JP2002338338A - Low temperature burned ceramics substrate - Google Patents

Low temperature burned ceramics substrate

Info

Publication number
JP2002338338A
JP2002338338A JP2001149367A JP2001149367A JP2002338338A JP 2002338338 A JP2002338338 A JP 2002338338A JP 2001149367 A JP2001149367 A JP 2001149367A JP 2001149367 A JP2001149367 A JP 2001149367A JP 2002338338 A JP2002338338 A JP 2002338338A
Authority
JP
Japan
Prior art keywords
glass
ceramic substrate
aggregate
thermal expansion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001149367A
Other languages
Japanese (ja)
Other versions
JP4929534B2 (en
Inventor
Kazunori Akaho
和則 赤穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001149367A priority Critical patent/JP4929534B2/en
Publication of JP2002338338A publication Critical patent/JP2002338338A/en
Application granted granted Critical
Publication of JP4929534B2 publication Critical patent/JP4929534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramics substrate which has low transmission loss in high frequency, is burnable at <=930 deg.C, and has high reliability in the connection parts of FC(flip chip) and BGA(ball grid array). SOLUTION: The low temperature burned ceramics substrate in which Qf is >=3,000 GHz, deflective strength is >=180 MPa, and the coefficient of linear expansion at room temperature to 300 deg.C is 9 to 12 ppm/ deg.C consists of a sintered compact of, by mass, a 35 to 40% filler (wherein, 30 to 39.5% quartz, and Al2 O3 and/or Fe2 O3 of 0.5 to 5% in total can be contained), and 60 to 65% glass. The composition of the glass consists of 40 to 46% SrO, 35 to 40% SiO2 , 9 to 11% B2 O3 , 1.5 to 5.8% SnO2 , 2 to 4% ZnO, 0.6 to 2.8% Al2 O3 +AlN, 0.1 to 2% Na2 +K2 O and 0.1 to 1.5% MgO, and the balance impurities of <=2% in total.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い線熱膨張性と
高いQf値を有し、強度も十分なガラスセラミックス型
の低温焼成セラミックス基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass-ceramic type low-temperature fired ceramic substrate having high linear thermal expansion, high Qf value and sufficient strength.

【0002】[0002]

【従来の技術】最近のICチップ (LSI) の高性能化
と小型化に伴い、ICチップを搭載する回路基板につい
ても配線密度の高密度化が重要な課題となっている。こ
の回路基板としては、内部に内層導体配線を有する多層
回路基板が一般に使用されている。回路基板は、絶縁材
料がプラスチックであるプラスチック基板と、絶縁材料
がセラミックスであるセラミックス基板とに大別され
る。
2. Description of the Related Art With the recent high performance and miniaturization of IC chips (LSIs), increasing the wiring density of circuit boards on which IC chips are mounted has become an important issue. As this circuit board, a multilayer circuit board having an inner conductor wiring inside is generally used. Circuit boards are roughly classified into a plastic substrate in which the insulating material is plastic and a ceramic substrate in which the insulating material is ceramic.

【0003】セラミックス基板は耐熱性、従って信頼性
に優れる上、多層回路基板の製造工程がプラスチック基
板に比べて単純であるという特長があり、特に通信用の
RFモジュール基板といった用途ではセラミックス基板が
主流になっている。
[0003] Ceramic substrates are excellent in heat resistance and therefore in reliability, and are characterized in that the manufacturing process of a multilayer circuit substrate is simpler than that of a plastic substrate.
In applications such as RF module substrates, ceramic substrates have become mainstream.

【0004】セラミックス基板の代表例はアルミナ基板
である。アルミナ基板は、絶縁性に優れ、かつ機械強度
も、抗折強度300 MPa 以上と非常に高い。しかし、アル
ミナ基板は、焼成温度が1500〜1600℃と高いため、多層
化する場合には、配線材料としてW、Moといった高融点
金属を使用することになる。しかし、これらの金属は電
気抵抗が比較的高いので、信号の伝送損失、および電力
損失が大きくなる。また、アルミナは比誘電率が約9と
比較的高く、伝送信号の高周波数化に伴って信号遅延速
度が大きくなる。以上の点から、アルミナ基板はICチ
ップの高速化には不向きである。
A typical example of the ceramic substrate is an alumina substrate. The alumina substrate has excellent insulating properties and a very high mechanical strength of 300 MPa or more in bending strength. However, since the alumina substrate has a high firing temperature of 1500 to 1600 ° C., in the case of multilayering, a high melting point metal such as W or Mo is used as a wiring material. However, since these metals have relatively high electrical resistance, signal transmission loss and power loss increase. Alumina has a relatively high relative dielectric constant of about 9, and the signal delay speed increases as the frequency of the transmission signal increases. From the above points, the alumina substrate is not suitable for increasing the speed of an IC chip.

【0005】この問題を解決するため、850 ℃〜1050℃
で焼成可能な低温焼成セラミックス基板が開発された。
焼成温度が低いと、低抵抗のCu、Agの金属を配線材料と
して使用することができ、信号の伝送損失や電力損失が
著しく低減する。低温焼成セラミックス基板の多くは、
ガラスと骨材の結晶質フィラー (セラミックス) との混
合物からなるガラス複合材料(ガラスセラミックス)か
らなる。この種のセラミックス基板は一般にアルミナ基
板より比誘電率が低く、高周波数での信号遅延も抑えら
れる。
In order to solve this problem, 850 ° C. to 1050 ° C.
A low-temperature fired ceramic substrate that can be fired at a low temperature has been developed.
When the firing temperature is low, low-resistance metals such as Cu and Ag can be used as wiring materials, and signal transmission loss and power loss are significantly reduced. Many low-temperature fired ceramic substrates are
It is composed of a glass composite material (glass ceramic) consisting of a mixture of glass and a crystalline filler (ceramic) of aggregate. This type of ceramic substrate generally has a lower dielectric constant than an alumina substrate, and can suppress signal delay at high frequencies.

