記銅系金属の粒径より大きい且つ前記鉄系金属
の粒径より小さい粒径を有し前記銅系金属及び鉄系金属
の融点より低い融点を持つ低溶融温度金属との調合粉体
からなる第1の原材料粉体を、回転軸に接触する内周面
を含む一部分に圧縮成形し、鉄系金属の粉体のみからな
る第2の原材料粉体を、その他の部分に圧縮成形し、一
体に圧縮成形された両部分の粉体圧縮成形体を焼結して
なることを特徴とする焼結含油軸受。
Next, technical ideas that can be grasped from the above embodiment and other examples will be described together with their effects. (1) a powder of a copper-based metal, a powder of an iron-based metal having a smaller copper content than the copper-based metal and a larger iron content and a larger particle size, A first raw material powder comprising a powder blended with a low melting temperature metal having a particle diameter smaller than the particle diameter of the base metal and having a melting point lower than the melting points of the copper-based metal and the iron-based metal, is brought into contact with the rotating shaft; Compression molding to a part including the inner peripheral surface to be formed, and compression molding of the second raw material powder consisting only of iron-based metal powder to the other part, and powder compression molding of both parts compression molded integrally A sintered oil-impregnated bearing characterized by sintering a body.

【0061】従って、焼結含油軸受の起動時の低摩擦性
能を確保でき、コストの低減を図ることができる。 (2)上記(1)又は請求項2、4もしくは5に記載の
焼結含油軸受において、前記低溶融温度金属は、錫であ
ることを特徴とする焼結含油軸受。
Accordingly, low friction performance at the time of starting the sintered oil-impregnated bearing can be ensured, and the cost can be reduced. (2) The sintered oil-impregnated bearing according to (1) or claim 2, 4 or 5, wherein the low melting temperature metal is tin.

【0062】[0062]

【発明の効果】本発明によれば、焼結含油軸受の起動時
の低摩擦性能を確保でき、コストの低減を図ることがで
きる。
According to the present invention, low friction performance at the time of starting the sintered oil-impregnated bearing can be ensured, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焼結含油軸受を用いた減速機付き小型
モータの断面図。
FIG. 1 is a cross-sectional view of a small motor with a reduction gear using a sintered oil-impregnated bearing of the present invention.

【図2】第1の実施形態の焼結含油軸受の断面図。FIG. 2 is a cross-sectional view of the sintered oil-impregnated bearing of the first embodiment.

【図3】同実施形態における焼結含油軸受の平面図。FIG. 3 is a plan view of the sintered oil-impregnated bearing in the embodiment.

【図4】同実施形態における焼結含油軸受の内部組織を
示す要部断面説明図。
FIG. 4 is an explanatory sectional view of a main part showing an internal structure of the sintered oil-impregnated bearing in the embodiment.

【図5】同実施形態における焼結含油軸受の製造方法を
説明する流れ図。
FIG. 5 is a flowchart illustrating a method for manufacturing the sintered oil-impregnated bearing in the embodiment.

【図6】同実施形態における焼結含油軸受の成形工程を
説明する断面図。
FIG. 6 is an exemplary sectional view for explaining the molding step of the sintered oil-impregnated bearing according to the embodiment;

【図7】互いに接触する3つの鉄系金属粒子間の隙間を
通過できる銅系金属粒子の相対粒径を計算するための説
明図。
FIG. 7 is an explanatory diagram for calculating a relative particle size of copper-based metal particles that can pass through a gap between three iron-based metal particles that are in contact with each other.

【図8】互いに接触する4つの鉄系金属粒子間の隙間を
通過できる銅系金属粒子の相対粒径を計算するための説
明図。
FIG. 8 is an explanatory diagram for calculating a relative particle size of copper-based metal particles that can pass through a gap between four iron-based metal particles that are in contact with each other.

【図9】第2の実施形態の焼結含油軸受の断面図。FIG. 9 is a sectional view of a sintered oil-impregnated bearing according to a second embodiment.

【図10】同実施形態における焼結含油軸受の平面図。FIG. 10 is a plan view of the sintered oil-impregnated bearing in the embodiment.

【図11】同実施形態における焼結含油軸受の内部組織
を示す要部断面説明図。
FIG. 11 is an explanatory cross-sectional view of a main part showing an internal structure of the sintered oil-impregnated bearing in the embodiment.

