JP7273066B2 - Green compact manufacturing method and green compact - Google Patents

Green compact manufacturing method and green compact Download PDF

Info

Publication number
JP7273066B2
JP7273066B2 JP2020561392A JP2020561392A JP7273066B2 JP 7273066 B2 JP7273066 B2 JP 7273066B2 JP 2020561392 A JP2020561392 A JP 2020561392A JP 2020561392 A JP2020561392 A JP 2020561392A JP 7273066 B2 JP7273066 B2 JP 7273066B2
Authority
JP
Japan
Prior art keywords
peripheral surface
inner peripheral
upper punch
green compact
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020561392A
Other languages
Japanese (ja)
Other versions
JPWO2020129867A1 (en
Inventor
一誠 嶋内
友之 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Publication of JPWO2020129867A1 publication Critical patent/JPWO2020129867A1/en
Application granted granted Critical
Publication of JP7273066B2 publication Critical patent/JP7273066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Description

本開示は、圧粉体の製造方法、及び圧粉体に関する。
本出願は、2018年12月17日付の日本国出願の特願2018-235935に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a green compact manufacturing method and a green compact.
This application claims priority based on Japanese Patent Application No. 2018-235935 filed in Japan on December 17, 2018, and incorporates all the descriptions described in the Japanese application.

従来、粉末を金型に充填して圧縮成形することによって、圧粉体を製造することが行われている。特許文献1には、半球形凹部を有する固定型と、この固定型に嵌入されて半球形成形部を形成する半球形凸部を有する可動型とを備える中空半球体の成形装置が記載されている。特許文献2には、磁極面がボンド磁石部で形成され、磁極面が略球状に形成された磁極面球状ボンド磁石が記載されている。 Conventionally, a green compact is produced by filling powder into a mold and compression-molding the powder. Patent Literature 1 describes a hollow hemisphere molding apparatus comprising a fixed mold having a hemispherical recess and a movable mold having a hemispherical projection that is fitted into the fixed mold to form a hemisphere forming part. there is Patent Literature 2 describes a magnetic pole surface spherical bonded magnet in which the magnetic pole surface is formed by a bonded magnet portion and the magnetic pole surface is formed in a substantially spherical shape.

また、希土類磁石に関する技術が、例えば、特許文献3から特許文献5に開示されている。特許文献3から特許文献5には、希土類-鉄系合金を水素化処理した磁石用粉末を圧縮成形して圧粉体とし、その圧粉体を脱水素処理することで、希土類-鉄系合金の圧粉体からなる希土類-鉄系磁石、即ち圧粉磁石を製造することが開示されている。 Further, techniques related to rare earth magnets are disclosed in Patent Documents 3 to 5, for example. In Patent Documents 3 to 5, magnet powder obtained by hydrogenating a rare earth-iron alloy is compression-molded into a green compact, and the green compact is dehydrogenated to obtain a rare earth-iron alloy. It is disclosed to produce a rare earth-iron magnet, ie, a dust magnet, which is made of a dust body of .

特開2001-11508号公報JP-A-2001-11508 特開2006-41138号公報JP-A-2006-41138 特開2011-236498号公報JP 2011-236498 A 特開2011-137218号公報Japanese Unexamined Patent Application Publication No. 2011-137218 特開2012-241280号公報JP 2012-241280 A

本開示の圧粉体の製造方法は、
筒状体の内周面で中空部を構成するダイと、前記中空部に挿入される下パンチと、前記中空部に挿入される上パンチとを備える金型を準備する第一の工程を備え、
前記ダイの内周面は、
球帯状の第一内周面と、
前記第一内周面の軸方向の一端側に設けられる円筒状の第二内周面と、
前記第一内周面の軸方向の他端側に設けられる円筒状の第三内周面とを有し、
前記第一内周面は、軸方向の一端から他端に向かって小さくなる内径を有し、
前記第二内周面は、前記第一内周面の最大内径に対応する内径を有し、
前記第三内周面は、前記第一内周面の最小内径に対応する内径を有し、
前記下パンチは、前記第一内周面につながることで半球面を構成する球冠状の端面を有し、
前記下パンチの前記端面は、前記第三内周面の内径に対応する外径を有し、
前記上パンチは、
円筒状の第一上パンチと、
第一上パンチの内側に挿通される円柱状の第二上パンチとを有し、
前記第一上パンチは、平面で構成される円環状の端面を有し、
前記第一上パンチの前記端面は、前記第二内周面の内径に対応する外径を有し、
前記第二上パンチは、前記下パンチに向かって突出する半球状の端面を有し、
前記第二上パンチの前記端面は、前記第一上パンチの内径に対応する外径を有し、
更に、
前記下パンチの端面が前記第三内周面で囲まれる領域内に位置し、且つ、前記第一上パンチの端面が前記第二内周面の開口部に位置すると共に、前記第二上パンチの端面と円柱面との境界が前記第一上パンチの端面と同じ位置にある状態で、前記ダイの前記第一内周面、前記第二内周面及び前記第三内周面で囲まれる前記中空部内に原料粉末が充填された状態とする第二の工程と、
前記ダイに対して前記第一上パンチ及び前記第二上パンチを下降させると共に前記下パンチを上昇させ、前記原料粉末を上下から圧縮して中空半球状の圧粉体を得る第三の工程と、を備える。
The method for producing a green compact of the present disclosure includes:
A first step of preparing a mold comprising a die that defines a hollow portion on the inner peripheral surface of a cylindrical body, a lower punch that is inserted into the hollow portion, and an upper punch that is inserted into the hollow portion. ,
The inner peripheral surface of the die is
a spherical first inner peripheral surface;
a cylindrical second inner peripheral surface provided on one end side of the first inner peripheral surface in the axial direction;
a cylindrical third inner peripheral surface provided on the other end side in the axial direction of the first inner peripheral surface,
The first inner peripheral surface has an inner diameter that decreases from one axial end to the other axial end,
The second inner peripheral surface has an inner diameter corresponding to the maximum inner diameter of the first inner peripheral surface,
The third inner peripheral surface has an inner diameter corresponding to the minimum inner diameter of the first inner peripheral surface,
The lower punch has a crown-shaped end surface that forms a hemispherical surface by connecting to the first inner peripheral surface,
The end surface of the lower punch has an outer diameter corresponding to the inner diameter of the third inner peripheral surface,
The upper punch is
a cylindrical first upper punch;
a cylindrical second upper punch inserted through the inside of the first upper punch;
The first upper punch has an annular end surface composed of a flat surface,
The end surface of the first upper punch has an outer diameter corresponding to the inner diameter of the second inner peripheral surface,
The second upper punch has a hemispherical end surface protruding toward the lower punch,
The end face of the second upper punch has an outer diameter corresponding to the inner diameter of the first upper punch,
Furthermore,
The end face of the lower punch is positioned within the region surrounded by the third inner peripheral face, the end face of the first upper punch is positioned at the opening of the second inner peripheral face, and the second upper punch Surrounded by the first inner peripheral surface, the second inner peripheral surface and the third inner peripheral surface of the die in a state where the boundary between the end surface and the cylindrical surface of the die is at the same position as the end surface of the first upper punch a second step in which the raw material powder is filled in the hollow portion;
a third step of lowering the first upper punch and the second upper punch with respect to the die and raising the lower punch to compress the raw material powder from above and below to obtain a hollow hemispherical green compact; , provided.

本開示の圧粉体は、
中空半球状の形状を有し、
前記中空半球の中心と頂点を結ぶ中心軸線と平行で、且つ、前記中空半球の開口端面の内周縁を通る線を分割線としたとき、前記分割線よりも前記中心軸線側に位置する部分を頂部、前記分割線よりも前記中心軸線とは反対側に位置する残りの部分を裾部とし、
前記頂部と前記裾部との相対密度の差が5%以下である。
The green compact of the present disclosure is
has a hollow hemispherical shape,
When a line parallel to the central axis connecting the center and the vertex of the hollow hemisphere and passing through the inner peripheral edge of the open end face of the hollow hemisphere is defined as a parting line, the part located on the central axis side of the parting line The top part and the remaining part located on the opposite side of the central axis from the parting line are the skirt part,
A difference in relative density between the top portion and the bottom portion is 5% or less.

図1Aは、実施形態に係る圧粉体の製造方法に使用する金型の一例を示す概略断面図である。FIG. 1A is a schematic cross-sectional view showing an example of a mold used in a method for manufacturing a green compact according to an embodiment. 図1Bは、図1Aに示す金型を構成するダイの概略断面図である。FIG. 1B is a schematic cross-sectional view of a die that constitutes the mold shown in FIG. 1A. 図2は、実施形態に係る圧粉体の製造方法における第二の工程を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a second step in the method for producing a powder compact according to the embodiment. 図3は、第二の工程におけるA工程を説明する概略断面図である。FIG. 3 is a schematic cross-sectional view for explaining the A step in the second step. 図4は、第二の工程におけるB工程を説明する概略断面図である。FIG. 4 is a schematic cross-sectional view for explaining step B in the second step. 図5は、第二の工程におけるC工程を説明する概略断面図である。FIG. 5 is a schematic cross-sectional view for explaining step C in the second step. 図6は、第二の工程におけるD工程を説明する概略断面図である。FIG. 6 is a schematic cross-sectional view for explaining step D in the second step. 図7は、実施形態に係る圧粉体の製造方法における第三の工程を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing the third step in the method for manufacturing a green compact according to the embodiment. 図8は、実施形態に係る圧粉体の一例を示す概略斜視図である。FIG. 8 is a schematic perspective view showing an example of the green compact according to the embodiment. 図9は、実施形態に係る圧粉体の一例を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing an example of the green compact according to the embodiment. 図10は、実施形態に係る圧粉体の別の一例を示す概略斜視図であり、圧粉体の外周面に段差を有する形態を示す。FIG. 10 is a schematic perspective view showing another example of the green compact according to the embodiment, showing a form having steps on the outer peripheral surface of the green compact. 図11は、実施形態に係る圧粉体の別の一例を示す概略断面図であり、圧粉体の外周面に段差を有する形態を示す。FIG. 11 is a schematic cross-sectional view showing another example of the green compact according to the embodiment, showing a form having steps on the outer peripheral surface of the green compact. 図12は、圧粉体の外周面に段差を有する別の一例を示すものであり、頂部側に段差が設けられている場合を示す概略断面図である。FIG. 12 shows another example of having a step on the outer peripheral surface of the powder compact, and is a schematic cross-sectional view showing a case where the step is provided on the top side. 図13は、圧粉体の外周面に段差を有する別の一例を示すものであり、裾部側に段差が設けられている場合を示す概略断面図である。FIG. 13 is a schematic cross-sectional view showing another example of having a step on the outer peripheral surface of the powder compact, and showing a case where the step is provided on the skirt side.

[本開示が解決しようとする課題]
原料粉末を金型で圧縮成形して中空半球状の圧粉体を製造した場合、部分的に密度の異なる部位が発生することがある。特に、頂部と裾部との間で密度の差が生じ易い。以下、「中空半球状」を単に「半球状」という場合がある。圧粉体において部分的に密度差が生じると、部位によって物理的特性が異なることになる。例えば、原料粉末として磁石粉末や軟磁性粉末を用いた半球状の圧粉体で圧粉磁石や圧粉磁心を構成した場合、密度が不均一であると、残留磁束密度(Br)や飽和磁束密度(Bs)といった磁気特性が不均一になるなど、性能に影響を及ぼす。
[Problems to be Solved by the Present Disclosure]
When a hollow hemispherical green compact is produced by compression-molding the raw material powder with a mold, portions having different densities may occur. In particular, a density difference is likely to occur between the top portion and the bottom portion. Hereinafter, "hollow hemispherical" may be simply referred to as "hemispherical". If there is a partial difference in density in the green compact, the physical properties will differ depending on the location. For example, when a powder magnet or a powder magnetic core is formed of a hemispherical powder compact using magnet powder or soft magnetic powder as raw material powder, if the density is non-uniform, residual magnetic flux density (Br) and saturation magnetic flux Performance is affected, such as non-uniform magnetic properties such as density (Bs).

したがって、半球状の圧粉体において密度を均一化することが望まれている。 Therefore, it is desired to make the density uniform in the hemispherical green compact.

本開示は、中空半球状の圧粉体の密度を均一化できる圧粉体の製造方法を提供することを目的の一つとする。また、本開示は、頂部と裾部との密度差が小さい中空半球状の圧粉体を提供することを目的の一つとする。 One object of the present disclosure is to provide a method for manufacturing a green compact that can uniformize the density of a hollow hemispherical green compact. Another object of the present disclosure is to provide a hollow hemispherical green compact with a small difference in density between the top portion and the bottom portion.

[本開示の効果]
本開示の圧粉体の製造方法は、中空半球状の圧粉体の密度を均一化できる。また、本開示の圧粉体は、中空半球状であり、頂部と裾部との密度差が小さい。
[Effect of the present disclosure]
The method for producing a green compact according to the present disclosure can uniformize the density of the hollow hemispherical green compact. In addition, the green compact of the present disclosure has a hollow hemispherical shape, and the difference in density between the top portion and the bottom portion is small.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.

(1)本開示の実施形態に係る圧粉体の製造方法は、
筒状体の内周面で中空部を構成するダイと、前記中空部に挿入される下パンチと、前記中空部に挿入される上パンチとを備える金型を準備する第一の工程を備え、
前記ダイの内周面は、
球帯状の第一内周面と、
前記第一内周面の軸方向の一端側に設けられる円筒状の第二内周面と、
前記第一内周面の軸方向の他端側に設けられる円筒状の第三内周面とを有し、
前記第一内周面は、軸方向の一端から他端に向かって小さくなる内径を有し、
前記第二内周面は、前記第一内周面の最大内径に対応する内径を有し、
前記第三内周面は、前記第一内周面の最小内径に対応する内径を有し、
前記下パンチは、前記第一内周面に繋がることで半球面を構成する球冠状の端面を有し、
前記下パンチの前記端面は、前記第三内周面の内径に対応する外径を有し、
前記上パンチは、
円筒状の第一上パンチと、
第一上パンチの内側に挿通される円柱状の第二上パンチとを有し、
前記第一上パンチは、平面で構成される円環状の端面を有し、
前記第一上パンチの前記端面は、前記第二内周面の内径に対応する外径を有し、
前記第二上パンチは、前記下パンチに向かって突出する半球状の端面を有し、
前記第二上パンチの前記端面は、前記第一上パンチの内径に対応する外径を有し、
更に、
前記下パンチの端面が前記第三内周面で囲まれる領域内に位置し、且つ、前記第一上パンチの端面が前記第二内周面の開口部に位置すると共に、前記第二上パンチの端面と円柱面との境界が前記第一上パンチの端面と同じ位置にある状態で、前記ダイの前記第一内周面、前記第二内周面及び前記第三内周面で囲まれる前記中空部内に原料粉末が充填された状態とする第二の工程と、
前記ダイに対して前記第一上パンチ及び前記第二上パンチを下降させると共に前記下パンチを上昇させ、前記原料粉末を上下から圧縮して中空半球状の圧粉体を得る第三の工程と、を備える。
(1) A method for manufacturing a green compact according to an embodiment of the present disclosure includes:
A first step of preparing a mold comprising a die that defines a hollow portion on the inner peripheral surface of a cylindrical body, a lower punch that is inserted into the hollow portion, and an upper punch that is inserted into the hollow portion. ,
The inner peripheral surface of the die is
a spherical first inner peripheral surface;
a cylindrical second inner peripheral surface provided on one end side of the first inner peripheral surface in the axial direction;
a cylindrical third inner peripheral surface provided on the other end side in the axial direction of the first inner peripheral surface,
The first inner peripheral surface has an inner diameter that decreases from one axial end to the other axial end,
The second inner peripheral surface has an inner diameter corresponding to the maximum inner diameter of the first inner peripheral surface,
The third inner peripheral surface has an inner diameter corresponding to the minimum inner diameter of the first inner peripheral surface,
The lower punch has a spherical crown-shaped end surface that forms a hemispherical surface by being connected to the first inner peripheral surface,
The end surface of the lower punch has an outer diameter corresponding to the inner diameter of the third inner peripheral surface,
The upper punch is
a cylindrical first upper punch;
a cylindrical second upper punch inserted through the inside of the first upper punch;
The first upper punch has an annular end surface composed of a flat surface,
The end surface of the first upper punch has an outer diameter corresponding to the inner diameter of the second inner peripheral surface,
The second upper punch has a hemispherical end surface protruding toward the lower punch,
The end face of the second upper punch has an outer diameter corresponding to the inner diameter of the first upper punch,
Furthermore,
The end face of the lower punch is positioned within the region surrounded by the third inner peripheral face, the end face of the first upper punch is positioned at the opening of the second inner peripheral face, and the second upper punch Surrounded by the first inner peripheral surface, the second inner peripheral surface and the third inner peripheral surface of the die in a state where the boundary between the end surface and the cylindrical surface of the die is at the same position as the end surface of the first upper punch a second step in which the raw material powder is filled in the hollow portion;
a third step of lowering the first upper punch and the second upper punch with respect to the die and raising the lower punch to compress the raw material powder from above and below to obtain a hollow hemispherical green compact; , provided.

本開示の圧粉体の製造方法によれば、上記特定の金型を使用し、上記第二の工程、及び上記第三の工程によって中空半球状の圧粉体の密度を均一化できる。 According to the green compact manufacturing method of the present disclosure, the density of the hollow hemispherical green compact can be uniformed by using the specific mold and performing the second step and the third step.

第一の工程で準備する上記金型は、ダイの第一内周面及び下パンチの端面で半球状の圧粉体の外周面を成形すると共に、第一上パンチの端面及び第二上パンチの端面で圧粉体の開口端面及び内周面を成形するように構成されている。ダイの第一内周面は、圧粉体の半球状の外周面のうち、球帯面を成形し、圧粉体における裾部の外側を成形する。下パンチの端面は、圧粉体の外周面のうち、残りの球冠面を成形し、圧粉体における頂部の外側を成形する。 The mold prepared in the first step forms the outer peripheral surface of the hemispherical compact with the first inner peripheral surface of the die and the end surface of the lower punch, and the end surface of the first upper punch and the second upper punch. The opening end face and the inner peripheral face of the green compact are formed at the end face of the green compact. The first inner peripheral surface of the die forms the spherical surface of the hemispherical outer peripheral surface of the green compact, and forms the outside of the hem portion of the green compact. The end face of the lower punch forms the remaining spherical crown surface of the outer peripheral surface of the green compact and forms the outside of the top portion of the green compact.

球帯とは、半球の端面と平行な平面、即ち半球の中心と頂点を結ぶ中心軸線と直交する平面で半球を切ったとき、半球の端面と平面とで挟まれる半球面の部分をいう。球冠とは、半球の中心と頂点を結ぶ中心軸線と直交する平面で半球を切ったとき、この平面の頂点側にある半球面の部分をいう。また、圧粉体における頂部とは、中空半球の中心と頂点を結ぶ中心軸線と平行で、且つ、中空半球の開口端面の内周縁を通る線を分割線としたとき、この分割線よりも中心軸線側に位置する部分をいう。圧粉体における裾部とは、上記分割線よりも中心軸線とは反対側に位置する残りの部分をいう。 A spherical zone is a portion of a hemisphere that is sandwiched between the end face of the hemisphere and the plane when the hemisphere is cut by a plane parallel to the end face of the hemisphere, that is, a plane perpendicular to the central axis that connects the center and the vertex of the hemisphere. The crown is the part of the hemisphere on the vertex side of the plane perpendicular to the central axis connecting the center and vertex of the hemisphere. In addition, the top part of the powder compact is parallel to the central axis line connecting the center and the vertex of the hollow hemisphere, and when a line passing through the inner peripheral edge of the open end face of the hollow hemisphere is taken as a dividing line, the center Refers to the part located on the axis side. The bottom part of the powder compact refers to the remaining part located on the side opposite to the central axis from the parting line.