【0006】一方、ICチップを回路基板に搭載する方
法として、従来のワイヤボンディングに代わって、高密
度で電気的接続にも優れたフリップチップ (FC) 実装
の採用が多くなっている。ICチップを回路基板に搭載
したパッケージのプリント配線板への実装方法について
も、従来のPGA(pin grid array)に代わり、BGA(b
all grid array) が主流になりつつある。
On the other hand, as a method of mounting an IC chip on a circuit board, flip chip (FC) mounting, which is high in density and excellent in electrical connection, is increasingly used instead of conventional wire bonding. Regarding the method of mounting a package in which an IC chip is mounted on a circuit board on a printed wiring board, a BGA (b) is used instead of the conventional PGA (pin grid array).
all grid array) is becoming mainstream.

【0007】[0007]

【発明が解決しようとする課題】FC、BGAによる接
続は、高密度化が可能で、パッケージの小型化や実装密
度の増大といった要求に応えることができる。しかし、
チップと回路基板またはパッケージとプリント配線板と
の接続部が短くなるため、接続部には単位体積当たりで
より大きな熱応力が加わる。この熱応力は、チップと基
板、またはパッケージ (回路基板) とプリント配線板の
熱膨張係数が異なることから、LSIの動作で発生する
熱により生じるものである。
The connection by FC and BGA can be performed at a high density, and can meet the demands for downsizing the package and increasing the mounting density. But,
Since the connecting portion between the chip and the circuit board or the package and the printed wiring board is shortened, a larger thermal stress is applied to the connecting portion per unit volume. The thermal stress is generated by heat generated in the operation of the LSI because the chip and the substrate, or the package (circuit board) and the printed wiring board have different thermal expansion coefficients.

【0008】LSIの集積度の向上と小型化により、パ
ッケージの発熱量は大きくなる一方であり、接続部に加
わる熱応力は増大傾向にある。接続部の距離が短いFC
やBGAでは、熱応力が十分に吸収されないと接続部が
剥離することがあり、接続の信頼性を損なう結果とな
る。従って、FCやBGA接続には、熱応力による接続
信頼性の低下を防ぐことが求められる。熱応力は、FC
やBGAの両側の部材の熱膨張係数の差が小さいほど小
さくなる。
As the degree of integration and miniaturization of LSIs increase, the amount of heat generated by the package is increasing, and the thermal stress applied to the connection is increasing. FC with short connection distance
In the case of the BGA or the BGA, if the thermal stress is not sufficiently absorbed, the connection portion may be peeled off, resulting in a loss of connection reliability. Therefore, for FC or BGA connection, it is required to prevent a decrease in connection reliability due to thermal stress. Thermal stress is FC
And the smaller the difference between the coefficients of thermal expansion of the members on both sides of the BGA, the smaller the difference.

【0009】FC接続については、チップ材料であるシ
リコンの熱膨張係数に近いセラミックス基板材料が開発
され、高い接続信頼性の確保が可能となった。また、チ
ップと回路基板との間に補強樹脂を注入することで、熱
膨張係数にある程度の差があっても、接続信頼性には問
題がなくなった。
For FC connection, a ceramic substrate material having a coefficient of thermal expansion close to that of silicon as a chip material has been developed, and high connection reliability can be secured. Also, by injecting the reinforcing resin between the chip and the circuit board, there is no problem in connection reliability even if there is a certain difference in the coefficient of thermal expansion.

【0010】しかし、パッケージとプリント配線板との
間のBGA接続では、回路基板がセラミックス基板であ
るセラミックスパッケージの場合、セラミックス基板の
熱膨張係数は、樹脂とガラス繊維からなるプリント配線
板のそれよりかなり小さく、熱膨張係数の差が大きいた
め、高い接続信頼性を得ることが困難であった。プリン
ト配線板へのパッケージのBGA実装では、パッケージ
の交換を不可能にする補強樹脂の注入という手段は採用
しにくい。従って、BGA接続の信頼性を改善するに
は、熱膨張係数がプリント配線板に近いセラミックス回
路基板が必要となる。
However, in the BGA connection between the package and the printed wiring board, when the circuit board is a ceramic package in which the circuit board is a ceramic substrate, the thermal expansion coefficient of the ceramic substrate is larger than that of the printed wiring board made of resin and glass fiber. It is difficult to obtain high connection reliability because it is quite small and has a large difference in thermal expansion coefficient. In the BGA mounting of a package on a printed wiring board, it is difficult to adopt a method of injecting a reinforcing resin that makes it impossible to replace the package. Therefore, in order to improve the reliability of the BGA connection, a ceramic circuit board having a thermal expansion coefficient close to that of a printed wiring board is required.

【0011】電子機器の動作温度は通常は100 ℃以下で
あるが、BGAがリフロー法によるハンダ実装であるた
め、リフロー実装時にパッケージとプリント配線板は30
0 ℃近い温度に曝される。従って、室温〜300 ℃までの
温度範囲について、セラミックス基板とプリント配線板
の熱膨張係数をマッチさせなければならない。
The operating temperature of electronic equipment is usually 100 ° C. or less, but since the BGA is mounted by reflow soldering, the package and printed wiring board must be 30 ° C during reflow mounting.
Exposure to temperatures close to 0 ° C. Therefore, in the temperature range from room temperature to 300 ° C., the thermal expansion coefficients of the ceramic substrate and the printed wiring board must be matched.

【0012】また、特に携帯電話用のRF (高周波) モ
ジュール用の回路基板では、高周波化に対応するため、
伝送損失の低い基板、即ち、Q×fで与えられるQf値
(Qは誘電損失の逆数、即ち、Q=1/tanδ<tanδ=誘
電損失> 、fは周波数) の高い基板が求められている。
In particular, in a circuit board for an RF (high-frequency) module for a cellular phone, in order to cope with a higher frequency,
Substrate with low transmission loss, ie, Qf value given by Q × f
(Q is the reciprocal of the dielectric loss, that is, Q = 1 / tan δ <tan δ = dielectric loss>, and f is the frequency).

