WO2014010429A1 - Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger - Google Patents

Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger Download PDF

Info

Publication number
WO2014010429A1
WO2014010429A1 PCT/JP2013/067638 JP2013067638W WO2014010429A1 WO 2014010429 A1 WO2014010429 A1 WO 2014010429A1 JP 2013067638 W JP2013067638 W JP 2013067638W WO 2014010429 A1 WO2014010429 A1 WO 2014010429A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
core material
metal powder
thrust bearing
manufacturing
Prior art date
Application number
PCT/JP2013/067638
Other languages
French (fr)
Japanese (ja)
Inventor
安央 宮下
喜浩 酒井
鈴木 隆
Original Assignee
ナパック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナパック株式会社 filed Critical ナパック株式会社
Publication of WO2014010429A1 publication Critical patent/WO2014010429A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Definitions

  • the present invention relates to a method for manufacturing a thrust bearing for a turbocharger and a thrust bearing for a turbocharger.
  • a step of forming an alloy powder mixture containing at least one of two elements of magnesium and aluminum as a main component, and at least one of boron, boron carbide, silicon carbide, aluminum oxide and silicon nitride is mixed with the alloy powder.
  • Forming the composite material powder molded body by containing it in a part of the body, integrally molding the alloy powder mixture and the composite material powder molded body, and thereafter sintering the composite material molded body.
  • a lightweight wear-resistant member (refer to claim 2, drawings, etc.) characterized in that the sintered part is formed so as to be used only for the sliding part (see Patent Document 1).
  • Patent Document 1 assumes parts of products such as magnetic heads that are required to be light and thin, and is never used in an environment where a thrust bearing for a turbocharger is used. For this reason, a thrust bearing for a turbocharger is completely different from the lightweight wear-resistant member described in Patent Document 1 in terms of basic materials such as materials used and design concept.
  • an object of the present invention is to provide a thrust bearing manufacturing method and a thrust bearing that can be suitably used in practice for turbochargers.
  • a method of manufacturing a thrust bearing for a turbocharger according to the present invention is characterized in that a first metal powder containing copper as a main component and containing 10 wt% or less of tin is formed around a cylindrical or cylindrical hole.
  • An oil flow path having a shape corresponding to the uneven surface is formed on the core material and the second metal powder at the same time, and a powder compact formed by joining the powder core material and the second metal powder is formed.
  • the portion corresponding to the core material and the portion corresponding to the second metal powder after sintering are joined, and the portion corresponding to the powder core material after the sintering step is the second portion after the sintering step. It is superior in slidability and wear resistance than the portion corresponding to the metal powder.
  • a method of manufacturing a thrust bearing for a turbocharger according to the present invention is characterized in that a first metal powder containing copper as a main component and containing 10 wt% or less of tin is formed around a cylindrical or cylindrical hole.
  • a sintering step for obtaining a sintered body in which a portion corresponding to the powder core material and a portion corresponding to the second metal powder are joined, and a second die different from the die, and different from the punch A re-compression step of correcting the size of each part of the sintered body by the second punch, and the re-compression step
  • the second uneven surface formed on the punch and the second mold is simultaneously applied to the portion corresponding to the powder core material after the sintering step and the portion corresponding to the second metal powder after the sintering step.
  • the forming step it is preferable to perform the forming step so that the powder density in the portion corresponding to the powder core material is higher than the powder density in the portion corresponding to the second metal powder.
  • the uneven surface of the powder core material is preferably formed in both the step of obtaining the powder core material and the molding process.
  • the shape of the dust core material is a shape obtained by cutting out a part of the periphery of the cylindrical hole
  • the positioning of the dust core material and the punch in the molding process is performed based on the shape of the cut portion. Preferably it is done.
  • oil flow paths formed in the dust core material and the second metal powder can be in communication with each other.
  • a thrust bearing for a turbocharger has a surface having a hole in the center on the front and back surfaces, and the edge of the hole on one surface is mainly composed of copper and has a weight of 10 wt. % Of tin, including a material imparting slidability and wear resistance, and a portion other than the edge portion is made of a metal material including copper and iron of 80% by weight or less, Parts other than the edge are joined, the edge is more slidable and wear-resistant than the part other than the edge, and the other part of the one surface is the oil flow path. Has a recess.
  • the edge portion has a higher density than the portion other than the edge portion.
  • FIG. 1 is a schematic plan view of a thrust bearing according to an embodiment of the present invention. It is a bottom face schematic diagram of a thrust bearing concerning an embodiment of the invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a flowchart of the manufacturing process of the thrust bearing which concerns on embodiment of this invention.
  • It is a longitudinal cross-sectional view of the core material manufacturing apparatus which shows a mode that manufacture of a powder core material progresses as it progresses from (A) to (D).
  • It is a longitudinal cross-sectional view of the compacting body manufacturing apparatus which shows a mode that manufacture of a compacting body progresses as it progresses from (A) to (E).
  • thrust bearing for a turbocharger (hereinafter abbreviated as “thrust bearing”) according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings.
  • FIG. 1 is a schematic plan view (upper surface, one surface) of a thrust bearing 1 according to an embodiment of the present invention.
  • This thrust bearing 1 is used in a turbocharger.
  • the thrust bearing 1 has a circular outer periphery and a cylindrical shape having a circular hole 2 in the center.
  • the thrust bearing 1 has an oil groove 3 that serves as an oil flow path around the hole 2.
  • the thrust bearing 1 has four fixing holes 4 which are circular and have the same size and are equidistant to be fixed to the turbocharger.
  • the edge portion of the hole 2 has a cylindrical shape and a high peristaltic portion 5 having a shape obtained by cutting out a part of the periphery of the cylindrical hole 2 and being more slidable and wear-resistant than other portions.
  • Part corresponding to the powder core material after the sintering step A portion corresponding to a cut surface obtained by cutting a part of the periphery of the cylindrical hole 2 is a flat surface 5b.
  • the upper surface of the high swing portion 5 is a surface that receives a thrust load.
  • another part be the outer peripheral part 6 (part corresponded to the 2nd metal powder after a sintering process).
  • the high swinging portion 5 is formed with grooves 7 a, 7 b, 7 c (the width dimension and the depth dimension are the same) which are oil flow paths as in the oil groove 3.
  • the oil groove 3 and the grooves 7a, 7b, and 7c are concave portions and the other portions are relatively convex portions, the upper surface of the thrust bearing 1 has an uneven portion.
  • the high peristaltic part 5 has a higher density than the outer peripheral part 6.
  • FIG. 2 is a schematic diagram of the bottom surface (lower surface) of the thrust bearing 1. Although the hole 2 and the fixing hole 4 appear on the bottom surface of the thrust bearing 1, those corresponding to the oil groove 3 and the grooves 7a, 7b, and 7c do not appear. The edge of the hole 2 is integrated with the outer peripheral portion 6.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • the high peristaltic part 5 has a cylindrical shape and is exposed only on the plane side which is the upper side of FIG. Further, the upper surface 5 a of the high swing portion 5 is on the same plane as the upper surface 6 a of the outer peripheral portion 6.
  • the outer peripheral portion 6 is a metal material composed of 37 parts by weight of copper, 60 parts by weight of iron, and 3 parts by weight of tin.
  • the high peristaltic part 5 is a metal material composed of 87 parts by weight of copper, 4 parts by weight of molybdenum disulfide, and 9 parts by weight of tin.
  • the mixing ratio of molybdenum disulfide is 4% by weight.
  • FIG. 4 is a flowchart of the manufacturing process of the thrust bearing 1.
  • 87 parts by weight of electrolytic copper powder, 4 parts by weight of copper disulfide molybdenum disulfide, 9 parts by weight of atomized tin powder, and 0.5 parts by weight of zinc stearate serving as a wax take 10 to 30 minutes.
  • the first metal powder is blended (step P1).
  • the particle diameter of each powder was 1 to 200 ⁇ m suitable for powder metallurgy.
  • the material imparting slidability and wear resistance in the first metal powder is copper bromide molybdenum disulfide.
  • FIG. 5 is a vertical cross-sectional view of the core material manufacturing apparatus 10 showing a state in which the production of the powder core material progresses from (A) to (D).
  • the core material manufacturing apparatus 10 includes a table 11 and a die 12 that is a cylindrical mold.
  • the upper surface of the table 11 and the upper surface of the die 12 are on the same plane.
  • the core material manufacturing apparatus 10 further includes a columnar core 13 in the die 12 in which the columnar space of the die 12 is cylindrical. The upper surface of the core 13 is flush with the upper surface of the table 11 and the upper surface of the die 12.
  • the core material manufacturing apparatus 10 is densely inserted into a space formed by the die 12 and the core 13 and having a cylindrical shape inside the die 12 and a part of the periphery of the cylindrical hole cut out.
  • the upper punch 14 having a shape matching the shape inside the die 12 and the lower punch 15 having substantially the same shape as the upper punch 14 are provided.
  • the upper punch 14 is provided with convex portions (not shown) for forming a part of the above-described grooves 7a, 7b, 7c.
  • a powder supply container 16 having a powder supply hole (not shown) on the lower surface is placed on the table 11.
  • the powder supply device 16 is packed with a first metal powder 17. Further, the powder supply device 16 is movable on the upper surface of the table 11, the upper surface of the die 12, and the upper surface of the core 13.
  • the powder supply device 16 moves, and the first metal powder 17 is transferred from the powder supply hole of the powder supply device 16 into the cylindrical space formed by the die 12 and the core 13.
  • the supplied state is shown.
  • the first metal powder 17 is supplied until the upper surface thereof is flush with the upper surface of the die 12 and the upper surface of the core 13.
  • FIG. 5C shows the state which compression-molded the 1st metal powder 17 with the punch 14 and the lower punch 15.
  • FIG. By this compression molding, a cylindrical powder core 18 is formed.
  • the green compact density of the green powder core material 18 is set to an appropriate density that does not cause unintended shape deformation even if the green powder core material 18 is subjected to each step shown in FIG.
  • the powder core 18 is formed with a concave shape corresponding to a part of the grooves 7a, 7b, 7c described above (not shown). Moreover, the shape corresponding to the plane 5b mentioned above is formed in the powder core material 18 (illustration omitted).
  • FIG. 5D the upper surface of the lower punch 15 is moved in the direction indicated by the arrow (from the lower side to the upper side) until it is flush with the upper surface of the die 12 and the upper surface of the core 13, and compaction is performed. It is a figure which shows the state which made it easy to take out the core material.
  • the second metal powder is blended (process P3).
  • the second metal powder comprises 80 parts by weight of iron and copper partial diffusion alloy powder, 17 parts by weight of electrolytic copper powder, 3 parts by weight of atomized tin powder, and 0.8 part by weight of zinc stearate. Thoroughly mixed over 10 to 30 minutes.
  • the iron content of the second metal powder is 60% by weight.
  • the copper content of the second metal powder is 37% by weight.
  • the tin content of the second metal powder is 3% by weight.
  • the particle diameter of each powder was 1 to 200 ⁇ m suitable for powder metallurgy.
  • FIG. 6 is a vertical cross-sectional view of the green compact body manufacturing apparatus 20 showing a state in which the green compact manufacturing process proceeds from (A) to (E).
  • the green compact molded body manufacturing apparatus 20 includes a table 21 and a cylindrical die 22.
  • the upper surface of the table 21 and the upper surface of the die 22 are on the same plane.
  • the compacted body manufacturing apparatus 20 further includes a columnar core 23 in the die 22 that has a cylindrical space in the die 22. The upper surface of the core 23 is flush with the upper surface of the table 21 and the upper surface of the die 22.
  • the compacted body manufacturing apparatus 20 has a cylindrical upper punch 24 and a cylindrical lower punch 25 which are inserted into a cylindrical space formed by the die 22 and the core 23 closely.
  • a powder supply container 26 having a powder supply hole (not shown) on the lower surface is placed on the table 21.
  • the powder supply device 26 is packed with a second metal powder 27. Further, the powder supply device 26 is movable on the upper surface of the table 21, the upper surface of the die 22, and the upper surface of the core 23.
  • there is a flange portion (not shown) extending in a direction orthogonal to the length direction at the lower end portion in the length direction of the core 23 which is the vertical direction in FIG. 6, and extends from the flange portion in the length direction.
  • the powder supply device 26 moves, and the second metal powder 27 is put into the cylindrical space formed by the die 22 and the core 23 from the powder supply hole of the powder supply device 26.
  • the supplied state is shown.
  • the second metal powder 27 is supplied until the upper surface thereof is flush with the upper surface of the die 22 and the upper surface of the core 23.
  • This process becomes process P4.
  • the rod-shaped member described above passes through a cylindrical space formed by the die 22 and the core 23. Therefore, the second metal powder 27 is not supplied to the space where the rod-shaped member is disposed.
  • FIG. 6 (C) is a view showing a state in which the powder core material 18 manufactured previously is embedded in the second metal powder 27 so as to expose the upper surface thereof, which is the peripheral surface of the core 23. is there. At this time, the portion corresponding to the flat surface 5b of the powder core 18 described above is recognized, and the portion corresponding to the flat surface 5b is in a predetermined positional relationship with a specific portion of the upper punch 24. The arrangement angle of 18 is adjusted. That is, the powder core material 18 and the upper punch 24 are aligned based on the shape of the flat surface 5b.
  • the upper punch 24 is moved in the arrow direction (from the upper side to the lower side) in the figure
  • the lower punch 25 is moved in the arrow direction (from the lower side to the upper side) in the figure
  • the upper punch 24 is moved.
  • a cylindrical powder compact 28 is formed.
  • the upper punch 24 and the lower punch 25 are formed with holes through which the above-described bar-shaped member is inserted, and the bar-shaped member is present in the second metal powder 27. P6 is performed. Therefore, the shape of the fixing hole 4 is formed at the position of the green compact 28 where the rod-shaped member exists.
  • the compression force and the like are adjusted so that the powder density in the portion corresponding to the powder core material 18 is higher than the powder density in the portion corresponding to the second metal powder 27.
  • FIG. 7 is a schematic view showing a contact state between the upper punch 24 and the green compact 28 in the process P6.
  • a convex portion 24a that forms the shape of the oil groove 6 in the second metal powder 27 portion and a convex portion 24b that forms the shapes of the grooves 7a, 7b, and 7c in the powder core material 18 are provided.
  • Have. Portions other than the convex portions 24a and 24b on the lower surface of the upper punch 24 are relatively concave portions.
  • the concave shape corresponding to a part of the grooves 7a, 7b, 7c of the powder core 18 is further deformed by the convex portion 24b.
  • FIG. 6E the upper surface of the lower punch 25 is moved in the direction of the arrow (from the lower side to the upper side) until it is flush with the upper surface of the die 22 and the upper surface of the core 23.
  • the green compact 28 has a cylindrical shape having the shape of the hole 1 at the center.
  • the shape of the hole 1 is formed by the core 23.
  • a dust core material 18 is arranged at the edge on the upper surface side in FIG.
  • the green compact 28 is taken out, and the green compact 28 is sintered at a maximum temperature of 700 ° C. to 800 ° C. in an ammonia atmosphere (step P7). Then, the high peristaltic part 5 can have a higher density than the outer peripheral part 6. Thereafter, the sintered body that has undergone the process P7 is re-compressed using a mold and a punch in order to correct the dimensions of each part so as to have the target dimensions (process P8). Through the above steps, the manufacture of the thrust bearing 1 is completed.
  • a thrust bearing 1 according to an embodiment of the present invention is a metal sintered body in which a high swing portion 5 and an outer peripheral portion 6 are joined. Therefore, the thrust bearing 1 is excellent in terms of strength, wear resistance, and the like, and can actually be suitably used for a turbocharger.
  • the thrust bearing 1 used in the turbocharger has a thrust collar that restricts the movement of the impeller in sliding contact with and slides on the high sliding portion 5, so that the high sliding portion 5 has high wear resistance.
  • the function of the bearing 1 is made necessary and sufficient.
  • the metal material of the outer peripheral part 6 consists of the 2nd metal powder 27, and since content of iron is increased, the thrust bearing 1 can be made cheap.
  • the turbocharger thrust bearing 1 is exposed to a wide temperature range (particularly on the high temperature side), is affected by corrosion due to sulfur in the oil, is subjected to vibration, and receives a thrust load. There is a special feature used in harsh environments. However, according to the manufacturing method of the thrust bearing 1 which concerns on embodiment of this invention, the thrust bearing 1 which can endure such a severe environment can be provided. In particular, there is a concern about peeling due to corrosion or the like of the joint portion between the high swing portion 5 and the outer peripheral portion 6, but the thrust bearing 1 is unlikely to be peeled off and is in a joined state having sufficient joint strength and the like. is there.
  • the high peristaltic part 5 has a higher density than the outer peripheral part 6, the slidability and wear resistance of the high peristaltic part 5 are more excellent.
  • portions corresponding to the grooves 7a, 7b and 7c of the powder core material 18 are formed in both the step of obtaining the powder core material 18 and the molding step. Therefore, the amount of deformation of the dust core material 18 during the molding process can be reduced as compared with the case where the concave portions corresponding to the grooves 7a, 7b, 7c are formed only by the molding process, and a phenomenon such as buckling can be suppressed. . In particular, since the powder core material 18 is subjected to the molding process in a high density state, the powder core material 18 is likely to buckle.
  • the recesses corresponding to the grooves 7a, 7b, and 7c are formed in both the step of obtaining the powder core material 18 and the molding step, the recesses are pressed by pressing the powder core material 18 in both steps. It is important that the positions to be formed are the same. Therefore, in the forming step, the recesses corresponding to the grooves 7a, 7b, and 7c are formed by aligning the dust core 18 and the upper punch 24 with the shape corresponding to the flat surface 5b of the dust core 18 as a reference. The positions to be formed can be matched.
  • the thrust bearing 1 can be made cheaper.
  • the thrust bearing 1 is cylindrical, and has a surface having a hole 2 shape at the center on the front and back sides, and a dust core material after the sintering step P7 on the edge of the hole 2 shape on one of the surfaces.
  • the high peristaltic part 5 which is a part corresponding to 18 is arranged. Therefore, the edge of the hole 2 on the other surface opposite to the one surface receives the entire high swinging portion 5 that receives a thrust load. For this reason, even if the high vibration portion 5 receives a thrust load, it is difficult to apply the peeling stress to the joint portion between the high vibration portion 5 and the outer peripheral portion 6, but rather, the stress that makes the joint portion adhere is applied.