第二の工程では、下パンチの端面が第三内周面で囲まれる領域内に位置し、且つ、第一上パンチの端面が第二内周面の開口部に位置すると共に、第二上パンチの端面と円柱面との境界が第一上パンチの端面と同じ位置にある状態とする。そして、その状態で、ダイの第一内周面、第二内周面及び第三内周面で囲まれる中空部内に原料粉末が充填された状態とする。これにより、後述する第三の工程で原料粉末を圧縮するとき、第二上パンチと下パンチとで挟まれる中空部の中心側、即ち下パンチの上側と、第一上パンチとダイの第一内周面とで挟まれる中空部の外周側、即ち第一内周面側とで原料粉末の圧縮率の差を小さくすることが可能である。双方の圧縮率の差が小さいことで、圧粉体の密度の均一化を図ることができる。 In the second step, the end surface of the lower punch is positioned within a region surrounded by the third inner peripheral surface, the end surface of the first upper punch is positioned at the opening of the second inner peripheral surface, and the second upper punch is positioned in the opening of the second inner peripheral surface. It is assumed that the boundary between the end face of the punch and the cylindrical face is at the same position as the end face of the first upper punch. In this state, the hollow portion surrounded by the first inner peripheral surface, the second inner peripheral surface and the third inner peripheral surface of the die is filled with the raw material powder. As a result, when compressing the raw material powder in the third step described later, the center side of the hollow portion sandwiched between the second upper punch and the lower punch, that is, the upper side of the lower punch, the first upper punch and the first die It is possible to reduce the difference in compressibility of the raw material powder between the outer peripheral side of the hollow portion sandwiched between the inner peripheral surfaces, that is, the first inner peripheral surface side. Since the difference between both compression ratios is small, the density of the green compact can be made uniform.

下パンチの端面が第三内周面で囲まれる領域内に位置しているため、下パンチの端面が第一内周面の他端よりも下側に位置する。これにより、後述する第三の工程において、下パンチと第二上パンチとで原料粉末を上下から圧縮することができ、圧粉体の密度を高め易い。また、原料粉末の圧縮前に、仮に下パンチの端面を第一内周面で囲まれる中空部内に突出させた状態とすると、原料粉末を圧縮した際に下パンチの端面の周縁が変形して破損し易くなる。下パンチの端面を第三内周面で囲まれる領域内に位置させておくことで、圧縮時における下パンチの端面の周縁の破損を抑制できる。 Since the end surface of the lower punch is positioned within the area surrounded by the third inner peripheral surface, the end surface of the lower punch is positioned below the other end of the first inner peripheral surface. As a result, the raw material powder can be compressed from above and below by the lower punch and the second upper punch in the third step, which will be described later, and the density of the green compact can be easily increased. In addition, if the end face of the lower punch were to protrude into the hollow portion surrounded by the first inner peripheral surface before the raw material powder was compressed, the peripheral edge of the end face of the lower punch would be deformed when the raw material powder was compressed. easily damaged. By positioning the end surface of the lower punch within the region surrounded by the third inner peripheral surface, damage to the peripheral edge of the end surface of the lower punch during compression can be suppressed.

第三の工程では、ダイに対して第一上パンチ及び第二上パンチを下降させる共に下パンチを上昇させ、原料粉末を上下から圧縮して中空半球状の圧粉体を得る。上記第二の工程の状態から原料粉末を圧縮して半球状の圧粉体を成形することで、密度を均一化でき、頂部と裾部との密度差を小さくできる。 In the third step, the first upper punch and the second upper punch are lowered with respect to the die, and the lower punch is raised to compress the raw material powder from above and below to obtain a hollow hemispherical powder compact. By compressing the raw material powder from the state of the second step to form a hemispherical green compact, the density can be made uniform and the density difference between the top portion and the bottom portion can be reduced.

(2)本開示の圧粉体の製造方法の一形態として、
前記第一上パンチと前記ダイとの間で圧縮される前記原料粉末の圧縮率と、前記第二上パンチと前記下パンチとの間で圧縮される前記原料粉末の圧縮率との差が50%以下であることが挙げられる。
(2) As one embodiment of the method for producing a compact according to the present disclosure,
The difference between the compression rate of the raw material powder compressed between the first upper punch and the die and the compression rate of the raw material powder compressed between the second upper punch and the lower punch is 50. % or less.

第一上パンチとダイとの間で圧縮される原料粉末の圧縮率と、第二上パンチと下パンチとの間で圧縮される原料粉末の圧縮率との差の絶対値が上記範囲内であることで、圧粉体の密度を均一化でき、頂部と裾部との密度差を小さくできる。 The absolute value of the difference between the compressibility of the raw material powder compressed between the first upper punch and the die and the compressibility of the raw material powder compressed between the second upper punch and the lower punch is within the above range. As a result, the density of the powder compact can be made uniform, and the density difference between the top portion and the bottom portion can be reduced.

それぞれの圧縮率は、第二の工程での原料粉末を圧縮する前の金型の状態と、第三の工程での原料粉末を圧縮後の金型の状態とから求めることができる。具体的には、次のようにして求めることができる。 Each compressibility can be obtained from the state of the mold before compressing the raw material powder in the second step and the state of the mold after compressing the raw material powder in the third step. Specifically, it can be obtained as follows.

圧縮前の金型の状態において、第一上パンチの端面とダイの第一内周面との最大距離をA1とし、第二上パンチの端面と下パンチの端面との頂点間距離をA2とする。また、圧縮後の金型の状態において、第一上パンチの端面とダイの第一内周面との最大距離をB1とし、第二上パンチの端面と下パンチの端面との頂点間距離をB2とする。第一上パンチの端面とダイの第一内周面との最大距離B1は、第一上パンチの端面と第一内周面の他端との距離をいう。そして、圧縮前における上記最大距離A1と、圧縮後における上記最大距離B1との比率([B1/A1]×100)を、第一上パンチとダイとの間での原料粉末の圧縮率C1(%)とする。また、圧縮前における上記頂点間距離A2と、圧縮後における上記頂点間距離B2との比率([B2/A2]×100)を、第二上パンチと下パンチとの間での原料粉末の圧縮率C2(%)とする。 In the state of the die before compression, the maximum distance between the end surface of the first upper punch and the first inner peripheral surface of the die is A1, and the distance between the vertices between the end surface of the second upper punch and the end surface of the lower punch is A2. do. Also, in the state of the die after compression, the maximum distance between the end surface of the first upper punch and the first inner peripheral surface of the die is B1, and the distance between the vertices between the end surface of the second upper punch and the end surface of the lower punch is B2. The maximum distance B1 between the end surface of the first upper punch and the first inner peripheral surface of the die refers to the distance between the end surface of the first upper punch and the other end of the first inner peripheral surface. Then, the ratio of the maximum distance A1 before compression and the maximum distance B1 after compression ([B1/A1] × 100) is calculated as the compression rate C1 of the raw material powder between the first upper punch and the die ( %). Further, the ratio of the vertex distance A2 before compression and the vertex distance B2 after compression ([B2/A2] × 100) is the compression of the raw material powder between the second upper punch and the lower punch. Let the rate be C2 (%).

(3)本開示の圧粉体の製造方法の一形態として、
前記第二の工程は、前記ダイの前記中空部内に前記原料粉末を充填した後、前記下パンチの端面の周縁を前記第一内周面の他端よりも下側に下降させ、前記下パンチの端面を前記第三内周面で囲まれる領域内に位置させる工程を有することが挙げられる。
(3) As one aspect of the method for producing a compact according to the present disclosure,
In the second step, after filling the raw material powder into the hollow portion of the die, the peripheral edge of the end surface of the lower punch is lowered below the other end of the first inner peripheral surface, and the lower punch locating the end face of in the region surrounded by the third inner peripheral face.

原料粉末の充填は、ダイの中空部に下パンチを挿入して第三内周面に下パンチを嵌合させ、中空部内に原料粉末を充填して行う。原料粉末の充填後、下パンチの端面を第一内周面の他端よりも下側に下降させることで、下パンチの上側に充填された原料粉末の上面を第二内周面の開口部より沈下させて凹状の空間を設けることができる。このような凹状の空間を設けることによって、第二上パンチの端面をダイの中空部内に挿入し易くなる。 The filling of the raw material powder is carried out by inserting a lower punch into the hollow portion of the die, engaging the lower punch with the third inner peripheral surface, and filling the hollow portion with the raw material powder. After filling the raw material powder, the end surface of the lower punch is lowered below the other end of the first inner peripheral surface so that the upper surface of the raw material powder filled on the upper side of the lower punch is pushed into the opening of the second inner peripheral surface. It can be sunk more to provide a concave space. By providing such a concave space, it becomes easier to insert the end surface of the second upper punch into the hollow portion of the die.

(4)本開示の圧粉体の製造方法の一形態として、
前記第二の工程は、前記ダイの前記中空部内に前記原料粉末を充填した後、前記第二上パンチの端面を前記ダイの前記中空部内に挿入する前に、前記第一上パンチの端面で前記第二内周面の開口部を部分的に塞ぐ工程を有することが挙げられる。
(4) As one aspect of the method for producing a compact according to the present disclosure,
In the second step, after filling the raw material powder into the hollow portion of the die, before inserting the end surface of the second upper punch into the hollow portion of the die, the end surface of the first upper punch The step of partially closing the opening of the second inner peripheral surface may be included.

第二上パンチの端面をダイの中空部内に挿入する前に、第一上パンチの端面で第二内周面の開口部を部分的に塞いでおくことで、第二上パンチの端面を中空部内に挿入した際に、原料粉末が第二内周面の開口部から漏れることを抑制できる。また、第二上パンチの端面をダイの中空部内に挿入することで、第二上パンチの端面を原料粉末に押し付けることができる。第二上パンチの端面を原料粉末に押し付けることで、下パンチの上側に充填された原料粉末をダイの第一内周面側に流動させる。これにより、下パンチの上側とダイの第一内周面側とで原料粉末の充填量を均一に制御することが可能であり、充填量の差がより小さくなる。 Before inserting the end face of the second upper punch into the hollow part of the die, the end face of the second upper punch is hollowed by partially closing the opening of the second inner peripheral face with the end face of the first upper punch. It is possible to prevent the raw material powder from leaking from the opening of the second inner peripheral surface when the second inner peripheral surface is inserted into the opening. By inserting the end surface of the second upper punch into the hollow portion of the die, the end surface of the second upper punch can be pressed against the raw material powder. By pressing the end surface of the second upper punch against the raw material powder, the raw material powder filled in the upper side of the lower punch is caused to flow toward the first inner peripheral surface of the die. As a result, it is possible to uniformly control the filling amount of the raw material powder on the upper side of the lower punch and the first inner peripheral surface side of the die, and the difference in the filling amount becomes smaller.

(5)上記(4)に記載の圧粉体の製造方法の一形態として、
前記第二の工程は、前記第二内周面の開口部を部分的に塞いだ後、前記第二上パンチを下降させて前記第二上パンチの端面を前記中空部内に挿入し、前記第二上パンチの端面と前記円柱面との境界を前記第一上パンチの端面の位置と一致させる工程を有することが挙げられる。
(5) As one aspect of the method for producing a compact according to (4) above,
In the second step, after partially closing the opening of the second inner peripheral surface, the second upper punch is lowered to insert the end surface of the second upper punch into the hollow portion, The step of aligning the boundary between the end surface of the second upper punch and the cylindrical surface with the position of the end surface of the first upper punch may be included.

第一上パンチの端面で第二内周面の開口部を部分的に塞いだ状態で、第二上パンチを下降させて第二上パンチの端面を原料粉末に押し付けることにより、下パンチの上側に充填された原料粉末をダイの第一内周面側に流動させることができる。この状態では、原料粉末が圧縮されておらず、密度が低い。そのため、下パンチの上側の原料粉末を外周側に流動させることが可能である。第二上パンチの端面を原料粉末に押し付けることで、下パンチの上側とダイの第一内周面側とで原料粉末の充填量を均一に制御することが可能であり、充填量の差がより小さくなる。 With the end surface of the first upper punch partially closing the opening of the second inner peripheral surface, the second upper punch is lowered to press the end surface of the second upper punch against the raw material powder, thereby forming the upper side of the lower punch. The raw material powder filled in the die can be made to flow to the first inner peripheral surface side of the die. In this state, the raw material powder is not compressed and has a low density. Therefore, it is possible to flow the raw material powder on the upper side of the lower punch to the outer peripheral side. By pressing the end surface of the second upper punch against the raw material powder, it is possible to uniformly control the filling amount of the raw material powder on the upper side of the lower punch and the first inner peripheral surface side of the die, and the difference in filling amount is become smaller.

(6)上記(3)に記載の圧粉体の製造方法の一形態として、
前記第二の工程は、前記ダイの前記第一内周面で囲まれる前記中空部内に前記下パンチの端面の周縁を突出させた状態で、前記第一内周面及び前記第二内周面で囲まれる前記中空部内に前記原料粉末を充填する工程を有することが挙げられる。
(6) As one aspect of the method for producing a compact according to (3) above,
In the second step, the first inner peripheral surface and the second inner peripheral surface are protruded into the hollow portion surrounded by the first inner peripheral surface of the die with the peripheral edge of the end surface of the lower punch projecting. and a step of filling the raw material powder into the hollow portion surrounded by .

原料粉末を充填する際、ダイの第一内周面と下パンチの端面とで半球面を構成するように下パンチを位置させた場合、第一内周面及び下パンチの端面により構成される空間は半球状になる。ダイの第一内周面と下パンチの端面とで半球面を構成するときの下パンチの位置を基準位置とする。下パンチを基準位置に位置させた状態で中空部内に原料粉末を充填すると、中空部の中心側、即ち下パンチの上側の充填深さの方が、中空部の外周側、即ち第一内周面側の充填深さよりも大きくなる。これに対し、原料粉末を充填する際、第一内周面で囲まれる中空部内に下パンチの端面の周縁を突出させた状態とした場合、第二内周面の開口部、即ちダイの上面の開口から下パンチの端面までの距離が小さくなる。そのため、下パンチの上側での充填深さを小さくできる。よって、下パンチの上側とダイの第一内周面側とで原料粉末の充填量の差が小さくなる。 When the lower punch is positioned so that the first inner peripheral surface of the die and the end surface of the lower punch form a hemispherical surface when filling the raw material powder, the first inner peripheral surface of the die and the end surface of the lower punch constitute the The space becomes hemispherical. The position of the lower punch when the first inner peripheral surface of the die and the end surface of the lower punch form a hemispherical surface is defined as the reference position. When the raw material powder is filled in the hollow portion with the lower punch positioned at the reference position, the filling depth on the center side of the hollow portion, that is, the upper side of the lower punch, is the outer peripheral side of the hollow portion, that is, the first inner periphery. It becomes larger than the filling depth on the face side. On the other hand, when filling the raw material powder, when the peripheral edge of the end face of the lower punch is projected into the hollow portion surrounded by the first inner peripheral surface, the opening of the second inner peripheral surface, that is, the upper surface of the die The distance from the opening of the lower punch to the end face of the lower punch becomes smaller. Therefore, the filling depth above the lower punch can be reduced. Therefore, the difference in filling amount of the raw material powder between the upper side of the lower punch and the first inner peripheral surface side of the die is reduced.

(7)上記(6)に記載の圧粉体の製造方法の一形態として、
前記ダイの前記第一内周面と前記下パンチの端面とで半球面を構成するときの前記第二内周面の開口部から前記下パンチの端面の周縁までの距離を100とするとき、
前記第二の工程において、前記下パンチの端面の周縁を前記第一内周面で囲まれる前記中空部内に突出させる突出量を10以上70以下とすることが挙げられる。
(7) As one form of the method for producing a compact according to (6) above,
When the distance from the opening of the second inner peripheral surface to the peripheral edge of the end surface of the lower punch when the first inner peripheral surface of the die and the end surface of the lower punch form a hemispherical surface is 100,
Said 2nd process WHEREIN: The protrusion amount which makes the peripheral edge of the end surface of said lower punch protrude in said hollow part enclosed by said 1st inner peripheral surface is 10-70.

上記基準位置に対する下パンチの突出量を10以上70以下とすることで、下パンチの上側とダイの第一内周面側とで原料粉末の充填量の差を十分に小さくできる。 By setting the amount of protrusion of the lower punch from the reference position to 10 or more and 70 or less, the difference in filling amount of the raw material powder between the upper side of the lower punch and the first inner peripheral surface side of the die can be sufficiently reduced.

(8)上記(3)、(6)又は(7)に記載の圧粉体の製造方法の一形態として、
前記第二の工程において、前記下パンチの端面の周縁を前記第一内周面の他端から下降させる下降量を1mm以上10mm以下とすることが挙げられる。
(8) As one embodiment of the method for producing a compact according to (3), (6) or (7) above,
Said 2nd process WHEREIN: The lowering amount which makes the peripheral edge of the end surface of said lower punch descend from the other end of said 1st inner peripheral surface is 1 mm or more and 10 mm or less.

下パンチの下降量を1mm以上とすることで、下パンチの上側に充填された原料粉末の上面に上記凹状の空間を十分に確保し易い。一方、下パンチを下げ過ぎると、上述したように第二上パンチの端面を原料粉末に押し付ける場合、下パンチの上側に充填された原料粉末をダイの第一内周面側に流動させ難くなる。また、下パンチを下げ過ぎると、第三の工程で原料粉末を圧縮する際に下パンチの上側とダイの第一内周面側とで原料粉末の圧縮率の差が大きくなることから、半球状の圧粉体の頂部と裾部との境界に割れが発生し易くなる。そのため、下パンチの下降量は10mm以下とすることが好ましい。これにより、押し付け時の原料粉末の流動性を確保しつつ、圧縮時の圧縮率を均一化し易い。 By setting the amount of descent of the lower punch to 1 mm or more, it is easy to sufficiently secure the recessed space on the upper surface of the raw material powder filled on the upper side of the lower punch. On the other hand, if the lower punch is lowered too much, when the end surface of the second upper punch is pressed against the raw material powder as described above, it becomes difficult to flow the raw material powder filled above the lower punch toward the first inner peripheral surface of the die. . In addition, if the lower punch is lowered too much, when the raw material powder is compressed in the third step, the difference in the compressibility of the raw material powder between the upper side of the lower punch and the first inner peripheral surface side of the die becomes large. Cracks are likely to occur at the boundary between the top portion and the bottom portion of the green compact. Therefore, it is preferable that the lower punch is lowered by 10 mm or less. As a result, it is easy to uniformize the compressibility during compression while ensuring the fluidity of the raw material powder during pressing.

(9)本開示の圧粉体の製造方法の一形態として、
前記第二上パンチの外径に対する前記下パンチの外径の比が0.8以上1.2以下であることが挙げられる。
(9) As one aspect of the method for producing a compact according to the present disclosure,
The ratio of the outer diameter of the lower punch to the outer diameter of the second upper punch is 0.8 or more and 1.2 or less.

第二上パンチの外径に対する下パンチの外径の比が0.8以上1.2以下であることで、上述したように第二の工程で下パンチを下降させる場合、下パンチの上側に充填された原料粉末の上面に第二上パンチの外径に対応した大きさの上記凹状の空間を設け易い。 Since the ratio of the outer diameter of the lower punch to the outer diameter of the second upper punch is 0.8 or more and 1.2 or less, when the lower punch is lowered in the second step as described above, the upper side of the lower punch It is easy to provide the recessed space having a size corresponding to the outer diameter of the second upper punch on the upper surface of the filled raw material powder.

(10)本開示の圧粉体の製造方法の一形態として、
前記第三の工程において、前記原料粉末を圧縮する成形圧力を980MPa以上とすることが挙げられる。
(10) As one embodiment of the method for producing a compact according to the present disclosure,
In the third step, the molding pressure for compressing the raw material powder may be set to 980 MPa or higher.

成形圧力を980MPa以上とすることで、圧粉体を高密度化できる。これにより、圧粉体の物理的特性を向上させることができる。 By setting the molding pressure to 980 MPa or more, the density of the green compact can be increased. This can improve the physical properties of the green compact.

(11)本開示の圧粉体の製造方法の一形態として、
前記第三の工程において、圧縮終了時における前記下パンチの端面の周縁の位置を前記第一内周面の他端から下側に0.1mm以下の範囲内とすることが挙げられる。
(11) As one aspect of the method for producing a compact according to the present disclosure,
In the third step, the position of the peripheral edge of the end surface of the lower punch at the end of compression may be within a range of 0.1 mm or less downward from the other end of the first inner peripheral surface.