【0013】ガラスセラミックス型の低温焼成セラミッ
クス基板は、アルミナ基板に比べると、強度が低くなら
ざるを得ないが、抗折強度がある程度高くないと、基板
の小型化 (薄型化) に対応できない。
A glass-ceramic low-temperature fired ceramic substrate is inevitably lower in strength than an alumina substrate, but it cannot cope with the miniaturization (thinning) of the substrate unless the bending strength is high to some extent.

【0014】本発明は、これらの点に着目し、Qf値が
高く(Qf=3000 GHz以上)、内層導体の低抵抗化のた
めに低温焼成が可能(Ag配線が可能な930 ℃以下で焼成
できる)、熱膨張係数が適度に高い(室温〜300 ℃で9
〜12 ppm/℃)、抗折強度が高い (≧180 Mpa)という特
性を満たすセラミックス基板を提供することを課題とす
る。
The present invention focuses on these points, and has a high Qf value (Qf = 3000 GHz or more) and can be fired at a low temperature to lower the resistance of the inner conductor (fired at 930 ° C. or less where Ag wiring is possible). ), Moderately high coefficient of thermal expansion (9 between room temperature and 300 ° C)
It is an object of the present invention to provide a ceramic substrate satisfying characteristics of high bending strength (≧ 180 Mpa).

【0015】[0015]

【課題を解決するための手段】本発明によれば、石英を
主成分とする骨材と、SrO およびSiO2を含むガラスとの
焼結体からなるガラスセラミックス型の低温焼成セラミ
ックス基板により上記課題を解決することができる。
According to the present invention, there is provided a glass ceramic type low-temperature fired ceramic substrate comprising a sintered body of an aggregate mainly composed of quartz and a glass containing SrO and SiO 2. Can be solved.

【0016】ここに、本発明は、石英を主成分とする骨
材と、SrO およびSiO2を含むガラス、との焼結体からな
るセラミックス基板であって、室温から300 ℃までの温
度範囲の線熱膨張係数が9〜12 ppm/℃、抗折強度が18
0 MPa 以上、Qf値が3000 GHz以上、であることを特徴
とするセラミックス基板である。
Here, the present invention relates to a ceramic substrate comprising a sintered body of an aggregate mainly composed of quartz and a glass containing SrO and SiO 2 , wherein the ceramic substrate has a temperature range from room temperature to 300 ° C. Linear thermal expansion coefficient 9-12 ppm / ° C, flexural strength 18
A ceramic substrate characterized by having a pressure of 0 MPa or more and a Qf value of 3000 GHz or more.

【0017】1態様において、上記セラミックス基板
は、質量%で、骨材35〜40%(うち、石英30〜39.5
%)、ガラス60〜65%からなり、ガラスの組成が、SrO
:40〜46%、SiO2:35〜40%、B203: 9〜11%、Sn
O2: 1.5〜5.8 %、ZnO : 2〜4 %、Al203 + AlN :
0.6〜2.8 %、Na20 + K20: 0.1〜2%、MgO : 0.1〜
1.5 %、その他不純物:合計2%以下、である。
In one embodiment, the ceramic substrate is 35 to 40% by mass of aggregate (including 30 to 39.5% of quartz).
%), 60-65% of glass, and the composition of glass is SrO
: 40~46%, SiO 2: 35~40 %, B 2 0 3: 9~11%, Sn
O 2: 1.5~5.8%, ZnO: 2~4%, Al 2 0 3 + AlN:
0.6~2.8%, Na 2 0 + K 2 0: 0.1~2%, MgO: 0.1~
1.5%, other impurities: 2% or less in total.

【0018】骨材は、好ましくは、アルミナ、窒化アル
ミニウムおよび水酸化アルミニウムから選ばれた少なく
とも1種のアルミニウム化合物、ならびに/または酸化
第二鉄(Fe203) を、合計 0.5〜5質量%(但し、Fe2O3
の上限は2質量%)の割合で含有する。
The aggregate is preferably an alumina, at least one aluminum compound selected from aluminum nitride and aluminum hydroxide, and / or ferric oxide to (Fe 2 0 3), total 0.5 to 5 wt% (However, Fe 2 O 3
Is 2% by mass).

【0019】上記セラミックス基板は、内部に内層導体
配線を有する多層セラミックス回路基板を構成すること
ができる。
The above-mentioned ceramic substrate can constitute a multilayer ceramic circuit board having an inner conductor wiring therein.

【0020】[0020]

【発明の実施の形態】本発明のガラスセラミックス型の
低温焼成セラミックス基板は、従来のガラスセラミック
ス基板に比べて、熱膨張係数とQf値が共に大きいとい
う特徴を有する。この大きな熱膨張係数とQf値は、次
に説明するように、ガラスおよび骨材の組成の選択によ
って達成することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The glass-ceramic type low-temperature fired ceramic substrate of the present invention is characterized in that both the coefficient of thermal expansion and the Qf value are larger than those of a conventional glass-ceramic substrate. This large coefficient of thermal expansion and Qf value can be achieved by the choice of glass and aggregate composition, as described below.

【0021】骨材としては、シリカ結晶の1つである石
英を使用する。石英は熱膨張係数が14 ppm/℃程度と高
い。骨材として、非晶質のシリカ、あるいはクリストバ
ライトやトリジマイトといった、他のシリカ結晶を用い
た場合、熱膨張係数が低くなるか、或いは300 ℃以下に
相転移があり、熱膨張係数が変化する。また、アルミ
ナ、ムライト等のシリカ以外の骨材を用いた場合にも、
熱膨張係数、Qf値、強度の少なくとも1つの特性が低
下する。
As the aggregate, quartz which is one of the silica crystals is used. Quartz has a high thermal expansion coefficient of about 14 ppm / ° C. When amorphous silica or another silica crystal such as cristobalite or tridymite is used as an aggregate, the thermal expansion coefficient is low, or there is a phase transition at 300 ° C. or less, and the thermal expansion coefficient changes. Also, when using aggregates other than silica such as alumina and mullite,
At least one property of thermal expansion coefficient, Qf value, and strength decreases.