  • the Rukoto Therefore, the thrust bearing 1 which can reduce the above-mentioned peeling etc. can be provided.
  • a thrust bearing 1 is a cylindrical thrust bearing 1, and has a surface having a hole 2 in the center on the front and back surfaces, and one of the surfaces is a height that becomes an edge of the hole 2.
  • the peristaltic part 5 is made of a material containing copper as a main component and imparts slidability and wear resistance.
  • the outer peripheral part 6 other than the high peristaltic part 5 is 60% by weight with copper.
  • the high-swing part 5 is more slidable and wear-resistant than the outer peripheral part 6, and the high-swing part 5 and the outer peripheral part 6 on one surface are grooves 7a. , 7b, 7c and oil groove 3 respectively.
  • the edge of the hole 2 on the other surface opposite to the one surface receives the entire high swinging portion 5 that receives the thrust load. Therefore, even if the high vibration portion 5 is subjected to a thrust load, peeling stress is hardly applied to the joint portion between the high vibration portion 5 and the outer peripheral portion 6. Will be granted. Therefore, the thrust bearing 1 which can reduce the above-mentioned peeling etc. can be provided.
  • the shape of the oil groove 3 and the groove 7a, 7b, 7c is formed simultaneously with respect to the said press-contacting object, and the compacting body 17 is obtained. Therefore, compared with the case where the grooves 7a, 7b, 7c formed in the high swing portion 5 and the oil groove 3 formed in the outer peripheral portion 6 are separately formed, the positional accuracy thereof can be improved. In particular, this positional accuracy is such that a passage such as a recess or a through hole is formed between the oil groove 3 of the outer peripheral portion 6 and the grooves 7a, 7b, and 7c of the high swinging portion 5, and communicates with each other by the passage. It becomes very important when trying.
  • the first metal powder 17 is compacted into a cylindrical shape and a part of the periphery of the cylindrical hole is cut off. And a step P2 of obtaining a powder core material 18 in which a part of the grooves 7a, 7b, 7c is formed in a concave shape. Then, the second metal powder 27 different from the first metal powder 17 and the powder core material 18 are set on the basis of the shape corresponding to the flat surface 5b of the powder core material 18, and the powder core material 18 and the upper punch.
  • the process P4 and P5 which supply in the die
  • the molding process P6 which compression-molds the 2nd metal powder 27 by the upper punch 14 and the lower punch 15 in the die
  • the oil grooves 6 are formed such that the convex portions 24a and 24b formed on the upper punch 14 correspond to the convex portions 24a and 24b at the same time with respect to the powder core 18 and the second metal powder 27.
  • the shape of the grooves 7a, 7b, 7c are formed, and the green compact 28 in which the green core material 18 and the second metal powder 27 are joined is formed.
  • the sintering process P7 which heats and compacts a compacting body.
  • the high peristaltic part 5 which is a part equivalent to the powder core material 18 after the sintering process P7 slides more than the outer peripheral part 6 which is a part corresponding to the second metal powder 27 after the sintering process P7. Excellent in mobility and wear resistance.
  • the second metal powder 27, that is, the metal material of the outer peripheral portion 6, has a total iron content of 60% by weight. ing.
  • the metal material composition may be appropriately changed such that the iron content is 80% by weight or less, 70% by weight or less, 60% by weight or less, or 50% by weight or less. . If the iron content is increased, the cost of the thrust bearing 1 can be reduced. Further, the content of iron and tin can be made zero, and only electrolytic copper powder can be used as the metal component. If the iron content of the second metal powder 27 exceeds 80% by weight, the difference in shrinkage ratio during sintering with the first metal powder 17 is too large. There is a possibility that the bonding between the part 5 and the outer peripheral part 6 may be adversely affected.
  • the method for manufacturing the thrust bearing 1 according to the embodiment of the present invention, 4 parts by weight of cuprous molybdenum disulfide is included in the first metal powder. And the molybdenum disulfide compounding ratio of the high swing part 5 is 4 weight%. However, the molybdenum disulfide content ratio can be appropriately changed within a range of, for example, 1% by weight to 10% by weight. Further, in place of molybdenum disulfide, materials that impart slidability and wear resistance include manganese (such as manganese sulfide as a starting material), carbon materials such as graphite or pseudographite, lead, bismuth and tin.
  • manganese such as manganese sulfide as a starting material
  • carbon materials such as graphite or pseudographite
  • lead bismuth and tin.
  • the metal material composition can be changed as appropriate, such as using an alloy, bismuth (the blending ratio is, for example, 1 to 10% by weight), iron sulfide, or the like.
  • each of the powders of copper and iron may be used as the second metal powder.
  • a partial diffusion alloy it is difficult to segregate copper or iron during the sintering step (P7), so it is preferable to use a partial diffusion alloy.
  • the particle size of each powder of the 1st metal powder 17 and the 2nd metal powder 27 is 1 to 200 micrometers suitable for powder metallurgy. Using. However, the particle size of some or all of the powders constituting these may be outside the range of 1 to 200 ⁇ m, for example, 0.5 to 250 ⁇ m.
  • the content of zinc stearate contained in the first metal powder and the second metal powder 14 can be changed as appropriate. In addition, zinc stearate can be replaced with other wax materials such as so-called amide wax, calcium stearate, lithium stearate and the like.
  • spindle oil may be added to the first metal powder 17 and the second metal powder 27.
  • the sintering step P7 is performed in an ammonia decomposition gas atmosphere, it may be performed in another reducing atmosphere such as a hydrogen atmosphere or an inert gas atmosphere such as a nitrogen atmosphere.
  • the second metal powder 27 used was 20 times the weight of the first metal powder 17 used in the production of the powder core 18. However, the usage amount of the second metal powder 27 can be in the range of 5 to 30 times that of the first metal powder 17. By increasing this multiple, the cost of the thrust bearing 1 can be reduced.
  • Step P5 the dust core material 18 is embedded in the second metal powder 27 so that the upper surface thereof is exposed and the upper surface of the dust core material 18 is not covered with the second metal powder 27. Arranged. However, in the process P5, the powder core material 18 is placed on the second metal powder 27, and the powder core material 18 is embedded in the second metal powder 27 in the next molding process P6. good. Further, in step P5, the dust core material 18 is partially embedded in the second metal powder 27, and in the next molding step P6, the dust core material 18 is placed in the second metal powder 27 as shown in FIG. As shown in FIG.
  • the dust core material 18 is formed by compacting the first metal powder 17 into a cylindrical shape and by cutting off a part of the periphery of the cylindrical hole.
  • a cylindrical shape or the like may be used.
  • the “tubular shape” includes a cylindrical shape, an elliptical cylindrical shape, a polygonal cylindrical shape, and the like.
  • the reference shape is other than the shape corresponding to the plane 5b.
  • Various shapes can be adopted. For example, a recess is formed in a part of the upper surface 5a of the high sliding portion 5.
  • the shape having such a dent is also a shape obtained by cutting out a part of the periphery of the cylindrical hole from the shape of the powder core material 18. Furthermore, it is good also as a shape which cut off a part of circumference
  • the uneven surface formed on the powder core material 18 is formed by both the process of obtaining the powder core material 18 and the molding process. However, this uneven surface may be performed only in the step of obtaining the powder core 18 or only in the molding step. In the step of obtaining the dust core material 18, the first metal powder 17 is compression-molded. Therefore, changing the shape of the dust core material 18 in the subsequent formation step may cause buckling. Therefore, the uneven surface is preferably performed only in the step of obtaining the powder core material 18. The uneven surface may be formed by a recompression process other than the step of obtaining the powder core 18 and / or the molding step.
  • oil flow paths formed in the dust core 18 and the second metal powder 27 are formed such that the passages of these oil flow paths are formed as depressions or through holes so as to communicate with each other. Also good.
  • the high-density high-swing part 5 and the outer peripheral part 6 having a lower density than the high-sliding part 5 are made of a metal material containing copper.
  • a material having higher wear resistance such as brass or stainless steel can be used for the high swing portion 5.
  • the thrust bearing 1 is configured such that the upper surface 5a of the high swing portion 5 is on the same plane as the upper surface 6a of the outer peripheral portion 6.
  • the upper surface 5 a of the high swing portion 5 may protrude from the upper surface 6 a of the outer peripheral portion 6, and conversely, the upper surface 6 a of the outer peripheral portion 6 protrudes from the upper surface 5 a of the high swing portion 5. Also good.
  • the lower surface of the upper punch 24 has irregularities (irregular surfaces).
  • the punch 24 may be divided into a plurality of punches having a dividing surface in the moving direction to form a multi-stage punch, and the same function as the formation of the concavo-convex portion may be performed.
  • the lower punches 15 and 25 and the upper punch 14 can be multi-stage punches.
  • the density of the high peristaltic part 5 is made higher than the density of the outer peripheral part 6, the density of the high peristaltic part 5 and the density of the outer peripheral part 6 are made the same, or the density of the high peristaltic part 5 is made. You may make it lower than the density of the outer peripheral part 6.
  • oil groove 3 of the outer peripheral portion 6 and the grooves 7a, 7b, 7c of the high swinging portion 5 are separated from each other, but a passage having a concave shape or a through-hole shape is formed and communicated with each other by the passage. Also good.
  • the recompression process P8 may be omitted, for example, when the shape of the sintered body substantially matches the size of each part of the target thrust bearing 1 at the end of the sintering process P7. Further, the shapes of the oil groove 3 and the grooves 7a, 7b, and 7c may be formed only in the recompression process P8 without being formed in the molding process P6.
  • the first metal powder 17 is compacted into a cylindrical shape to obtain a powder core 18, and the second metal powder 27 and the powder core 18 different from the first metal powder 17 are die-molded.
  • a recompressing step of correcting the size of each part of the sintered body by using the punch, and the recompressing step includes a second uneven surface formed on the second punch and / or the second mold.
  • the portion corresponding to the powder core 18 after the sintering step P7 and / or after the sintering step P7 2 is a step of simultaneously forming a shape corresponding to the second uneven surface with respect to the portion corresponding to the metal powder 27, and the portion corresponding to the powder core material 18 after the sintering step P7 is the sintering step P7.
  • the slidability and wear resistance are superior to the portion corresponding to the second metal powder 27 later.
  • the second concavo-convex surface forms convex portions 24a that form the shape of the oil grooves 6 shown in FIG. 7 in the second metal powder 27 portion, and the shapes of the grooves 7a, 7b, and 7c in the powder core 18.
  • each part such as the shape of the oil groove 6 and the shapes of the grooves 7a, 7b, and 7c, which have slightly changed in shape due to shrinkage or the like in the sintering process P7, are corrected.
  • the shape of both the oil groove 3 and the grooves 7a, 7b, and 7c is corrected, but the shape of either the oil groove 3 or the grooves 7a, 7b, and 7c is corrected. It's also good.
  • the grooves 7 a, 7 b, and 7 c are shallower than the oil groove 3. Therefore, the shape of the deep oil groove 3 can be formed in the molding process P6 that is easy to change in shape by a molding machine, and the shallow grooves 7a, 7b, and 7c can be formed (corrected) in the recompression process.
  • the 2nd uneven surface is formed in both the 2nd metal mold
  • the molding process P6 it may be difficult to form a very large uneven shape.
  • the reason for this is that if the shape change due to compression molding is large, there is a possibility of cracking later.
  • the shape is changed to such an extent that the objective is not reached (for example, 20 to 80% of the target), and finally the target uneven shape is obtained in the recompression step P8. And so on.
  • the powder core 18 is manufactured as shown in FIG. 5 and has a cylindrical shape.
  • the powder core 18 may have a plate shape, or may have a polygonal shape such as a quadrangle or a hexagon, or an elliptical cylindrical shape.
  • This cylindrical shape may have a flat shape such as a 5-yen coin whose outermost diameter is much larger than the height.
  • the powder core material 18 is obtained through the process P2, it is also possible to use what became a sintered body through the sintering process of only the powder core material 18 in the processes after the process P3. good.
  • the sintering step of only the dust core material 18 may reduce the sintering temperature or reduce the sintering time to such an extent that the dust core material 18 is not completely sintered but partially sintered. It can be shortened. By doing so, while reinforcing the powder core material 18, it becomes easy to deform in the subsequent molding step P6. Furthermore, instead of the powder core material 18, a metal member having the same shape as the powder core material 18 may be used.
  • the step P6 of obtaining the powder core material 18 in which the first metal powder 17 is formed into a cylindrical shape and compression-molding the powder core material 18 and the second metal powder 27 together is performed.
  • the second metal powder 27 is compacted into a shape similar to the shape of the outer peripheral portion 6 to obtain a powder core material, and then the powdered first metal powder 17 is removed from the high peristaltic portion 5. It is good also as obtaining the thrust bearing 1 through the process of supplying to a position and compressing together with the powder core material.
  • both the first metal powder 17 and the second metal powder 27 may be compression-molded together in a powder state to obtain the thrust bearing 1.
  • the number of the fixing holes 4 is four, the number can be appropriately changed to two, three, five and the like.
  • the shape of the fixing hole 4 can be a part or all of a polygon such as a triangle or a rectangle, an ellipse, or the like.
  • the size of the fixing hole 4 can be changed in whole or in part.
  • the number of the grooves 7a, 7b, 7c is three, but the number can be appropriately changed to two, four, etc.
  • channel 7a, 7b, 7c are made equal, the width dimension and the depth dimension may differ in part or all.
  • the holes 4 are provided at equal intervals, the holes 4 may be provided at not equal intervals.
  • the grooves 7a, 7b, and 7c are provided not at regular intervals, but the grooves 7a, 7b, and 7c may be provided at regular intervals.
  • a deburring step may be provided in which the thrust bearing 1 is vibrated in a large amount of ceramic spheres and water to remove burrs slightly present at the pointed portion of the thrust bearing 1. .
  • FIG. 8 is a view showing a part of the manufacturing method of the modified example of the thrust bearing according to the embodiment of the present invention, and corresponds to FIG.
  • the same members as those shown in FIG. 6 are denoted by the same reference numerals as those shown in FIG.
  • FIG. 8 The difference between FIG. 8 and FIG. 6 is that, first, a powder core material 31 having a height corresponding to the powder core material 18 higher than that of the powder core material 18 is arranged in the die 12, and then the powder core material 31 The second metal powder 27 is supplied to the outer peripheral surface side.
  • Other steps are the same as those shown in FIG.
  • the thrust bearing 32 in which the dust core material 31 is exposed on the upper and lower surfaces of the drawing is produced.
  • the thrust bearing 32 having this configuration it is considered that the thrust load received by the high swing portion 5 tends to concentrate on the joint surface between the high swing portion 5 and the outer peripheral portion 6.
  • the thrust bearing 1 that has undergone the manufacturing method shown in FIG.
  • the thickness of the powder core material 31 in the horizontal direction in the figure can be slightly increased (shown as the same thickness in FIGS. 8C and 8D). If the green compact density of the green compact 31 is sufficiently high, the change in the thickness will be large, and if the green compact density of the green compact 31 is low, the change in the thickness will be small.
  • the second metal powder 27 is first supplied into the die 12 and then the powder core material 18 is disposed. Yes. Further, the lower surface of the upper punch 24 has convex portions 24 a and 24 b. However, in the manufacturing method of the thrust bearing 1 according to the embodiment of the present invention, first, the dust core material 18 is disposed on the upper surface of the lower punch 15 in the die 12, and then the second metal powder 27 is applied to the lower punch 15. The upper surface may be supplied on the dust core material 18.
  • the lower surface of the upper punch 24 does not have the convex portions 24a and 24b, and the upper surface of the lower punch 15 has convex portions that function in the same manner as the convex portions 24a and 24b of the lower surface of the upper punch 24 shown in FIG. Will be formed.
  • the dust core material 18 when the dust core material 18 is arranged on the upper surface of the lower punch 15, it is considered that the impact given to the dust core material 18 is large. The method is preferred.
  • the second metal powder 27 functions as a cushion when the powder core 18 is disposed.
  • the manufacturing method of the thrust bearing 1 according to the embodiment of the present invention is shown in FIG. 4, FIG. 5 and FIG.
  • a manufacturing method in which the powder core 18 and the second metal powder 27 are compression-molded together after the powder core 18 is formed is not limited to the product field of thrust bearings, and uses powder metallurgy. It can be applied to other product areas.
  • FIG. 9 is a view showing a thrust bearing 41 of a modification of the thrust bearing 1 according to the embodiment of the present invention in the same manner as FIG.
  • the thrust bearing 41 has a shape in which about a quarter of the left side in FIG.
  • the high-sliding portion 5 of the thrust bearing 41 is compacted into a shape in which a part of the periphery of the hole is cut out so that a part of the inner peripheral surface of the cylindrical hole is missing, Manufactured similarly.
  • the powder core material having such a shape also has a shape obtained by cutting off a part of the periphery of the cylindrical hole.
  • Other members such as the outer peripheral portion 6 are manufactured in the same manner as the thrust bearing 1 or the thrust bearing 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Provided is a method for manufacturing a thrust bearing which actually can be used suitably in a turbocharger. This method has: a step wherein a first metal powder (17) is compression-molded into a tubular shape, thereby obtaining a compressed powder core material (18); a step wherein the compressed powder core material (18) and a second metal powder (27) different from the first metal powder (17) are supplied to the interior of a die (12); and a molding step wherein the second metal powder (27), is compression molded together with the compressed powder core material (18) within the die (12) by means of an upper punch (14) and a lower punch (15). The molding step is a step wherein protrusions formed on the upper punch (14) form an irregular shape which corresponds to the protrusions, said irregular shape being formed simultaneously with respect to the compressed powder core material (18) and the second metal powder (27), thereby forming a compressed powder compact (28) in which the compressed powder core material (18) and the second metal powder (27) are joined together. In addition, there is a sintering step wherein the compressed powder compact is heated and sintered, and a high-sliding part, which is the portion corresponding to the compressed powder core material (18) after the sintering step, has a better sliding property and abrasion resistance than an outer circumferential part, which is the portion corresponding to the second metal powder (27) after the sintering step.