圧縮終了時における下パンチの端面の周縁を第一内周面の他端よりも下側に位置させることで、下パンチの端面の周縁の破損を抑制し易い。また、下パンチの端面の周縁の位置を第一内周面の他端から下側に0.1mm以下の範囲内とすることで、半球状の圧粉体の外周面に設けられる段差を0.1mm以下とすることができる。外周面の段差が0.1mm以下であれば、段差がないとみなすことができ、圧粉体の外周面を円滑な半球面で構成できる。圧粉体の外周面の段差が0.1mm以下であることで、圧粉体の外側に半球状の別部材を組み付けたときに、圧粉体の外周面と別部材の内周面との間に隙間が設けられることを抑制できる。 By locating the peripheral edge of the end surface of the lower punch at the end of compression below the other end of the first inner peripheral surface, damage to the peripheral edge of the end surface of the lower punch can be easily suppressed. In addition, by setting the position of the peripheral edge of the end surface of the lower punch within a range of 0.1 mm or less downward from the other end of the first inner peripheral surface, the step provided on the outer peripheral surface of the hemispherical compact is 0. .1 mm or less. If the step on the outer peripheral surface is 0.1 mm or less, it can be considered that there is no step, and the outer peripheral surface of the green compact can be configured as a smooth hemispherical surface. Since the step on the outer peripheral surface of the green compact is 0.1 mm or less, when a separate hemispherical member is assembled to the outside of the green compact, the outer peripheral surface of the green compact and the inner peripheral surface of the separate member can be It is possible to suppress the provision of a gap therebetween.

(12)本開示の圧粉体の製造方法の一形態として、
前記第三の工程において、圧縮終了時における前記下パンチの端面の周縁の位置を前記第一内周面の他端から下側に0.1mm超0.3mm以下の範囲内とすることが挙げられる。
(12) As one aspect of the method for producing a compact according to the present disclosure,
In the third step, the position of the peripheral edge of the end surface of the lower punch at the end of compression is set to be within a range of more than 0.1 mm and 0.3 mm or less downward from the other end of the first inner peripheral surface. be done.

圧縮終了時における下パンチの端面の周縁を第一内周面の他端よりも下側に位置させることで、下パンチの端面の周縁の破損を抑制し易い。また、下パンチの端面の周縁の位置を第一内周面の他端から下側に0.1mm超0.3mm以下の範囲内することで、半球状の圧粉体の外周面に0.1mm超0.3mm以下の段差を設けることができる。圧粉体の外周面に0.1mm超の段差があることによって、圧粉体の外側に半球状の別部材を組み付けるときに、この段差を別部材に対する位置決めに利用できる。この場合、別部材の内周面に上記段差に対応する段差部を設けておく。圧縮終了時における下パンチの端面の周縁の位置を第一内周面の他端から下側に位置させた場合、下パンチの上側での圧縮率が低下するが、0.3mm以内であれば、圧縮率への影響がほとんどなく、実質的に問題がない。 By locating the peripheral edge of the end surface of the lower punch at the end of compression below the other end of the first inner peripheral surface, damage to the peripheral edge of the end surface of the lower punch can be easily suppressed. Further, by setting the position of the peripheral edge of the end surface of the lower punch to within a range of more than 0.1 mm and not more than 0.3 mm downward from the other end of the first inner peripheral surface, the outer peripheral surface of the hemispherical green compact has a thickness of 0.3 mm. A step of more than 1 mm and 0.3 mm or less can be provided. Since there is a step of more than 0.1 mm on the outer peripheral surface of the powder compact, this step can be used for positioning with respect to the other member when assembling a separate hemispherical member to the outside of the compact. In this case, a stepped portion corresponding to the stepped portion is provided on the inner peripheral surface of the separate member. When the position of the peripheral edge of the end face of the lower punch at the end of compression is positioned below the other end of the first inner peripheral surface, the compression ratio on the upper side of the lower punch decreases, but if it is within 0.3 mm , has little impact on compression ratio and is practically no problem.

(13)本開示の圧粉体の製造方法の一形態として、
前記原料粉末は、希土類元素と鉄とを含有する希土類-鉄系合金を水素化処理した水素化粉末からなる磁石粉末を含み、
前記第三の工程の後、前記圧粉体を脱水素処理する工程を備えることが挙げられる。
(13) As one aspect of the method for producing a compact according to the present disclosure,
The raw material powder includes magnetic powder made of hydrogenated powder obtained by hydrogenating a rare earth-iron alloy containing a rare earth element and iron,
After the third step, a step of dehydrogenating the green compact may be provided.

原料粉末として希土類-鉄系合金の水素化粉末からなる磁石粉末を用いることで、水素化粉末を含む高密度の圧粉体を得ることができる。そして、この水素化粉末の圧粉体を脱水素処理することで、希土類-鉄系合金の粉末を含む高密度の圧粉体を得ることができる。希土類-鉄系合金の圧粉体は希土類-鉄系磁石として使用可能である。 By using magnet powder made of hydrogenated rare earth-iron alloy powder as raw material powder, it is possible to obtain a high-density green compact containing hydrogenated powder. By dehydrogenating the hydrogenated powder green compact, a high-density green compact containing the rare earth-iron alloy powder can be obtained. A rare earth-iron alloy compact can be used as a rare earth-iron magnet.

希土類-鉄系合金の水素化粉末を用いることで、圧粉体を高密度化できる理由は次のとおりである。希土類-鉄系合金を水素化処理すると、不均化反応を生じ、希土類元素の水素化物と鉄を含有する鉄含有物との相に分解される。つまり、水素化処理した合金は、希土類元素の水素化物の相と鉄を含有する鉄含有物の相とが混在する組織を有する。希土類-鉄系合金の水素化粉末は、組織中に柔らかい鉄含有物の相が存在することから、水素化処理していない希土類-鉄系合金の粉末に比べて塑性変形し易く、成形性に優れる。したがって、希土類-鉄系合金の水素化粉末を用いた場合、圧粉体の高密度化が可能である。 The reason why the density of the powder compact can be increased by using the hydrogenated rare earth-iron alloy powder is as follows. When a rare earth-iron based alloy is hydrotreated, it undergoes a disproportionation reaction and decomposes into phases of rare earth element hydrides and iron-bearing iron-bearing substances. That is, the hydrotreated alloy has a mixed structure of rare earth hydride phases and iron-bearing iron-bearing phases. Hydrogenated powders of rare earth-iron alloys contain a soft iron-containing phase in the structure, so plastic deformation is easier than unhydrogenated rare earth-iron alloy powders, resulting in poor formability. Excellent. Therefore, when the hydrogenated rare earth-iron alloy powder is used, it is possible to increase the density of the powder compact.

また、水素化粉末の圧粉体を脱水素処理することで、希土類元素の水素化物から水素が放出されて再結合反応が生じ、元の希土類-鉄系合金の状態に戻る。したがって、希土類-鉄系合金の圧粉体からなる半球状の希土類-鉄系合金磁石が得られる。 By dehydrogenating the green compact of the hydrogenated powder, hydrogen is released from the hydride of the rare earth element, causing a recombination reaction and returning to the original state of the rare earth-iron alloy. Therefore, a hemispherical rare earth-iron alloy magnet made of the rare earth-iron alloy green compact is obtained.

(14)本開示の実施形態に係る圧粉体は、
中空半球状の形状を有し、
前記中空半球の中心と頂点を結ぶ中心軸線と平行で、且つ、前記中空半球の開口端面の内周縁を通る線を分割線としたとき、前記分割線よりも前記中心軸線側に位置する部分を頂部、前記分割線よりも前記中心軸線とは反対側に位置する残りの部分を裾部とし、
前記頂部と前記裾部との相対密度の差が5%以下である。
(14) The green compact according to the embodiment of the present disclosure is
has a hollow hemispherical shape,
When a line parallel to the central axis connecting the center and the vertex of the hollow hemisphere and passing through the inner peripheral edge of the open end face of the hollow hemisphere is defined as a parting line, the part located on the central axis side of the parting line The top part and the remaining part located on the opposite side of the central axis from the parting line are the skirt part,
A difference in relative density between the top portion and the bottom portion is 5% or less.

本開示の圧粉体によれば、中空半球状であり、頂部と裾部との相対密度の差が5%以下であることで、頂部と裾部との密度差が小さい。したがって、本開示の圧粉体は、密度が均一であり、物理的特性が均一である。 According to the green compact of the present disclosure, the density difference between the top portion and the bottom portion is small because it has a hollow hemispherical shape and the difference in relative density between the top portion and the bottom portion is 5% or less. Accordingly, the compacts of the present disclosure have uniform densities and uniform physical properties.

(15)本開示の圧粉体の一形態として、
前記圧粉体全体の相対密度が80%以上であることが挙げられる。
(15) As one form of the green compact of the present disclosure,
For example, the relative density of the entire green compact is 80% or more.

相対密度が80%以上の圧粉体は、高密度であり、物理的特性に優れる。 A compact having a relative density of 80% or more has a high density and excellent physical properties.

(16)本開示の圧粉体の一形態として、
前記圧粉体の外周面に0.1mm以下の段差が設けられていることが挙げられる。
(16) As one form of the green compact of the present disclosure,
A step of 0.1 mm or less is provided on the outer peripheral surface of the powder compact.

圧粉体の外周面に設けられる段差が0.1mm以下であることで、段差が実質的になく、圧粉体の外周面を円滑な半球面で構成できる。圧粉体の外周面の段差が0.1mm以下でることで、圧粉体の外側に半球状の別部材を組み付けたときに、圧粉体の外周面と別部材の内周面との間に隙間が設けられることを抑制できる。 When the step provided on the outer peripheral surface of the green compact is 0.1 mm or less, there is substantially no step, and the outer peripheral surface of the green compact can be configured as a smooth hemispherical surface. Since the step on the outer peripheral surface of the green compact is 0.1 mm or less, when a separate hemispherical member is assembled to the outside of the green compact, there is a gap between the outer peripheral surface of the green compact and the inner peripheral surface of the separate member. It is possible to suppress the provision of a gap in the

(17)本開示の圧粉体の一形態として、
前記圧粉体の外周面に0.1mm超0.3mm以下の段差が設けられていることが挙げられる。
(17) As one form of the green compact of the present disclosure,
It is mentioned that a step of more than 0.1 mm and less than or equal to 0.3 mm is provided on the outer peripheral surface of the green compact.

圧粉体の外周面に0.1mm超の段差が設けられていることで、圧粉体の外側に半球状の別部材を組み付けるときに、この段差を別部材に対する位置決めに利用できる。圧粉体の外周面の段差が0.3mm以下であれば、圧粉体の外周面と別部材の内周面との間に設けられる隙間を小さくできる。 Since the step of more than 0.1 mm is provided on the outer peripheral surface of the green compact, the step can be used for positioning with respect to the separate hemispherical member when assembling it to the outside of the green compact. If the step on the outer peripheral surface of the green compact is 0.3 mm or less, the gap provided between the outer peripheral surface of the green compact and the inner peripheral surface of the separate member can be reduced.

(18)本開示の圧粉体の一形態として、
前記圧粉体の厚みが、開口端面の外周半径の1/30倍以上1/2倍以下であることが挙げられる。
(18) As one form of the green compact of the present disclosure,
It is mentioned that the thickness of the powder compact is 1/30 times or more and 1/2 times or less of the outer peripheral radius of the opening end face.

圧粉体の厚みが上記範囲内であることで、密度の均一化と高密度化を図り易い。 When the thickness of the powder compact is within the above range, it is easy to achieve uniform density and high density.

(19)本開示の圧粉体の一形態として、
希土類元素と鉄とを含有する希土類-鉄系合金の粉末を含むことが挙げられる。
(19) As one form of the green compact of the present disclosure,
It includes a powder of a rare earth-iron alloy containing a rare earth element and iron.

希土類-鉄系合金の粉末を含む半球状の圧粉体は、希土類-鉄系磁石として使用可能である。希土類-鉄系合金の圧粉体からなる半球状の希土類-鉄系合金磁石は、例えば、ロボットの関節に利用される球面モータを構成する磁石として利用可能である。 A hemispherical green compact containing rare earth-iron alloy powder can be used as a rare earth-iron magnet. A hemispherical rare earth-iron alloy magnet made of a rare earth-iron alloy compact can be used, for example, as a magnet that constitutes a spherical motor used in the joints of a robot.

[本開示の実施形態の詳細]
以下、図面を参照して、本開示の実施形態に係る圧粉体の製造方法、及び圧粉体の具体例を説明する。図中の同一符号は、同一名称物を示す。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present disclosure]
Hereinafter, a method for manufacturing a green compact according to an embodiment of the present disclosure and a specific example of the green compact will be described with reference to the drawings. The same reference numerals in the drawings indicate the same names. The present invention is not limited to these exemplifications, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.

<実施形態>
[圧粉体の製造方法]
図1A、図1B、図2から図7を参照して、実施形態に係る圧粉体の製造方法について説明する。実施形態に係る圧粉体の製造方法は、原料粉末100pを金型1で圧縮成形して、中空半球状の圧粉体100(図8、図9参照)を製造するものである。実施形態に係る圧粉体の製造方法は、使用する金型1、及び金型1の動作に特徴を有する。まず初めに、図1A、図1Bを参照して金型1の構成について説明し、次いで、図2から図7を主に参照して金型1の動作について説明する。
<Embodiment>
[Method for producing green compact]
A method for manufacturing a green compact according to an embodiment will be described with reference to FIGS. 1A, 1B, and 2 to 7. FIG. The method for producing a green compact according to the embodiment comprises compressing the raw material powder 100p with the mold 1 to produce the hollow hemispherical green compact 100 (see FIGS. 8 and 9). The green compact production method according to the embodiment is characterized by the mold 1 to be used and the operation of the mold 1 . First, the configuration of the mold 1 will be described with reference to FIGS. 1A and 1B, and then the operation of the mold 1 will be described mainly with reference to FIGS. 2 to 7. FIG.

(金型)
金型1は、図1Aに示すように、中空部10hを有するダイ10と、中空部10hに挿入される下パンチ20と、中空部10hに挿入される上パンチ30とを備える。ダイ10は、筒状体であり、筒状体の内周面10iで中空部10hを構成する(図1Bも参照)。内周面10iは、図1Bに示すように、第一内周面11と、第二内周面12と、第三内周面13とで構成されている。上パンチ30は、図1Aに示すように、第一上パンチ31と第二上パンチ32とを有する。金型1は、ダイ10の第一内周面11及び下パンチ20の凹状端面21で半球状の圧粉体100(図8、図9参照)の外周面102を成形すると共に、第一上パンチ31の円環状端面31c及び第二上パンチ32の凸状端面32hで圧粉体100の開口端面103及び内周面101を成形する。以下、各要素について詳しく説明する。
(Mold)
As shown in FIG. 1A, the mold 1 includes a die 10 having a hollow portion 10h, a lower punch 20 inserted into the hollow portion 10h, and an upper punch 30 inserted into the hollow portion 10h. The die 10 is a tubular body, and an inner peripheral surface 10i of the tubular body forms a hollow portion 10h (see also FIG. 1B). The inner peripheral surface 10i is composed of a first inner peripheral surface 11, a second inner peripheral surface 12, and a third inner peripheral surface 13, as shown in FIG. 1B. The upper punch 30 has a first upper punch 31 and a second upper punch 32, as shown in FIG. 1A. The mold 1 forms an outer peripheral surface 102 of a hemispherical green compact 100 (see FIGS. 8 and 9) with a first inner peripheral surface 11 of the die 10 and a concave end surface 21 of the lower punch 20, and a first upper The annular end face 31c of the punch 31 and the convex end face 32h of the second upper punch 32 shape the opening end face 103 and the inner peripheral face 101 of the compact 100 . Each element will be described in detail below.

ダイ10の内周面10iは、図1Bに示すように、第一内周面11と、第二内周面12と、第三内周面13とを有する。第一内周面11は、軸方向の一端11aから他端11bに向かって内径が小さくなる球帯状の面である。軸方向とは、第一内周面11の中心軸線C10の方向をいう。この中心軸線C10は、図1B中の一点鎖線で示す。この中心軸線C10の方向は、図1Bの紙面上下方向である。第一内周面11の一端11a側とは、図1Bの紙面上側である。第一内周面11の他端11b側とは、図1Bの紙面下側である。第二内周面12は、第一内周面11の一端11a側に設けられる。第二内周面12は、第一内周面11の最大内径と同じ内径(図1B中のd12)を有する円筒状の面である。第三内周面13は、第一内周面11の他端11b側に設けられる。第三内周面13は、第一内周面11の最小内径と同じ内径(図1B中のd13)を有する円筒状の面である。以下の説明では、第一内周面11の内径が大きい一端11a側、即ち第二内周面12側を上、内径が小さい他端11b側、即ち第三内周面13側を下とする。The inner peripheral surface 10i of the die 10 has a first inner peripheral surface 11, a second inner peripheral surface 12, and a third inner peripheral surface 13, as shown in FIG. 1B. The first inner peripheral surface 11 is a spherical belt-like surface whose inner diameter decreases from one axial end 11a to the other axial end 11b. The axial direction refers to the direction of the central axis C10 of the first inner peripheral surface 11 . This central axis C10 is indicated by a dashed line in FIG. 1B. The direction of the central axis C10 is the vertical direction on the paper surface of FIG. 1B. The one end 11a side of the first inner peripheral surface 11 is the upper side of the paper surface of FIG. 1B. The other end 11b side of the first inner peripheral surface 11 is the lower side of the paper surface of FIG. 1B. The second inner peripheral surface 12 is provided on the one end 11a side of the first inner peripheral surface 11 . The second inner peripheral surface 12 is a cylindrical surface having the same inner diameter (d 12 in FIG. 1B) as the maximum inner diameter of the first inner peripheral surface 11 . The third inner peripheral surface 13 is provided on the other end 11b side of the first inner peripheral surface 11 . The third inner peripheral surface 13 is a cylindrical surface having the same inner diameter (d 13 in FIG. 1B) as the minimum inner diameter of the first inner peripheral surface 11 . In the following description, one end 11a side with a large inner diameter of the first inner peripheral surface 11, i.e., the second inner peripheral surface 12 side, is upper, and the other end 11b side with a smaller inner diameter, i.e., the third inner peripheral surface 13 side is lower. .

ダイ10の第一内周面11は、圧粉体100(図8、図9参照)の半球状の外周面102のうち、球帯面を成形し、圧粉体100における裾部120の外周面を成形する。第二内周面12の上下方向の長さは、例えば、2mm以上10mm以下とすることが挙げられる。第三内周面13の上下方向の長さは、例えば、5mm以上、更に40mm以上とすることが挙げられる。 The first inner peripheral surface 11 of the die 10 forms a spherical surface of the hemispherical outer peripheral surface 102 of the green compact 100 (see FIGS. 8 and 9), and forms the outer periphery of the skirt portion 120 of the green compact 100. shape the surface. The vertical length of the second inner peripheral surface 12 may be, for example, 2 mm or more and 10 mm or less. The vertical length of the third inner peripheral surface 13 may be, for example, 5 mm or more, or 40 mm or more.

下パンチ20は、円柱状の部材である。下パンチ20は、ダイ10の中空部10hの下側から挿入され、第三内周面13に嵌合される。下パンチ20は、図1Aに示すように、第一内周面11につながることで半球面を構成する球冠状の凹状端面21を有する。下パンチ20の凹状端面21は、圧粉体100(図8、図9参照)の外周面102のうち、ダイ10の第一内周面11によって成形される球帯面を除く残りの球冠面を成形し、圧粉体100における頂部110の外周面を成形する。下パンチ20は、ダイ10の第三内周面13の内径d13(図1B参照)に対応する外径D20を有する。下パンチ20の外径D20は、第三内周面13の内径d13と実質的に同一である。この実質的に同一とは、誤差が-0.3%~-0.02%以内であることをいう。The lower punch 20 is a cylindrical member. The lower punch 20 is inserted from the lower side of the hollow portion 10 h of the die 10 and fitted to the third inner peripheral surface 13 . As shown in FIG. 1A, the lower punch 20 has a crown-shaped concave end surface 21 that forms a hemispherical surface by connecting to the first inner peripheral surface 11 . The concave end face 21 of the lower punch 20 is the remaining spherical crown excluding the spherical zone surface formed by the first inner peripheral surface 11 of the die 10 in the outer peripheral surface 102 of the green compact 100 (see FIGS. 8 and 9). The surface is molded, and the outer peripheral surface of the top portion 110 of the green compact 100 is molded. The lower punch 20 has an outer diameter D 20 corresponding to the inner diameter d 13 (see FIG. 1B) of the third inner peripheral surface 13 of the die 10 . The outer diameter D 20 of the lower punch 20 is substantially the same as the inner diameter d 13 of the third inner peripheral surface 13 . The term "substantially identical" means that the error is within -0.3% to -0.02%.