【0022】ガラスについても、熱膨張係数が高くなる
ように、SrO とSiO2を主成分とし、少量のNa2Oおよび/
またはK2O を含有するガラス組成を選択する。それによ
り、焼成時に熱膨張係数の高い、SrO-SiO2-Al2O3、SrO-
SiO2-Fe2O3といった結晶がガラス内部から析出し、熱膨
張係数の高い結晶化ガラスとなる。
Glass also contains SrO and SiO 2 as main components and a small amount of Na 2 O and / or so as to increase the coefficient of thermal expansion.
Alternatively, a glass composition containing K 2 O is selected. Thereby, SrO-SiO 2 -Al 2 O 3 , SrO-
Crystals such as SiO 2 -Fe 2 O 3 precipitate from the inside of the glass, resulting in crystallized glass having a high coefficient of thermal expansion.

【0023】内部配線の低抵抗化や、誘電特性と強度の
向上のために、Ag配線の場合に必要な930 ℃以下の低温
焼成で緻密に焼結が促進し、ガラス内部に結晶を多く析
出させる必要がある。このために、B2O3、SnO2、ZnO 、
Al2O3 を添加する。
In order to lower the resistance of the internal wiring and to improve the dielectric properties and strength, sintering is densely promoted by firing at a low temperature of 930 ° C. or less, which is required for Ag wiring, and many crystals are precipitated inside the glass. Need to be done. For this, B 2 O 3 , SnO 2 , ZnO,
Add Al 2 O 3 .

【0024】骨材は、石英だけでもよいが、さらにアル
ミナ、窒化アルミニウムおよび水酸化アルミニウムから
選ばれた少なくとも1種のアルミニウム化合物と、Fe2O
3 の一方または両方を添加すると、前記の熱膨張係数の
高い結晶の析出が促進されるので好ましい。
The aggregate may be only quartz, and further, at least one aluminum compound selected from alumina, aluminum nitride and aluminum hydroxide, and Fe 2 O
The addition of one or both of 3 is preferable because the precipitation of the crystal having a high thermal expansion coefficient is promoted.

【0025】骨材とガラスの比率は、骨材が多すぎる
と、焼結性が不良となり、緻密な焼結体を得ることがで
きない。一方、ガラスが多すぎると、セラミックス基板
の機械的強度が低下する。
If the ratio of the aggregate to the glass is too large, the sinterability becomes poor and a dense sintered body cannot be obtained. On the other hand, if there is too much glass, the mechanical strength of the ceramic substrate will decrease.

【0026】以上の理由により、本発明によれば、室温
から300 ℃までの温度範囲の線熱膨張係数が9〜12 ppm
/℃、抗折強度が180 MPa 以上、Qf値が3000 GHz以上
の特性を持つ、930 ℃以下の温度で焼成可能な低温焼成
セラミックス基板が、質量%で、骨材35〜40%(うち、
石英30〜39.5%)、ガラス60〜65%からなり、ガラスの
組成が、SrO :40〜46%、SiO2:35〜40%、B203: 9〜
11%、SnO2: 1.5〜5.8 %、ZnO : 2〜4 %、Al203 +
AlN : 0.6〜2.8 %、Na20 + K20: 0.1〜2%、MgO :
0.1〜1.5 %、その他不純物:合計2%以下、であると
いう組成によって達成される。
For the above reasons, according to the present invention, the linear thermal expansion coefficient in the temperature range from room temperature to 300 ° C. is 9 to 12 ppm.
/ ° C, flexural strength of 180 MPa or more, Qf value of 3000 GHz or more, low-temperature fired ceramic substrate that can be fired at a temperature of 930 ° C or less is 35% to 40% of aggregate by mass% (of which,
Quartz 30 to 39.5%), made from 60 to 65% glass, the composition of the glass, SrO: 40~46%, SiO 2 : 35~40%, B 2 0 3: 9~
11%, SnO 2: 1.5~5.8% , ZnO: 2~4%, Al 2 0 3 +
AlN: 0.6~2.8%, Na 2 0 + K 2 0: 0.1~2%, MgO:
Achieved by a composition of 0.1-1.5% and other impurities: 2% or less in total.

【0027】骨材は、好ましくは、アルミナ、窒化アル
ミニウムおよび水酸化アルミニウムから選ばれた少なく
とも1種のアルミニウム化合物、ならびに/または酸化
第二鉄(Fe203) を、合計 0.5〜5質量%(但し、Fe2O3
の上限は2質量%)の割合で含有する。このうち、水酸
化アルミニウムは、焼成中にアルミナに変化する。これ
らの化合物は、焼成時に、SrO-SiO2-Al2O3、SrO-SiO2-F
e2O3といった熱膨張係数の高い結晶がガラス中で析出す
るのを促進する。しかし、骨材がこれらの化合物を全く
含有していなくても、ガラス中に含まれるAl2O3 によ
り、このガラスの析出が起こる。但し、その場合には、
石英の上限は39.5%となり、これより石英の量が多いと
(例、40%) 、熱膨張係数またはQf値を満たすことが
できなくなる。
The aggregate is preferably an alumina, at least one aluminum compound selected from aluminum nitride and aluminum hydroxide, and / or ferric oxide to (Fe 2 0 3), total 0.5 to 5 wt% (However, Fe 2 O 3
Is 2% by mass). Of these, aluminum hydroxide changes to alumina during firing. These compounds, when fired, are SrO-SiO 2 -Al 2 O 3 , SrO-SiO 2 -F
Crystals having a high coefficient of thermal expansion such as e 2 O 3 are promoted to precipitate in glass. However, even if the aggregate does not contain these compounds at all, Al 2 O 3 contained in the glass causes precipitation of the glass. However, in that case,
The upper limit of quartz is 39.5%.
(Eg, 40%), the thermal expansion coefficient or Qf value cannot be satisfied.