Description

ターボチャージャー用のスラストベアリングの製造法およびターボチャージャー用のスラストベアリングManufacturing method of thrust bearing for turbocharger and thrust bearing for turbocharger
 本発明は、ターボチャージャー用のスラストベアリングの製造法およびターボチャージャー用のスラストベアリングに関する。 The present invention relates to a method for manufacturing a thrust bearing for a turbocharger and a thrust bearing for a turbocharger.
 マグネシウム及びアルミニウムの2元素のうちの少なくとも1種を主成分とする合金粉末混合体を形成する工程、ホウ素、炭化ホウ素、炭化珪素、酸化アルミニウム及び窒化珪素のうちの少なくとも1種を前記合金粉末混合体の一部に含有させて複合材料粉末成型体を形成する工程、前記合金粉末混合体と前記複合材料粉末成型体とを一体成型し、その後焼結する工程、を含んでなり前記複合材料成型、焼結部を摺動部にのみ用いるように形成せしめたことを特徴とする軽量耐摩耗部材の製造方法(請求項2、図面など参照)が提案されている(特許文献1参照)。 A step of forming an alloy powder mixture containing at least one of two elements of magnesium and aluminum as a main component, and at least one of boron, boron carbide, silicon carbide, aluminum oxide and silicon nitride is mixed with the alloy powder. Forming the composite material powder molded body by containing it in a part of the body, integrally molding the alloy powder mixture and the composite material powder molded body, and thereafter sintering the composite material molded body. There has been proposed a method for manufacturing a lightweight wear-resistant member (refer to claim 2, drawings, etc.) characterized in that the sintered part is formed so as to be used only for the sliding part (see Patent Document 1).
特開平03-036231号公報Japanese Patent Laid-Open No. 03-036231
 しかしながら、ターボチャージャー用のスラストベアリングは、広い温度範囲(特に高温側に)に晒され、オイル中の硫黄分による腐食の影響があり、振動が付与され、かつスラスト荷重を受けるという、非常に過酷な環境下で使用される特殊性がある。一方、特許文献1が想定しているのは、軽薄短小を求められる磁気ヘッド等の製品の部品であり、ターボチャージャー用のスラストベアリングが使用される環境では絶対に使用されない。そのため、ターボチャージャー用のスラストベアリングは、特許文献1に記載されている軽量耐摩耗部材とは、使用する材料および設計思想等の基本的事項が全く異なる。 However, thrust bearings for turbochargers are exposed to a wide temperature range (especially on the high temperature side), have a corrosive effect due to sulfur in the oil, are vibrated, and are subject to thrust loads. Have special characteristics that are used in difficult environments. On the other hand, Patent Document 1 assumes parts of products such as magnetic heads that are required to be light and thin, and is never used in an environment where a thrust bearing for a turbocharger is used. For this reason, a thrust bearing for a turbocharger is completely different from the lightweight wear-resistant member described in Patent Document 1 in terms of basic materials such as materials used and design concept.
 そこで、本発明の目的は、現実にターボチャージャーに好適に使用できるスラストベアリングの製造法およびスラストベアリングを提供することである。 Therefore, an object of the present invention is to provide a thrust bearing manufacturing method and a thrust bearing that can be suitably used in practice for turbochargers.
 上記目的を達成するため、本発明のターボチャージャー用のスラストベアリングの製造法は、銅を主成分とし、10重量%以下の錫を有する第1の金属粉末を筒状または筒状の孔の周囲の一部を切り取った形状に圧粉成形し、圧粉芯材を得る工程と、銅を含み、80重量%以下の鉄を有する第2の金属粉末と圧粉芯材とを金型内に供給する工程と、第2の金属粉末と圧粉芯材とを共に金型内でパンチにより圧縮成形する成形工程と、を有し、成形工程は、パンチに形成された凹凸面が、圧粉芯材および上記第2の金属粉末に対しそれぞれ同時に凹凸面に対応する形状であるオイルの流路を形成し、圧粉芯材と第2の金属粉末が接合された圧粉成形体を形成する工程であり、その後圧粉成形体を加熱し焼結させる焼結工程を有し、焼結後の圧粉芯材に相当する部分と、焼結後の第2の金属粉末に相当する部分が接合しており、焼結工程後の圧粉芯材に相当する部分は、焼結工程後の第2の金属粉末に相当する部分よりも摺動性および耐摩耗性に優れる。 In order to achieve the above object, a method of manufacturing a thrust bearing for a turbocharger according to the present invention is characterized in that a first metal powder containing copper as a main component and containing 10 wt% or less of tin is formed around a cylindrical or cylindrical hole. A step of obtaining a powder core material by compacting into a shape obtained by cutting a part of the second metal powder and a second metal powder containing copper and containing iron of 80% by weight or less and the powder core material in a mold And a forming step in which both the second metal powder and the powder core material are compression-molded by a punch in a mold, and the forming step is such that the uneven surface formed on the punch is compressed An oil flow path having a shape corresponding to the uneven surface is formed on the core material and the second metal powder at the same time, and a powder compact formed by joining the powder core material and the second metal powder is formed. Process, and then has a sintering process in which the green compact is heated and sintered. The portion corresponding to the core material and the portion corresponding to the second metal powder after sintering are joined, and the portion corresponding to the powder core material after the sintering step is the second portion after the sintering step. It is superior in slidability and wear resistance than the portion corresponding to the metal powder.
 上記目的を達成するため、本発明のターボチャージャー用のスラストベアリングの製造法は、銅を主成分とし、10重量%以下の錫を有する第1の金属粉末を筒状または筒状の孔の周囲の一部を切り取った形状に圧粉成形し、圧粉芯材を得る工程と、銅を含み、80重量%以下の鉄を有する第2の金属粉末と圧粉芯材とを金型内に供給する工程と、第2の金属粉末を圧粉芯材と共に金型内でパンチにより圧縮成形して圧粉成形体を得る成形工程と、を有し、圧粉成形体を加熱し焼結させ、圧粉芯材に相当する部分と第2の金属粉末に相当する部分が接合した焼結体を得る焼結工程と、金型とは異なる第2の金型を用いて、パンチとは異なる第2のパンチにより、焼結体の各部寸法の矯正をする再圧縮工程と、を有し、再圧縮工程は、第2のパンチおよび第2の金型に形成された第2の凹凸面が、焼結工程後の圧粉芯材に相当する部分および焼結工程後の第2の金属粉末に相当する部分に対し、同時に第2の凹凸面に対応する形状であるオイルの流路を形成する工程であり、焼結工程後の圧粉芯材に相当する部分は、焼結工程後の第2の金属粉末に相当する部分よりも摺動性および耐摩耗性に優れる。 In order to achieve the above object, a method of manufacturing a thrust bearing for a turbocharger according to the present invention is characterized in that a first metal powder containing copper as a main component and containing 10 wt% or less of tin is formed around a cylindrical or cylindrical hole. A step of obtaining a powder core material by compacting into a shape obtained by cutting a part of the second metal powder and a second metal powder containing copper and containing iron of 80% by weight or less and the powder core material in a mold And a step of compressing and molding the second metal powder together with the powder core material by a punch in a mold to obtain a powder compact, and heating and sintering the powder compact , A sintering step for obtaining a sintered body in which a portion corresponding to the powder core material and a portion corresponding to the second metal powder are joined, and a second die different from the die, and different from the punch A re-compression step of correcting the size of each part of the sintered body by the second punch, and the re-compression step The second uneven surface formed on the punch and the second mold is simultaneously applied to the portion corresponding to the powder core material after the sintering step and the portion corresponding to the second metal powder after the sintering step. It is a step of forming an oil passage having a shape corresponding to the second uneven surface, and a portion corresponding to the powder core material after the sintering step corresponds to the second metal powder after the sintering step. Better sliding and wear resistance than part.
 ここで、成形工程は、圧粉芯材に相当する部分の粉体密度が第2の金属粉末に相当する部分の粉体密度よりも高くなるように行うことが好ましい。 Here, it is preferable to perform the forming step so that the powder density in the portion corresponding to the powder core material is higher than the powder density in the portion corresponding to the second metal powder.
 ここで、圧粉芯材の凹凸面は、圧粉芯材を得る工程および成形工程の両方で形成することが好ましい。 Here, the uneven surface of the powder core material is preferably formed in both the step of obtaining the powder core material and the molding process.
 また、圧粉芯材の形状を筒状の孔の周囲の一部を切り取った形状とした場合に、その切り取った部分の形状を基準として、成形工程における圧粉芯材とパンチの位置合わせを行うことが好ましい。 In addition, when the shape of the dust core material is a shape obtained by cutting out a part of the periphery of the cylindrical hole, the positioning of the dust core material and the punch in the molding process is performed based on the shape of the cut portion. Preferably it is done.
 また、圧粉芯材および第2の金属粉末にそれぞれ形成するオイルの流路が互いに連通していることとすることができる。 Also, the oil flow paths formed in the dust core material and the second metal powder can be in communication with each other.
 上記目的を達成するため、本発明のターボチャージャー用のスラストベアリングは、中央に孔を有する面を表裏に有し、そのうち一方の面の、孔の縁部が、銅を主成分とし、10重量%以下の錫を有し、摺動性および耐摩耗性を付与する材料を含み、縁部以外の部分が、銅と、80重量%以下の鉄と、を含む金属材料からなり、縁部と縁部以外の部分が接合され、縁部が縁部以外の部分よりも摺動性および耐摩耗性に優れ、一方の面の、縁部および縁部以外の部分が、それぞれオイルの流路となる凹部を有している。 In order to achieve the above object, a thrust bearing for a turbocharger according to the present invention has a surface having a hole in the center on the front and back surfaces, and the edge of the hole on one surface is mainly composed of copper and has a weight of 10 wt. % Of tin, including a material imparting slidability and wear resistance, and a portion other than the edge portion is made of a metal material including copper and iron of 80% by weight or less, Parts other than the edge are joined, the edge is more slidable and wear-resistant than the part other than the edge, and the other part of the one surface is the oil flow path. Has a recess.
 ここで、縁部が縁部以外の部分よりも高密度であることが好ましい。 Here, it is preferable that the edge portion has a higher density than the portion other than the edge portion.
 本発明では、現実にターボチャージャーに好適に使用できるスラストベアリングの製造法およびスラストベアリングを提供することができる。 In the present invention, it is possible to provide a thrust bearing manufacturing method and a thrust bearing that can be suitably used for a turbocharger.
本発明の実施の形態に係るスラストベアリングの平面概要図である。1 is a schematic plan view of a thrust bearing according to an embodiment of the present invention. 本発明の実施の形態に係るスラストベアリングの底面概要図である。It is a bottom face schematic diagram of a thrust bearing concerning an embodiment of the invention. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 本発明の実施の形態に係るスラストベアリングの製造工程のフロー図である。It is a flowchart of the manufacturing process of the thrust bearing which concerns on embodiment of this invention. 圧粉芯材の製造が、(A)から(D)に進むに従って進行していく様子を示す芯材製造装置の縦断面図である。It is a longitudinal cross-sectional view of the core material manufacturing apparatus which shows a mode that manufacture of a powder core material progresses as it progresses from (A) to (D). 圧粉成形体の製造が、(A)から(E)に進むに従って進行していく様子を示す圧粉成形体製造装置の縦断面図である。It is a longitudinal cross-sectional view of the compacting body manufacturing apparatus which shows a mode that manufacture of a compacting body progresses as it progresses from (A) to (E). 工程P6における、上パンチと圧粉成形体との接触状態を示す概略図である。It is the schematic which shows the contact state of an upper punch and a compacting body in process P6. 本発明の実施の形態に係るスラストベアリングの変形例の製造法を示す図で、図6に相当する図である。It is a figure which shows the manufacturing method of the modification of the thrust bearing which concerns on embodiment of this invention, and is a figure equivalent to FIG. 本発明の実施の形態に係るスラストベアリングの変形例を図1と同様に示す図である。It is a figure which shows the modification of the thrust bearing which concerns on embodiment of this invention similarly to FIG.
 以下、本発明の実施の形態に係るターボチャージャー用のスラストベアリング(以下、「スラストベアリング」と略記する)およびその製造法について、図面を参照しながら説明する。 Hereinafter, a thrust bearing for a turbocharger (hereinafter abbreviated as “thrust bearing”) according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings.
(本発明の実施の形態に係るスラストベアリングの構成)
 図1は、本発明の実施の形態に係るスラストベアリング1の平面(上面、一方の面)概要図である。このスラストベアリング1は、ターボチャージャー内で使用される。スラストベアリング1は、外周が円形であり、中央に円形の孔2を有している円筒形である。そしてスラストベアリング1は、孔2の周囲にオイルの流路となるオイル溝3を有している。そしてスラストベアリング1は、ターボチャージャーに固定されるための、円形で同じ大きさの固定用穴4を等間隔に4つ有している。そして孔2の縁部には、筒状の形状であり且つ円筒状の孔2の周囲の一部を切り取った形状で他の部分よりも摺動性および耐摩耗性に優れる高褶動部5(焼結工程後の圧粉芯材に相当する部分)を有している。その円筒状の孔2の周囲の一部を切り取った切断面に相当する部分は、平面5bとなっている。この高褶動部5の上面がスラスト荷重を受ける面である。ここで、他の部分は外周部6(焼結工程後の第2の金属粉末に相当する部分)とする。また、高褶動部5には、オイル溝3と同様にオイルの流路となる溝7a,7b,7c(幅寸法および深さ寸法は等しくされている)が形成されている。ここで、オイル溝3と溝7a,7b,7cは凹部となり、それ以外の部分は相対的に凸部となるため、スラストベアリング1の上面は凹凸部を有している。高褶動部5は、外周部6よりも高密度である。
(Configuration of thrust bearing according to the embodiment of the present invention)
FIG. 1 is a schematic plan view (upper surface, one surface) of a thrust bearing 1 according to an embodiment of the present invention. This thrust bearing 1 is used in a turbocharger. The thrust bearing 1 has a circular outer periphery and a cylindrical shape having a circular hole 2 in the center. The thrust bearing 1 has an oil groove 3 that serves as an oil flow path around the hole 2. The thrust bearing 1 has four fixing holes 4 which are circular and have the same size and are equidistant to be fixed to the turbocharger. The edge portion of the hole 2 has a cylindrical shape and a high peristaltic portion 5 having a shape obtained by cutting out a part of the periphery of the cylindrical hole 2 and being more slidable and wear-resistant than other portions. (Part corresponding to the powder core material after the sintering step). A portion corresponding to a cut surface obtained by cutting a part of the periphery of the cylindrical hole 2 is a flat surface 5b. The upper surface of the high swing portion 5 is a surface that receives a thrust load. Here, let another part be the outer peripheral part 6 (part corresponded to the 2nd metal powder after a sintering process). Further, the high swinging portion 5 is formed with grooves 7 a, 7 b, 7 c (the width dimension and the depth dimension are the same) which are oil flow paths as in the oil groove 3. Here, since the oil groove 3 and the grooves 7a, 7b, and 7c are concave portions and the other portions are relatively convex portions, the upper surface of the thrust bearing 1 has an uneven portion. The high peristaltic part 5 has a higher density than the outer peripheral part 6.
 図2は、スラストベアリング1の底面(下面)概要図である。スラストベアリング1の底面には孔2および固定用穴4が表れているが、オイル溝3および溝7a,7b,7cに相当するものは表れていない。孔2の縁部は、外周部6と一体となっている。 FIG. 2 is a schematic diagram of the bottom surface (lower surface) of the thrust bearing 1. Although the hole 2 and the fixing hole 4 appear on the bottom surface of the thrust bearing 1, those corresponding to the oil groove 3 and the grooves 7a, 7b, and 7c do not appear. The edge of the hole 2 is integrated with the outer peripheral portion 6.
 図3は、図1におけるA-A断面図である。高褶動部5が筒状であり、図3の上側である平面側のみに露出している。また、高褶動部5の上面5aは、外周部6の上面6aと同一平面上にある。 FIG. 3 is a cross-sectional view taken along the line AA in FIG. The high peristaltic part 5 has a cylindrical shape and is exposed only on the plane side which is the upper side of FIG. Further, the upper surface 5 a of the high swing portion 5 is on the same plane as the upper surface 6 a of the outer peripheral portion 6.
 ここで、外周部6は、銅が37重量部、鉄が60重量部、錫が3重量部からなる金属材料である。また、高褶動部5は、銅が87重量部、二硫化モリブデンが4重量部、錫が9重量部からなる金属材料である。ここで、二硫化モリブデンの配合比は、4重量%である。 Here, the outer peripheral portion 6 is a metal material composed of 37 parts by weight of copper, 60 parts by weight of iron, and 3 parts by weight of tin. Further, the high peristaltic part 5 is a metal material composed of 87 parts by weight of copper, 4 parts by weight of molybdenum disulfide, and 9 parts by weight of tin. Here, the mixing ratio of molybdenum disulfide is 4% by weight.
(本発明の実施の形態に係るスラストベアリングの製造法)
 図4は、スラストベアリング1の製造工程のフロー図である。まず、電解銅粉87重量部と、鍍銅二硫化モリブデンを4重量部と、アトマイズ錫粉を9重量部と、ワックスとなるステアリン酸亜鉛を0.5重量部とを、10分から30分かけて十分に混合し、第1の金属粉末を配合する(工程P1)。ここで、各粉末の粒径は、粉末冶金に適した1から200μmのものを用いた。なお、第1の金属粉末における摺動性および耐摩耗性を付与する材料は、鍍銅二硫化モリブデンである。
(Method of manufacturing a thrust bearing according to an embodiment of the present invention)
FIG. 4 is a flowchart of the manufacturing process of the thrust bearing 1. First, 87 parts by weight of electrolytic copper powder, 4 parts by weight of copper disulfide molybdenum disulfide, 9 parts by weight of atomized tin powder, and 0.5 parts by weight of zinc stearate serving as a wax take 10 to 30 minutes. Are mixed thoroughly and the first metal powder is blended (step P1). Here, the particle diameter of each powder was 1 to 200 μm suitable for powder metallurgy. The material imparting slidability and wear resistance in the first metal powder is copper bromide molybdenum disulfide.
 その第1の金属粉末を金型内に供給し圧縮して圧粉成形し、筒状の形状であり且つ円筒状の孔の周囲の一部を切り取った形状の圧粉芯材を得る(工程P2)。図5は、圧粉芯材の製造が、(A)から(D)に進むに従って進行していく様子を示す芯材製造装置10の縦断面図である。図5(A)に示すように、芯材製造装置10は、テーブル11と、筒状の金型であるダイス12を有している。ここで、テーブル11の上面とダイス12の上面は同一平面上にある。芯材製造装置10は、さらにダイス12の円柱状の空間を円筒状とする円柱状のコア13をダイス12中に配置している。コア13の上面は、テーブル11の上面およびダイス12の上面と同一平面上にある。 The first metal powder is supplied into a mold, compressed and compacted to obtain a powder core material having a cylindrical shape and a part of the periphery of a cylindrical hole cut off (step) P2). FIG. 5 is a vertical cross-sectional view of the core material manufacturing apparatus 10 showing a state in which the production of the powder core material progresses from (A) to (D). As shown in FIG. 5A, the core material manufacturing apparatus 10 includes a table 11 and a die 12 that is a cylindrical mold. Here, the upper surface of the table 11 and the upper surface of the die 12 are on the same plane. The core material manufacturing apparatus 10 further includes a columnar core 13 in the die 12 in which the columnar space of the die 12 is cylindrical. The upper surface of the core 13 is flush with the upper surface of the table 11 and the upper surface of the die 12.