金型1では、ダイ10の第一内周面11と下パンチ20の凹状端面21とで圧粉体100の外周面102を成形する半球状の面を構成する(図7参照)。ダイ10の第一内周面11の半径R11及び下パンチ20の凹状端面21の半径R21は、成形する圧粉体100の外周面102の半径に等しい。第一内周面11の半径R11と凹状端面21の半径R21とは実質的に同一である。図1Aに示すように、ダイ10の第一内周面11と下パンチ20の凹状端面21とで半球面を構成するときの下パンチ20の位置を基準位置Pとする。In the mold 1, the first inner peripheral surface 11 of the die 10 and the concave end surface 21 of the lower punch 20 form a hemispherical surface for molding the outer peripheral surface 102 of the compact 100 (see FIG. 7). The radius R11 of the first inner peripheral surface 11 of the die 10 and the radius R21 of the concave end surface 21 of the lower punch 20 are equal to the radius of the outer peripheral surface 102 of the green compact 100 to be molded. The radius R11 of the first inner peripheral surface 11 and the radius R21 of the concave end surface 21 are substantially the same. As shown in FIG. 1A, the position of the lower punch 20 when the first inner peripheral surface 11 of the die 10 and the concave end surface 21 of the lower punch 20 form a hemispherical surface is defined as a reference position P0 .

第一上パンチ31は、円筒状の部材である。第一上パンチ31は、円環状端面31cを有する。円環状端面31cは、平面で構成される。円環状端面31cの形状は、円環状である。第一上パンチ31の円環状端面31cは、圧粉体100(図8、図9参照)の円環状の開口端面103を成形する。第一上パンチ31は、ダイ10の第二内周面12の内径d12(図1B参照)に対応する外径D31を有する。第一上パンチ31の外径D31は、第二内周面12の内径d12と実質的に同一である。この実質的に同一とは、誤差が-2%以内であることをいう。第二内周面12の内径d12は、成形する圧粉体100の外周面102の直径、開口端面103の外径に等しい。第一上パンチ31の厚さは、圧粉体100の開口端面103の厚み、即ち径方向の幅と実質的に同一である。この実質的に同一とは、誤差が+5%以内であることをいう。第一上パンチ31の厚さは、第一上パンチ31の内外径の差の1/2をいう。The first upper punch 31 is a cylindrical member. The first upper punch 31 has an annular end face 31c. The annular end surface 31c is configured as a flat surface. The shape of the annular end surface 31c is annular. The annular end face 31c of the first upper punch 31 forms the annular open end face 103 of the green compact 100 (see FIGS. 8 and 9). The first upper punch 31 has an outer diameter D 31 corresponding to the inner diameter d 12 of the second inner peripheral surface 12 of the die 10 (see FIG. 1B). The outer diameter D 31 of the first upper punch 31 is substantially the same as the inner diameter d 12 of the second inner peripheral surface 12 . "Substantially identical" means that the error is within -2%. The inner diameter d12 of the second inner peripheral surface 12 is equal to the diameter of the outer peripheral surface 102 of the green compact 100 to be molded and the outer diameter of the opening end face 103 . The thickness of the first upper punch 31 is substantially the same as the thickness of the open end face 103 of the green compact 100, that is, the width in the radial direction. The term "substantially identical" means that the error is within +5%. The thickness of the first upper punch 31 is half the difference between the inner and outer diameters of the first upper punch 31 .

第二上パンチ32は、円柱状の部材である。第二上パンチ32は、下パンチ20に向かって突出する半球状の凸状端面32hを有する。第二上パンチ32の凸状端面32hは、圧粉体100(図8、図9参照)の半球状の内周面101を成形する。第二上パンチ32は、第一上パンチ31の内径d31に対応する外径D32を有する。第二上パンチ32の外径D32は、第一上パンチ31の内径d31と実質的に同一である。実質的に同一とは、誤差が-0.3%~-0.02%以内であることをいう。第二上パンチ32の外径D32は、圧粉体100の内周面101の直径、開口端面103の内径に等しい。The second upper punch 32 is a cylindrical member. The second upper punch 32 has a hemispherical convex end face 32h protruding toward the lower punch 20 . A convex end surface 32h of the second upper punch 32 forms a hemispherical inner peripheral surface 101 of the green compact 100 (see FIGS. 8 and 9). The second upper punch 32 has an outer diameter D 32 corresponding to the inner diameter d 31 of the first upper punch 31 . The outer diameter D 32 of the second upper punch 32 is substantially the same as the inner diameter d 31 of the first upper punch 31 . “Substantially identical” means that the error is within −0.3% to −0.02%. The outer diameter D 32 of the second upper punch 32 is equal to the diameter of the inner peripheral surface 101 of the green compact 100 and the inner diameter of the open end surface 103 .

第二上パンチ32の凸状端面32hの半径は、原料粉末の圧縮時(図7参照)、第一内周面11の一端11aと、第一上パンチ31の円環状端面31cと、第二上パンチ32の凸状端面32hである半球面と円柱面との境界32dとが同じ位置になったとき、第一内周面11及び下パンチ20の凹状端面21で構成される半球面の中心と、凸状端面32hの半球面の中心とが合致するような半径とすることが好ましい。この場合、厚みが一様な中空半球状の圧粉体100を成形できる。ここでは、圧粉体100の頂点を通る周方向に沿った線上で等間隔に3点の厚みを測定して、最小値と最大値の差が0.3mm以下であれば、実質的に厚みが一様とみなす。また、原料粉末の圧縮時(図7参照)、第一内周面11及び凹状端面21で構成される半球面の中心と、凸状端面32hの半球面の中心とが合致しないようにしてもよく、圧粉体100の厚みが一様でなくてもよい。つまり、圧粉体100(図8、図9参照)の内周面101と外周面102とが相似形状でなくてもよい。 The radius of the convex end surface 32h of the second upper punch 32, when the raw material powder is compressed (see FIG. 7), is the one end 11a of the first inner peripheral surface 11, the annular end surface 31c of the first upper punch 31, and the second The center of the hemispherical surface formed by the first inner peripheral surface 11 and the concave end surface 21 of the lower punch 20 when the boundary 32d between the hemispherical surface that is the convex end surface 32h of the upper punch 32 and the cylindrical surface is at the same position. and the center of the hemispherical surface of the convex end surface 32h. In this case, a hollow hemispherical green compact 100 having a uniform thickness can be formed. Here, the thickness is measured at three points at equal intervals on a line along the circumferential direction passing through the vertex of the green compact 100, and if the difference between the minimum value and the maximum value is 0.3 mm or less, the thickness is substantially are assumed to be uniform. Further, when the raw material powder is compressed (see FIG. 7), even if the center of the hemispherical surface formed by the first inner peripheral surface 11 and the concave end surface 21 does not coincide with the center of the hemispherical surface of the convex end surface 32h, Well, the thickness of the green compact 100 does not have to be uniform. That is, the inner peripheral surface 101 and the outer peripheral surface 102 of the powder compact 100 (see FIGS. 8 and 9) do not have to have similar shapes.

第二上パンチ32は、第一上パンチ31の内側に摺動自在に嵌合されている。第一上パンチ31と第二上パンチ32とは、独立して上下動することが可能である。 The second upper punch 32 is slidably fitted inside the first upper punch 31 . The first upper punch 31 and the second upper punch 32 can move up and down independently.

第二上パンチ32は、下パンチ20と対向するように設けられている。第二上パンチ32の外径D32に対する下パンチ20の外径D20の比(D20/D32)は、例えば、0.8以上1.2以下、更に0.9以上1.2以下であることが挙げられる。図1Aでは、第二上パンチ32の外径D32と下パンチ20の外径D20とが実質的に同一であり、D20/D32が1である。The second upper punch 32 is provided so as to face the lower punch 20 . The ratio of the outer diameter D20 of the lower punch 20 to the outer diameter D32 of the second upper punch 32 ( D20 / D32 ) is, for example, 0.8 or more and 1.2 or less, and further 0.9 or more and 1.2 or less. It is mentioned that it is. In FIG. 1A, the outer diameter D 32 of the second upper punch 32 and the outer diameter D 20 of the lower punch 20 are substantially the same, and D 20 /D 32 is one.

実施形態に係る圧粉体の製造方法は、上述した金型1(図1参照)を準備する第一の工程と、更に、次に示す第二の工程と、第三の工程とを備える。
・第二の工程は、下パンチ20、並びに、第一上パンチ31及び第二上パンチ32がダイ10に対して特定の位置にある状態で、ダイ10の中空部10h内に原料粉末100pが充填された状態とする(図2参照)。
・第三の工程は、ダイ10に対して第一上パンチ31及び第二上パンチ32を下降させる共に下パンチ20を上昇させ、原料粉末100pを上下から圧縮する(図7参照)。
以下、第二の工程と第三の工程について詳しく説明する。
The green compact production method according to the embodiment includes the first step of preparing the above-described mold 1 (see FIG. 1), the second step shown below, and the third step.
In the second step, the lower punch 20, the first upper punch 31 and the second upper punch 32 are positioned at specific positions with respect to the die 10, and the raw material powder 100p is placed in the hollow portion 10h of the die 10. Let it be filled (see FIG. 2).
The third step is to lower the first upper punch 31 and the second upper punch 32 with respect to the die 10 and raise the lower punch 20 to compress the raw material powder 100p from above and below (see FIG. 7).
The second step and the third step will be described in detail below.

(第二の工程)
第二の工程では、図2に示すように、下パンチ20の凹状端面21と、第一上パンチ31の円環状端面31cと、第二上パンチ32の境界32dとを特定の状態とする。下パンチ20の凹状端面21が第三内周面13で囲まれる領域内に位置する。第一上パンチ31の円環状端面31cが第二内周面12の開口部12oに位置する。第二上パンチ32の凸状端面32hである半球面と円柱面との境界32dが第一上パンチ31の円環状端面31cと同じ位置にある。下パンチ20の凹状端面21は、具体的には、凹状端面21の周縁を第一内周面11の他端11bよりも1mm以上10mm以下、更に2mm以上8mm以下下方に位置させることが挙げられる。その状態で、ダイ10の第一内周面11、第二内周面12及び第三内周面13で囲まれる中空部10h(図1A参照)内に原料粉末100pが充填された状態とする。
(Second step)
In the second step, as shown in FIG. 2, the concave end surface 21 of the lower punch 20, the annular end surface 31c of the first upper punch 31, and the boundary 32d of the second upper punch 32 are brought into a specific state. The concave end surface 21 of the lower punch 20 is located within the area surrounded by the third inner peripheral surface 13 . The annular end surface 31c of the first upper punch 31 is located in the opening 12o of the second inner peripheral surface 12. As shown in FIG. A boundary 32 d between a hemispherical surface and a cylindrical surface, which is a convex end surface 32 h of the second upper punch 32 , is located at the same position as the annular end surface 31 c of the first upper punch 31 . Specifically, the recessed end surface 21 of the lower punch 20 is positioned such that the peripheral edge of the recessed end surface 21 is located 1 mm or more and 10 mm or less, further 2 mm or more and 8 mm or less below the other end 11b of the first inner peripheral surface 11. . In this state, the hollow portion 10h (see FIG. 1A) surrounded by the first inner peripheral surface 11, the second inner peripheral surface 12 and the third inner peripheral surface 13 of the die 10 is filled with the raw material powder 100p. .

第二の工程は、次に示すA工程からD工程のいずれかを含んでもよい。
・A工程は、ダイ10の第一内周面11で囲まれる中空部10h(図1A参照)内に下パンチ20の凹状端面21を突出させた状態で、ダイ10の中空部10h内に原料粉末100pを充填する(図3参照)。
・B工程は、下パンチ20の凹状端面21をダイ10の第一内周面11の他端11bよりも下側に下降させる(図4参照)。
・C工程は、第一上パンチ31の円環状端面31cでダイ10の第二内周面12の開口部12oを部分的に塞ぐ(図5参照)。
・D工程は、第二上パンチ32の凸状端面32hをダイ10の中空部10h(図1A参照)内に挿入する(図6参照)。
本例では、第二の工程が上記A工程から上記D工程の全てを有する場合を説明する。
The second step may include any of steps A to D shown below.
In the A process, the raw material is inserted into the hollow portion 10h of the die 10 with the concave end surface 21 of the lower punch 20 protruding into the hollow portion 10h (see FIG. 1A) surrounded by the first inner peripheral surface 11 of the die 10 (see FIG. 1A). Fill with 100 p of powder (see Figure 3).
In step B, the concave end surface 21 of the lower punch 20 is lowered below the other end 11b of the first inner peripheral surface 11 of the die 10 (see FIG. 4).
In step C, the annular end surface 31c of the first upper punch 31 partially closes the opening 12o of the second inner peripheral surface 12 of the die 10 (see FIG. 5).
In step D, the convex end face 32h of the second upper punch 32 is inserted into the hollow portion 10h (see FIG. 1A) of the die 10 (see FIG. 6).
In this example, the case where the second step includes all of the steps A to D will be described.

(A工程)
A工程では、図3に示すように、ダイ10の中空部10h(図1A参照)の下側から下パンチ20を挿入して第三内周面13に嵌合させた状態で、ダイ10の第一内周面11及び第二内周面12で囲まれる中空部10h内に原料粉末100pを充填する。そして、A工程では、原料粉末100pを充填する際、ダイ10の第一内周面11で囲まれる中空部10h内に下パンチ20の凹状端面21の周縁を突出させた状態とする。つまり、下パンチ20を基準位置P(図1A参照)よりも上側に位置させる。
(A process)
In the A process, as shown in FIG. 3, a lower punch 20 is inserted from the lower side of the hollow portion 10h (see FIG. 1A) of the die 10 and fitted to the third inner peripheral surface 13. A hollow portion 10h surrounded by the first inner peripheral surface 11 and the second inner peripheral surface 12 is filled with the raw material powder 100p. In step A, when the raw material powder 100p is filled, the peripheral edge of the concave end surface 21 of the lower punch 20 protrudes into the hollow portion 10h surrounded by the first inner peripheral surface 11 of the die 10 . That is, the lower punch 20 is positioned above the reference position P 0 (see FIG. 1A).

図1Aに示すように、下パンチ20を基準位置Pに位置させて、第一内周面11及び凹状端面21により半球状の空間を構成した場合、中空部10hの中心側、即ち下パンチ20の上側の充填深さの方が、中空部10hの外周側、即ち第一内周面11側の充填深さよりも大きくなる。これに対し、図3に示すように、第一内周面11で囲まれる中空部10h(図1A参照)内に下パンチ20の凹状端面21の周縁を突出させた状態とすることで、下パンチ20を基準位置Pに位置させた場合に比較して、第二内周面12の開口部12o、即ちダイ10の上面の開口から下パンチ20の凹状端面21までの距離が小さくなる。つまり、下パンチ20の上側での充填深さが小さくなる。そのため、原料粉末100pを充填したとき、下パンチ20の上側とダイ10の第一内周面11側とで原料粉末100pの充填量の差が小さくなる。As shown in FIG. 1A, when the lower punch 20 is positioned at the reference position P0 and a hemispherical space is formed by the first inner peripheral surface 11 and the concave end surface 21, the central side of the hollow portion 10h, that is, the lower punch The filling depth of the upper side of 20 becomes larger than the filling depth of the outer peripheral side of the hollow part 10h, ie, the first inner peripheral surface 11 side. On the other hand, as shown in FIG. 3, by protruding the peripheral edge of the concave end surface 21 of the lower punch 20 into the hollow portion 10h (see FIG. 1A) surrounded by the first inner peripheral surface 11, the lower Compared to when the punch 20 is positioned at the reference position P0 , the distance from the opening 12o of the second inner peripheral surface 12, that is, the opening of the upper surface of the die 10 to the concave end surface 21 of the lower punch 20 becomes smaller. That is, the filling depth on the upper side of the lower punch 20 becomes smaller. Therefore, when the raw material powder 100p is filled, the difference in filling amount of the raw material powder 100p between the upper side of the lower punch 20 and the first inner peripheral surface 11 side of the die 10 becomes small.

下パンチ20を基準位置Pに位置させたときの第二内周面12の開口部12oから下パンチ20の凹状端面21の周縁までの距離L(図1A参照)を100とする。このとき、第二の工程のA工程において、下パンチ20の凹状端面21の中空部10h(図1A参照)内に突出させる突出量Pは、基準位置Pから10以上70以下とすることが挙げられる。これにより、下パンチ20の上側とダイ10の第一内周面11側とで原料粉末100pの充填量の差を十分に小さくできる。下パンチ20の凹状端面21の突出量Pは、好ましくは15以上65以下、更に20以上60以下とすることが挙げられる。Let 100 be the distance L 0 (see FIG. 1A) from the opening 12o of the second inner peripheral surface 12 to the peripheral edge of the concave end surface 21 of the lower punch 20 when the lower punch 20 is positioned at the reference position P 0 . At this time, in step A of the second step, the amount of protrusion P1 projected into the hollow portion 10h (see FIG. 1A) of the concave end face 21 of the lower punch 20 should be 10 or more and 70 or less from the reference position P0 . is mentioned. As a result, the difference in filling amount of the raw material powder 100p between the upper side of the lower punch 20 and the side of the first inner peripheral surface 11 of the die 10 can be made sufficiently small. The protruding amount P1 of the concave end surface 21 of the lower punch 20 is preferably 15 or more and 65 or less, more preferably 20 or more and 60 or less.

下パンチ20の外径D20は、例えば、成形する圧粉体100(図8、図9参照)の厚さに応じて決定するとよい。具体的には、厚い場合は下パンチ20の外径D20を小さくし、薄い場合は下パンチ20の外径D20を大きくすることが挙げられる。また、下パンチ20の外径D20と第二上パンチ32の外径D32とは一致させるようにするとよい。The outer diameter D20 of the lower punch 20 may be determined, for example, according to the thickness of the green compact 100 (see FIGS. 8 and 9) to be molded. Specifically, the outer diameter D20 of the lower punch 20 is reduced when the thickness is increased, and the outer diameter D20 of the lower punch 20 is increased when the thickness is decreased. Also, the outer diameter D20 of the lower punch 20 and the outer diameter D32 of the second upper punch 32 are preferably matched.

(B工程)
B工程では、ダイ10の中空部10h(図1A参照)内に原料粉末100pを充填した後、図4に示すように、下パンチ20の凹状端面21の周縁を第一内周面11の他端11bよりも下側に下降させ、下パンチ20の凹状端面21を第三内周面13で囲まれる領域内に位置させる。つまり、下パンチ20を基準位置P(図1A参照)よりも下側に位置させる。これにより、下パンチ20の上側に充填された原料粉末100pの上面を第二内周面12の開口部12oより沈下させて凹状の空間15を設ける。このような凹状の空間15を設けることによって、D工程(図6参照)で第二上パンチ32の凸状端面32hを中空部10h内に挿入し易くなる。更に、下パンチ20の凹状端面21を第一内周面11の他端11bよりも下降させておくことで、第三の工程(図7参照)において、下パンチ20と第二上パンチ32とで原料粉末を上下から圧縮することができ、圧粉体100の密度を高め易い。また、下パンチ20の凹状端面21を第一内周面11で囲まれる中空部10h内に突出させた状態とすると、原料粉末100pを圧縮した際に下パンチ20の凹状端面21の周縁が変形して破損し易くなる。下パンチ20の凹状端面21を第三内周面13で囲まれる領域内に位置させておくことで、圧縮時における凹状端面21の周縁の変形を抑制できる。よって、凹状端面21の周縁の破損を抑制できる。
(B process)
In step B, after filling the raw material powder 100p into the hollow portion 10h (see FIG. 1A) of the die 10, as shown in FIG. The lower punch 20 is lowered below the end 11b so that the concave end surface 21 of the lower punch 20 is positioned within the area surrounded by the third inner peripheral surface 13. As shown in FIG. That is, the lower punch 20 is positioned below the reference position P 0 (see FIG. 1A). As a result, the upper surface of the raw material powder 100p filled on the upper side of the lower punch 20 is lowered from the opening 12o of the second inner peripheral surface 12 to form the recessed space 15. As shown in FIG. By providing such a concave space 15, it becomes easier to insert the convex end surface 32h of the second upper punch 32 into the hollow portion 10h in the D process (see FIG. 6). Further, by lowering the concave end surface 21 of the lower punch 20 below the other end 11b of the first inner peripheral surface 11, the lower punch 20 and the second upper punch 32 are separated in the third step (see FIG. 7). The raw material powder can be compressed from above and below, and the density of the green compact 100 can be easily increased. Further, when the concave end surface 21 of the lower punch 20 is projected into the hollow portion 10h surrounded by the first inner peripheral surface 11, the peripheral edge of the concave end surface 21 of the lower punch 20 is deformed when the raw material powder 100p is compressed. and easily damaged. By positioning the concave end surface 21 of the lower punch 20 within the area surrounded by the third inner peripheral surface 13, deformation of the peripheral edge of the concave end surface 21 during compression can be suppressed. Therefore, damage to the periphery of the concave end surface 21 can be suppressed.