【図12】同実施形態における焼結含油軸受の製造方法
を説明する流れ図。
FIG. 12 is a flowchart illustrating a method for manufacturing the sintered oil-impregnated bearing in the embodiment.

【図13】同実施形態における焼結含油軸受の成形工程
を説明する断面図。
FIG. 13 is a sectional view for explaining the forming step of the sintered oil-impregnated bearing in the embodiment.

【図14】同実施形態における焼結含油軸受の成形工程
を説明する断面図。
FIG. 14 is a sectional view for explaining the forming step of the sintered oil-impregnated bearing in the embodiment.

【符号の説明】[Explanation of symbols]

14…回転軸、15,35…焼結含油軸受としての軸
受、20,40…金型、30,50…粉体圧縮成形体、
60…銅系金属、61…鉄系金属、62…低溶融温度金
属としての錫、F1…第2の原材料粉体、F2…第1の
原材料粉体。
14 ... rotating shaft, 15, 35 ... bearing as sintered oil-impregnated bearing, 20, 40 ... mold, 30, 50 ... powder compression molded body,
Reference numeral 60 denotes a copper-based metal, 61 denotes an iron-based metal, 62 denotes tin as a low melting point metal, F1 denotes a second raw material powder, and F2 denotes a first raw material powder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16C 33/14 F16C 33/14 A (72)発明者 田中 猛 静岡県湖西市梅田390番地 アスモ 株式 会社内 (72)発明者 清水 輝夫 新潟県新潟市小金町3丁目1番1号 三菱 マテリアル新潟製作所 内 (72)発明者 藤田 耕作 新潟県新潟市小金町3丁目1番1号 三菱 マテリアル新潟製作所 内 Fターム(参考) 3J011 AA10 AA20 BA02 DA01 DA02 KA02 LA01 QA01 SB03 SB19 4K018 AA05 AA24 BA02 BA13 BA20 BC12 FA47 HA04 JA03 KA03──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F16C 33/14 F16C 33/14 A (72) Inventor Takeshi Takeshi 390 Umeda, Kosai City, Shizuoka Prefecture Asmo Co., Ltd. (72) Inventor Teruo Shimizu 3-1-1 Koganecho, Niigata City, Niigata Prefecture Inside Mitsubishi Materials Niigata Works (72) Inventor Kousaku Fujita 3-1-1 Koganemachi, Niigata City, Niigata Prefecture F-term in Mitsubishi Materials Niigata Works (Reference) 3J011 AA10 AA20 BA02 DA01 DA02 KA02 LA01 QA01 SB03 SB19 4K018 AA05 AA24 BA02 BA13 BA20 BC12 FA47 HA04 JA03 KA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 銅系金属の粉体と、 前記銅系金属よりも銅成分が少なく鉄成分が多いととも
に粒径が大きい鉄系金属の粉体との調合粉体からなる原
材料粉体を圧縮成形し、焼結してなることを特徴とする
焼結含油軸受。
1. A raw material powder comprising a powder of a copper-based metal and a powder of an iron-based metal having a smaller copper content than the copper-based metal, a larger iron content, and a larger particle size, is compressed. A sintered oil-impregnated bearing characterized by being molded and sintered.
【請求項2】 銅系金属の粉体と、 前記銅系金属よりも銅成分が少なく鉄成分が多いととも
に粒径が大きい鉄系金属の粉体と、 前記銅系金属の粒径より大きい且つ前記鉄系金属の粒径
より小さい粒径を有し、前記銅系金属及び鉄系金属の融
点より低い融点を持つ低溶融温度金属との調合粉体から
なる原材料粉体を圧縮成形し、焼結してなることを特徴
とする焼結含油軸受。
2. A powder of a copper-based metal, a powder of an iron-based metal having a smaller copper content than the copper-based metal and a larger iron content and a larger particle size, and a particle size larger than the copper-based metal and A raw material powder having a particle size smaller than the particle size of the iron-based metal and a powder mixed with a low melting temperature metal having a melting point lower than the melting points of the copper-based metal and the iron-based metal is compression-molded and sintered. A sintered oil-impregnated bearing characterized by being tied.
【請求項3】 銅系金属の粉体と、前記銅系金属よりも
銅成分が少なく鉄成分が多いとともに粒径が大きい鉄系
金属の粉体との調合粉体からなる第1の原材料粉体を、
回転軸に接触する内周面を含む一部分に圧縮成形し、 鉄系金属の粉体のみからなる第2の原材料粉体を、その
他の部分に圧縮成形し、 一体に圧縮成形された両部分の粉体圧縮成形体を焼結し
てなることを特徴とする焼結含油軸受。
3. A first raw material powder comprising a powder mixture of a copper-based metal powder and a powder of an iron-based metal having a smaller copper content than the copper-based metal, a larger iron content and a larger particle size. Body
Compression molding is performed on a part including the inner peripheral surface that is in contact with the rotating shaft, and the second raw material powder composed of only iron-based metal powder is compression molded on the other part. A sintered oil-impregnated bearing obtained by sintering a powder compression molded body.
【請求項4】 前記鉄系金属の粒径は前記銅系金属の粒
径の5倍以上に設定されていることを特徴とする請求項
1乃至3のいずれか1に記載の焼結含油軸受。
4. The sintered oil-impregnated bearing according to claim 1, wherein a particle size of the iron-based metal is set to be at least five times a particle size of the copper-based metal. .
【請求項5】 前記銅系金属の粒径は、10〜30μm
であることを特徴とする請求項1乃至4のいずれか1に
記載の焼結含油軸受。
5. The copper-based metal has a particle size of 10 to 30 μm.
The sintered oil-impregnated bearing according to any one of claims 1 to 4, wherein
【請求項6】 回転軸に接触する内周面の少なくとも一
部を構成する銅系金属の粉体と、その他の部分を構成し
前記銅系金属よりも銅成分が少なく鉄成分を有する粒径
の大きな鉄系金属の粉体とを原材料粉体に調合する粉体
調合工程と、 前記原材料粉体を、金型内に充填し、粉体圧縮成形体に
圧縮成形する成形工程と、 前記粉体圧縮成形体を焼結する焼結工程と、 焼結した前記粉体圧縮成形体に潤滑油を含浸させる潤滑
油含浸工程とを備えたことを特徴とする焼結含油軸受の
製造方法。
6. A particle diameter of a copper-based metal powder constituting at least a part of an inner peripheral surface in contact with a rotating shaft, and a particle having another part and having a copper component less than the copper-based metal and an iron component. A powder blending step of blending a powder of an iron-based metal with a raw material powder having a large particle size; a molding step of filling the raw material powder in a mold and compression-molding the powder into a powder compression-molded body; A method for producing a sintered oil-impregnated bearing, comprising: a sintering step of sintering a green compact; and a lubricating oil impregnating step of impregnating the sintered powder compact with a lubricating oil.
JP2001160332A 2001-05-29 2001-05-29 Oil impregnated sintered bearing and manufacturing method therefor Pending JP2002349575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160332A JP2002349575A (en) 2001-05-29 2001-05-29 Oil impregnated sintered bearing and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160332A JP2002349575A (en) 2001-05-29 2001-05-29 Oil impregnated sintered bearing and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002349575A true JP2002349575A (en) 2002-12-04