 また芯材製造装置10は、ダイス12とコア13によって形成された、ダイス12内部の筒状の形状であり且つ円筒状の孔の周囲の一部を切り取った形状の空間に密に挿入される、ダイス12内部の形状と適合する形状の上パンチ14と、上パンチ14と略同形状の下パンチ15を有している。なお、上パンチ14には、上述した溝7a,7b,7cの一部を形成するための凸部(図示省略)が形成されている。また、テーブル11上には、下面に粉末供給用の穴(図示省略)を有する粉末供給容器16が置かれている。この粉末供給装置16の中には、第1の金属粉末17が詰められている。また、この粉末供給装置16は、テーブル11の上面、ダイス12の上面およびコア13の上面を移動可能とされている。 The core material manufacturing apparatus 10 is densely inserted into a space formed by the die 12 and the core 13 and having a cylindrical shape inside the die 12 and a part of the periphery of the cylindrical hole cut out. The upper punch 14 having a shape matching the shape inside the die 12 and the lower punch 15 having substantially the same shape as the upper punch 14 are provided. The upper punch 14 is provided with convex portions (not shown) for forming a part of the above-described grooves 7a, 7b, 7c. A powder supply container 16 having a powder supply hole (not shown) on the lower surface is placed on the table 11. The powder supply device 16 is packed with a first metal powder 17. Further, the powder supply device 16 is movable on the upper surface of the table 11, the upper surface of the die 12, and the upper surface of the core 13.
 図5(B)は、粉末供給装置16が移動して、ダイス12とコア13によって形成された円筒状の空間に、第1の金属粉末17を、粉末供給装置16の粉末供給用の穴から供給した状態を示している。第1の金属粉末17は、その上面がダイス12の上面およびコア13の上面と同一平面上となるまで供給される。 In FIG. 5B, the powder supply device 16 moves, and the first metal powder 17 is transferred from the powder supply hole of the powder supply device 16 into the cylindrical space formed by the die 12 and the core 13. The supplied state is shown. The first metal powder 17 is supplied until the upper surface thereof is flush with the upper surface of the die 12 and the upper surface of the core 13.
 図5(C)は、上パンチ14を同図の矢印方向(上側から下側へ)へと移動させ、下パンチ15を同図の矢印方向(下側から上側へ)へと移動させ、上パンチ14および下パンチ15によって第1の金属粉末17を圧縮成形した状態を示す図である。この圧縮成形によって、円筒状の圧粉芯材18が形成される。圧粉芯材18の圧粉体密度は、後述の図6に示す各工程に圧粉芯材18を供しても、圧粉芯材18が意図しない形状変形等しない、適切な密度とする。なお、圧粉芯材18には、上述した溝7a,7b,7cの一部に相当する凹形状が形成されている(図示省略)。また、圧粉芯材18には、上述した平面5bに相当する形状が形成されている(図示省略)。 5C, the upper punch 14 is moved in the arrow direction (from the upper side to the lower side) in the figure, and the lower punch 15 is moved in the arrow direction (from the lower side to the upper side) in the figure. It is a figure which shows the state which compression-molded the 1st metal powder 17 with the punch 14 and the lower punch 15. FIG. By this compression molding, a cylindrical powder core 18 is formed. The green compact density of the green powder core material 18 is set to an appropriate density that does not cause unintended shape deformation even if the green powder core material 18 is subjected to each step shown in FIG. The powder core 18 is formed with a concave shape corresponding to a part of the grooves 7a, 7b, 7c described above (not shown). Moreover, the shape corresponding to the plane 5b mentioned above is formed in the powder core material 18 (illustration omitted).
 図5(D)は、下パンチ15の上面を、ダイス12の上面およびコア13の上面と同一平面上となるまで、同図の矢印方向(下側から上側へ)へと移動させ、圧粉芯材18を取り出しやすくした状態を示す図である。 In FIG. 5D, the upper surface of the lower punch 15 is moved in the direction indicated by the arrow (from the lower side to the upper side) until it is flush with the upper surface of the die 12 and the upper surface of the core 13, and compaction is performed. It is a figure which shows the state which made it easy to take out the core material.
 次に第2の金属粉末を配合する(工程P3)。第2の金属粉末は、鉄と銅の部分拡散合金粉を80重量部と、電解銅粉を17重量部と、アトマイズ錫粉を3重量部と、ステアリン酸亜鉛を0.8重量部とを、10分から30分かけて十分に混合したものである。なお、第2の金属粉末の鉄の含有量は、60重量%である。また、第2の金属粉末の銅の含有量は、37重量%である。また、第2の金属粉末の錫の含有量は、3重量%である。ここで、各粉末の粒径は、粉末冶金に適した1から200μmのものを用いた。図6は、圧粉成形体の製造が、(A)から(E)に進むに従って進行していく様子を示す圧粉成形体製造装置20の縦断面図である。 Next, the second metal powder is blended (process P3). The second metal powder comprises 80 parts by weight of iron and copper partial diffusion alloy powder, 17 parts by weight of electrolytic copper powder, 3 parts by weight of atomized tin powder, and 0.8 part by weight of zinc stearate. Thoroughly mixed over 10 to 30 minutes. The iron content of the second metal powder is 60% by weight. The copper content of the second metal powder is 37% by weight. The tin content of the second metal powder is 3% by weight. Here, the particle diameter of each powder was 1 to 200 μm suitable for powder metallurgy. FIG. 6 is a vertical cross-sectional view of the green compact body manufacturing apparatus 20 showing a state in which the green compact manufacturing process proceeds from (A) to (E).
 図6(A)に示すように、圧粉成形体製造装置20は、テーブル21と、筒状のダイス22を有している。ここで、テーブル21の上面とダイス22の上面は同一平面上にある。圧粉成形体製造装置20は、さらにダイス22の円柱状の空間を円筒状とする円柱状のコア23をダイス22中に配置している。コア23の上面は、テーブル21の上面およびダイス22の上面と同一平面上にある。 As shown in FIG. 6 (A), the green compact molded body manufacturing apparatus 20 includes a table 21 and a cylindrical die 22. Here, the upper surface of the table 21 and the upper surface of the die 22 are on the same plane. The compacted body manufacturing apparatus 20 further includes a columnar core 23 in the die 22 that has a cylindrical space in the die 22. The upper surface of the core 23 is flush with the upper surface of the table 21 and the upper surface of the die 22.
 また圧粉成形体製造装置20は、ダイス22とコア23によって形成された円筒状の空間に密に挿入される、円筒状の上パンチ24と円筒状の下パンチ25を有している。また、テーブル21上には、下面に粉末供給用の穴(図示省略)を有する粉末供給容器26が置かれている。この粉末供給装置26の中には、第2の金属粉末27が詰められている。また、この粉末供給装置26は、テーブル21の上面、ダイス22の上面およびコア23の上面を移動可能とされている。なお、図6の上下方向であるコア23の長さ方向下側端部には、その長さ方向と直交する方向に伸びる鍔部(図示省略)があり、その鍔部から長さ方向に伸びる棒状部材(図示省略)がある。この棒状部材が4つの固定用穴4を後述するように形成する。 The compacted body manufacturing apparatus 20 has a cylindrical upper punch 24 and a cylindrical lower punch 25 which are inserted into a cylindrical space formed by the die 22 and the core 23 closely. A powder supply container 26 having a powder supply hole (not shown) on the lower surface is placed on the table 21. The powder supply device 26 is packed with a second metal powder 27. Further, the powder supply device 26 is movable on the upper surface of the table 21, the upper surface of the die 22, and the upper surface of the core 23. In addition, there is a flange portion (not shown) extending in a direction orthogonal to the length direction at the lower end portion in the length direction of the core 23 which is the vertical direction in FIG. 6, and extends from the flange portion in the length direction. There is a rod-like member (not shown). This rod-shaped member forms four fixing holes 4 as described later.
 図6(B)は、粉末供給装置26が移動して、ダイス22とコア23によって形成された円筒状の空間に、第2の金属粉末27を、粉末供給装置26の粉末供給用の穴から供給した状態を示している。第2の金属粉末27は、その上面がダイス22の上面およびコア23の上面と同一平面上となるまで供給される。この工程が、工程P4となる。なお、上述した棒状部材は、ダイス22とコア23によって形成された円筒状の空間を挿通している。そのため、棒状部材が配置されている空間には第2の金属粉末27は供給されていない。なお、第2の金属粉末27は、圧粉芯材18の製造に用いた第1の金属粉末17の20倍の重量を用いた。 In FIG. 6B, the powder supply device 26 moves, and the second metal powder 27 is put into the cylindrical space formed by the die 22 and the core 23 from the powder supply hole of the powder supply device 26. The supplied state is shown. The second metal powder 27 is supplied until the upper surface thereof is flush with the upper surface of the die 22 and the upper surface of the core 23. This process becomes process P4. The rod-shaped member described above passes through a cylindrical space formed by the die 22 and the core 23. Therefore, the second metal powder 27 is not supplied to the space where the rod-shaped member is disposed. In addition, the 2nd metal powder 27 used 20 times the weight of the 1st metal powder 17 used for manufacture of the compacting core material 18.
 図6(C)は、コア23の周面であって第2の金属粉末27中に、先に製造した圧粉芯材18をその上面が露出するように埋め込んで配置した状態を示す図である。このとき、上述した圧粉芯材18の平面5bに相当する部分を認識し、その平面5bに相当する部分が、上パンチ24の特定の部分と所定の位置関係になるように圧粉芯材18の配置角度を調整する。すなわち、平面5bの形状を基準として、圧粉芯材18と上パンチ24の位置合わせを行う。この位置合わせによって、圧粉芯材18を形成した際に形成した、上述した溝7a,7b,7cの一部に相当する凹形状を、後述する上パンチ24の凸部24bでさらに変形させることができるようにする。この圧粉芯材18を配置する工程が、工程P5となる。 FIG. 6 (C) is a view showing a state in which the powder core material 18 manufactured previously is embedded in the second metal powder 27 so as to expose the upper surface thereof, which is the peripheral surface of the core 23. is there. At this time, the portion corresponding to the flat surface 5b of the powder core 18 described above is recognized, and the portion corresponding to the flat surface 5b is in a predetermined positional relationship with a specific portion of the upper punch 24. The arrangement angle of 18 is adjusted. That is, the powder core material 18 and the upper punch 24 are aligned based on the shape of the flat surface 5b. By this alignment, the concave shape corresponding to a part of the above-described grooves 7a, 7b, 7c formed when the powder core 18 is formed is further deformed by the convex portion 24b of the upper punch 24 described later. To be able to. The process of arranging the powder core 18 is a process P5.
 図6(D)は、上パンチ24を同図の矢印方向(上側から下側へ)と移動させ、下パンチ25を同図の矢印方向(下側から上側へ)と移動させ、上パンチ24および下パンチ25によって第2の金属粉末27を圧縮成形した(工程P6)状態を示す図である。この圧縮成形によって、円筒状の圧粉成形体28が形成される。なお、図示を省略しているが、上パンチ24および下パンチ25には、上述の棒状部材を挿通する穴が形成されており、棒状部材が第2の金属粉末27中に存在する状態で工程P6が行われる。そのため、その棒状部材が存在する圧粉成形体28位置に、固定用穴4の形状が形成されることとなる。なお、成形工程では、圧粉芯材18に相当する部分の粉体密度が第2の金属粉末27に相当する部分の粉体密度よりも高くなるように、圧縮力等を調整する。 6D, the upper punch 24 is moved in the arrow direction (from the upper side to the lower side) in the figure, the lower punch 25 is moved in the arrow direction (from the lower side to the upper side) in the figure, and the upper punch 24 is moved. It is a figure which shows the state which compression-molded the 2nd metal powder 27 with the lower punch 25 (process P6). By this compression molding, a cylindrical powder compact 28 is formed. Although not shown, the upper punch 24 and the lower punch 25 are formed with holes through which the above-described bar-shaped member is inserted, and the bar-shaped member is present in the second metal powder 27. P6 is performed. Therefore, the shape of the fixing hole 4 is formed at the position of the green compact 28 where the rod-shaped member exists. In the forming step, the compression force and the like are adjusted so that the powder density in the portion corresponding to the powder core material 18 is higher than the powder density in the portion corresponding to the second metal powder 27.
 図7は、工程P6における、上パンチ24と圧粉成形体28との接触状態を示す概略図である。上パンチ24の下面には、オイル溝6の形状を第2の金属粉末27部分に形成する凸部24aと、溝7a,7b,7cの形状を圧粉芯材18に形成する凸部24bを有している。上パンチ24の下面の凸部24a,24b以外の部分は、相対的に凹部となる。なお、圧粉芯材18の溝7a,7b,7cの一部に相当する凹形状は、凸部24bによってさらに変形される。 FIG. 7 is a schematic view showing a contact state between the upper punch 24 and the green compact 28 in the process P6. On the lower surface of the upper punch 24, a convex portion 24a that forms the shape of the oil groove 6 in the second metal powder 27 portion and a convex portion 24b that forms the shapes of the grooves 7a, 7b, and 7c in the powder core material 18 are provided. Have. Portions other than the convex portions 24a and 24b on the lower surface of the upper punch 24 are relatively concave portions. The concave shape corresponding to a part of the grooves 7a, 7b, 7c of the powder core 18 is further deformed by the convex portion 24b.
 図6(E)は、下パンチ25の上面を、ダイス22の上面およびコア23の上面と同一平面上となるまで、同図の矢印方向(下側から上側へ)へと移動させ、圧粉成形体28を取り出しやすくした状態を示す図である。圧粉成形体28は、中央に孔1の形状を有する円筒状をしている。この孔1の形状は、コア23によって形成されるものである。その孔1の形状の図6(E)における上面側の縁部に圧粉芯材18が配置されている。 In FIG. 6E, the upper surface of the lower punch 25 is moved in the direction of the arrow (from the lower side to the upper side) until it is flush with the upper surface of the die 22 and the upper surface of the core 23. It is a figure which shows the state which made it easy to take out the molded object. The green compact 28 has a cylindrical shape having the shape of the hole 1 at the center. The shape of the hole 1 is formed by the core 23. A dust core material 18 is arranged at the edge on the upper surface side in FIG.
 次に、圧粉成形体28を取り出し、圧粉成形体28を、アンモニア雰囲気下で最高温度700℃~800℃で焼結させる(工程P7)。すると、高褶動部5は、外周部6よりも高密度とすることができる。その後、工程P7を経た焼結体を、目的とする寸法となるように各部寸法を矯正するため、金型とパンチを用いて再圧縮する(工程P8)。以上の工程を経ることで、スラストベアリング1の製造が完了する。 Next, the green compact 28 is taken out, and the green compact 28 is sintered at a maximum temperature of 700 ° C. to 800 ° C. in an ammonia atmosphere (step P7). Then, the high peristaltic part 5 can have a higher density than the outer peripheral part 6. Thereafter, the sintered body that has undergone the process P7 is re-compressed using a mold and a punch in order to correct the dimensions of each part so as to have the target dimensions (process P8). Through the above steps, the manufacture of the thrust bearing 1 is completed.
(本発明の実施の形態によって得られる主な効果)
 本発明の実施の形態に係るスラストベアリング1は、高褶動部5と外周部6とが接合した金属の焼結体である。そのため、スラストベアリング1は、強度、耐摩耗性等の面で優れており、現実にターボチャージャーに好適に使用することができる。特に、ターボチャージャーに用いられるスラストベアリング1は、高褶動部5にインペラの移動を規制するスラストカラーが摺接・摺動するため、高褶動部5の耐摩耗性の高さが、スラストベアリング1の機能を必要十分としている。その一方で、外周部6の金属材料は、第2の金属粉末27からなり、鉄分の含有量を多くしているため、スラストベアリング1を安価にすることができている。
(Main effects obtained by the embodiment of the present invention)
A thrust bearing 1 according to an embodiment of the present invention is a metal sintered body in which a high swing portion 5 and an outer peripheral portion 6 are joined. Therefore, the thrust bearing 1 is excellent in terms of strength, wear resistance, and the like, and can actually be suitably used for a turbocharger. In particular, the thrust bearing 1 used in the turbocharger has a thrust collar that restricts the movement of the impeller in sliding contact with and slides on the high sliding portion 5, so that the high sliding portion 5 has high wear resistance. The function of the bearing 1 is made necessary and sufficient. On the other hand, the metal material of the outer peripheral part 6 consists of the 2nd metal powder 27, and since content of iron is increased, the thrust bearing 1 can be made cheap.
 また、ターボチャージャー用のスラストベアリング1は、広い温度範囲(特に高温側に)に晒され、オイル中の硫黄分による腐食の影響があり、振動が付与され、かつスラスト荷重を受けるという、非常に過酷な環境下で使用される特殊性がある。しかし、本発明の実施の形態に係るスラストベアリング1の製造法によれば、そのような過酷な環境に耐えることができるスラストベアリング1を提供できる。特に、高褶動部5と外周部6との接合部分の腐食等による剥がれが懸念されるが、スラストベアリング1は、そのような剥がれ等が起き難く、十分な接合強度等を有する接合状態である。 The turbocharger thrust bearing 1 is exposed to a wide temperature range (particularly on the high temperature side), is affected by corrosion due to sulfur in the oil, is subjected to vibration, and receives a thrust load. There is a special feature used in harsh environments. However, according to the manufacturing method of the thrust bearing 1 which concerns on embodiment of this invention, the thrust bearing 1 which can endure such a severe environment can be provided. In particular, there is a concern about peeling due to corrosion or the like of the joint portion between the high swing portion 5 and the outer peripheral portion 6, but the thrust bearing 1 is unlikely to be peeled off and is in a joined state having sufficient joint strength and the like. is there.
 また、高褶動部5が外周部6よりも高密度であるため、高褶動部5の摺動性および耐摩耗性が、より優れる。 Moreover, since the high peristaltic part 5 has a higher density than the outer peripheral part 6, the slidability and wear resistance of the high peristaltic part 5 are more excellent.
 また、圧粉芯材18の溝7a,7b,7cに相当する部分は、圧粉芯材18を得る工程および成形工程の両方で形成されている。そのため、成形工程のみで溝7a,7b,7cに相当する凹部を形成する場合よりも成形工程時の圧粉芯材18に対する変形量を少なくでき、座屈のような現象を抑制することができる。特に、圧粉芯材18が高密度の状態で成形工程に供されるので、圧粉芯材18の座屈のおそれが大きい。そのため、圧粉芯材18を得る工程の段階で溝7a,7b,7cに相当する位置に凹部に相当する形状を形成し、成形工程におけるその凹部の部分の変化量を小さくしておくことは重要である。 Further, portions corresponding to the grooves 7a, 7b and 7c of the powder core material 18 are formed in both the step of obtaining the powder core material 18 and the molding step. Therefore, the amount of deformation of the dust core material 18 during the molding process can be reduced as compared with the case where the concave portions corresponding to the grooves 7a, 7b, 7c are formed only by the molding process, and a phenomenon such as buckling can be suppressed. . In particular, since the powder core material 18 is subjected to the molding process in a high density state, the powder core material 18 is likely to buckle. Therefore, it is possible to form a shape corresponding to a recess at a position corresponding to the grooves 7a, 7b, and 7c in the step of obtaining the powder core material 18, and to reduce the amount of change in the recess in the molding process. is important.
 溝7a,7b,7cに相当する凹部を圧粉芯材18を得る工程および成形工程の両方で形成する場合には、両方の工程で圧粉芯材18に対してパンチで押圧して凹部を形成する位置が一致していることが重要となる。そのため、形成工程において、圧粉芯材18の平面5bに相当する形状を基準として、圧粉芯材18と上パンチ24の位置合わせを行うことで、溝7a,7b,7cに相当する凹部を形成する位置を一致させることができる。なお、圧粉芯材18に平面5bに相当する形状(円筒状の孔の周囲の一部を切り取った切断面に相当する形状)を形成することで、スラストベアリング1が占める高褶動部5の体積をより少なくすることができることから、スラストベアリング1をより安価にすることができる。 When the recesses corresponding to the grooves 7a, 7b, and 7c are formed in both the step of obtaining the powder core material 18 and the molding step, the recesses are pressed by pressing the powder core material 18 in both steps. It is important that the positions to be formed are the same. Therefore, in the forming step, the recesses corresponding to the grooves 7a, 7b, and 7c are formed by aligning the dust core 18 and the upper punch 24 with the shape corresponding to the flat surface 5b of the dust core 18 as a reference. The positions to be formed can be matched. In addition, by forming a shape corresponding to the flat surface 5b (a shape corresponding to a cut surface obtained by cutting off a part of the periphery of the cylindrical hole) in the dust core material 18, the high swinging portion 5 occupied by the thrust bearing 1 is obtained. Therefore, the thrust bearing 1 can be made cheaper.