第二の工程のB工程において、下パンチ20の凹状端面21の周縁を第一内周面11の他端11bから下降させる下降量Pは、1mm以上10mm以下、更に2mm以上8mm以下とすることが挙げられる。下パンチ20の下降量Pを1mm以上とすることで、下パンチ20の上側に充填された原料粉末100pの上面に凹状の空間15を十分に確保し易い。一方、下パンチ20を下げ過ぎると、D工程(図6参照)で第二上パンチ32の凸状端面32hを原料粉末100pに押し付けた際に、下パンチ20の上側に充填された原料粉末100pをダイ10の第一内周面11側に流動させ難くなる。また、下パンチ20を下げ過ぎると、第三の工程(図7参照)で原料粉末100pを圧縮する際に下パンチ20の上側とダイ10の第一内周面11側とで原料粉末100pの圧縮率の差が大きくなる。そのため、圧粉体100(図8、図9参照)の頂部110と裾部120との境界に割れが発生し易くなる。そこで、下パンチ20の下降量Pは10mm以下とすることが好ましい。これにより、押し付け時の原料粉末100pの流動性を確保しつつ、圧縮時の圧縮率を均一化し易い。In step B of the second step, the descent amount P2 for lowering the peripheral edge of the concave end surface 21 of the lower punch 20 from the other end 11b of the first inner peripheral surface 11 is set to 1 mm or more and 10 mm or less, further 2 mm or more and 8 mm or less. Things are mentioned. By setting the descending amount P2 of the lower punch 20 to 1 mm or more, it is easy to sufficiently secure the recessed space 15 on the upper surface of the raw material powder 100p filled on the upper side of the lower punch 20 . On the other hand, if the lower punch 20 is lowered too much, when the convex end surface 32h of the second upper punch 32 is pressed against the raw material powder 100p in step D (see FIG. 6), the raw material powder 100p filled above the lower punch 20 becomes difficult to flow toward the first inner peripheral surface 11 of the die 10 . Also, if the lower punch 20 is lowered too much, the raw material powder 100p will be compressed between the upper side of the lower punch 20 and the first inner peripheral surface 11 side of the die 10 when the raw material powder 100p is compressed in the third step (see FIG. 7). The difference in compression rate becomes large. Therefore, cracks are likely to occur at the boundary between the top portion 110 and the bottom portion 120 of the powder compact 100 (see FIGS. 8 and 9). Therefore, the descending amount P2 of the lower punch 20 is preferably 10 mm or less. This makes it easy to uniformize the compressibility during compression while ensuring fluidity of the raw material powder 100p during pressing.

第二上パンチ32の外径D32に対する下パンチ20の外径D20の比(D20/D32)が0.8以上1.2以下である場合(図1A参照)、B工程で下パンチ20を下降させたときに、下パンチ20の上側に充填された原料粉末100pの上面に第二上パンチ32の外径D32に対応した大きさの凹状の空間15を設け易い。When the ratio of the outer diameter D20 of the lower punch 20 to the outer diameter D32 of the second upper punch 32 ( D20 / D32 ) is 0.8 or more and 1.2 or less (see FIG. 1A), the lower When the punch 20 is lowered, the recessed space 15 having a size corresponding to the outer diameter D32 of the second upper punch 32 can be easily provided on the upper surface of the raw material powder 100p filled on the upper side of the lower punch 20.

(C工程)
C工程では、B工程(図4参照)での下パンチ20の位置を維持した状態、具体的には、下パンチ20の凹状端面21の周縁を第一内周面11の他端11bよりも下側に位置させた状態で、図5に示すように、第一上パンチ31の円環状端面31cで第二内周面12の開口部12oを部分的に塞ぐ。具体的には、第一上パンチ31の円環状端面31cを第二内周面12の開口部12oの位置まで下降させ、第一上パンチ31の円環状端面31cを原料粉末100pに接触させる。これにより、D工程(図6参照)で第二上パンチ32の凸状端面32hを中空部10h(図1A参照)内に挿入した際に、原料粉末100pが第二内周面12の開口部12oから漏れることを抑制できる。図5では、第一上パンチ31の円環状端面31cとダイ10の上面とが面一になっている。なお、第一上パンチ31の円環状端面31cは、第二内周面12の開口部12oから若干下側に位置してもよい。第一上パンチ31の円環状端面31cは、例えば、第二内周面12の開口部12oから0.5mm~1mm程度下側に位置してもよい。C工程では、第二上パンチ32の凸状端面32hが原料粉末100pに接触しないようにする。
(C process)
In the C process, the position of the lower punch 20 in the B process (see FIG. 4) is maintained. When positioned on the lower side, as shown in FIG. 5, the annular end surface 31c of the first upper punch 31 partially closes the opening 12o of the second inner peripheral surface 12. As shown in FIG. Specifically, the annular end surface 31c of the first upper punch 31 is lowered to the position of the opening 12o of the second inner peripheral surface 12, and the annular end surface 31c of the first upper punch 31 is brought into contact with the raw material powder 100p. As a result, when the convex end surface 32h of the second upper punch 32 is inserted into the hollow portion 10h (see FIG. 1A) in step D (see FIG. 6), the raw material powder 100p is pushed into the opening of the second inner peripheral surface 12. Leakage from 12o can be suppressed. In FIG. 5, the annular end surface 31c of the first upper punch 31 and the upper surface of the die 10 are flush with each other. Note that the annular end surface 31c of the first upper punch 31 may be located slightly below the opening 12o of the second inner peripheral surface 12 . The annular end surface 31c of the first upper punch 31 may be positioned, for example, about 0.5 mm to 1 mm below the opening 12o of the second inner peripheral surface 12. As shown in FIG. In step C, the convex end surface 32h of the second upper punch 32 is kept from contacting the raw material powder 100p.

(D工程)
D工程では、C工程(図5参照)での第一上パンチ31の位置を維持した状態、具体的には、第一上パンチ31の円環状端面31cで第二内周面12の開口部12oを部分的に塞いだ状態で、図6に示すように、第二上パンチ32を下降させて凸状端面32hを中空部10h(図1A参照)内に挿入する。第二上パンチ32の凸状端面32hである半球面と円柱面との境界32dを第一上パンチ31の円環状端面31cの位置と一致させる。第二上パンチ32の凸状端面32hを原料粉末100pに押し付けることにより、下パンチ20の上側に充填された原料粉末100pをダイ10の第一内周面11側に流動させる。図6は、説明の便宜上、原料粉末100pの流動方向を黒塗り矢印で示す。なお、黒塗り矢印の方向は、例示である。この状態では、原料粉末100pが圧縮されておらず、密度が低い。そのため、下パンチ20の上側の原料粉末100pを外周側に流動させることが可能である。第二上パンチ32の凸状端面32hを原料粉末100pに押し付けることで、下パンチ20の上側とダイ10の第一内周面11側とで原料粉末の充填量を均一に制御することが可能であり、充填量の差がより小さくなる。
(D process)
In the D process, the position of the first upper punch 31 in the C process (see FIG. 5) is maintained, specifically, the annular end surface 31c of the first upper punch 31 is the opening of the second inner peripheral surface 12. 6, the second upper punch 32 is lowered to insert the convex end surface 32h into the hollow portion 10h (see FIG. 1A). A boundary 32 d between a hemispherical surface and a cylindrical surface, which is a convex end surface 32 h of the second upper punch 32 , is aligned with the position of the annular end surface 31 c of the first upper punch 31 . By pressing the convex end surface 32h of the second upper punch 32 against the raw material powder 100p, the raw material powder 100p filled in the upper side of the lower punch 20 is caused to flow toward the first inner peripheral surface 11 of the die 10. For convenience of explanation, FIG. 6 shows the flowing direction of the raw material powder 100p with a black arrow. Note that the direction of the black arrow is an example. In this state, the raw material powder 100p is not compressed and has a low density. Therefore, it is possible to flow the raw material powder 100p on the upper side of the lower punch 20 to the outer peripheral side. By pressing the convex end face 32h of the second upper punch 32 against the raw material powder 100p, it is possible to uniformly control the filling amount of the raw material powder on the upper side of the lower punch 20 and on the side of the first inner peripheral surface 11 of the die 10. , and the difference in filling amount becomes smaller.

第二上パンチ32の外径D32に対する下パンチ20の外径D20の比(D20/D32)が0.8以上1.2以下である場合(図1A参照)、第二上パンチ32の凸状端面32hを原料粉末100pに押し付けることによって、下パンチ20の上側の原料粉末100pを外周側に流動させ易い。そのため、下パンチ20の上側とダイ10の第一内周面11側とで原料粉末の充填量の差を調整し易い。When the ratio of the outer diameter D20 of the lower punch 20 to the outer diameter D32 of the second upper punch 32 ( D20 / D32 ) is 0.8 or more and 1.2 or less (see FIG. 1A), the second upper punch By pressing the convex end surface 32h of 32 against the raw material powder 100p, the raw material powder 100p on the upper side of the lower punch 20 is easily made to flow to the outer peripheral side. Therefore, it is easy to adjust the difference in filling amount of the raw material powder between the upper side of the lower punch 20 and the side of the first inner peripheral surface 11 of the die 10 .

上記A工程から上記D工程を経ることにより、上述した第二の工程(図2参照)の状態に至ることができる。 The second step (see FIG. 2) described above can be reached by going through the above-mentioned A step to the D step.

(第三の工程)
第三の工程では、図7に示すように、ダイ10に対して第一上パンチ31及び第二上パンチ32を下降させる共に下パンチ20を上昇させ、原料粉末100p(図2参照)を上下から圧縮して中空半球状の圧粉体100を得る。具体的には、下パンチ20の凹状端面21の周縁を第一内周面11の他端11b側まで上昇させる。また、第一上パンチ31の円環状端面31cを第一内周面11の一端11a側まで下降させると共に、第二上パンチ32の凸状端面32hを第一内周面11で囲まれる中空部10h(図1A参照)内に挿入する。
(Third step)
In the third step, as shown in FIG. 7, the first upper punch 31 and the second upper punch 32 are lowered with respect to the die 10, and the lower punch 20 is raised to raise and lower the raw material powder 100p (see FIG. 2). to obtain a hollow hemispherical green compact 100 . Specifically, the peripheral edge of the concave end surface 21 of the lower punch 20 is raised to the other end 11b side of the first inner peripheral surface 11 . Also, the annular end surface 31c of the first upper punch 31 is lowered to the one end 11a side of the first inner peripheral surface 11, and the convex end surface 32h of the second upper punch 32 is surrounded by the first inner peripheral surface 11. 10h (see FIG. 1A).

第一上パンチ31の円環状端面31cは、第一内周面11の一端11aから若干上側で止めることが好ましい。第一上パンチ31の円環状端面31cは、例えば、第一内周面11の一端11aから0.5mm~1mm程度上側で止めることが好ましい。これにより、第一上パンチ31の円環状端面31cが第一内周面11に干渉することを防止して、円環状端面31c及び第一内周面11の双方が疵付くことを抑制できる。 The annular end face 31c of the first upper punch 31 is preferably stopped slightly above the one end 11a of the first inner peripheral face 11 . It is preferable that the annular end surface 31c of the first upper punch 31 is stopped, for example, about 0.5 mm to 1 mm above the one end 11a of the first inner peripheral surface 11. As shown in FIG. This prevents the annular end surface 31c of the first upper punch 31 from interfering with the first inner peripheral surface 11, thereby suppressing both the annular end surface 31c and the first inner peripheral surface 11 from being damaged.

また、第二上パンチ32は、凸状端面32hである半球面と円柱面との境界32dが第一内周面11の一端11aの位置と一致するように下降させることが好ましい。第二上パンチ32を下降させ過ぎると、圧粉体100の内周面101(図8、図9参照)の開口側に円筒面が形成されることになる。一方、第二上パンチ32を十分に下降させないと、第二上パンチ32の凸状端面32hと第一上パンチ31の内周面との間に隙間ができ、圧粉体100の開口端面103にバリが生じ易くなる。 Moreover, the second upper punch 32 is preferably lowered so that the boundary 32d between the hemispherical surface and the cylindrical surface, which is the convex end surface 32h, coincides with the position of the one end 11a of the first inner peripheral surface 11. As shown in FIG. If the second upper punch 32 is lowered too much, a cylindrical surface will be formed on the opening side of the inner peripheral surface 101 (see FIGS. 8 and 9) of the green compact 100 . On the other hand, if the second upper punch 32 is not sufficiently lowered, a gap is formed between the convex end surface 32h of the second upper punch 32 and the inner peripheral surface of the first upper punch 31, and the opening end surface 103 of the green compact 100 is formed. burrs are likely to occur.

本例では、第二上パンチ32の境界32dと第一上パンチ31の円環状端面31cとの位置を一致させ、第一上パンチ31から第二上パンチ32の凸状端面32hが突出した状態で第一上パンチ31と第二上パンチ32とを同期して下降させている。 In this example, the position of the boundary 32d of the second upper punch 32 and the annular end surface 31c of the first upper punch 31 are aligned, and the convex end surface 32h of the second upper punch 32 protrudes from the first upper punch 31. , the first upper punch 31 and the second upper punch 32 are lowered synchronously.

上記第二の工程、及び上記第三の工程を経て半球状の圧粉体100を成形することで、圧粉体100の密度の均一化を図ることができる。 By forming the hemispherical compact 100 through the second step and the third step, the density of the compact 100 can be made uniform.

原料粉末100p(図2参照)を圧縮する際、第一上パンチ31とダイ10との間で圧縮される原料粉末100pの圧縮率と、第二上パンチ32と下パンチ20との間で圧縮される原料粉末100pの圧縮率との差の絶対値は、50%以下であることが挙げられる。圧縮率の差が上記範囲内にあることで、圧粉体100の密度を均一化でき、頂部110と裾部120との密度差を小さくできる。 When compressing the raw material powder 100p (see FIG. 2), the compression rate of the raw material powder 100p compressed between the first upper punch 31 and the die 10 and the compression ratio between the second upper punch 32 and the lower punch 20 The absolute value of the difference from the compressibility of 100 p of the raw material powder to be compressed is 50% or less. When the difference in compressibility is within the above range, the density of the green compact 100 can be made uniform, and the density difference between the top portion 110 and the bottom portion 120 can be reduced.

それぞれの圧縮率は、第二の工程(図2参照)での原料粉末100pを圧縮する前の金型1の状態と、第三の工程(図7参照)での圧縮後の金型1の状態とから求めることができる。圧縮前の金型1の状態において、第一上パンチ31の円環状端面31cとダイ10の第一内周面11との最大距離をA1とし、第二上パンチ32の凸状端面32hと下パンチ20の凹状端面21との頂点間距離をA2とする。また、圧縮後の金型1の状態において、第一上パンチ31の円環状端面31cとダイ10の第一内周面11との最大距離をB1とし、第二上パンチ32の凸状端面32hと下パンチ20の凹状端面21との頂点間距離をB2とする。第一上パンチ31の円環状端面31cと第一内周面11との最大距離とは、円環状端面31cと第一内周面11の他端11bとの距離をいう。そして、圧縮前における最大距離A1と、圧縮後における最大距離B1との比率([B1/A1]×100)を、第一上パンチ31とダイ10との間での原料粉末100pの圧縮率C1(%)とする。また、圧縮前における頂点間距離A2と、圧縮後における頂点間距離B2との比率([B2/A2]×100)を、第二上パンチ32と下パンチ20との間での原料粉末100pの圧縮率C2(%)とする。 Each compressibility is the state of the mold 1 before compressing the raw material powder 100p in the second step (see FIG. 2) and the state of the mold 1 after compression in the third step (see FIG. 7). can be obtained from the state. In the state of the die 1 before compression, the maximum distance between the annular end surface 31c of the first upper punch 31 and the first inner peripheral surface 11 of the die 10 is A1, and the convex end surface 32h of the second upper punch 32 and the lower Let A2 be the distance between the vertices of the punch 20 and the concave end face 21 . In the state of the die 1 after compression, the maximum distance between the annular end surface 31c of the first upper punch 31 and the first inner peripheral surface 11 of the die 10 is B1, and the convex end surface 32h of the second upper punch 32 is and the concave end surface 21 of the lower punch 20 is defined as B2. The maximum distance between the annular end surface 31 c of the first upper punch 31 and the first inner peripheral surface 11 is the distance between the annular end surface 31 c and the other end 11 b of the first inner peripheral surface 11 . Then, the ratio ([B1/A1]×100) between the maximum distance A1 before compression and the maximum distance B1 after compression is calculated as the compression rate C1 of the raw material powder 100p between the first upper punch 31 and the die 10. (%). Further, the ratio ([B2/A2]×100) between the vertex distance A2 before compression and the vertex distance B2 after compression is calculated as Let the compression rate be C2 (%).

圧縮率の差(C1-C2)が上記範囲内であれば、下パンチ20の上側とダイ10の第一内周面11側とで原料粉末100pの圧縮率の差を小さくできるので、圧粉体100の密度の均一化を図ることができる。圧縮率の差は、好ましくは40%以下、更に30%以下であることが挙げられる。 If the difference in compressibility (C1-C2) is within the above range, the difference in compressibility of the raw material powder 100p between the upper side of the lower punch 20 and the first inner peripheral surface 11 side of the die 10 can be reduced. Uniformity of the density of the body 100 can be achieved. The difference in compressibility is preferably 40% or less, more preferably 30% or less.

第三の工程において、原料粉末100pを圧縮する成形圧力は、980MPa以上、更に1176MPa以上とすることが挙げられる。これにより、圧粉体100を高密度化でき、圧粉体100の物理的特性を向上させることができる。 In the third step, the molding pressure for compressing the raw material powder 100p may be 980 MPa or higher, and more preferably 1176 MPa or higher. Thereby, the density of the green compact 100 can be increased, and the physical properties of the green compact 100 can be improved.

第三の工程において、圧縮終了時における下パンチ20の凹状端面21の周縁の位置は、第一内周面11の他端11bから下側に0.1mm以下の範囲内、或いは0.1mm超0.3mm以下の範囲内とすることが挙げられる。圧縮終了時において、下パンチ20の凹状端面21の周縁を第一内周面11の他端11bよりも下側に位置させることで、圧縮時における下パンチ20の凹状端面21の周縁の破損を抑制し易い。 In the third step, the position of the peripheral edge of the concave end surface 21 of the lower punch 20 at the end of compression is within a range of 0.1 mm or less, or more than 0.1 mm downward from the other end 11b of the first inner peripheral surface 11. For example, it should be within the range of 0.3 mm or less. By positioning the peripheral edge of the concave end surface 21 of the lower punch 20 below the other end 11b of the first inner peripheral surface 11 at the end of compression, damage to the peripheral edge of the concave end surface 21 of the lower punch 20 during compression is prevented. easy to suppress.

下パンチ20の凹状端面21の周縁の位置を第一内周面11の他端11bから下側に0.1mm以内とした場合、圧粉体100(図8、図9参照)の外周面102に設けられる段差を0.1mm以下とすることができる。0.1mm以内には、0が含まれる。外周面102に設けられる段差が0.1mm以下であれば、段差がないとみなすことができ、圧粉体100の外周面102を円滑な半球面で構成できる。 When the position of the peripheral edge of the concave end surface 21 of the lower punch 20 is within 0.1 mm downward from the other end 11b of the first inner peripheral surface 11, the outer peripheral surface 102 of the green compact 100 (see FIGS. 8 and 9) can be 0.1 mm or less. 0 is included within 0.1 mm. If the step provided on the outer peripheral surface 102 is 0.1 mm or less, it can be considered that there is no step, and the outer peripheral surface 102 of the powder compact 100 can be configured as a smooth hemispherical surface.