【0028】骨材が上記少なくとも1種のアルミニウム
化合物を含有する場合、焼成後の骨材とガラスとを合わ
せた基板全体の組成は、一般に、質量%で、SiO2: 65.5
〜51%、SrO:24〜29.9%、Na2O+K2O: 0.06〜1.3 %、B2
O3:5.4〜7.2 %、Al2O3+AlN:0.9〜6.8 %、SnO2: 0.9
〜3.8 %、MgO:0.06〜1.0 %、ZnO: 1.2〜2.6 %、その
他不純物2%以下となろう。
When the aggregate contains at least one of the above-mentioned aluminum compounds, the composition of the whole substrate including the aggregate and the glass after firing is generally expressed by mass% of SiO 2 : 65.5%.
~51%, SrO: 24~29.9%, Na 2 O + K 2 O: 0.06~1.3%, B 2
O 3 : 5.4 to 7.2%, Al 2 O 3 + AlN: 0.9 to 6.8%, SnO 2 : 0.9
-3.8%, MgO: 0.06-1.0%, ZnO: 1.2-2.6%, and other impurities 2% or less.

【0029】一方、骨材が2質量%以下のFe2O3 を含有
する場合には、焼成後の基板全体の組成は、一般に質量
%で、SiO2: 65.5〜51%、SrO:24〜29.9%、Na2O+K2O:
0.06〜1.3 %、B2O:5.4 〜7.2 %、Al2O3+AlN: 0.4〜1.
8 %、SnO2:0.9〜3.8 %、MgO:0.06〜1.0 %、ZnO: 1.2
〜2.6 %、Fe2O3: 0.5〜2%、その他不純物2%以下と
なろう。
On the other hand, when the aggregate contains 2 % by mass or less of Fe 2 O 3 , the composition of the whole substrate after firing is generally in mass%, SiO 2 : 65.5 to 51%, SrO: 24 to 29.9%, Na 2 O + K 2 O:
0.06~1.3%, B 2 O: 5.4 ~7.2%, Al 2 O 3 + AlN: 0.4~1.
8%, SnO 2: 0.9~3.8% , MgO: 0.06~1.0%, ZnO: 1.2
~2.6%, Fe 2 O 3: 0.5~2%, would be 2% other impurities less.

【0030】上記の基板全体の組成のSiO2は、骨材の石
英とガラス中のSiO2とを含む量であるが、焼成後も石英
は結晶形態が変化しないので、X線回折により基板中の
骨材由来の石英の量を定量することができる。
The SiO 2 in the composition of the entire substrate is an amount containing quartz as an aggregate and SiO 2 in the glass. However, since the crystal form of quartz does not change even after firing, the crystal content in the substrate is determined by X-ray diffraction. Can be quantified.

【0031】本発明のセラミックス基板は、基本的に
は、骨材とガラスの各粉末を混合し、必要に応じて成形
してから焼成し、ガラスを少なくとも部分的に溶融させ
て焼結体とすることにより製造できる。製造方法は特に
制限されず、従来法と同様でよい。粉末の混合と成形
は、適当なバインダーとバインダーの溶媒とを使用し
て、例えば、スリップキャスティングによるシート成形
により行うことができる。厚膜印刷法のように、バイン
ダーと少量の溶媒と粉末混合物から作製したペーストを
スクリーン印刷し、焼成してセラミックス基板を作製す
ることもできる。単層基板の場合には、バインダーを用
いなくても成形可能である。
Basically, the ceramic substrate of the present invention is obtained by mixing the respective powders of the aggregate and glass, forming the mixture as required, and then firing the glass to at least partially melt the glass to form a sintered body. Can be manufactured. The production method is not particularly limited, and may be the same as the conventional method. The mixing and molding of the powder can be carried out by using a suitable binder and a solvent for the binder, for example, by sheet molding by slip casting. As in the case of the thick film printing method, a paste prepared from a binder, a small amount of a solvent, and a powder mixture may be screen-printed and fired to produce a ceramic substrate. In the case of a single-layer substrate, molding is possible without using a binder.

【0032】焼成温度は、緻密な焼結体が得られる限り
制限はないが、通常は850 ℃以上である。内層導体を有
する多層回路基板のように、配線材料と一緒に焼成され
る場合には、配線材料の融点より十分に低い温度で焼成
を行う。例えば、配線材料がAgの場合には930 ℃以下、
Cuの場合には1050℃以下がよい。焼成雰囲気も配線材料
に応じて選択する。例えば、Cuの場合には非酸化性雰囲
気 (例、真空または不活性ガス雰囲気) であるが、Agの
ように貴金属の場合には大気雰囲気でよい。配線材料
は、その他、Ag−Pd、Auなども可能である。
The firing temperature is not limited as long as a dense sintered body can be obtained, but is usually 850 ° C. or higher. In the case of firing together with the wiring material as in a multilayer circuit board having an inner conductor, the firing is performed at a temperature sufficiently lower than the melting point of the wiring material. For example, when the wiring material is Ag, the temperature is 930 ° C or less,
In the case of Cu, the temperature is preferably 1050 ° C. or less. The firing atmosphere is also selected according to the wiring material. For example, in the case of Cu, the atmosphere is a non-oxidizing atmosphere (eg, a vacuum or an inert gas atmosphere), whereas in the case of a noble metal such as Ag, the atmosphere may be an atmosphere. In addition, Ag-Pd, Au, and the like can be used as the wiring material.