 また、スラストベアリング1が円筒状であり、中央に孔2の形状を有する面を表裏に有し、そのうち一方の面の、孔2の形状の縁部に焼結工程P7後の圧粉芯材18に相当する部分である高褶動部5を配置している。そのため、一方の面とは反対側の他方の面の孔2の縁部が、スラスト荷重を受ける高褶動部5全体を受け止める。そのことから、高褶動部5がスラスト荷重を受けても高褶動部5と外周部6との接合部分には剥がれの応力は付与され難く、むしろその接合部分を密着させる応力が付与されることとなる。そのため、上述の剥がれ等を低減できるスラストベアリング1を提供できる。 Further, the thrust bearing 1 is cylindrical, and has a surface having a hole 2 shape at the center on the front and back sides, and a dust core material after the sintering step P7 on the edge of the hole 2 shape on one of the surfaces. The high peristaltic part 5 which is a part corresponding to 18 is arranged. Therefore, the edge of the hole 2 on the other surface opposite to the one surface receives the entire high swinging portion 5 that receives a thrust load. For this reason, even if the high vibration portion 5 receives a thrust load, it is difficult to apply the peeling stress to the joint portion between the high vibration portion 5 and the outer peripheral portion 6, but rather, the stress that makes the joint portion adhere is applied. The Rukoto. Therefore, the thrust bearing 1 which can reduce the above-mentioned peeling etc. can be provided.
 本発明の実施の形態に係るスラストベアリング1は、円筒状のスラストベアリング1であって、中央に孔2を有する面を表裏に有し、そのうち一方の面の、孔2の縁部となる高褶動部5が、銅を主成分とし、摺動性および耐摩耗性を付与する材料を含む材料からなり、高褶動部5以外の部分である外周部6が、銅と、60重量%の鉄と、を含む金属材料からなり、高褶動部5が外周部6よりも摺動性および耐摩耗性が優れ、一方の面の、高褶動部5および外周部6が、溝7a,7b,7cおよびオイル溝3をそれぞれ有している。 A thrust bearing 1 according to an embodiment of the present invention is a cylindrical thrust bearing 1, and has a surface having a hole 2 in the center on the front and back surfaces, and one of the surfaces is a height that becomes an edge of the hole 2. The peristaltic part 5 is made of a material containing copper as a main component and imparts slidability and wear resistance. The outer peripheral part 6 other than the high peristaltic part 5 is 60% by weight with copper. The high-swing part 5 is more slidable and wear-resistant than the outer peripheral part 6, and the high-swing part 5 and the outer peripheral part 6 on one surface are grooves 7a. , 7b, 7c and oil groove 3 respectively.
 そのため、一方の面とは反対側の他方の面の孔2の縁部が、スラスト荷重を受ける高褶動部5全体を受け止める。そのことから、高褶動部5がスラスト荷重を受けても高褶動部5と外周部6との接合部分には剥がれの応力は付与されることが少なく、むしろその接合部分を密着させる応力が付与されることとなる。そのため、上述の剥がれ等を低減できるスラストベアリング1を提供できる。 Therefore, the edge of the hole 2 on the other surface opposite to the one surface receives the entire high swinging portion 5 that receives the thrust load. Therefore, even if the high vibration portion 5 is subjected to a thrust load, peeling stress is hardly applied to the joint portion between the high vibration portion 5 and the outer peripheral portion 6. Will be granted. Therefore, the thrust bearing 1 which can reduce the above-mentioned peeling etc. can be provided.
 そして、工程P6では、オイル溝3と溝7a,7b,7cの形状を同時に上記圧接物に対して形成し、圧粉成形体17を得ている。そのため、高褶動部5に形成される溝7a,7b,7cと、外周部6に形成されるオイル溝3とを別々に形成する場合に比べ、それらの位置精度を高めることができる。特に、この位置精度は、外周部6のオイル溝3と高褶動部5の溝7a,7b,7cの間に凹みまたは貫通孔等の通路を形成して、その通路によって互いに連通する構成としようとする場合には非常に重要となる。 And in the process P6, the shape of the oil groove 3 and the groove 7a, 7b, 7c is formed simultaneously with respect to the said press-contacting object, and the compacting body 17 is obtained. Therefore, compared with the case where the grooves 7a, 7b, 7c formed in the high swing portion 5 and the oil groove 3 formed in the outer peripheral portion 6 are separately formed, the positional accuracy thereof can be improved. In particular, this positional accuracy is such that a passage such as a recess or a through hole is formed between the oil groove 3 of the outer peripheral portion 6 and the grooves 7a, 7b, and 7c of the high swinging portion 5, and communicates with each other by the passage. It becomes very important when trying.
 そして、焼結後の再圧縮工程である工程P8では、溝7a,7b,7cとオイル溝3の形状寸法精度を同時に向上させることができている。 And in process P8 which is a recompression process after sintering, the shape dimensional accuracy of the grooves 7a, 7b, 7c and the oil groove 3 can be improved at the same time.
(他の形態)
 上述した本発明の実施の形態に係るスラストベアリング1の製造法およびスラストベアリング1は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々の変形実施が可能である。
(Other forms)
The method for manufacturing the thrust bearing 1 and the thrust bearing 1 according to the embodiment of the present invention described above are examples of the preferred embodiment of the present invention, but the present invention is not limited thereto and does not change the gist of the present invention. Various modifications can be made.
 本発明の実施の形態に係るスラストベアリング1の製造法は、まず、第1の金属粉末17を筒状の形状であり且つ円筒状の孔の周囲の一部を切り取った形状に圧粉成形し、溝7a,7b,7cの一部が凹形状として形成されている圧粉芯材18を得る工程P2を有している。そして、第1の金属粉末17とは異なる第2の金属粉末27と圧粉芯材18とを、圧粉芯材18の平面5bに相当する形状を基準として、圧粉芯材18と上パンチ24の位置合わせを行いつつ、ダイス12内に供給する工程P4およびP5を有している。そして、第2の金属粉末27を圧粉芯材18と共にダイス12内で上パンチ14および下パンチ15により圧縮成形する成形工程P6を有している。そして、成形工程P6は、上パンチ14に形成された凸部24a,24bが、圧粉芯材18および第2の金属粉末27に対し同時に凸部24a,24bに対応する形状であるオイル溝6の形状と溝7a,7b,7cの形状を形成し、圧粉芯材18と第2の金属粉末27が接合された圧粉成形体28を形成する工程である。そして、圧粉成形体を加熱し焼結させる焼結工程P7を有している。そして、焼結工程P7後の圧粉芯材18に相当する部分である高褶動部5は、焼結工程P7後の第2の金属粉末27に相当する部分である外周部6よりも摺動性および耐摩耗性に優れている。 In the manufacturing method of the thrust bearing 1 according to the embodiment of the present invention, first, the first metal powder 17 is compacted into a cylindrical shape and a part of the periphery of the cylindrical hole is cut off. And a step P2 of obtaining a powder core material 18 in which a part of the grooves 7a, 7b, 7c is formed in a concave shape. Then, the second metal powder 27 different from the first metal powder 17 and the powder core material 18 are set on the basis of the shape corresponding to the flat surface 5b of the powder core material 18, and the powder core material 18 and the upper punch. The process P4 and P5 which supply in the die | dye 12 are performed, performing 24 position alignment. And it has the shaping | molding process P6 which compression-molds the 2nd metal powder 27 by the upper punch 14 and the lower punch 15 in the die | dye 12 with the powder core material 18. FIG. In the molding step P6, the oil grooves 6 are formed such that the convex portions 24a and 24b formed on the upper punch 14 correspond to the convex portions 24a and 24b at the same time with respect to the powder core 18 and the second metal powder 27. And the shape of the grooves 7a, 7b, 7c are formed, and the green compact 28 in which the green core material 18 and the second metal powder 27 are joined is formed. And it has the sintering process P7 which heats and compacts a compacting body. And the high peristaltic part 5 which is a part equivalent to the powder core material 18 after the sintering process P7 slides more than the outer peripheral part 6 which is a part corresponding to the second metal powder 27 after the sintering process P7. Excellent in mobility and wear resistance.
 ここで、本発明の実施の形態に係るスラストベアリング1の製造法では、第2の金属粉末27として、すなわち外周部6の金属材料として、鉄の含有量の合計が60重量%のものを用いている。しかし、銅を含む金属材料であれば、鉄の含有量は80重量%以下、70重量%以下、60重量%以下、または50重量%以下とする等、金属材料組成は適宜変更しても良い。鉄の含有量を多くすると、スラストベアリング1のコストを安価にすることができる。また、鉄および錫の含有量をゼロとし、電解銅粉末のみを金属成分として用いることができる。なお、第2の金属粉末27の鉄の含有量が80重量%を超えると、第1の金属粉末17との焼結時の収縮率の違いが大き過ぎることから、焼結後の高褶動部5と外周部6との接合に悪影響があるおそれがある。 Here, in the method for manufacturing the thrust bearing 1 according to the embodiment of the present invention, the second metal powder 27, that is, the metal material of the outer peripheral portion 6, has a total iron content of 60% by weight. ing. However, in the case of a metal material containing copper, the metal material composition may be appropriately changed such that the iron content is 80% by weight or less, 70% by weight or less, 60% by weight or less, or 50% by weight or less. . If the iron content is increased, the cost of the thrust bearing 1 can be reduced. Further, the content of iron and tin can be made zero, and only electrolytic copper powder can be used as the metal component. If the iron content of the second metal powder 27 exceeds 80% by weight, the difference in shrinkage ratio during sintering with the first metal powder 17 is too large. There is a possibility that the bonding between the part 5 and the outer peripheral part 6 may be adversely affected.
 また、本発明の実施の形態に係るスラストベアリング1の製造法では、第1の金属粉末に、鍍銅二硫化モリブデンを4重量部含ませている。そして、高褶動部5の二硫化モリブデン配合比は、4重量%である。しかし、この二硫化モリブデン含有比は、たとえば1重量%から10重量%の範囲で適宜変更できる。また、二硫化モリブデンに代えて、摺動性および耐摩耗性を付与する材料としては、マンガン(出発原料としては、たとえば硫化マンガン)、黒鉛または擬黒鉛等の炭素材料、鉛、ビスマスと錫の合金、ビスマス(配合比はたとえば1重量%から10重量%)、硫化鉄等を用いる等、金属材料組成は適宜変更することができる。また、第2の金属粉末は、銅と鉄との部分拡散合金に代えて銅と鉄のそれぞれの粉末を用いても良い。ただし、部分拡散合金を用いると、焼結工程(P7)の際に銅または鉄が偏析し難くなるため、部分拡散合金を用いることが好ましい。 Further, in the method for manufacturing the thrust bearing 1 according to the embodiment of the present invention, 4 parts by weight of cuprous molybdenum disulfide is included in the first metal powder. And the molybdenum disulfide compounding ratio of the high swing part 5 is 4 weight%. However, the molybdenum disulfide content ratio can be appropriately changed within a range of, for example, 1% by weight to 10% by weight. Further, in place of molybdenum disulfide, materials that impart slidability and wear resistance include manganese (such as manganese sulfide as a starting material), carbon materials such as graphite or pseudographite, lead, bismuth and tin. The metal material composition can be changed as appropriate, such as using an alloy, bismuth (the blending ratio is, for example, 1 to 10% by weight), iron sulfide, or the like. Moreover, instead of the partial diffusion alloy of copper and iron, each of the powders of copper and iron may be used as the second metal powder. However, if a partial diffusion alloy is used, it is difficult to segregate copper or iron during the sintering step (P7), so it is preferable to use a partial diffusion alloy.
 また、本発明の実施の形態に係るスラストベアリング1の製造法では、第1の金属粉末17および第2の金属粉末27の各粉末の粒径は、粉末冶金に適した1から200μmのものを用いた。しかし、これらを構成する一部または全部の粉末の粒径が1から200μmの範囲を外れ、たとえば0.5μmから250μmのもの等となっていても良い。さらに、第1の金属粉末および第2の金属粉末14に含有させるステアリン酸亜鉛の含有量も適宜変更できる。また、ステアリン酸亜鉛は、他のワックス材、たとえば、いわゆるアミドワックス、ステアリン酸カルシウム、ステアリン酸リチウム等に代えることができる。また、第1の金属粉末17および第2の金属粉末27には、スピンドル油を加えても良い。さらに、焼結工程P7は、アンモニア分解ガス雰囲気下で行なっているが、水素雰囲気下等の他の還元雰囲気下、窒素雰囲気下等の不活性ガス雰囲気下で行なっても良い。 Moreover, in the manufacturing method of the thrust bearing 1 which concerns on embodiment of this invention, the particle size of each powder of the 1st metal powder 17 and the 2nd metal powder 27 is 1 to 200 micrometers suitable for powder metallurgy. Using. However, the particle size of some or all of the powders constituting these may be outside the range of 1 to 200 μm, for example, 0.5 to 250 μm. Furthermore, the content of zinc stearate contained in the first metal powder and the second metal powder 14 can be changed as appropriate. In addition, zinc stearate can be replaced with other wax materials such as so-called amide wax, calcium stearate, lithium stearate and the like. Further, spindle oil may be added to the first metal powder 17 and the second metal powder 27. Furthermore, although the sintering step P7 is performed in an ammonia decomposition gas atmosphere, it may be performed in another reducing atmosphere such as a hydrogen atmosphere or an inert gas atmosphere such as a nitrogen atmosphere.
 また、第2の金属粉末27は、圧粉芯材18の製造に用いた第1の金属粉末17の20倍の重量を用いた。しかし、第2の金属粉末27の使用量は、第1の金属粉末17の5倍から30倍の範囲等とすることができる。この倍数を大きくすることで、スラストベアリング1のコスト低減が可能となる。また、工程P5では、圧粉芯材18をその上面が露出するように、かつ圧粉芯材18の上面を第2の金属粉末27が覆わないように、第2の金属粉末27中に埋め込んで配置した。しかし、工程P5では、圧粉芯材18を第2の金属粉末27の上に載置し、次の成形工程P6にて圧粉芯材18を第2の金属粉末27中に埋め込むこととしても良い。また、工程P5では、圧粉芯材18を第2の金属粉末27中に一部埋め込み、次の成形工程P6にて圧粉芯材18を第2の金属粉末27中に図6(D)に示すように埋め込むこととしても良い。 The second metal powder 27 used was 20 times the weight of the first metal powder 17 used in the production of the powder core 18. However, the usage amount of the second metal powder 27 can be in the range of 5 to 30 times that of the first metal powder 17. By increasing this multiple, the cost of the thrust bearing 1 can be reduced. In Step P5, the dust core material 18 is embedded in the second metal powder 27 so that the upper surface thereof is exposed and the upper surface of the dust core material 18 is not covered with the second metal powder 27. Arranged. However, in the process P5, the powder core material 18 is placed on the second metal powder 27, and the powder core material 18 is embedded in the second metal powder 27 in the next molding process P6. good. Further, in step P5, the dust core material 18 is partially embedded in the second metal powder 27, and in the next molding step P6, the dust core material 18 is placed in the second metal powder 27 as shown in FIG. As shown in FIG.
 また、圧粉芯材18は、第1の金属粉末17を筒状の形状であり且つ円筒状の孔の周囲の一部を切り取った形状に圧粉成形している。しかし、このような形状にしなくても良い。たとえば、円筒状の形状等にしても良い。この「筒状」は、円筒状、楕円筒状および多角形の筒状等を含む。また、圧粉芯材18の形状の一部を基準として成形工程における圧粉芯材18とパンチ24の位置合わせを行うにしても、その基準となる形状は、平面5bに相当する形状以外に様々な形状を採用できる。たとえば、高摺動部5の上面5aの一部に凹みを形成する等である。このような凹みを有する形状も、圧粉芯材18の形状を筒状の孔の周囲の一部を切り取った形状である。さらに、筒状の孔の内周面の一部が欠けるように、孔の周囲の一部を切り取った形状としても良い。 Further, the dust core material 18 is formed by compacting the first metal powder 17 into a cylindrical shape and by cutting off a part of the periphery of the cylindrical hole. However, such a shape is not necessarily required. For example, a cylindrical shape or the like may be used. The “tubular shape” includes a cylindrical shape, an elliptical cylindrical shape, a polygonal cylindrical shape, and the like. In addition, even if the powder core material 18 and the punch 24 are aligned in the molding process using a part of the shape of the powder core material 18 as a reference, the reference shape is other than the shape corresponding to the plane 5b. Various shapes can be adopted. For example, a recess is formed in a part of the upper surface 5a of the high sliding portion 5. The shape having such a dent is also a shape obtained by cutting out a part of the periphery of the cylindrical hole from the shape of the powder core material 18. Furthermore, it is good also as a shape which cut off a part of circumference | surroundings of a hole so that a part of inner peripheral surface of a cylindrical hole may be missing.
 また、圧粉芯材18に形成する凹凸面は、圧粉芯材18を得る工程および成形工程の両方で形成している。しかし、この凹凸面は、圧粉芯材18を得る工程のみ、または成形工程のみで行なっても良い。圧粉芯材18を得る工程では、第1の金属粉末17を圧縮成形するので、その後さらに形成工程で圧粉芯材18の形状を変化させるのは座屈のおそれがある。そのため、凹凸面は、圧粉芯材18を得る工程のみで行うことが好ましい。また、凹凸面は、圧粉芯材18を得る工程および/または成形工程以外に再圧縮工程で形成することとしても良い。 Further, the uneven surface formed on the powder core material 18 is formed by both the process of obtaining the powder core material 18 and the molding process. However, this uneven surface may be performed only in the step of obtaining the powder core 18 or only in the molding step. In the step of obtaining the dust core material 18, the first metal powder 17 is compression-molded. Therefore, changing the shape of the dust core material 18 in the subsequent formation step may cause buckling. Therefore, the uneven surface is preferably performed only in the step of obtaining the powder core material 18. The uneven surface may be formed by a recompression process other than the step of obtaining the powder core 18 and / or the molding step.
 また、圧粉芯材18および第2の金属粉末27にそれぞれ形成するオイルの流路は、互いに連通するように、さらにそれらのオイルの流路の通路を凹みまたは貫通孔等として形成することとしても良い。 In addition, the oil flow paths formed in the dust core 18 and the second metal powder 27 are formed such that the passages of these oil flow paths are formed as depressions or through holes so as to communicate with each other. Also good.
 また、本発明の実施の形態に係るスラストベアリング1は、高密度の高褶動部5および高摺動部5よりも密度が低い外周部6を、銅を含有する金属材料で構成した。しかし、たとえば高褶動部5には、真鍮またはステンレス等の耐摩耗性のより優れた材料を用いることができる。その場合には、外周部6にも、高褶動部5と同じ金属を含む金属材料を用いることが好ましい。 Further, in the thrust bearing 1 according to the embodiment of the present invention, the high-density high-swing part 5 and the outer peripheral part 6 having a lower density than the high-sliding part 5 are made of a metal material containing copper. However, for example, a material having higher wear resistance such as brass or stainless steel can be used for the high swing portion 5. In that case, it is preferable to use a metal material containing the same metal as that of the high swing portion 5 for the outer peripheral portion 6.
 また、本発明の実施の形態に係るスラストベアリング1は、高褶動部5の上面5aが、外周部6の上面6aと同一平面上にあるように構成した。しかし、たとえば、高褶動部5の上面5aが外周部6の上面6aよりも突出していても良いし、逆に外周部6の上面6aが高褶動部5の上面5aよりも突出していても良い。 Further, the thrust bearing 1 according to the embodiment of the present invention is configured such that the upper surface 5a of the high swing portion 5 is on the same plane as the upper surface 6a of the outer peripheral portion 6. However, for example, the upper surface 5 a of the high swing portion 5 may protrude from the upper surface 6 a of the outer peripheral portion 6, and conversely, the upper surface 6 a of the outer peripheral portion 6 protrudes from the upper surface 5 a of the high swing portion 5. Also good.
 図7に示したように、上パンチ24の下面には、凹凸(凹凸面)が形成されている。同様のパンチ24の構成として、パンチ24をその移動方向に分割面を有するように複数に分割して多段のパンチとし、凹凸部の形成と同様のはたらきをさせることとしても良い。下パンチ15,25、上パンチ14についても同様に多段のパンチとすることができる。 As shown in FIG. 7, the lower surface of the upper punch 24 has irregularities (irregular surfaces). As a similar configuration of the punch 24, the punch 24 may be divided into a plurality of punches having a dividing surface in the moving direction to form a multi-stage punch, and the same function as the formation of the concavo-convex portion may be performed. Similarly, the lower punches 15 and 25 and the upper punch 14 can be multi-stage punches.
 また、高褶動部5の密度は、外周部6の密度よりも高くしているが、高褶動部5の密度と外周部6の密度を同じにしたり、高褶動部5の密度を外周部6の密度よりも低くしても良い。 Moreover, although the density of the high peristaltic part 5 is made higher than the density of the outer peripheral part 6, the density of the high peristaltic part 5 and the density of the outer peripheral part 6 are made the same, or the density of the high peristaltic part 5 is made. You may make it lower than the density of the outer peripheral part 6. FIG.