一方、下パンチ20の凹状端面21の周縁の位置を第一内周面11の他端11bから下側に0.1mm超0.3mm以下の範囲内とした場合、圧粉体100(図10、図11参照)の外周面102に0.1mm超0.3mm以下の段差130を設けることができる。この段差130は、例えば、圧粉体100の外側に半球状の別部材を組み付けるときに、別部材に対する位置決めに利用できる。下パンチ20の凹状端面21の周縁の位置を第一内周面11の他端11bから下側に0.3mm以内であれば、第二上パンチ32と下パンチ20との間、即ち下パンチ20の上側における圧縮率への影響もほとんどない。 On the other hand, when the position of the peripheral edge of the concave end surface 21 of the lower punch 20 is set within a range of more than 0.1 mm and 0.3 mm or less downward from the other end 11b of the first inner peripheral surface 11, the green compact 100 (Fig. 10 , FIG. 11) can be provided with a step 130 of more than 0.1 mm and 0.3 mm or less. This step 130 can be used for positioning with respect to another member, for example, when a hemispherical member is attached to the outside of the green compact 100 . If the position of the peripheral edge of the concave end surface 21 of the lower punch 20 is within 0.3 mm downward from the other end 11b of the first inner peripheral surface 11, the position between the second upper punch 32 and the lower punch 20, that is, the lower punch There is also little effect on compression ratio above 20.

ここで、圧粉体100の外周面102に段差130を設ける場合、段差130の位置は、下パンチ20の外径D20(図1A参照)よって変わる。本例は、第二上パンチ32の外径D32と下パンチ20の外径D20とが実質的に同一であり、D20/D32が1である。この場合、図10、図11に示すように、圧粉体100の外周面102のうち、頂部110と裾部120との間に段差130が設けられる。第二上パンチ32の外径D32と下パンチ20の外径D20とを異ならせることもできる。第二上パンチ32の外径D32に対して下パンチ20の外径D20が小さく、D20<D32である場合、頂部110側に段差130が設けられる(図12参照)。一方、第二上パンチ32の外径D32に対して下パンチ20の外径D20が大きく、D20>D32である場合、裾部120側に段差130が設けられる(図13参照)。Here, when the step 130 is provided on the outer peripheral surface 102 of the powder compact 100, the position of the step 130 changes depending on the outer diameter D20 of the lower punch 20 (see FIG. 1A). In this example, the outer diameter D32 of the second upper punch 32 and the outer diameter D20 of the lower punch 20 are substantially the same, and D20 / D32 is one. In this case, as shown in FIGS. 10 and 11 , a step 130 is provided between the top portion 110 and the bottom portion 120 of the outer peripheral surface 102 of the green compact 100 . The outer diameter D32 of the second upper punch 32 and the outer diameter D20 of the lower punch 20 can also be different. When the outer diameter D 20 of the lower punch 20 is smaller than the outer diameter D 32 of the second upper punch 32 and D 20 <D 32 , a step 130 is provided on the top portion 110 side (see FIG. 12). On the other hand, when the outer diameter D 20 of the lower punch 20 is larger than the outer diameter D 32 of the second upper punch 32 and D 20 >D 32 , a step 130 is provided on the skirt portion 120 side (see FIG. 13). .

(原料粉末)
原料粉末100p(図2参照)は、製造する圧粉体100(図8、図9参照)の使用目的に応じて適宜選択できる。例えば、圧粉体100で圧粉磁石を構成する場合、原料粉末100pとして磁石粉末を用いることが挙げられる。また、圧粉体100で圧粉磁心を構成する場合、原料粉末100pとして軟磁性粉末を用いることが挙げられる。
(Raw material powder)
The raw material powder 100p (see FIG. 2) can be appropriately selected according to the intended use of the green compact 100 (see FIGS. 8 and 9) to be produced. For example, when forming a powder magnet from the powder compact 100, magnetic powder may be used as the raw material powder 100p. Further, when forming a powder magnetic core from the powder compact 100, soft magnetic powder may be used as the raw material powder 100p.

〈磁石粉末〉
磁石粉末としては、例えば、希土類元素と鉄とを含有する希土類-鉄系合金の粉末といった希土類-鉄系磁石の粉末が挙げられる。希土類-鉄系合金としては、代表的には、NdFe14BやSmFe17が挙げられる。磁石粉末には、希土類-鉄系磁石の原料となるNdFe14BやSmFe17といった希土類-鉄系合金を水素化処理した水素化粉末が含まれる。希土類-鉄系合金の圧粉体100からなる希土類-鉄系合金磁石を製造する場合、原料粉末100pとして希土類-鉄系合金の水素化粉末からなる磁石粉末を用いること望ましい。これは、希土類-鉄系合金の水素化粉末を用いた場合、高密度の圧粉体100が得られるからである。
<Magnet powder>
Examples of magnet powders include powders of rare earth-iron magnets, such as powders of rare earth-iron alloys containing a rare earth element and iron. Typical rare earth-iron alloys include Nd 2 Fe 14 B and Sm 2 Fe 17 N 3 . Magnetic powder includes hydrogenated powder obtained by hydrogenating rare earth-iron alloys such as Nd 2 Fe 14 B and Sm 2 Fe 17 , which are raw materials for rare earth-iron magnets. When manufacturing a rare earth-iron alloy magnet made of the rare earth-iron alloy compact 100, it is desirable to use magnetic powder made of hydrogenated rare earth-iron alloy powder as the raw material powder 100p. This is because the green compact 100 with high density can be obtained when the hydrogenated rare earth-iron alloy powder is used.

〈水素化粉末〉
希土類-鉄系合金の水素化粉末は、希土類-鉄系合金を粉砕した粉末を水素化処理する、或いは、希土類-鉄系合金を水素化処理した後、粉砕することで製造できる。希土類-鉄系合金は、例えば、急冷凝固法により製造できる。急冷凝固法としては、ストリップキャスト法やメルトスパン法などが挙げられる。希土類-鉄系合金に含有する希土類元素としては、ネオジム(Nd)又はサマリウム(Sm)であることが挙げられる。希土類-鉄系合金において、希土類元素の含有量は10質量%以上40質量%未満であることが挙げられる。例えば、希土類元素がNdの場合、Ndの含有量は25質量%以上35質量%以下、更に28質量%以上35質量%以下であることが好ましい。一方、Smの場合、Smの含有量は25質量%以上26.5質量%以下であることが好ましい。Nd又はSmの含有量が上記範囲内であることで、化学量論組成がNdFe14B又はSmFe17などの希土類-鉄系合金が得られる。
<Hydrogenated powder>
The hydrogenated rare earth-iron alloy powder can be produced by hydrogenating a pulverized rare earth-iron alloy powder, or by pulverizing a rare earth-iron alloy after hydrogenating it. Rare earth-iron alloys can be produced, for example, by rapid solidification. Examples of rapid solidification methods include strip casting and melt spun methods. Examples of rare earth elements contained in rare earth-iron alloys include neodymium (Nd) and samarium (Sm). The content of the rare earth element in the rare earth-iron alloy is 10% by mass or more and less than 40% by mass. For example, when the rare earth element is Nd, the Nd content is preferably 25% by mass or more and 35% by mass or less, more preferably 28% by mass or more and 35% by mass or less. On the other hand, in the case of Sm, the content of Sm is preferably 25% by mass or more and 26.5% by mass or less. When the content of Nd or Sm is within the above range, a rare earth-iron alloy with a stoichiometric composition of Nd 2 Fe 14 B or Sm 2 Fe 17 can be obtained.

希土類-鉄系合金において、希土類元素及び鉄(Fe)以外の元素としては、特にNdを含む組成の場合、ホウ素(B)を含むことが挙げられる。その他、Feの一部をコバルト(Co)、ニッケル(Ni)、ガリウム(Ga)、銅(Cu)、アルミニウム(Al)、シリコン(Si)、チタン(Ti)、マンガン(Mn)及びにオブ(Nb)から選択される1種以上の元素で置換してもよい。 In rare earth-iron alloys, elements other than rare earth elements and iron (Fe) include boron (B), especially in the case of a composition containing Nd. In addition, part of Fe is cobalt (Co), nickel (Ni), gallium (Ga), copper (Cu), aluminum (Al), silicon (Si), titanium (Ti), manganese (Mn) and Nb) may be substituted with one or more elements selected from.

希土類-鉄系合金を水素化処理することで、希土類元素の水素化物の相と、鉄を含有する鉄含有物の相とに相分解した組織を形成する。希土類元素の水素化物としては、例えば、NdHやSmHが挙げられる。鉄含有物としては、例えば、Fe、FeBなどの鉄化合物が挙げられる。水素化処理は、水素含有雰囲気中、例えば、400℃以上900℃以下、好ましくは500℃以上850℃以下で熱処理することが挙げられる。水素含有雰囲気としては、例えば、Hガス雰囲気、又は混合ガス雰囲気とすることが挙げられる。混合ガスとしては、Hガスと不活性ガスとを混合したものが挙げられる。不活性ガスとしては、ArやNなどが挙げられる。水素含有雰囲気の雰囲気圧力、即ち水素分圧は、例えば、20.2kPa(0.2気圧)以上1013kPa(10気圧)以下、更に50.5kPa(0.5気圧)以上111.1kPa(1.1気圧)以下とすることが挙げられる。水素化処理の時間は、適宜設定すればよく、例えば、30分以上180分以下とすることが挙げられる。By hydrotreating a rare earth-iron alloy, a phase-decomposed structure is formed into a rare earth element hydride phase and an iron-containing phase containing iron. Examples of hydrides of rare earth elements include NdH2 and SmH2 . Examples of iron-containing substances include iron compounds such as Fe and Fe 2 B. The hydrogenation treatment includes heat treatment in a hydrogen-containing atmosphere, for example, at 400° C. or higher and 900° C. or lower, preferably 500° C. or higher and 850° C. or lower. Examples of the hydrogen-containing atmosphere include an H 2 gas atmosphere and a mixed gas atmosphere. The mixed gas includes a mixture of H2 gas and inert gas. Inert gases include Ar and N2 . The atmospheric pressure of the hydrogen-containing atmosphere, that is, the hydrogen partial pressure is, for example, 20.2 kPa (0.2 atmosphere) or more and 1013 kPa (10 atmosphere) or less, and further 50.5 kPa (0.5 atmosphere) or more and 111.1 kPa (1.1 atmosphere). atmospheric pressure). The time for the hydrogenation treatment may be set as appropriate, and may be, for example, 30 minutes or more and 180 minutes or less.

粉砕は、例えば、ジェットミル、ボールミル、ブラウンミル、ピンミル、ディスクミル、ジョークラッシャーなどの公知の粉砕機を利用できる。粉砕は、磁石粉末の酸化を抑制するため、Arなどの不活性ガス雰囲気中で行うことが好ましい。 For pulverization, for example, known pulverizers such as jet mills, ball mills, Braun mills, pin mills, disc mills, and jaw crushers can be used. Pulverization is preferably carried out in an atmosphere of an inert gas such as Ar in order to suppress oxidation of the magnet powder.

希土類-鉄系合金の水素化粉末は、組織中に柔らかい鉄含有物の相が存在することから、水素化処理していない希土類-鉄系合金の粉末に比べて塑性変形し易く、成形性に優れる。したがって、希土類-鉄系合金の水素化粉末を用いた場合、圧粉体100の高密度化が可能であり、水素化粉末を含む高密度の圧粉体100を得ることができる。 Hydrogenated powders of rare earth-iron alloys contain a soft iron-containing phase in the structure, so plastic deformation is easier than unhydrogenated rare earth-iron alloy powders, resulting in poor formability. Excellent. Therefore, when the hydrogenated powder of the rare earth-iron alloy is used, the density of the green compact 100 can be increased, and the high-density green compact 100 containing the hydrogenated powder can be obtained.

原料粉末100pとして希土類-鉄系合金の水素化粉末からなる磁石粉末を用いて圧粉体100を成形した場合、上記第三の工程の後、圧粉体100を脱水素処理する工程を備える。水素化粉末の圧粉体100を脱水素処理した場合、希土類元素の水素化物から水素が放出されて再結合反応が生じ、元の希土類-鉄系合金の状態に戻る。よって、水素化粉末の圧粉体100を脱水素処理することで、希土類-鉄系合金の粉末を含む高密度の圧粉体100を得ることができる。したがって、希土類-鉄系合金の圧粉体100からなる中空半球状の希土類-鉄系合金磁石が得られる。 When the green compact 100 is molded using magnet powder made of hydrogenated rare earth-iron alloy powder as the raw material powder 100p, a step of dehydrogenating the green compact 100 is provided after the third step. When the green compact 100 of the hydrogenated powder is dehydrogenated, hydrogen is released from the hydride of the rare earth element, causing a recombination reaction and returning to the original state of the rare earth-iron alloy. Therefore, by dehydrogenating the green compact 100 of the hydrogenated powder, it is possible to obtain the high-density green compact 100 containing the rare earth-iron alloy powder. Therefore, a hollow hemispherical rare earth-iron alloy magnet made of the compact 100 of rare earth-iron alloy is obtained.

脱水素処理は、不活性雰囲気中又は減圧雰囲気中、例えば、600℃以上1000℃以下、好ましくは650℃以上800℃以下で熱処理することが挙げられる。不活性雰囲気としては、例えば、ArやNなどの不活性ガス雰囲気とすることが挙げられる。減圧雰囲気としては、例えば、真空度が10Pa以下の真空雰囲気とすることが挙げられる。より好ましい真空雰囲気の真空度は1Pa以下、更に0.1Pa以下である。脱水素処理の時間は、適宜設定すればよく、例えば、30分以上180分以下とすることが挙げられる。The dehydrogenation treatment includes heat treatment in an inert atmosphere or a reduced pressure atmosphere, for example, at 600° C. or higher and 1000° C. or lower, preferably 650° C. or higher and 800° C. or lower. As an inert atmosphere, for example, an atmosphere of an inert gas such as Ar or N2 may be used. As the reduced-pressure atmosphere, for example, a vacuum atmosphere with a degree of vacuum of 10 Pa or less can be used. The degree of vacuum of the vacuum atmosphere is more preferably 1 Pa or less, more preferably 0.1 Pa or less. The dehydrogenation treatment time may be set as appropriate, and may be, for example, 30 minutes or more and 180 minutes or less.

希土類-鉄系合金の水素化粉末としては、SmFe17合金の水素化粉末を用いて圧粉体100を成形した場合は、脱水素処理した後、圧粉体100を窒化処理する工程を備えることが挙げられる。具体的には、脱水素処理後のSmFe17合金の粉末を含む圧粉体100を窒化処理することで、SmFe17をSmFe17とすることが挙げられる。窒化処理は、窒素含有雰囲気中で、例えば、200℃以上550℃以下、好ましくは300℃以上550℃以下で熱処理することが挙げられる。窒素含有雰囲気としては、例えば、NHガス雰囲気、Nガス雰囲気、又は混合ガス雰囲気が挙げられる。混合ガスとしては、例えば、NHガスとHガスとを混合したもの、又はNガスとHガスとを混合したものが挙げられる。As the hydrogenated rare earth-iron alloy powder, when the green compact 100 is molded using the hydrogenated powder of Sm 2 Fe 17 alloy, a step of nitriding the green compact 100 after dehydrogenation is performed. Be prepared. Specifically, the green compact 100 containing the Sm 2 Fe 17 alloy powder after the dehydrogenation treatment is nitrided to convert Sm 2 Fe 17 into Sm 2 Fe 17 N 3 . The nitriding treatment includes heat treatment at, for example, 200° C. or higher and 550° C. or lower, preferably 300° C. or higher and 550° C. or lower, in a nitrogen-containing atmosphere. The nitrogen-containing atmosphere includes, for example, an NH3 gas atmosphere, an N2 gas atmosphere, or a mixed gas atmosphere. Mixed gases include, for example, a mixture of NH 3 gas and H 2 gas, or a mixture of N 2 gas and H 2 gas.

脱水素処理した後、場合によっては脱水素処理して窒化処理した後、希土類-鉄系合金の圧粉体100を磁化する工程を備えることで、中空半球状の希土類-鉄系合金磁石を製造できる。 A hollow hemispherical rare earth-iron alloy magnet is manufactured by providing a step of magnetizing the green compact 100 of the rare earth-iron alloy after dehydrogenation, optionally after dehydrogenation and nitriding. can.

原料粉末100pとして水素化処理していない希土類-鉄系合金からなる磁石粉末を用いる場合、結合剤を加えてもよい。この希土類-鉄系合金としては、例えば、NdFe14BやSmFe17が挙げられる。結合剤としては、例えば、エポキシ樹脂などの樹脂が挙げられる。A binder may be added when a magnet powder made of a rare earth-iron alloy that has not been hydrotreated is used as the raw material powder 100p. Examples of rare earth-iron alloys include Nd 2 Fe 14 B and Sm 2 Fe 17 N 3 . Examples of binders include resins such as epoxy resins.

軟磁性粉末としては、例えば、純鉄、又は、Fe(鉄)-Si(シリコン)系合金、Fe(鉄)-Al(アルミニウム)系合金、Fe(鉄)-Cr(クロム)-Al(アルミニウム)系合金、Fe(鉄)-Cr(クロム)-Si(シリコン)系合金から選択される少なくとも一種の鉄基合金からなる粉末が挙げられる。純鉄とは、純度99質量%以上をいう。軟磁性粉末を構成する粒子表面に絶縁被覆を施してもよい。絶縁被覆としては、例えば、リン酸塩被覆、シリカ被覆などが挙げられる。 Examples of soft magnetic powder include pure iron, Fe (iron)-Si (silicon) alloy, Fe (iron)-Al (aluminum) alloy, Fe (iron)-Cr (chromium)-Al (aluminum )-based alloys and Fe (iron)--Cr (chromium)--Si (silicon)-based alloys. Pure iron means a purity of 99% by mass or more. An insulating coating may be applied to the surface of the particles constituting the soft magnetic powder. Examples of insulating coatings include phosphate coatings and silica coatings.

原料粉末100pの平均粒径は、例えば、20μm以上200μm以下、好ましくは50μm以上150μm以下とすることが挙げられる。原料粉末100pの平均粒径を上記範囲内とすることで、取り扱い易く、加圧成形し易い。更に、原料粉末100pの平均粒径を20μm以上とすることで、原料粉末100pの流動性を確保し易い。原料粉末100pの平均粒径を200μm以下とすることで、圧粉体100を高密度化し易い。原料粉末100pの平均粒径は、原料粉末100pを構成する粒子の平均粒径のことであり、レーザ回折式粒度分布測定装置により測定した体積粒度分布における累積体積が50%となる粒径(D50)とする。 The average particle size of the raw material powder 100p is, for example, 20 μm or more and 200 μm or less, preferably 50 μm or more and 150 μm or less. By setting the average particle size of the raw material powder 100p within the above range, it is easy to handle and easy to pressure-mold. Furthermore, by setting the average particle size of the raw material powder 100p to 20 μm or more, it is easy to ensure the fluidity of the raw material powder 100p. By setting the average particle size of the raw material powder 100p to 200 μm or less, it is easy to increase the density of the green compact 100 . The average particle size of the raw material powder 100p is the average particle size of the particles constituting the raw material powder 100p. ).

[圧粉体]
図8から図13を参照して、実施形態に係る圧粉体100について説明する。実施形態に係る圧粉体100は、上述した実施形態に係る圧粉体の製造方法により製造することができる。圧粉体100の特徴の1つは、中空半球状の形状を有し、頂部110と裾部120との相対密度の差の絶対値が5%以下である点にある。図9、図11、図12、及び図13中の一点鎖線は、中空半球状の圧粉体100における中心と頂点を結ぶ中心軸線C100を示している。中心は、図中の点Oで示す。頂点は、図中の点Pで示す。図9、図11、図12、及び図13中の二点鎖線は、頂部110と裾部120との境界である分割線D100を示している。なお、図8、及び図9に示す圧粉体100は、圧粉体100の外周面102に段差が実質的にない形態を例示するものである。段差が実質的にないとは、0.1mm以下の段差を含む。図10、図11、図12、及び図13に示す圧粉体100は、圧粉体100の外周面102に段差130を有する形態を例示するものである。
[Green compact]
A green compact 100 according to the embodiment will be described with reference to FIGS. 8 to 13 . The green compact 100 according to the embodiment can be manufactured by the green compact manufacturing method according to the embodiment described above. One of the characteristics of the powder compact 100 is that it has a hollow hemispherical shape and the absolute value of the difference in relative density between the top portion 110 and the bottom portion 120 is 5% or less. A dashed line in FIGS. 9, 11, 12, and 13 indicates a central axis line C100 connecting the center and the vertex of the hollow hemispherical green compact 100. As shown in FIG. The center is indicated by point O in the figure. A vertex is indicated by a point P in the figure. 9, 11, 12, and 13 indicate the dividing line D100 , which is the boundary between the top portion 110 and the skirt portion 120. As shown in FIG. The green compact 100 shown in FIGS. 8 and 9 exemplifies a form in which the outer peripheral surface 102 of the green compact 100 has substantially no steps. "Substantially free of steps" includes steps of 0.1 mm or less. The green compact 100 shown in FIGS. 10, 11, 12, and 13 exemplifies a form having a step 130 on the outer peripheral surface 102 of the green compact 100. FIG.