【0033】本発明のセラミックス基板は、周知のグリ
ーンシート積層法または厚膜多層印刷法により、内部に
内層導体配線を有する多層セラミックス回路基板の構成
とすることが好ましい。低温焼成であるので、内層導体
には上記のようなAgを始めとする低抵抗の配線材料を使
用でき、信号の伝送損失が少なくなる。伝送損失は、基
板それ自体のQf値が高いため、さらに低下する。
The ceramic substrate of the present invention is preferably formed into a multilayer ceramic circuit board having internal conductor wiring inside by a well-known green sheet laminating method or a thick film multilayer printing method. Since the firing is performed at a low temperature, a low-resistance wiring material such as Ag described above can be used for the inner conductor, and signal transmission loss is reduced. Transmission loss is further reduced due to the high Qf value of the substrate itself.

【0034】本発明のセラミックス基板は、室温から30
0 ℃までの温度範囲の線熱膨張係数が9〜12 ppm/℃、
抗折強度が180 MPa 以上、Qf値が3000 GHz以上という
性質示す。
The ceramic substrate of the present invention can be used at room temperature to 30
The coefficient of linear thermal expansion in the temperature range up to 0 ° C is 9 to 12 ppm / ° C,
It shows properties such as flexural strength of 180 MPa or more and Qf value of 3000 GHz or more.

【0035】一般的なプリント配線板材料であるガラス
−エポキシ材料の同じ温度域での線熱膨張係数は約14〜
15 ppm/℃であるので、本発明のセラミックス基板は、
プリント配線板との熱膨張係数の差が小さい。そのた
め、例えば、リフロー実装時に300 ℃近くまで加熱され
ても、BGA接続部に発生する熱応力は小さく、接続の
信頼性を確保することができる。また、ICチップの材
料であるシリコンの熱膨張係数は約 ppm/℃であり、
チップ側をFC接続とし場合の熱応力もそれほど大きく
ない。熱膨張係数が9 ppm/℃より小さいか、12 ppm/
℃より大きいと、プリント配線板またはチップとの熱膨
張係数の差が大きくなりすぎる。
The linear thermal expansion coefficient of a general printed wiring board material, glass-epoxy material, in the same temperature range is about 14 to
Since it is 15 ppm / ° C, the ceramic substrate of the present invention
Small difference in thermal expansion coefficient from printed wiring board. Therefore, for example, even if the substrate is heated to approximately 300 ° C. during the reflow mounting, the thermal stress generated in the BGA connection portion is small, and the connection reliability can be ensured. The thermal expansion coefficient of silicon, which is the material for IC chips, is about ppm / ° C.
The thermal stress when the chip side is connected by FC is not so large. The coefficient of thermal expansion is less than 9 ppm / ° C or 12 ppm /
If the temperature is higher than ° C, the difference in the coefficient of thermal expansion between the printed wiring board and the chip becomes too large.

【0036】本発明のセラミックス基板は、Qf値が30
00 GHz以上と非常に大きいため、高周波での伝送損失が
小さい。従って、高速処理のために動作周波数を高くし
たLSIを搭載した場合にも良好な信号応答性を保持で
きる。また、動作周波数が非常に高い、携帯電話用のR
Fモジュール基板として利用した場合でも、伝送損失を
低く抑えることができる。
The ceramic substrate of the present invention has a Qf value of 30.
Transmission loss at high frequencies is very small because it is extremely large at 00 GHz or more. Therefore, good signal responsiveness can be maintained even when an LSI whose operating frequency is increased for high-speed processing is mounted. Also, the operating frequency is very high,
Even when used as an F module substrate, transmission loss can be suppressed low.

【0037】[0037]

【実施例】表1の組成を持つA〜Dの4種類のガラス
を、通常の溶融・急冷法により調製し、10μm程度の平
均粒径となるように粉砕した。ガラスAは前記範囲外の
組成を持つ比較用のガラスであり、残りのガラスB〜D
は前記範囲内の組成を持つガラスである。
EXAMPLES Four kinds of glasses A to D having the compositions shown in Table 1 were prepared by a usual melting and quenching method and pulverized to have an average particle size of about 10 μm. Glass A is a comparative glass having a composition outside the above range, and the remaining glasses B to D
Is a glass having a composition within the above range.

【0038】これらから選んだガラス粉末に、表2に示
す配合比で、骨材の石英粉末 (平均粒径約2μm) を加
え、場合によりさらに骨材の一部としてAl2O3 またはFe
2O3の粉末を加えた。この粉末混合物を、ボールミル内
で、有機溶媒を粉砕溶媒として30分間混合粉砕した。こ
こに、アクリル系バインダーと可塑剤を添加し、ボール
ミル中での混合をさらに18時間続けて、スラリー化し
た。このスラリーをドクターブレード法によりシート成
形し、乾燥して、厚み0.1 mmのグリーンシートを作製し
た。
To the glass powder selected from these, a quartz powder of an aggregate (average particle size of about 2 μm) was added at a mixing ratio shown in Table 2, and in some cases, Al 2 O 3 or Fe was further added as a part of the aggregate.
2 O 3 powder was added. This powder mixture was mixed and pulverized in a ball mill for 30 minutes using an organic solvent as a pulverizing solvent. Here, an acrylic binder and a plasticizer were added, and mixing in a ball mill was continued for another 18 hours to form a slurry. The slurry was formed into a sheet by a doctor blade method and dried to produce a green sheet having a thickness of 0.1 mm.

【0039】(1) 線熱膨張係数の測定 上記グリーンシートを35枚積層し、熱プレスで接着した
後、3.5 mm×17.5 mmにカットした。この積層サンプル
を、Agの融点より低い930 ℃の焼成温度で保持時間を30
分にして大気中で焼成した。焼成により得られた焼結サ
ンプルを室温から300 ℃まで10℃/minで昇温し、そのと
きのサンプルの伸び量をTMA (熱機械分析) により測
定して、線熱膨張係数を算出した。
(1) Measurement of Linear Thermal Expansion Coefficient 35 green sheets were laminated, bonded by a hot press, and cut into 3.5 mm × 17.5 mm. The laminated sample was held at a firing temperature of 930 ° C. lower than the melting point of Ag for a holding time of 30 minutes.
And fired in air. The sintered sample obtained by firing was heated from room temperature to 300 ° C. at a rate of 10 ° C./min, and the elongation of the sample at that time was measured by TMA (thermomechanical analysis) to calculate the linear thermal expansion coefficient.