Family

ID=19003765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160332A Pending JP2002349575A (en) 2001-05-29 2001-05-29 Oil impregnated sintered bearing and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002349575A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067893A (en) * 2010-09-27 2012-04-05 Ntn Corp Sintered bearing
WO2013141205A1 (en) * 2012-03-19 2013-09-26 Ntn株式会社 Sintered metal bearing
JP2013204072A (en) * 2012-03-27 2013-10-07 Ntn Corp Sintered metal bearing
WO2014010429A1 (en) * 2012-07-10 2014-01-16 ナパック株式会社 Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger
CN105009425A (en) * 2013-03-25 2015-10-28 Ntn株式会社 Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
EP2824340A4 (en) * 2012-03-07 2016-03-16 Ntn Toyo Bearing Co Ltd Sintered bearing
WO2016052064A1 (en) * 2014-09-30 2016-04-07 Ntn株式会社 Slide member and method for manufacturing same
JP2016070381A (en) * 2014-09-30 2016-05-09 Ntn株式会社 Slide member and manufacturing method thereof
JP2016070380A (en) * 2014-09-30 2016-05-09 Ntn株式会社 Slide member and manufacturing method thereof
US9441670B2 (en) 2012-03-07 2016-09-13 Ntn Corporation Sintered bearing
US20190010984A1 (en) * 2012-10-24 2019-01-10 Ntn Corporation Sintered bearing
US20190257356A1 (en) * 2013-10-03 2019-08-22 Ntn Corporation Sintered bearing and manufacturing process therefor
CN115106531A (en) * 2022-07-04 2022-09-27 嘉善华承无油轴承有限公司 Sintering process of bimetallic bearing