(頂部と裾部の相対密度の差)
圧粉体100において、頂部110と裾部120との相対密度の差が5%以下であることで、頂部110と裾部120との密度差が小さい。したがって、圧粉体100は、密度が均一であり、物理的特性が均一である。頂部110と裾部120との相対密度の差は、更に2%以下、特に1%以下であることが好ましい。
(difference in relative density between top and bottom)
In the compact 100, the density difference between the top portion 110 and the bottom portion 120 is small because the difference in relative density between the top portion 110 and the bottom portion 120 is 5% or less. Therefore, the green compact 100 has uniform density and uniform physical properties. The difference in relative density between the top portion 110 and the bottom portion 120 is preferably 2% or less, particularly 1% or less.

ここで、中空半球状の圧粉体100における頂部110及び裾部120とは、次のように定義する。中空半球の中心Oと頂点Pを結ぶ中心軸線C100と平行で、且つ、中空半球の開口端面103の内周縁を通る線を分割線D100としたとき、分割線D100よりも中心軸線C100側に位置する部分を頂部110、分割線D100よりも中心軸線C100とは反対側に位置する残りの部分を裾部120とする。Here, the top portion 110 and the bottom portion 120 of the hollow hemispherical green compact 100 are defined as follows. When a line parallel to the central axis C 100 connecting the center O of the hollow hemisphere and the vertex P and passing through the inner peripheral edge of the open end face 103 of the hollow hemisphere is defined as a dividing line D 100 , the central axis C is located closer to the dividing line D 100 The portion located on the 100 side is a top portion 110, and the remaining portion located on the side opposite to the central axis C100 with respect to the dividing line D100 is a skirt portion 120.

(相対密度)
圧粉体100全体の相対密度は、80%以上であることが挙げられる。相対密度が80%以上の圧粉体100は、高密度であり、物理的特性に優れる。圧粉体100の相対密度は、更に85%以上であることが好ましい。
(relative density)
The relative density of the entire green compact 100 is 80% or more. The green compact 100 having a relative density of 80% or more has high density and excellent physical properties. Further, the relative density of the green compact 100 is preferably 85% or more.

(段差)
圧粉体100の外周面102には、段差が設けられていることを許容する。図8、図9に示す圧粉体100は、外周面102のうち、頂部110の外周面である球冠面と裾部120の外周面である球帯面との間に0.1mm以下の段差が設けられている。0.1mm以下には、0が含まれる。圧粉体100の外周面102に設けられる段差が0.1mm以下であることで、段差が実質的になく、圧粉体100の外周面102を円滑な半球面で構成できる。圧粉体100の外周面102の段差が0.1mm以下であることで、圧粉体100の外側に半球状の別部材を組み付けたときに、圧粉体100の外周面と別部材の内周面との間に隙間が設けられることを抑制できる。別部材の図示は省略する。
(Step)
Steps may be provided on the outer peripheral surface 102 of the powder compact 100 . The compact 100 shown in FIGS. 8 and 9 has an outer peripheral surface 102 with a distance of 0.1 mm or less between the spherical crown surface that is the outer peripheral surface of the top portion 110 and the spherical zone surface that is the outer peripheral surface of the skirt portion 120. There is a step. 0 is included in 0.1 mm or less. Since the step provided on the outer peripheral surface 102 of the green compact 100 is 0.1 mm or less, there is substantially no step, and the outer peripheral surface 102 of the green compact 100 can be configured as a smooth hemispherical surface. Since the step of the outer peripheral surface 102 of the green compact 100 is 0.1 mm or less, when a separate hemispherical member is assembled to the outside of the green compact 100, the outer peripheral surface of the green compact 100 and the inside of the separate member It is possible to suppress the formation of a gap with respect to the peripheral surface. Illustration of separate members is omitted.

図10、図11に示す圧粉体100は、外周面102のうち、頂部110の外周面である球冠面と裾部120の外周面である球帯面との間に0.1mm超0.3mm以下の段差130が設けられている。圧粉体100の外周面102に0.1mm超の段差130が設けられていることで、圧粉体100の外側に半球状の別部材を組み付けるときに、この段差を別部材に対する位置決めに利用できる。この場合、別部材の内周面に段差130に対応する段差部を設けておく。別部材の図示は上述の通り省略する。 10 and 11, the green compact 100 shown in FIGS. A step 130 of 3 mm or less is provided. Since the step 130 of more than 0.1 mm is provided on the outer peripheral surface 102 of the green compact 100, when a separate hemispherical member is assembled to the outside of the green compact 100, this step can be used for positioning with respect to the separate member. can. In this case, a step portion corresponding to the step 130 is provided on the inner peripheral surface of the separate member. Illustration of separate members is omitted as described above.

段差130の位置は、頂部110と裾部120との間に限定されない。例えば、図12に示すように、圧粉体100の外周面102のうち、頂部110と裾部120との境界である分割線D100よりも頂部110側に段差130が設けられていてもよい。或いは、図13に示すように、圧粉体100の外周面102のうち、頂部110と裾部120との境界である分割線D100よりも裾部120側に段差130が設けられていてもよい。段差130の位置は、圧粉体100において、中心軸線C100から径方向に、開口端面103の内周半径r103の0.8倍以上1.2倍以下の位置に設定されていることが挙げられる。つまり、段差130は、頂部110と裾部120との境界である分割線D100から内周半径r103の±20%以内の位置に設けられていることが挙げられる。The position of step 130 is not limited to between top portion 110 and skirt portion 120 . For example, as shown in FIG. 12 , a step 130 may be provided on the outer peripheral surface 102 of the green compact 100 on the top portion 110 side of the dividing line D 100 that is the boundary between the top portion 110 and the bottom portion 120. . Alternatively, as shown in FIG. 13, even if a step 130 is provided on the outer peripheral surface 102 of the green compact 100 on the side of the skirt portion 120 from the dividing line D 100 that is the boundary between the top portion 110 and the skirt portion 120. good. The position of the step 130 is set at a position in the green compact 100 that is 0.8 to 1.2 times the inner circumference radius r 103 of the opening end face 103 in the radial direction from the central axis C 100 . mentioned. That is, the step 130 is provided at a position within ±20% of the inner radius r 103 from the dividing line D 100 that is the boundary between the top portion 110 and the bottom portion 120 .

(厚み)
圧粉体100の厚みは、例えば、開口端面103の外周半径R103の1/30倍以上、更に1/25倍以上であり、1/2倍以下であることが挙げられる。圧粉体100の厚みとは、圧粉体100の径方向の長さ、即ち、内外径の差の1/2をいう。圧粉体100の厚みが上記範囲内であることで、密度の均一化と高密度化を図り易い。
(thickness)
The thickness of the powder compact 100 is, for example, 1/30 times or more, more preferably 1/25 times or more, and 1/2 times or less of the outer circumference radius R 103 of the opening end face 103 . The thickness of the green compact 100 means the length of the green compact 100 in the radial direction, that is, 1/2 of the difference between the inner and outer diameters. When the thickness of the powder compact 100 is within the above range, uniform density and high density can be easily achieved.

(材料)
圧粉体100の構成材料としては、例えば、磁石粉末、軟磁性粉末などが挙げられる。磁石粉末としては、例えば、希土類元素と鉄とを含有する希土類-鉄系合金の粉末が挙げられる。希土類-鉄系合金は、例えば、NdFe14BやSmFe17が挙げられる。希土類-鉄系合金の粉末を含む圧粉体100は、希土類-鉄系磁石として使用可能である。軟磁性粉末を含む圧粉体100は、圧粉磁心として使用可能である。
(material)
Examples of the constituent material of the powder compact 100 include magnet powder and soft magnetic powder. Magnetic powders include, for example, powders of rare earth-iron alloys containing rare earth elements and iron. Examples of rare earth-iron alloys include Nd 2 Fe 14 B and Sm 2 Fe 17 N 3 . The green compact 100 containing rare earth-iron alloy powder can be used as a rare earth-iron magnet. A green compact 100 containing soft magnetic powder can be used as a powder magnetic core.

(用途)
希土類-鉄系合金の圧粉体100からなる半球状の希土類-鉄系合金磁石は、例えば、ロボットの関節に利用される球面モータを構成する磁石として利用可能である。希土類-鉄系合金の圧粉体100からなる半球状の磁石を用いて磁気回路を構成する場合、圧粉体100の外側に半球状のヨークを被せることがある。ヨークの図示は省略する。例えば図8、図9に示す圧粉体100のように、外周面102に段差がない形態では、圧粉体100の外周面102とヨークの内周面との間に設けられる隙間を小さくでき、磁気抵抗を低減できる。一方、例えば、図10、図11に示す圧粉体100のように、外周面102に段差130を有する形態では、この段差130をヨークに対する位置決めに利用できる。希土類-鉄系合金の圧粉体100に対する着磁は、例えば、圧粉体100の中心から径方向に着磁することが挙げられる。
(Application)
A hemispherical rare earth-iron alloy magnet made of the rare earth-iron alloy compact 100 can be used, for example, as a magnet that constitutes a spherical motor used in the joints of a robot. When a magnetic circuit is configured using a hemispherical magnet made of a rare earth-iron alloy compact 100, the compact 100 may be covered with a hemispherical yoke. Illustration of the yoke is omitted. For example, as in the green compact 100 shown in FIGS. 8 and 9, when the outer peripheral surface 102 has no step, the gap provided between the outer peripheral surface 102 of the green compact 100 and the inner peripheral surface of the yoke can be made small. , the magnetic resistance can be reduced. On the other hand, for example, in a form having a step 130 on the outer peripheral surface 102 like the green compact 100 shown in FIGS. 10 and 11, the step 130 can be used for positioning with respect to the yoke. Magnetization of the rare earth-iron alloy compact 100 includes, for example, magnetization in the radial direction from the center of the compact 100 .

軟磁性粉末の圧粉体100からなる半球状の圧粉磁心は、例えば、上述した磁気回路を構成するヨークに利用できる。 A hemispherical dust core made of the green compact 100 of soft magnetic powder can be used, for example, as a yoke that constitutes the magnetic circuit described above.

{実施形態の効果}
上述した実施形態に係る圧粉体の製造方法、及び圧粉体100は、次の効果を奏する。
{Effect of embodiment}
The green compact manufacturing method and the green compact 100 according to the above-described embodiments have the following effects.

実施形態の圧粉体の製造方法は、金型1を使用し、金型1の動作を上記第二の工程、及び上記第三の工程に従って制御することで、中空半球状の圧粉体100の密度を均一化できる。特に、第二の工程において、上記A工程から上記D工程を実施することにより、均一な密度の圧粉体100を容易に製造できる。 In the green compact production method of the embodiment, the mold 1 is used, and the operation of the mold 1 is controlled according to the second step and the third step to produce a hollow hemispherical green compact 100. can homogenize the density of In particular, in the second step, the green compact 100 having a uniform density can be easily manufactured by performing the steps A to D above.

実施形態の圧粉体100は、中空半球状であり、頂部110と裾部120との相対密度の差が5%以下であることで、頂部110と裾部120との密度差が小さい。 The green compact 100 of the embodiment has a hollow hemispherical shape, and the difference in relative density between the top portion 110 and the bottom portion 120 is 5% or less.

[試験例1]
上述した実施形態の圧粉体の製造方法により中空半球状の圧粉体を製造した。
[Test Example 1]
A hollow hemispherical compact was produced by the method for producing a compact according to the embodiment described above.

原料粉末には、NdFe14B合金の水素化粉末を用いた。この水素化粉末は、NdFe14B合金の粉末を水素化処理してして得た。水素化処理として、Hガス雰囲気の大気圧中、850℃で150分間熱処理した。水素化粉末の平均粒径(D50)は130μmである。A hydrogenated powder of Nd 2 Fe 14 B alloy was used as the raw material powder. This hydrogenated powder was obtained by hydrogenating a Nd 2 Fe 14 B alloy powder. As a hydrogenation treatment, heat treatment was performed at 850° C. for 150 minutes in an atmosphere of H 2 gas at atmospheric pressure. The average particle size (D50) of the hydrogenated powder is 130 μm.

金型の各要素の寸法は次の通りである。
ダイの第二内周面の内径:30mm
ダイの第二内周面の長さ:5mm
ダイの第三内周面の内径:20mm
ダイの第一内周面の半径(R11):15mm
第一上パンチの外径(D31):30mm
第一上パンチの内径(d31):20mm
第二上パンチの外径(D32):20mm
下パンチの外径(D20):20mm
下パンチの端面の半径(R21):15mm
ダイの第一内周面と下パンチの端面とで構成される半球面の外径:30mm
第二上パンチの半球状の端面の外径:20mm
下パンチを基準位置(P)に位置させたときの第二内周面の開口部から下パンチの端面の周縁までの距離(L):16.18mm
The dimensions of each element of the mold are as follows.
Inner diameter of the second inner peripheral surface of the die: 30 mm
Length of the second inner peripheral surface of the die: 5 mm
Inner diameter of the third inner peripheral surface of the die: 20 mm
Radius of first inner peripheral surface of die (R 11 ): 15 mm
Outer diameter of first upper punch ( D31 ): 30 mm
Inner diameter of first upper punch (d 31 ): 20 mm
Outer diameter of second upper punch (D 32 ): 20 mm
Outer diameter of lower punch ( D20 ): 20mm
Radius of end face of lower punch (R 21 ): 15 mm
Outer diameter of the hemispherical surface composed of the first inner peripheral surface of the die and the end surface of the lower punch: 30 mm
Outer diameter of the hemispherical end surface of the second upper punch: 20 mm
Distance (L 0 ) from the opening of the second inner peripheral surface to the peripheral edge of the end face of the lower punch when the lower punch is positioned at the reference position (P 0 ): 16.18 mm

上記金型を使用して、上述した第二の工程のA工程からD工程、及び上述した第三の工程に従って、外径φ30mm、内径φ20mm、厚みが5mmの半球状の圧粉体を成形した。即ち、圧粉体の外周半径(R103)は15mmであり、内周半径(r103)は10mmである。成形圧力は1960MPaとした。Using the above-described mold, a hemispherical compact having an outer diameter of φ30 mm, an inner diameter of φ20 mm, and a thickness of 5 mm was molded according to the above-described second step A to D and the third step. . That is, the compact has an outer radius (R 103 ) of 15 mm and an inner radius (r 103 ) of 10 mm. The molding pressure was 1960 MPa.

ここでは、第二の工程において、A工程での下パンチの端面の突出量(P)を9.5mm(P/L:0.587)とした。また、第二の工程において、B工程での下パンチの端面の下降量(P)を2mmとした。第三の工程において、圧縮終了時における下パンチの端面の周縁の位置を、第一内周面の他端から下側に0.1mm以内、又は0.1mm超0.3mm以下の範囲内に設定した。Here, in the second step, the protrusion amount (P 1 ) of the end surface of the lower punch in the A step was set to 9.5 mm (P 1 /L 0 : 0.587). Further, in the second step, the lowering amount (P 2 ) of the end face of the lower punch in the B step was set to 2 mm. In the third step, the position of the peripheral edge of the end face of the lower punch at the end of compression is within 0.1 mm downward from the other end of the first inner peripheral surface, or within a range of more than 0.1 mm and 0.3 mm or less set.

圧縮終了時における下パンチ20の凹状端面21の位置を「0.1mm以内」に設定した圧粉体を試料No.1Aとした。また、圧縮終了時における下パンチ20の凹状端面21の位置を「0.1mm超0.3mm以下の範囲内」に設定した圧粉体を試料No.1Bとした。上述した圧縮率の差(C1-C2)は、約25%~約27%の範囲であった。 Sample No. 1 is a powder compact in which the position of the concave end surface 21 of the lower punch 20 at the end of compression is set to "within 0.1 mm". 1A. Sample No. 1 is a green compact in which the position of the concave end face 21 of the lower punch 20 at the end of compression is set to "within the range of more than 0.1 mm and 0.3 mm or less". 1B. The difference in compressibility (C1-C2) mentioned above ranged from about 25% to about 27%.

得られた圧粉体は、NdFe14B合金の水素化粉末のみで構成されている。作製した試料No.1A及び1Bの圧粉体について、全体の相対密度を求めた。相対密度は、体積と質量から実測密度を求め、[実測密度/真密度]の百分率として求めた。実測密度は、アルキメデス法により測定した。真密度は、出発原料のNdFe14B合金の密度とした。この密度は、本例では、7.6g/cmとした。その結果を表1に示す。また、圧粉体における頂部及び裾部のそれぞれの相対密度を求め、頂部と裾部の相対密度の差の絶対値を算出した。その結果も表1に併せて示す。The green compact thus obtained is composed only of the hydrogenated powder of the Nd 2 Fe 14 B alloy. Sample no. The overall relative density was determined for the compacts of 1A and 1B. The relative density was obtained as a percentage of [measured density/true density] by obtaining the measured density from the volume and mass. The actual density was measured by the Archimedes method. The true density was taken as the density of the starting raw material Nd 2 Fe 14 B alloy. This density was set to 7.6 g/cm 3 in this example. Table 1 shows the results. Also, the relative densities of the top portion and the bottom portion of the powder compact were obtained, and the absolute value of the difference in relative density between the top portion and the bottom portion was calculated. The results are also shown in Table 1.

頂部及び裾部の相対密度は、次のようにして求めた。本試験例における相対密度の測定方法を図9を用いて説明する。圧粉体100の開口端面103を水平に置いた状態で、頂点Pを通り、圧粉体100を4等分する切断線を外周面102上に引く。圧粉体100を頂点P側から頂点Pと中心Oを通る中心軸線C100方向に透視したときに開口端面103の内周縁と重なる輪郭線を外周面102上に描く。この輪郭線は、圧粉体100の外周面102における頂部110と裾部120との境界である分割線D100を通る円である。圧粉体100の外周面102上において、この輪郭線と各切断線とのそれぞれの交点をとり、周方向に隣り合う交点を結ぶ円弧線を引く。この円弧線は、圧粉体100の中心Oを中心とする円弧線とする。圧粉体100の中心Oは、開口端面103の中心である。各切断線に沿って圧粉体100を切断して4個の分割片とした後、それぞれの分割片について、円弧線に沿って2つに切断する。円弧線に沿う切断は、各分割片において、圧粉体100の中心Oと外周面102上の上記交点とを含む平面で切断する。つまり、各分割片を円弧線で切断する場合、図9中の点線で示すように、圧粉体100の中心Oと外周面102上の上記交点とを通るように切断する。得られた切断片のうち、頂点P側の部分を頂部片とし、残りの外周側の部分を裾部片とする。それぞれの頂部片について、実測密度を測定して相対密度を算出して求め、それらの相対密度の平均値を頂部の相対密度とした。また、それぞれの裾部片について、実測密度を測定して相対密度を算出して求め、それらの相対密度の平均値を裾部の相対密度とした。The relative densities of the top and tail were determined as follows. A method for measuring the relative density in this test example will be described with reference to FIG. With the opening end face 103 of the green compact 100 placed horizontally, a cutting line passing through the vertex P and dividing the green compact 100 into four equal parts is drawn on the outer peripheral surface 102 . A contour line overlapping the inner peripheral edge of the opening end face 103 is drawn on the outer peripheral surface 102 when the powder compact 100 is viewed from the vertex P side in the direction of the central axis C 100 passing through the vertex P and the center O. This contour line is a circle that passes through the dividing line D 100 that is the boundary between the top portion 110 and the bottom portion 120 on the outer peripheral surface 102 of the green compact 100 . On the outer peripheral surface 102 of the powder compact 100, the points of intersection between the contour line and each cutting line are taken, and arc lines connecting the points of intersection adjacent in the circumferential direction are drawn. This circular arc line is centered on the center O of the green compact 100 . The center O of the green compact 100 is the center of the open end face 103 . After cutting the green compact 100 along each cutting line into four split pieces, each split piece is cut into two along the arc line. The cutting along the arc line is performed by cutting along a plane including the center O of the green compact 100 and the intersection point on the outer peripheral surface 102 in each split piece. That is, when cutting each split piece along an arc line, the cut is made so as to pass through the center O of the green compact 100 and the intersection point on the outer peripheral surface 102, as indicated by the dotted line in FIG. Of the obtained cut pieces, the portion on the vertex P side is used as the top piece, and the remaining portion on the outer peripheral side is used as the bottom piece. For each top piece, the actual density was measured and the relative density was calculated and obtained, and the average value of the relative densities was taken as the relative density of the top. In addition, the measured density of each skirt piece was measured, the relative density was calculated, and the average value of the relative densities was taken as the relative density of the skirt.