【0040】(2) 抗折強度測定 上記グリーンシートを12枚積層し、熱プレスで接着後、
10.0 mm ×50.0 mm にカットした。この積層サンプルを
大気中、930 ℃にて30分の保持時間で焼成した。得られ
た焼結サンプルを用いて曲げ試験を行い、抗折強度を測
定した。
(2) Flexural strength measurement Twelve green sheets were laminated and bonded by hot pressing.
It was cut to 10.0 mm x 50.0 mm. The laminated sample was fired in the atmosphere at 930 ° C. for a holding time of 30 minutes. A bending test was performed using the obtained sintered sample, and the bending strength was measured.

【0041】(3) Qf値の測定 上記ガラス粉末と石英粉末をボールミルで有機溶媒を用
いて混合粉砕した後、100 ℃で24時間乾燥させた。得ら
れた粉末混合物を金型プレスにより直径15 mmの円柱状
に成形し、得られた成形体を大気中で930 ℃にて30分の
保持時間で焼成し、焼結体を作製した。得られた円柱状
の焼結サンプルを用いて、誘電体共振法によりQ値と共
振周波数fを測定し、Qf値を算出した。
(3) Measurement of Qf value The above glass powder and quartz powder were mixed and pulverized using an organic solvent in a ball mill, and then dried at 100 ° C. for 24 hours. The obtained powder mixture was formed into a cylindrical shape having a diameter of 15 mm by a die press, and the obtained formed body was fired in the atmosphere at 930 ° C. for 30 minutes to obtain a sintered body. Using the obtained cylindrical sintered sample, the Q value and the resonance frequency f were measured by the dielectric resonance method, and the Qf value was calculated.

【0042】上記(1) 〜(3) の焼成において、緻密な焼
結体が得られず、焼結体の収縮量が10%未満であった場
合は、焼結不良と判定し、上記の各測定は実施しなかっ
た。以上の測定結果を表2にまとめて示す。
In the above firings (1) to (3), if a dense sintered body was not obtained and the shrinkage of the sintered body was less than 10%, it was determined that the sintering was poor, and Each measurement was not performed. Table 2 summarizes the above measurement results.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】表2からわかるように、質量基準で骨材の
量が40%より多くなると、焼結不良となる。骨材の量が
40%以下であれば、緻密な焼結体が得られるが、骨材の
量が35%を下回ると、焼結したセラミックス基板の強度
が低下する。骨材の量が35〜40%の範囲で、緻密かつ強
度も十分な焼結体からなるセラミックス基板を得ること
ができる。
As can be seen from Table 2, when the amount of aggregate is more than 40% on a mass basis, sintering becomes poor. The amount of aggregate
If it is 40% or less, a dense sintered body can be obtained, but if the amount of the aggregate is less than 35%, the strength of the sintered ceramic substrate decreases. When the amount of the aggregate is in the range of 35 to 40%, a ceramic substrate made of a sintered body that is dense and has sufficient strength can be obtained.

【0046】セラミックス基板の熱膨張係数とQf値に
関しては、骨材中の石英が39.5%以下で、かつガラス組
成が前記範囲であれば、線熱膨張係数が9〜12 ppm/℃
の範囲内で、Qf値が3000 GHz以上の、リフロー実装し
ても接続部の信頼性が高く、かつ高周波での伝送損失が
少なく、信号応答性に優れた基板となる。
Regarding the thermal expansion coefficient and the Qf value of the ceramic substrate, if the quartz in the aggregate is 39.5% or less and the glass composition is within the above range, the linear thermal expansion coefficient is 9 to 12 ppm / ° C.
Within this range, a substrate having a Qf value of 3000 GHz or more, with high reliability of the connection portion even with reflow mounting, low transmission loss at high frequencies, and excellent signal responsiveness can be obtained.

【0047】[0047]

【発明の効果】本発明により、Qfが3000 GHz以上と高
く、930 ℃以下で焼成可能で、室温〜300 ℃での線熱膨
張係数が9〜12 ppm/℃の範囲内であり、かつ抗折強度
が180Mpa 以上のセラミックス基板が提供される。
According to the present invention, Qf is as high as 3000 GHz or more, sintering can be performed at 930 ° C. or less, linear thermal expansion coefficient from room temperature to 300 ° C. is in the range of 9 to 12 ppm / ° C. A ceramic substrate having a bending strength of 180 MPa or more is provided.