 また、外周部6のオイル溝3と高褶動部5の溝7a,7b,7cは離隔しているが、凹みまたは貫通孔形状等の通路を形成して、その通路によって互いに連通することとしても良い。 Further, the oil groove 3 of the outer peripheral portion 6 and the grooves 7a, 7b, 7c of the high swinging portion 5 are separated from each other, but a passage having a concave shape or a through-hole shape is formed and communicated with each other by the passage. Also good.
 また、再圧縮工程P8は、たとえば焼結工程P7終了時点で、焼結体の形状が目的とするスラストベアリング1の各部寸法にほぼ一致する場合等には、省略しても良い。また、オイル溝3、および溝7a,7b,7cの形状は、成形工程P6時に形成せずに、再圧縮工程P8においてのみ形成することとしても良い。 Further, the recompression process P8 may be omitted, for example, when the shape of the sintered body substantially matches the size of each part of the target thrust bearing 1 at the end of the sintering process P7. Further, the shapes of the oil groove 3 and the grooves 7a, 7b, and 7c may be formed only in the recompression process P8 without being formed in the molding process P6.
 また、上述の本発明の実施の形態に係るスラストベアリング1の製造法の各工程P1からP8は、以下の製造法も採用している。第1の金属粉末17を筒状に圧粉成形し、圧粉芯材18を得る工程P2と、第1の金属粉末17とは異なる第2の金属粉末27と圧粉芯材18とをダイス12内に供給する工程P4、P5と、第2の金属粉末27を圧粉芯材18と共にダイス12内で上パンチ14および下パンチ15により圧縮成形して圧粉成形体28を得る成形工程P6と、圧粉成形体28を加熱し焼結させ焼結体を得る焼結工程P7と、ダイス12とは異なる第2の金型を用いて、上パンチ14および下パンチ15とは異なる第2のパンチにより、焼結体の各部寸法の矯正をする再圧縮工程と、を有し、再圧縮工程は、第2のパンチおよび/または第2の金型に形成された第2の凹凸面が、焼結工程P7後の圧粉芯材18に相当する部分および/または焼結工程P7後の第2の金属粉末27に相当する部分に対し、同時に第2の凹凸面に対応する形状を形成する工程であり、焼結工程P7後の圧粉芯材18に相当する部分は、焼結工程P7後の第2の金属粉末27に相当する部分よりも摺動性および耐摩耗性に優れている。この第2の凹凸面は、図7に示すオイル溝6の形状を第2の金属粉末27部分に形成する凸部24aと、溝7a,7b,7cの形状を圧粉芯材18に形成する凸部24bと同じ形状で、同じ働きをする凸部を有している。再圧縮工程P8は、焼結工程P7で収縮等のわずかに形状変化した、オイル溝6の形状および溝7a,7b,7cの形状等、各部寸法を矯正する。 Moreover, the following manufacturing methods are also employed in the steps P1 to P8 of the manufacturing method of the thrust bearing 1 according to the above-described embodiment of the present invention. The first metal powder 17 is compacted into a cylindrical shape to obtain a powder core 18, and the second metal powder 27 and the powder core 18 different from the first metal powder 17 are die-molded. Steps P4 and P5 to be fed into the inside 12 and a molding step P6 to obtain the compacted body 28 by compression-molding the second metal powder 27 together with the dust core 18 with the upper punch 14 and the lower punch 15 in the die 12. And a sintering step P7 for heating and compacting the green compact 28 to obtain a sintered body, and a second mold different from the die 12, and a second different from the upper punch 14 and the lower punch 15. A recompressing step of correcting the size of each part of the sintered body by using the punch, and the recompressing step includes a second uneven surface formed on the second punch and / or the second mold. The portion corresponding to the powder core 18 after the sintering step P7 and / or after the sintering step P7 2 is a step of simultaneously forming a shape corresponding to the second uneven surface with respect to the portion corresponding to the metal powder 27, and the portion corresponding to the powder core material 18 after the sintering step P7 is the sintering step P7. The slidability and wear resistance are superior to the portion corresponding to the second metal powder 27 later. The second concavo-convex surface forms convex portions 24a that form the shape of the oil grooves 6 shown in FIG. 7 in the second metal powder 27 portion, and the shapes of the grooves 7a, 7b, and 7c in the powder core 18. It has the same shape as the convex part 24b and the convex part which performs the same function. In the recompression process P8, the dimensions of each part such as the shape of the oil groove 6 and the shapes of the grooves 7a, 7b, and 7c, which have slightly changed in shape due to shrinkage or the like in the sintering process P7, are corrected.
 ここで、再圧縮工程では、オイル溝3、および溝7a,7b,7cの双方の形状を矯正しているが、オイル溝3、または溝7a,7b,7cのどちらか一方の形状を矯正することとしても良い。たとえば、図2および図7では、オイル溝3の形状よりも溝7a,7b,7cの形状の方が浅い凹部となっている。そのため、深いオイル溝3の形状は、成形機による形状変化の容易な成形工程P6で形成し、浅い溝7a,7b,7cは、再圧縮工程にて工程で形成(矯正)することができる。また、第2の凹凸面は、第2の金型と第2のパンチの双方に形成されているが、どちらか一方に形成されることとしても良い。 Here, in the recompression process, the shape of both the oil groove 3 and the grooves 7a, 7b, and 7c is corrected, but the shape of either the oil groove 3 or the grooves 7a, 7b, and 7c is corrected. It's also good. For example, in FIGS. 2 and 7, the grooves 7 a, 7 b, and 7 c are shallower than the oil groove 3. Therefore, the shape of the deep oil groove 3 can be formed in the molding process P6 that is easy to change in shape by a molding machine, and the shallow grooves 7a, 7b, and 7c can be formed (corrected) in the recompression process. Moreover, although the 2nd uneven surface is formed in both the 2nd metal mold | die and the 2nd punch, it is good also as forming in either one.
 さらに、成形工程P6では、あまり大きな凹凸の形状を形成し難い場合がある。その理由は、圧縮成形による形状変化が大きいと、後に亀裂となる可能性があるためである。そのようなときに、成形工程P6では、目的に達しない程度(たとえば、目的の20から80%)の形状変化をさせ、再圧縮工程P8にて最終的に目的となる凹凸の形状を得ることとするといったことが可能となる。 Furthermore, in the molding process P6, it may be difficult to form a very large uneven shape. The reason for this is that if the shape change due to compression molding is large, there is a possibility of cracking later. In such a case, in the molding step P6, the shape is changed to such an extent that the objective is not reached (for example, 20 to 80% of the target), and finally the target uneven shape is obtained in the recompression step P8. And so on.
 また、圧粉芯材18は、図5に示すように製造され、円筒形状をしている。しかし、圧粉芯材18は、板状の形状であっても良いし、四角形または六角形等の多角形状または楕円形の筒状の形状等をしていても良い。この筒状は、最外径寸法が高さ寸法に比べてはるかに大きい5円硬貨のような扁平状の形状をしていても良い。また、圧粉芯材18は、工程P2を経て得られているが、その後圧粉芯材18のみの焼結工程を経て焼結体となったものを工程P3以降の工程で用いることとしても良い。その場合には、圧粉芯材18のみの焼結工程は、圧粉芯材18が完全に焼結せず一部焼結状態となる程度に、焼結温度を下げたり、焼結時間を短くする等することができる。そうすることによって、圧粉芯材18の補強をすると共に、後の成形工程P6では、変形が容易となる。さらには、圧粉芯材18に代えて、圧粉芯材18と同形状の金属製の部材を用いても良い。 Further, the powder core 18 is manufactured as shown in FIG. 5 and has a cylindrical shape. However, the powder core 18 may have a plate shape, or may have a polygonal shape such as a quadrangle or a hexagon, or an elliptical cylindrical shape. This cylindrical shape may have a flat shape such as a 5-yen coin whose outermost diameter is much larger than the height. Moreover, although the powder core material 18 is obtained through the process P2, it is also possible to use what became a sintered body through the sintering process of only the powder core material 18 in the processes after the process P3. good. In that case, the sintering step of only the dust core material 18 may reduce the sintering temperature or reduce the sintering time to such an extent that the dust core material 18 is not completely sintered but partially sintered. It can be shortened. By doing so, while reinforcing the powder core material 18, it becomes easy to deform in the subsequent molding step P6. Furthermore, instead of the powder core material 18, a metal member having the same shape as the powder core material 18 may be used.
 本発明の実施の形態では、第1の金属粉末17を円筒形状にした圧粉芯材18を得て、その圧粉芯材18と第2の金属粉末27を一緒に圧縮成形する工程P6を設けている。しかし、まず第2の金属粉末27を外周部6の形状と同様の形状に圧粉し、圧粉芯材を得て、その後、粉末状の第1の金属粉末17を高褶動部5の位置に供給し、その圧粉芯材と一緒に圧縮成形する工程を経てスラストベアリング1を得ることとしても良い。さらには、第1の金属粉末17,第2の金属粉末27の両方を粉末の状態で一緒に圧縮成形し、スラストベアリング1を得ることとしても良い。 In the embodiment of the present invention, the step P6 of obtaining the powder core material 18 in which the first metal powder 17 is formed into a cylindrical shape and compression-molding the powder core material 18 and the second metal powder 27 together is performed. Provided. However, first, the second metal powder 27 is compacted into a shape similar to the shape of the outer peripheral portion 6 to obtain a powder core material, and then the powdered first metal powder 17 is removed from the high peristaltic portion 5. It is good also as obtaining the thrust bearing 1 through the process of supplying to a position and compressing together with the powder core material. Furthermore, both the first metal powder 17 and the second metal powder 27 may be compression-molded together in a powder state to obtain the thrust bearing 1.
 また、固定用穴4は、その数を4つとしているが、その数は2つ、3つ、5つ等適宜変更できる。また、固定用穴4の形状は、その一部または全部を三角形、四角形等の多角形または楕円形等とすることができる。また、固定用穴4の大きさは、全てまたは一部を異なるようにする等できる。また、溝7a,7b,7cの数は3つとしているが、その数は2つ、4つ等と適宜変更できる。また、溝7a,7b,7cの幅寸法および深さ寸法は等しくされているが、その幅寸法および深さ寸法は、一部または全部が異なるものとなっていても良い。また、穴4は等間隔に設けられているが、穴4は等間隔でなく設けられていてもよい。また、溝7a,7b,7cはそれぞれ等間隔でなく設けられているが、溝7a,7b,7cは等間隔に設けられていてもよい。 Moreover, although the number of the fixing holes 4 is four, the number can be appropriately changed to two, three, five and the like. Moreover, the shape of the fixing hole 4 can be a part or all of a polygon such as a triangle or a rectangle, an ellipse, or the like. Further, the size of the fixing hole 4 can be changed in whole or in part. The number of the grooves 7a, 7b, 7c is three, but the number can be appropriately changed to two, four, etc. Moreover, although the width dimension and the depth dimension of groove | channel 7a, 7b, 7c are made equal, the width dimension and the depth dimension may differ in part or all. Moreover, although the holes 4 are provided at equal intervals, the holes 4 may be provided at not equal intervals. Further, the grooves 7a, 7b, and 7c are provided not at regular intervals, but the grooves 7a, 7b, and 7c may be provided at regular intervals.
 また、焼結工程P7の後には、多量のセラミック球および水の中でスラストベアリング1を振動させ、スラストベアリング1の尖り部分等にわずかに存在するバリを取り除くバリ取り工程を設けることとしても良い。 Further, after the sintering step P7, a deburring step may be provided in which the thrust bearing 1 is vibrated in a large amount of ceramic spheres and water to remove burrs slightly present at the pointed portion of the thrust bearing 1. .
 また、本発明の実施の形態に係るスラストベアリング1の製造法は、変更しても良い。たとえば、図8は、本発明の実施の形態に係るスラストベアリングの変形例の製造法の一部を示す図で、図6に相当する図である。なお、図8において、図6に示す部材と同様の部材については、図6に付した符号と同一の符号を付し、それらの説明を省略する。 Further, the manufacturing method of the thrust bearing 1 according to the embodiment of the present invention may be changed. For example, FIG. 8 is a view showing a part of the manufacturing method of the modified example of the thrust bearing according to the embodiment of the present invention, and corresponds to FIG. In FIG. 8, the same members as those shown in FIG. 6 are denoted by the same reference numerals as those shown in FIG.
 図8と図6の相違点は、最初にダイス12内に圧粉芯材18に相当する背丈が圧粉芯材18よりも高い圧粉芯材31を配置し、その後圧粉芯材31の外周面側に、第2の金属粉末27を供給する点である。他の工程は図6に示すものと同じである。この変形例に係る製造法によれば、圧粉芯材31が図の上下面に露出したスラストベアリング32が作製される。この構成のスラストベアリング32は、高褶動部5が受けるスラスト荷重が、高褶動部5と外周部6の接合面に集中しやすいと考えられる。その点、図6に示す製造法を経たスラストベアリング1は、その下面の孔2の縁部が、図2および図3に示すように外周部6と一体となっているため、スラスト荷重を高褶動部5を介して受け止めることができている。そのため、スラスト荷重が、高褶動部5と外周部6の界面に集中する程度は低くなり、より安定なスラストベアリング1を提供できる。 The difference between FIG. 8 and FIG. 6 is that, first, a powder core material 31 having a height corresponding to the powder core material 18 higher than that of the powder core material 18 is arranged in the die 12, and then the powder core material 31 The second metal powder 27 is supplied to the outer peripheral surface side. Other steps are the same as those shown in FIG. According to the manufacturing method according to this modification, the thrust bearing 32 in which the dust core material 31 is exposed on the upper and lower surfaces of the drawing is produced. In the thrust bearing 32 having this configuration, it is considered that the thrust load received by the high swing portion 5 tends to concentrate on the joint surface between the high swing portion 5 and the outer peripheral portion 6. In this regard, the thrust bearing 1 that has undergone the manufacturing method shown in FIG. 6 has a high thrust load because the edge of the hole 2 on the bottom surface is integrated with the outer peripheral portion 6 as shown in FIGS. It can be received via the peristaltic part 5. Therefore, the degree to which the thrust load is concentrated on the interface between the high swing portion 5 and the outer peripheral portion 6 is low, and a more stable thrust bearing 1 can be provided.
 なお、図8(C)に示した状態から図8(D)に示した状態にする際、すなわち、圧粉芯材31と第2の金属粉末27とを共に圧縮成形する際には、圧粉芯材31の同図横方向の肉厚が若干厚くなり得る(図8(C)および(D)では同じ肉厚として描いている)。圧粉芯材31の圧粉体密度が十分に高ければ、その肉厚の変化は大きくなり、圧粉芯材31の圧粉体密度が低ければ、その肉厚の変化は小さくなる。 When the state shown in FIG. 8C is changed to the state shown in FIG. 8D, that is, when the powder core material 31 and the second metal powder 27 are compression-molded together, The thickness of the powder core material 31 in the horizontal direction in the figure can be slightly increased (shown as the same thickness in FIGS. 8C and 8D). If the green compact density of the green compact 31 is sufficiently high, the change in the thickness will be large, and if the green compact density of the green compact 31 is low, the change in the thickness will be small.
 また、本発明の実施の形態に係るスラストベアリング1の製造法は、図6に示すように、第2の金属粉末27をまずダイス12内に供給し、その後圧粉芯材18を配置している。また、上パンチ24の下面に凸部24a,24bを有している。しかし、本発明の実施の形態に係るスラストベアリング1の製造法は、まず圧粉芯材18をダイス12内で下パンチ15の上面に配置し、その後第2の金属粉末27を下パンチ15の上面であり圧粉芯材18の上に供給しても良い。その場合は、上パンチ24の下面に凸部24a,24bを有さず、下パンチ15の上面に、図7に示す上パンチ24の下面の凸部24a,24bと同じ働きをする凸部が形成されることとなる。この製造法では、下パンチ15の上面に圧粉芯材18を配置する際に、圧粉芯材18に与えられる衝撃が大きいと考えられることから、その点を考慮すると図6に示した製造法が好ましい。図6にに示した製造法では、第2の金属粉末27が圧粉芯材18の配置の際のクッションのような働きをするためである。 Further, in the method of manufacturing the thrust bearing 1 according to the embodiment of the present invention, as shown in FIG. 6, the second metal powder 27 is first supplied into the die 12 and then the powder core material 18 is disposed. Yes. Further, the lower surface of the upper punch 24 has convex portions 24 a and 24 b. However, in the manufacturing method of the thrust bearing 1 according to the embodiment of the present invention, first, the dust core material 18 is disposed on the upper surface of the lower punch 15 in the die 12, and then the second metal powder 27 is applied to the lower punch 15. The upper surface may be supplied on the dust core material 18. In that case, the lower surface of the upper punch 24 does not have the convex portions 24a and 24b, and the upper surface of the lower punch 15 has convex portions that function in the same manner as the convex portions 24a and 24b of the lower surface of the upper punch 24 shown in FIG. Will be formed. In this manufacturing method, when the dust core material 18 is arranged on the upper surface of the lower punch 15, it is considered that the impact given to the dust core material 18 is large. The method is preferred. In the manufacturing method shown in FIG. 6, the second metal powder 27 functions as a cushion when the powder core 18 is disposed.
 本発明の実施の形態に係るスラストベアリング1の製造法を図4、図5および図6に示した。このような一度圧粉芯材18を形成した後、圧粉芯材18と第2の金属粉末27とを一緒に圧縮成形する製造法は、スラストベアリングの製品分野に限らず、粉末冶金を利用する他の製品分野について適用することができる。 The manufacturing method of the thrust bearing 1 according to the embodiment of the present invention is shown in FIG. 4, FIG. 5 and FIG. A manufacturing method in which the powder core 18 and the second metal powder 27 are compression-molded together after the powder core 18 is formed is not limited to the product field of thrust bearings, and uses powder metallurgy. It can be applied to other product areas.
 図9は、本発明の実施の形態に係るスラストベアリング1の変形例のスラストベアリング41を図1と同様に示す図である。なお、図9において、図1に示す部材と同様の部材については、図1に付した符号と同一の符号を付し、それらの説明を省略する。スラストベアリング41は、スラストベアリング1の全体形状のうち、図1における左側の約4分の1が切り取られた形状をしている。スラストベアリング41の高摺動部5は、筒状の孔の内周面の一部が欠けるように、孔の周囲の一部を切り取った形状に圧粉成形して、圧粉芯材18と同様に製造される。このような形状の圧粉芯材も、筒状の孔の周囲の一部を切り取った形状をしている。外周部6等のその他の部材は、スラストベアリング1またはスラストベアリング32と同様に製造される。 FIG. 9 is a view showing a thrust bearing 41 of a modification of the thrust bearing 1 according to the embodiment of the present invention in the same manner as FIG. In FIG. 9, members similar to those shown in FIG. 1 are given the same reference numerals as those shown in FIG. 1, and descriptions thereof are omitted. The thrust bearing 41 has a shape in which about a quarter of the left side in FIG. The high-sliding portion 5 of the thrust bearing 41 is compacted into a shape in which a part of the periphery of the hole is cut out so that a part of the inner peripheral surface of the cylindrical hole is missing, Manufactured similarly. The powder core material having such a shape also has a shape obtained by cutting off a part of the periphery of the cylindrical hole. Other members such as the outer peripheral portion 6 are manufactured in the same manner as the thrust bearing 1 or the thrust bearing 32.
 1,32,41 スラストベアリング
 2 孔
 3 オイル溝(凹凸部)
 5 高褶動部(焼結工程後の圧粉芯材に相当する部分)
 5b 平面(筒状の孔の周囲の一部を切り取った形状)
 6 外周部(焼結工程後の第2の金属粉末に相当する部分)
 7a,7b,7c 溝(凹凸部)
12 ダイス(金型)
18、31 圧粉芯材
24 上パンチ(パンチ)
25 下パンチ(パンチ)
28 圧粉成形体
P2 圧粉芯材を得る工程
P4 第2の金属粉末を金型内に供給する工程
P6 成形工程(圧粉成形体を形成する工程)
P7 焼結工程
P8 再圧縮工程
1, 32, 41 Thrust bearing 2 holes 3 Oil groove (uneven portion)
5 High peristaltic part (corresponding to the dust core material after the sintering process)
5b Plane (shape obtained by cutting off a part of the periphery of the cylindrical hole)
6 Peripheral part (part corresponding to the second metal powder after the sintering process)
7a, 7b, 7c Groove (uneven portion)
12 dies
18, 31 Powder core 24 Upper punch (punch)
25 Lower punch
28 Powder compact body P2 Obtaining a powder core material P4 Process for supplying the second metal powder into the mold P6 Molding process (process for forming the compact body)
P7 Sintering process P8 Recompression process