上述した相対密度の測定方法の場合、裾部片は、厳密には図9に示すように、頂部110の一部を含むことになる。しかしながら、裾部片に含まれる頂部110の体積割合は裾部120の体積割合に比べれば微小であるので、頂部110の一部が裾部片の密度に与える影響は小さい。よって、裾部片に頂部110の一部が含まれていても、その影響は誤差の範囲内であり、裾部片の相対密度を裾部の相対密度とみなしても問題ない。 In the case of the relative density measurement method described above, the skirt piece will strictly include a portion of the top portion 110, as shown in FIG. However, since the volume ratio of the top portion 110 included in the bottom piece is very small compared to the volume ratio of the bottom portion 120, the influence of part of the top portion 110 on the density of the bottom portion piece is small. Therefore, even if a part of the top portion 110 is included in the bottom piece, its influence is within the range of error, and there is no problem even if the relative density of the bottom piece is regarded as the relative density of the bottom portion.

Figure 0007273066000001
Figure 0007273066000001

表1に示すように、作製した試料No.1A及び1Bの圧粉体は、頂部と裾部との相対密度の差が2%以下であり、密度差が小さい。 As shown in Table 1, sample no. The green compacts of 1A and 1B have a difference in relative density of 2% or less between the top portion and the bottom portion, and the density difference is small.

また、試料No.1A及び1Bの圧粉体のそれぞれの外周面に設けられた段差を測定したところ、圧縮終了時における下パンチの端面の位置の設定値と対応した大きさの段差が設けられていた。更に、試料No.1A及び1Bの圧粉体を100個それぞれ作製した後、下パンチの端面の周縁を確認したところ、端面の周縁に変形や損傷は見られなかった。 Moreover, sample no. When the step provided on the outer peripheral surface of each of the powder compacts 1A and 1B was measured, a step having a size corresponding to the set value of the position of the end surface of the lower punch at the end of compression was provided. Furthermore, sample no. After 100 green compacts of 1A and 1B were produced, the peripheral edge of the end face of the lower punch was checked, and no deformation or damage was found on the peripheral edge of the end face.

1 金型
10 ダイ
10i 内周面
10h 中空部
11 第一内周面
11a 一端 11b 他端
12 第二内周面
12o 開口部
13 第三内周面
15 空間
20 下パンチ
21 凹状端面
30 上パンチ
31 第一上パンチ
31c 円環状端面
32 第二上パンチ
32h 凸状端面
32d 境界
100 圧粉体
101 内周面
102 外周面
103 開口端面
110 頂部
120 裾部
130 段差
100p 原料粉末
12、d13 内径
11、R21 半径
20 外径
31、D32 外径
31 内径
距離
基準位置
突出量
下降量
A1 最大距離
A2 頂点間距離
B1 最大距離
B2 頂点間距離
103 外周半径
103 内周半径
O 中心
P 頂点
10、C100 中心軸線
100 分割線
Reference Signs List 1 mold 10 die 10i inner peripheral surface 10h hollow portion 11 first inner peripheral surface 11a one end 11b other end 12 second inner peripheral surface 12o opening 13 third inner peripheral surface 15 space 20 lower punch 21 concave end surface 30 upper punch 31 First upper punch 31c Annular end surface 32 Second upper punch 32h Convex end surface 32d Boundary 100 Green compact 101 Inner peripheral surface 102 Outer peripheral surface 103 Opening end surface 110 Top 120 Bottom 130 Step 100p Raw material powder d12 , d13 inner diameter R 11 , R 21 Radius D 20 Outer diameter D 31 , D 32 Outer diameter d 31 Inner diameter L 0 Distance P 0 Reference position P 1 Projection amount P 2 Lowering amount A1 Maximum distance A2 Distance between vertices B1 Maximum distance B2 Distance between vertices R 103 Outer radius r 103 Inner radius O Center P Vertex C 10 , C 100 central axis D 100 dividing line

Claims (17)

筒状体の内周面で構成される中空部を有するダイと、前記中空部に挿入される下パンチと、前記中空部に挿入される上パンチとを備える金型を準備する第一の工程を備え、
前記ダイの内周面は、
球帯状の第一内周面と、
前記第一内周面の軸方向の一端側に設けられる円筒状の第二内周面と、
前記第一内周面の軸方向の他端側に設けられる円筒状の第三内周面とを有し、
前記第一内周面は、軸方向の一端から他端に向かって小さくなる内径を有し、
前記第二内周面は、前記第一内周面の最大内径に対応する内径を有し、
前記第三内周面は、前記第一内周面の最小内径に対応する内径を有し、
前記下パンチは、前記第一内周面につながることで半球面を構成する球冠状の端面を有し、
前記下パンチの前記端面は、前記第三内周面の内径に対応する外径を有し、
前記上パンチは、
円筒状の第一上パンチと、
前記第一上パンチの内側に挿通される円柱状の第二上パンチとを有し、
前記第一上パンチは、平面で構成される円環状の端面を有し、
前記第一上パンチの前記端面は、前記第二内周面の内径に対応する外径を有し、
前記第二上パンチは、前記下パンチに向かって突出する半球状の端面を有し、
前記第二上パンチの前記端面は、前記第一上パンチの内径に対応する外径を有し、
更に、
前記ダイの前記第一内周面、前記第二内周面及び前記第三内周面で囲まれる前記中空部において、前記下パンチの端面が前記第三内周面で囲まれる領域内に位置し、且つ、前記第一上パンチの端面が前記第二内周面の開口部に位置すると共に、前記第二上パンチの端面と円柱面との境界が前記第一上パンチの端面と同じ位置にある状態で、前記中空部内に原料粉末が充填された状態とする第二の工程と、
前記ダイに対して前記第一上パンチ及び前記第二上パンチを下降させると共に前記下パンチを上昇させ、前記原料粉末を上下から圧縮して中空半球状の圧粉体を得る第三の工程と、を備え、
前記第二の工程は、
前記第一内周面で囲まれる領域内に前記下パンチの端面の周縁を突出させた状態で、前記中空部内に前記原料粉末を充填する工程と、
前記中空部内に前記原料粉末を充填した後、前記下パンチの端面の周縁を前記第一内周面の他端よりも下側に下降させ、前記下パンチの端面を前記第三内周面で囲まれる領域内に位置させる工程と、
前記中空部内に前記原料粉末を充填した後、前記第一上パンチの端面を前記第二内周面の開口部の位置まで下降させると共に、前記第二上パンチを下降させて前記第二上パンチの端面を前記中空部内に挿入し、前記第二上パンチの端面と前記円柱面との境界を前記第一上パンチの端面の位置と一致させる工程と、を有する、
圧粉体の製造方法。
A first step of preparing a mold comprising a die having a hollow portion constituted by the inner peripheral surface of a cylindrical body, a lower punch inserted into the hollow portion, and an upper punch inserted into the hollow portion. with
The inner peripheral surface of the die is
a spherical first inner peripheral surface;
a cylindrical second inner peripheral surface provided on one end side of the first inner peripheral surface in the axial direction;
a cylindrical third inner peripheral surface provided on the other end side in the axial direction of the first inner peripheral surface,
The first inner peripheral surface has an inner diameter that decreases from one axial end to the other axial end,
The second inner peripheral surface has an inner diameter corresponding to the maximum inner diameter of the first inner peripheral surface,
The third inner peripheral surface has an inner diameter corresponding to the minimum inner diameter of the first inner peripheral surface,
The lower punch has a crown-shaped end surface that forms a hemispherical surface by connecting to the first inner peripheral surface,
The end surface of the lower punch has an outer diameter corresponding to the inner diameter of the third inner peripheral surface,
The upper punch is
a cylindrical first upper punch;
and a cylindrical second upper punch that is inserted inside the first upper punch,
The first upper punch has an annular end surface composed of a flat surface,
The end surface of the first upper punch has an outer diameter corresponding to the inner diameter of the second inner peripheral surface,
The second upper punch has a hemispherical end surface protruding toward the lower punch,
The end face of the second upper punch has an outer diameter corresponding to the inner diameter of the first upper punch,
Furthermore,
In the hollow portion surrounded by the first inner peripheral surface, the second inner peripheral surface and the third inner peripheral surface of the die, the end surface of the lower punch is located within the region surrounded by the third inner peripheral surface. and the end surface of the first upper punch is positioned at the opening of the second inner peripheral surface, and the boundary between the end surface of the second upper punch and the cylindrical surface is at the same position as the end surface of the first upper punch. a second step of filling the raw material powder in the hollow portion in the state of
a third step of lowering the first upper punch and the second upper punch with respect to the die and raising the lower punch to compress the raw material powder from above and below to obtain a hollow hemispherical green compact; , and
The second step is
a step of filling the raw material powder into the hollow portion with the peripheral edge of the end surface of the lower punch protruding into the region surrounded by the first inner peripheral surface;
After filling the hollow portion with the raw material powder, the peripheral edge of the end surface of the lower punch is lowered below the other end of the first inner peripheral surface, and the end surface of the lower punch is moved to the third inner peripheral surface. positioning within the enclosed area;
After filling the raw material powder into the hollow portion, the end surface of the first upper punch is lowered to the position of the opening of the second inner peripheral surface, and the second upper punch is lowered to remove the second upper punch. inserting the end face of the second upper punch into the hollow portion, and aligning the boundary between the end face of the second upper punch and the cylindrical face with the position of the end face of the first upper punch;
A method for producing a green compact.
前記第一上パンチと前記ダイとの間で圧縮される前記原料粉末の圧縮率と、前記第二上パンチと前記下パンチとの間で圧縮される前記原料粉末の圧縮率との差が50%以下である請求項1に記載の圧粉体の製造方法。 The difference between the compression rate of the raw material powder compressed between the first upper punch and the die and the compression rate of the raw material powder compressed between the second upper punch and the lower punch is 50. % or less. 前記第二の工程は、前記ダイの前記中空部内に前記原料粉末を充填した後、前記第二上パンチの端面を前記ダイの前記中空部内に挿入する前に、前記第一上パンチの端面で前記第二内周面の開口部を部分的に塞ぐ工程を有する請求項1又は請求項2に記載の圧粉体の製造方法。 In the second step, after filling the raw material powder into the hollow portion of the die, before inserting the end surface of the second upper punch into the hollow portion of the die, the end surface of the first upper punch 3. The method of manufacturing a green compact according to claim 1, further comprising a step of partially blocking the opening of the second inner peripheral surface. 前記第二の工程は、前記第二内周面の開口部を部分的に塞いだ後、前記第二上パンチを下降させて前記第二上パンチの端面を前記中空部内に挿入し、前記第二上パンチの端面と前記円柱面との境界を前記第一上パンチの端面の位置と一致させる工程を有する請求項に記載の圧粉体の製造方法。 In the second step, after partially closing the opening of the second inner peripheral surface, the second upper punch is lowered to insert the end surface of the second upper punch into the hollow portion, 4. The method of manufacturing a green compact according to claim 3 , further comprising the step of aligning a boundary between the end surface of the second upper punch and the cylindrical surface with the position of the end surface of the first upper punch. 前記ダイの前記第一内周面と前記下パンチの端面とで半球面を構成するときの前記第二内周面の開口部から前記下パンチの端面の周縁までの距離を100とするとき、
前記第二の工程において、前記原料粉末を充填する際、前記下パンチの端面の周縁を前記第一内周面で囲まれる領域内に突出させる突出量を10以上70以下とする請求項1から請求項4のいずれか1項に記載の圧粉体の製造方法。
When the distance from the opening of the second inner peripheral surface to the peripheral edge of the end surface of the lower punch when the first inner peripheral surface of the die and the end surface of the lower punch form a hemispherical surface is 100,
2. From claim 1, wherein in said second step, when said raw material powder is filled, said lower punch has a peripheral edge of said lower punch that protrudes into a region surrounded by said first inner peripheral surface by an amount of 10 or more and 70 or less. The method for producing a green compact according to claim 4 .
前記第二の工程において、前記原料粉末を充填した後、前記下パンチの端面の周縁を前記第一内周面の他端から下降させる下降量を1mm以上10mm以下とする請求項1から請求項5のいずれか1項に記載の圧粉体の製造方法。 In the second step, after the raw material powder is filled, the peripheral edge of the end surface of the lower punch is lowered from the other end of the first inner peripheral surface by a lowering amount of 1 mm or more and 10 mm or less . 6. The method for producing a green compact according to any one of 5 . 前記第二上パンチの外径に対する前記下パンチの外径の比が0.8以上1.2以下である請求項1から請求項のいずれか1項に記載の圧粉体の製造方法。 7. The method of manufacturing a green compact according to any one of claims 1 to 6 , wherein the ratio of the outer diameter of the lower punch to the outer diameter of the second upper punch is 0.8 or more and 1.2 or less. 前記第三の工程において、前記原料粉末を圧縮する成形圧力を980MPa以上とする請求項1から請求項のいずれか1項に記載の圧粉体の製造方法。 8. The method for producing a green compact according to any one of claims 1 to 7 , wherein in said third step, a molding pressure for compressing said raw material powder is set at 980 MPa or higher. 前記第三の工程において、圧縮終了時における前記下パンチの端面の周縁の位置を前記第一内周面の他端から下側に0.1mm以下の範囲内とする請求項1から請求項のいずれか1項に記載の圧粉体の製造方法。 9. In the third step, the position of the peripheral edge of the end face of the lower punch at the end of compression is set within a range of 0.1 mm or less downward from the other end of the first inner peripheral surface. A method for producing a green compact according to any one of the above. 前記第三の工程において、圧縮終了時における前記下パンチの端面の周縁の位置を前記第一内周面の他端から下側に0.1mm超0.3mm以下の範囲内とする請求項1から請求項のいずれか1項に記載の圧粉体の製造方法。 2. In the third step, the position of the peripheral edge of the end surface of the lower punch at the end of compression is set to be within a range of more than 0.1 mm and less than or equal to 0.3 mm downward from the other end of the first inner peripheral surface. The method for producing a green compact according to any one of claims 9 to 10. 前記原料粉末は、希土類元素と鉄とを含有する希土類-鉄系合金を水素化処理した水素化粉末からなる磁石粉末を含み、
前記第三の工程の後、前記圧粉体を脱水素処理する工程を備える請求項1から請求項10のいずれか1項に記載の圧粉体の製造方法。
The raw material powder includes magnetic powder made of hydrogenated powder obtained by hydrogenating a rare earth-iron alloy containing a rare earth element and iron,
11. The method for producing a green compact according to any one of claims 1 to 10 , further comprising a step of dehydrogenating the green compact after the third step.
中空半球状の形状を有し、
前記中空半球の中心と頂点を結ぶ中心軸線と平行で、且つ、前記中空半球の開口端面の内周縁を通る線に沿った面を分割としたとき、前記分割よりも前記中心軸線側に位置する部分を頂部、前記分割よりも前記中心軸線とは反対側に位置する残りの部分を裾部とし、
前記頂部と前記裾部との相対密度の差が5%以下である、
圧粉体。
has a hollow hemispherical shape,
When a plane parallel to the central axis connecting the center and the vertex of the hollow hemisphere and along a line passing through the inner peripheral edge of the open end face of the hollow hemisphere is defined as a dividing plane, it is closer to the central axis than the dividing plane . The portion located is the top portion , and the remaining portion located on the opposite side of the dividing surface to the central axis is the bottom portion,
The difference in relative density between the top portion and the bottom portion is 5% or less.
Green compact.
前記圧粉体全体の相対密度が80%以上である請求項12に記載の圧粉体。 13. The compact according to claim 12 , wherein the overall relative density of the compact is 80% or more. 前記圧粉体の外周面に0.1mm以下の段差が設けられている請求項12又は請求項13に記載の圧粉体。 14. The green compact according to claim 12 , wherein a step of 0.1 mm or less is provided on the outer peripheral surface of the green compact. 前記圧粉体の外周面に0.1mm超0.3mm以下の段差が設けられている請求項12又は請求項13に記載の圧粉体。 The green compact according to claim 12 or 13, wherein a step of more than 0.1 mm and not more than 0.3 mm is provided on the outer peripheral surface of the green compact. 前記圧粉体の厚みが、前記開口端面の外周半径の1/30倍以上1/2倍以下である請求項12から請求項15のいずれか1項に記載の圧粉体。 16. The green compact according to any one of claims 12 to 15 , wherein the thickness of the green compact is 1/30 times or more and 1/2 times or less of the outer peripheral radius of the opening end face. 希土類元素と鉄とを含有する希土類-鉄系合金の磁石粉末を含む請求項12から請求項16のいずれか1項に記載の圧粉体。 17. The compact according to any one of claims 12 to 16 , which contains magnet powder of a rare earth-iron alloy containing a rare earth element and iron.
JP2020561392A 2018-12-17 2019-12-13 Green compact manufacturing method and green compact Active JP7273066B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018235935 2018-12-17
JP2018235935 2018-12-17
PCT/JP2019/049065 WO2020129867A1 (en) 2018-12-17 2019-12-13 Green compact manufacturing method and green compact

Publications (2)

Publication Number Publication Date
JPWO2020129867A1 JPWO2020129867A1 (en) 2021-11-04
JP7273066B2 true JP7273066B2 (en) 2023-05-12

Family

ID=71101279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020561392A Active JP7273066B2 (en) 2018-12-17 2019-12-13 Green compact manufacturing method and green compact

Country Status (2)

Country Link
JP (1) JP7273066B2 (en)
WO (1) WO2020129867A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011508A (en) 1999-06-28 2001-01-16 Ota Tekkosho:Kk Hollow semi-spherical body forming device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492120A (en) * 1968-01-08 1970-01-27 John Haller Method of making composite light-weight anti-friction bearing
JPS63250404A (en) * 1987-04-07 1988-10-18 Keita Hirai Press for compacting rotatory body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011508A (en) 1999-06-28 2001-01-16 Ota Tekkosho:Kk Hollow semi-spherical body forming device

Also Published As

Publication number Publication date
WO2020129867A1 (en) 2020-06-25
JPWO2020129867A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
US7015783B2 (en) Coil component and method of manufacturing the same
JP2006245055A (en) Dust core and its production process, and actuator and solenoid valve employing the dust core
WO2007069454A1 (en) Process for producing radially anisotropic magnet
JP2013149862A (en) Method of manufacturing rare earth magnet
JP2014130888A (en) R-t-b-based sintered magnet and method for producing the same
TWI705146B (en) Alloy powder composition, moldings and the manufacturing method thereof, and inductors
JP7273066B2 (en) Green compact manufacturing method and green compact
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP3654251B2 (en) Coil parts
JP3654254B2 (en) Coil parts manufacturing method
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
JP2018093109A (en) Rare earth cobalt-based permanent magnet and manufacturing method thereof
JP2014165228A (en) Method of manufacturing r-t-b based permanent magnet
JP2013138127A (en) Production method of rare earth magnet
WO2014010429A1 (en) Method for manufacturing thrust bearing for turbocharger, and thrust bearing for turbocharger
JP6563348B2 (en) Soft magnetic powder, soft magnetic body molded with soft magnetic powder, and soft magnetic powder and method for producing soft magnetic body
JP2010010544A (en) Method of manufacturing mold coil
JP2015026795A (en) Powder for magnets, rare earth magnet, method for manufacturing powder for magnets, and method for manufacturing rare earth magnet
US11012783B2 (en) Yoke for speaker having heterogeneous material and iron-based material integrally molded, method of manufacturing the same, and speaker apparatus including yoke for speaker
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
JP2020202226A (en) Magnet and method for producing magnet
KR101661602B1 (en) Method for manufacturing soft magnetic yoke
JPH1197229A (en) Dust core and method for manufacturing it
KR101661604B1 (en) Soft magnetic yoke
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230427

R150 Certificate of patent or registration of utility model

Ref document number: 7273066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150