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200670B2 (en) 2010-09-27 2015-12-01 Ntn Corporation Sintered bearing
JP2012067893A (en) * 2010-09-27 2012-04-05 Ntn Corp Sintered bearing
US9939015B2 (en) 2012-03-07 2018-04-10 Ntn Corporation Sintered bearing
US9441670B2 (en) 2012-03-07 2016-09-13 Ntn Corporation Sintered bearing
EP2824340A4 (en) * 2012-03-07 2016-03-16 Ntn Toyo Bearing Co Ltd Sintered bearing
CN104204574A (en) * 2012-03-19 2014-12-10 Ntn株式会社 Sintered metal bearing
US20150043844A1 (en) * 2012-03-19 2015-02-12 Ntn Corporation Sintered metal bearing
WO2013141205A1 (en) * 2012-03-19 2013-09-26 Ntn株式会社 Sintered metal bearing
JP2013204072A (en) * 2012-03-27 2013-10-07 Ntn Corp Sintered metal bearing
WO2014010429A1 (en) * 2012-07-10 2014-01-16 ナパック株式会社 Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger
US11248653B2 (en) * 2012-10-24 2022-02-15 Ntn Corporation Sintered bearing
US20190010984A1 (en) * 2012-10-24 2019-01-10 Ntn Corporation Sintered bearing
CN105009425A (en) * 2013-03-25 2015-10-28 Ntn株式会社 Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
EP2980964A1 (en) * 2013-03-25 2016-02-03 NTN Corporation Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
CN110043564A (en) * 2013-03-25 2019-07-23 Ntn株式会社 The manufacturing method and vibrating motor of sintered bearing
US10536048B2 (en) 2013-03-25 2020-01-14 Ntn Corporation Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
EP2980964A4 (en) * 2013-03-25 2017-05-03 NTN Corporation Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
US20190257356A1 (en) * 2013-10-03 2019-08-22 Ntn Corporation Sintered bearing and manufacturing process therefor
US10907685B2 (en) * 2013-10-03 2021-02-02 Ntn Corporation Sintered bearing and manufacturing process therefor
JP2016070380A (en) * 2014-09-30 2016-05-09 Ntn株式会社 Slide member and manufacturing method thereof
JP2016070381A (en) * 2014-09-30 2016-05-09 Ntn株式会社 Slide member and manufacturing method thereof
US10718379B2 (en) 2014-09-30 2020-07-21 Ntn Corporation Slide member and method for manufacturing same
WO2016052064A1 (en) * 2014-09-30 2016-04-07 Ntn株式会社 Slide member and method for manufacturing same
CN115106531A (en) * 2022-07-04 2022-09-27 嘉善华承无油轴承有限公司 Sintering process of bimetallic bearing
CN115106531B (en) * 2022-07-04 2024-01-05 嘉善华承无油轴承有限公司 Sintering process of bimetal bearing

Similar Documents

Publication Publication Date Title
JP6741730B2 (en) Sintered bearing and manufacturing method thereof
JP2002349575A (en) Oil impregnated sintered bearing and manufacturing method therefor
JP5442145B1 (en) Sintered bearing
EP3054185B1 (en) Manufacturing process of a sintered bearing
US9316253B2 (en) Sintered bearing
JP6816079B2 (en) Vibration motor
EP2980964B1 (en) Method for manufacturing sintered bearing
JP5085035B2 (en) Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor
EP1878521B1 (en) Sliding part and process for producing the same
JP6921046B2 (en) Manufacturing method of sintered bearing
JP6302259B2 (en) Manufacturing method of sintered bearing
WO2015050200A1 (en) Sintered bearing and manufacturing process therefor
JP6548952B2 (en) Sintered bearing and method of manufacturing the same
KR102331498B1 (en) Sintered bearing and its manufacturing method
CN110475982B (en) Sintered bearing and method for manufacturing same
JP5214555B2 (en) Sintered oil-impregnated bearing
JP2002327749A (en) Oil impregnated sintered bearing and manufacturing method of the same
JP6571230B2 (en) Sintered bearing
JP2001152174A (en) Sintered oilless bearing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427