Claims (8)

  1.  ターボチャージャー用のスラストベアリングの製造法において、
     銅を主成分とし、10重量%以下の錫を有する第1の金属粉末を筒状または筒状の孔の周囲の一部を切り取った形状に圧粉成形し、圧粉芯材を得る工程と、
     銅を含み、80重量%以下の鉄を有する第2の金属粉末と上記圧粉芯材とを金型内に供給する工程と、
     上記第2の金属粉末と上記圧粉芯材とを共に上記金型内でパンチにより圧縮成形する成形工程と、を有し、
     上記成形工程は、上記パンチに形成された凹凸面が、上記圧粉芯材および上記第2の金属粉末に対しそれぞれ同時に上記凹凸面に対応する形状であるオイルの流路を形成し、上記圧粉芯材と上記第2の金属粉末が接合された圧粉成形体を形成する工程であり、
     その後上記圧粉成形体を加熱し焼結させる焼結工程を有し、
     焼結後の上記圧粉芯材に相当する部分と、焼結後の上記第2の金属粉末に相当する部分が接合しており、
     上記焼結工程後の上記圧粉芯材に相当する部分は、上記焼結工程後の上記第2の金属粉末に相当する部分よりも摺動性および耐摩耗性に優れることを特徴とするターボチャージャー用のスラストベアリングの製造法。
    In the manufacturing method of thrust bearings for turbochargers,
    A step of compacting a first metal powder containing copper as a main component and having a tin content of 10% by weight or less into a shape obtained by cutting a part of the periphery of a cylindrical or cylindrical hole to obtain a powder core material; ,
    Supplying a second metal powder containing copper and having an iron content of 80% by weight or less and the powder core material into the mold;
    A molding step in which both the second metal powder and the powder core material are compression-molded with a punch in the mold,
    In the molding step, the uneven surface formed on the punch forms an oil passage having a shape corresponding to the uneven surface simultaneously with respect to the powder core material and the second metal powder. A step of forming a green compact formed by bonding the powder core material and the second metal powder,
    And then having a sintering step of heating and sintering the green compact,
    A portion corresponding to the powder core material after sintering and a portion corresponding to the second metal powder after sintering are joined,
    The turbocharger is characterized in that the portion corresponding to the dust core material after the sintering step is more slidable and wear resistant than the portion corresponding to the second metal powder after the sintering step. A method for manufacturing thrust bearings for chargers.
  2.  ターボチャージャー用のスラストベアリングの製造法において、
     銅を主成分とし、10重量%以下の錫を有する第1の金属粉末を筒状または筒状の孔の周囲の一部を切り取った形状に圧粉成形し、圧粉芯材を得る工程と、
     銅を含み、80重量%以下の鉄を有する第2の金属粉末と上記圧粉芯材とを金型内に供給する工程と、
     上記第2の金属粉末を上記圧粉芯材と共に上記金型内でパンチにより圧縮成形して圧粉成形体を得る成形工程と、を有し、
     上記圧粉成形体を加熱し焼結させ、上記圧粉芯材に相当する部分と上記第2の金属粉末に相当する部分が接合した焼結体を得る焼結工程と、
     上記金型とは異なる第2の金型を用いて、上記パンチとは異なる第2のパンチにより、上記焼結体の各部寸法の矯正をする再圧縮工程と、を有し、
     上記再圧縮工程は、上記第2のパンチおよび上記第2の金型に形成された第2の凹凸面が、上記焼結工程後の上記圧粉芯材に相当する部分および上記焼結工程後の上記第2の金属粉末に相当する部分に対し、同時に上記第2の凹凸面に対応する形状であるオイルの流路を形成する工程であり、
     上記焼結工程後の上記圧粉芯材に相当する部分は、上記焼結工程後の上記第2の金属粉末に相当する部分よりも摺動性および耐摩耗性に優れることを特徴とするターボチャージャー用のスラストベアリングの製造法。
    In the manufacturing method of thrust bearings for turbochargers,
    A step of compacting a first metal powder containing copper as a main component and having a tin content of 10% by weight or less into a shape obtained by cutting a part of the periphery of a cylindrical or cylindrical hole to obtain a powder core material; ,
    Supplying a second metal powder containing copper and having an iron content of 80% by weight or less and the powder core material into the mold;
    A molding step of compressing the second metal powder together with the powder core material with a punch in the mold to obtain a powder compact,
    A sintering step of heating and sintering the green compact, and obtaining a sintered body in which a portion corresponding to the powder core and a portion corresponding to the second metal powder are joined,
    Using a second mold different from the mold, and a recompressing step of correcting the size of each part of the sintered body with a second punch different from the punch,
    In the recompression process, the second uneven surface formed on the second punch and the second mold is a portion corresponding to the powder core material after the sintering process and after the sintering process. Forming a flow path of oil having a shape corresponding to the second concavo-convex surface at the same time for a portion corresponding to the second metal powder.
    The turbocharger is characterized in that the portion corresponding to the dust core material after the sintering step is more slidable and wear resistant than the portion corresponding to the second metal powder after the sintering step. A method for manufacturing thrust bearings for chargers.
  3.  請求項1または2に記載のターボチャージャー用のスラストベアリングの製造法において、
     前記成形工程は、前記圧粉芯材に相当する部分の粉体密度が前記第2の金属粉末に相当する部分の粉体密度よりも高くなるように行うことを特徴とするターボチャージャー用のスラストベアリングの製造法。
    In the manufacturing method of the thrust bearing for turbochargers of Claim 1 or 2,
    The turbocharger thrust characterized in that the forming step is performed such that a powder density in a portion corresponding to the powder core material is higher than a powder density in a portion corresponding to the second metal powder. Manufacturing method for bearings.
  4.  請求項1から3のいずれか1項に記載のターボチャージャー用のスラストベアリングの製造法において、
     前記圧粉芯材の前記凹凸面は、前記圧粉芯材を得る工程および前記成形工程の両方で形成することを特徴とするターボチャージャー用のスラストベアリングの製造法。
    In the manufacturing method of the thrust bearing for turbochargers of any one of Claim 1 to 3,
    The method for producing a thrust bearing for a turbocharger, wherein the uneven surface of the powder core material is formed by both the step of obtaining the powder core material and the molding step.
  5.  請求項4に記載のターボチャージャー用のスラストベアリングの製造法において、
     前記圧粉芯材の形状を筒状の孔の周囲の一部を切り取った形状とした場合に、その切り取った部分の形状を基準として、前記成形工程における前記圧粉芯材と前記パンチの位置合わせを行うことを特徴とするターボチャージャー用のスラストベアリングの製造法。
    In the manufacturing method of the thrust bearing for turbochargers of Claim 4,
    When the shape of the powder core material is a shape obtained by cutting out a part of the periphery of a cylindrical hole, the position of the powder core material and the punch in the molding step on the basis of the shape of the cut portion A method of manufacturing a thrust bearing for a turbocharger, characterized by performing matching.
  6.  請求項1から5のいずれか1項に記載のターボチャージャー用のスラストベアリングの製造法において、
     前記圧粉芯材および前記第2の金属粉末にそれぞれ形成するオイルの流路が互いに連通していることを特徴とするターボチャージャー用のスラストベアリングの製造法。
    In the manufacturing method of the thrust bearing for turbochargers of any one of Claim 1 to 5,
    A method of manufacturing a thrust bearing for a turbocharger, characterized in that oil flow paths respectively formed in the powder core material and the second metal powder communicate with each other.
  7.  ターボチャージャー用のスラストベアリングであって、
     中央に孔を有する面を表裏に有し、そのうち一方の面の、上記孔の縁部が、銅を主成分とし、10重量%以下の錫を有し、摺動性および耐摩耗性を付与する材料を含み、
     上記縁部以外の部分が、銅と、80重量%以下の鉄と、を含む金属材料からなり、
     上記縁部と上記縁部以外の部分が接合され、
     上記縁部が上記縁部以外の部分よりも摺動性および耐摩耗性に優れ、
     上記一方の面の、上記縁部および上記縁部以外の部分が、それぞれオイルの流路となる凹部を有していることを特徴とするターボチャージャー用のスラストベアリング。
    A thrust bearing for a turbocharger,
    It has a surface with a hole in the center on the front and back, and the edge of the hole on one of the surfaces has copper as the main component and 10 wt% or less of tin, giving slidability and wear resistance Containing materials to
    The part other than the edge part is made of a metal material containing copper and iron of 80% by weight or less,
    Parts other than the edge and the edge are joined,
    The edge is more slidable and wear-resistant than parts other than the edge,
    A thrust bearing for a turbocharger, wherein each of the one surface has a recess that serves as an oil flow path.
  8.  請求項7に記載のターボチャージャー用のスラストベアリングにおいて、
     前記縁部が前記縁部以外の部分よりも高密度であることを特徴とするターボチャージャー用のスラストベアリング。
     