【0048】本発明のセラミックス基板は、低抵抗のAg
を内層導体とする多層セラミックス回路基板とすること
ができる。配線の低抵抗化に加え、基板それ自体のQf
値が高いので、動作周波数が高くても伝送損失の低い基
板となる。従って、本発明のセラミックス基板は高周波
化に対応でき、特に携帯電話のRFモジュール基板や動
作周波数の高いLSI用基板として有用である。
The ceramic substrate of the present invention is made of a low-resistance Ag
Can be used as an inner conductor for the multilayer ceramic circuit board. In addition to reducing the resistance of the wiring, the Qf of the substrate itself
Since the value is high, the substrate has a low transmission loss even when the operating frequency is high. Therefore, the ceramic substrate of the present invention can cope with a higher frequency, and is particularly useful as an RF module substrate of a mobile phone or an LSI substrate having a high operating frequency.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA03 AA04 AA07 AA09 AA27 AA32 AA35 AA36 AA37 AA39 AA51 AA61 BA09 BA12 BA20 CA03 CA08 GA27 HA01 5E346 AA12 CC18 CC39 EE01 EE21 GG04 GG08 GG09 HH02 HH06 HH11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G030 AA03 AA04 AA07 AA09 AA27 AA32 AA35 AA36 AA37 AA39 AA51 AA61 BA09 BA12 BA20 CA03 CA08 GA27 HA01 5E346 AA12 CC18 CC39 EE01 EE21 GG04 GG08 GG09 HH11 HH06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石英を主成分とする骨材と、SrO および
SiO2を含むガラス、との焼結体からなるセラミックス基
板であって、 室温から300 ℃までの温度範囲の線熱膨張係数が9〜12
ppm/℃、 抗折強度が180 MPa 以上、 Qf値が3000 GHz以上、であることを特徴とするセラミ
ックス基板。
An aggregate mainly composed of quartz, SrO and
A ceramic substrate comprising a sintered body of glass containing SiO 2 and having a linear thermal expansion coefficient of 9 to 12 in a temperature range from room temperature to 300 ° C.
A ceramic substrate having a ppm / ° C, a flexural strength of 180 MPa or more, and a Qf value of 3000 GHz or more.
【請求項2】 質量%で、骨材35〜40%(うち、石英30
〜39.5%)、ガラス60〜65%からなり、ガラスの組成
が、 SrO :40〜46%、SiO2:35〜40%、 B203: 9〜11%、SnO2: 1.5〜5.8 %、 ZnO : 2〜4 %、Al203 + AlN : 0.6〜2.8 %、 Na20 + K20: 0.1〜2%、MgO : 0.1〜1.5 %、 その他不純物:合計2%以下、 である、請求項1記載のセラミックス基板。
2. 35% to 40% of aggregate (including 30% by weight of quartz)
~39.5%), consists from 60 to 65% glass, the composition of the glass, SrO: 40~46%, SiO 2 : 35~40%, B 2 0 3: 9~11%, SnO 2: 1.5~5.8% , ZnO: 2~4%, Al 2 0 3 + AlN: 0.6~2.8%, Na 2 0 + K 2 0: 0.1~2%, MgO: 0.1~1.5%, other impurities: total of 2% or less, The ceramic substrate according to claim 1.
【請求項3】 骨材が、アルミナ、窒化アルミニウムお
よび水酸化アルミニウムから選ばれた少なくとも1種の
アルミニウム化合物、ならびに/または酸化第二鉄(Fe2
03) を、合計 0.5〜5質量%(但し、Fe2O3 の上限は2
質量%)の割合で含有する、請求項2記載のセラミック
ス基板。
3. An aggregate comprising at least one aluminum compound selected from alumina, aluminum nitride and aluminum hydroxide, and / or ferric oxide (Fe 2
0 3 ) to a total of 0.5 to 5% by mass (however, the upper limit of Fe 2 O 3 is 2
The ceramic substrate according to claim 2, wherein the ceramic substrate is contained at a ratio of (% by mass).
【請求項4】 内部に内層導体配線を有する多層セラミ
ックス回路基板を構成している請求項1 〜3のいずれか
に記載のセラミックス基板。
4. The ceramic substrate according to claim 1, which constitutes a multilayer ceramic circuit board having an inner conductor wiring therein.
JP2001149367A 2001-05-18 2001-05-18 Low temperature fired ceramic substrate Expired - Lifetime JP4929534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149367A JP4929534B2 (en) 2001-05-18 2001-05-18 Low temperature fired ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149367A JP4929534B2 (en) 2001-05-18 2001-05-18 Low temperature fired ceramic substrate

Publications (2)

Publication Number Publication Date
JP2002338338A true JP2002338338A (en) 2002-11-27
JP4929534B2 JP4929534B2 (en) 2012-05-09

Family

ID=18994548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149367A Expired - Lifetime JP4929534B2 (en) 2001-05-18 2001-05-18 Low temperature fired ceramic substrate

Country Status (1)

Country Link
JP (1) JP4929534B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118060A (en) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd High-dielectric constant glass ceramic
JP2000016837A (en) * 1998-06-30 2000-01-18 Ngk Spark Plug Co Ltd Crystallized glass-ceramic composite material and wiring substrate using the same and package provided with the wiring substrate
JP2001130959A (en) * 1999-10-29 2001-05-15 Kyocera Corp Ceramic composition for high frequency wave, ceramic for high frequency wave and method for producing ceramic for high frequency wave

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118060A (en) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd High-dielectric constant glass ceramic
JP2000016837A (en) * 1998-06-30 2000-01-18 Ngk Spark Plug Co Ltd Crystallized glass-ceramic composite material and wiring substrate using the same and package provided with the wiring substrate
JP2001130959A (en) * 1999-10-29 2001-05-15 Kyocera Corp Ceramic composition for high frequency wave, ceramic for high frequency wave and method for producing ceramic for high frequency wave

Also Published As

Publication number Publication date
JP4929534B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP3358589B2 (en) Composition for ceramic substrate, green sheet and ceramic circuit component
JP3240271B2 (en) Ceramic substrate
JP3297569B2 (en) Low temperature firing porcelain composition
JP2001240470A (en) Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP3377898B2 (en) Low temperature firing porcelain composition
JP4929534B2 (en) Low temperature fired ceramic substrate
JPH10297960A (en) Ceramic composition baked at low temperature and production of porcelain baked at low temperature
JP4045127B2 (en) Ceramic substrate
JP2002053368A (en) Porcelain excellent in high-frequency characteristic and its manufacturing method
JP2001015878A (en) High-frequency wiring board and its manufacture
JP2005093546A (en) Wiring board and its producing method
JP2004161562A (en) Ceramic material for circuit board
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3085667B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2002167265A (en) Porcelain composition baked at low temperature, porcelain baked at low temperature and wiring board using it
JP3441924B2 (en) Wiring board and its mounting structure
JPH10194846A (en) Production of substrate fired at low temperature
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP3284937B2 (en) Low temperature firing ceramic substrate
JP2000264719A (en) Porcelain composition, porcelain and circuit board using same
JPH09208298A (en) Porcelain composition fired at a low temperature
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP2005179137A (en) Porcelain having excellent high frequency transmission characteristics

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4929534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

EXPY Cancellation because of completion of term