    The thrust bearing for a turbocharger according to claim 7,
    A thrust bearing for a turbocharger, wherein the edge portion has a higher density than portions other than the edge portion.
PCT/JP2013/067638 2012-07-10 2013-06-27 Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger WO2014010429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012154638 2012-07-10
JP2012-154638 2012-07-10

Publications (1)

Publication Number Publication Date
WO2014010429A1 true WO2014010429A1 (en) 2014-01-16

Family

ID=49915893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067638 WO2014010429A1 (en) 2012-07-10 2013-06-27 Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger

Country Status (1)

Country Link
WO (1) WO2014010429A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3263925A1 (en) * 2016-06-30 2018-01-03 Shine Ying Co., Ltd Double-layer sliding bearing
JP2018109445A (en) * 2018-03-02 2018-07-12 Ntn株式会社 Sintered bearing
US10907685B2 (en) 2013-10-03 2021-02-02 Ntn Corporation Sintered bearing and manufacturing process therefor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336231A (en) * 1989-07-03 1991-02-15 Fujitsu Ltd Lightweight wear-resistant member and its manufacture
JPH05279772A (en) * 1992-03-31 1993-10-26 Daido Metal Co Ltd Wear resistant sliding alloy, sliding member, and their production
JPH06507460A (en) * 1991-05-20 1994-08-25 アライド・シグナル・インコーポレーテツド Turbocharger thrust bearing
JPH0752339Y2 (en) * 1988-09-30 1995-11-29 アイシン精機株式会社 Supercharger
JP2002038966A (en) * 2000-07-28 2002-02-06 Toyota Motor Corp Turbocharger, thrust bearing for turbocharger, and seal plate for turbocharger
JP2002349575A (en) * 2001-05-29 2002-12-04 Asmo Co Ltd Oil impregnated sintered bearing and manufacturing method therefor
JP2006125343A (en) * 2004-10-29 2006-05-18 Toyota Motor Corp Turbocharger
JP2008255490A (en) * 2001-07-12 2008-10-23 Komatsu Ltd Copper based sintered contact material and double-layered sintered contact member
WO2008136355A1 (en) * 2007-04-26 2008-11-13 Komatsu Ltd. Copper alloy-based slide material, and copper alloy-based slide member
JP2009121273A (en) * 2007-11-13 2009-06-04 Ihi Corp Supercharger
JP2009121274A (en) * 2007-11-13 2009-06-04 Ihi Corp Supercharger
JP2009127437A (en) * 2007-11-20 2009-06-11 Ihi Corp Supercharger

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752339Y2 (en) * 1988-09-30 1995-11-29 アイシン精機株式会社 Supercharger
JPH0336231A (en) * 1989-07-03 1991-02-15 Fujitsu Ltd Lightweight wear-resistant member and its manufacture
JPH06507460A (en) * 1991-05-20 1994-08-25 アライド・シグナル・インコーポレーテツド Turbocharger thrust bearing
JPH05279772A (en) * 1992-03-31 1993-10-26 Daido Metal Co Ltd Wear resistant sliding alloy, sliding member, and their production
JP2002038966A (en) * 2000-07-28 2002-02-06 Toyota Motor Corp Turbocharger, thrust bearing for turbocharger, and seal plate for turbocharger
JP2002349575A (en) * 2001-05-29 2002-12-04 Asmo Co Ltd Oil impregnated sintered bearing and manufacturing method therefor
JP2008255490A (en) * 2001-07-12 2008-10-23 Komatsu Ltd Copper based sintered contact material and double-layered sintered contact member
JP2006125343A (en) * 2004-10-29 2006-05-18 Toyota Motor Corp Turbocharger
WO2008136355A1 (en) * 2007-04-26 2008-11-13 Komatsu Ltd. Copper alloy-based slide material, and copper alloy-based slide member
JP2009121273A (en) * 2007-11-13 2009-06-04 Ihi Corp Supercharger
JP2009121274A (en) * 2007-11-13 2009-06-04 Ihi Corp Supercharger
JP2009127437A (en) * 2007-11-20 2009-06-11 Ihi Corp Supercharger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907685B2 (en) 2013-10-03 2021-02-02 Ntn Corporation Sintered bearing and manufacturing process therefor
EP3263925A1 (en) * 2016-06-30 2018-01-03 Shine Ying Co., Ltd Double-layer sliding bearing
CN107559307A (en) * 2016-06-30 2018-01-09 祥莹有限公司 Double-layer sliding bearing
CN107559307B (en) * 2016-06-30 2019-11-26 祥莹有限公司 double-layer sliding bearing
JP2018109445A (en) * 2018-03-02 2018-07-12 Ntn株式会社 Sintered bearing

Similar Documents

Publication Publication Date Title
CN105268975B (en) The preparation method of high-density powder metallurgy metal soft magnetic material
CN102691772A (en) Gear of starting motor of automobile engine and preparation method of gear
JP2008121095A (en) Method for producing composite sintered machine part, and cylinder block
US20130145878A1 (en) Scissors gear structure and manufacturing method thereof
WO2014010429A1 (en) Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger
US20160023274A1 (en) Machine part and process for producing same
JP5960001B2 (en) Machine parts made of iron-based sintered metal and manufacturing method thereof
WO2021060363A1 (en) Method for producing green compact and method for producing sintered body
JP2001523763A (en) High density molding method by powder blending
JP2015010249A (en) Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger
JP6152002B2 (en) Method for producing a green compact
CN103861882A (en) Wire-drawing die for tinned copper wire covered with diamond metal sintering body and preparation method of wire-drawing die
CN108026959A (en) Link assembly and its manufacture method
JP5177787B2 (en) Method for producing Fe-based sintered alloy and Fe-based sintered alloy
JP5732027B2 (en) Compressed green body, manufacturing method of compacted body, heat treatment body and coil component
WO2016021362A1 (en) Method for manufacturing composite sintered body
JP6871496B2 (en) Manufacturing method of sintered body
JP2017106085A (en) Manufacturing method of sintered compact
JP5276491B2 (en) Surface densification method of sintered body
JP7273066B2 (en) Green compact manufacturing method and green compact
JP2011157612A (en) Method for producing sintered component
JP2019151910A (en) Method for producing composite sintered member and composite sintered member
CN206779465U (en) A kind of powder metallurgy gearbox interlocking block
JP3939671B2 (en) Three-dimensional cam manufacturing method and powder molding apparatus
KR100646246B1 (en) Method for manufacturing a sliding bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816691

Country of ref document: EP

Kind code of ref document: A1