JP2005101095A - Porcelain composition, porcelain, and its manufacturing method - Google Patents

Porcelain composition, porcelain, and its manufacturing method Download PDF

Info

Publication number
JP2005101095A
JP2005101095A JP2003330239A JP2003330239A JP2005101095A JP 2005101095 A JP2005101095 A JP 2005101095A JP 2003330239 A JP2003330239 A JP 2003330239A JP 2003330239 A JP2003330239 A JP 2003330239A JP 2005101095 A JP2005101095 A JP 2005101095A
Authority
JP
Japan
Prior art keywords
mass
porcelain
sio
less
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330239A
Other languages
Japanese (ja)
Inventor
Yoshitake Terashi
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003330239A priority Critical patent/JP2005101095A/en
Publication of JP2005101095A publication Critical patent/JP2005101095A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porcelain insulating layer used for a high-frequency wiring board which is burned at a temperature of 800 to 1,000°C and capable of reducing a dielectric loss in a high-frequency range, and to provide its manufacturing method and a porcelain composition. <P>SOLUTION: The porcelain composition comprises 40 to 70 mass.% crystalline glass powder which is capable of separating out a diopside oxide crystal phase as a main crystal and composed of SiO<SB>2</SB>, MgO, CaO, and Al<SB>2</SB>O<SB>3</SB>whose content is 0.4 mass.% or below, and 30 to 60 mass% metal oxide powder containing 1 to 60 mass% Al<SB>2</SB>O<SB>3</SB>as a filler. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子収納用パッケージや多層配線基板等に適用される配線基板に関するものであり、特に、マイクロ波やミリ波等の高周波帯で用いられる配線基板における絶縁基板として用いられる磁器用組成物及び磁器、並びに磁器の製造方法に関するものである。   The present invention relates to a wiring substrate applied to a package for housing a semiconductor element, a multilayer wiring substrate, and the like, and in particular, a composition for porcelain used as an insulating substrate in a wiring substrate used in a high frequency band such as a microwave or a millimeter wave. The present invention relates to an object, a porcelain, and a method for producing the porcelain.

従来、セラミック多層配線基板としては、アルミナ質焼結体からなる絶縁基板の表面または内部にタングステンやモリブデンなどの高融点金属からなる配線層が形成されたものが最も普及している。
また、最近に至り、高度情報化時代を迎え、使用される周波数帯域はますます高周波化に移行しつつある。このような、高周波の信号の伝送を必要とする高周波配線基板においては、高周波信号を損失なく伝送する上で、配線層を形成する導体の抵抗が小さいこと、また絶縁基板の高周波領域での誘電損失が小さいことが要求される。
ところが、従来のタングステン(W)や、モリブデン(Mo)などの高融点金属は導体抵抗が大きく、信号の伝搬速度が遅く、また、1GHz以上の高周波領域の信号伝搬も困難であることから、W、Moなどの金属に代えて銅、銀、金などの低抵抗金属を使用することが必要となっている。
Conventionally, a ceramic multilayer wiring board is most widely used in which a wiring layer made of a refractory metal such as tungsten or molybdenum is formed on or inside an insulating substrate made of an alumina sintered body.
In recent years, with the advent of advanced information technology, the frequency band used is increasingly shifting to higher frequencies. In such a high-frequency wiring board that requires transmission of a high-frequency signal, the resistance of the conductor forming the wiring layer is small in order to transmit the high-frequency signal without loss, and the dielectric in the high-frequency region of the insulating substrate. Small loss is required.
However, conventional refractory metals such as tungsten (W) and molybdenum (Mo) have high conductor resistance, slow signal propagation speed, and signal propagation in a high frequency region of 1 GHz or more is difficult. It is necessary to use low resistance metals such as copper, silver, and gold instead of metals such as Mo.

このような低抵抗金属からなる配線層は、融点が低く、アルミナと同時焼成することが不可能であるため、最近では、ガラス、またはガラスとセラミックスとの複合材料からなる、いわゆるガラスセラミックスを絶縁基板として用いた配線基板が開発されつつある。例えば、ホウケイ酸亜鉛系ガラスに、Al3、ジルコニア、ムライトなどのフィラーを添加したものを低抵抗金属と同時焼成した多層配線基板が提案されている(特許文献1参照)。 Since the wiring layer made of such a low-resistance metal has a low melting point and cannot be co-fired with alumina, recently, so-called glass ceramics made of glass or a composite material of glass and ceramics is insulated. A wiring substrate used as a substrate is being developed. For example, a multilayer wiring board in which a borosilicate glass added with a filler such as Al 2 O 3 , zirconia, and mullite is simultaneously fired with a low-resistance metal has been proposed (see Patent Document 1).

また、例えば、ディオプサイド結晶相を析出可能なガラス粉末70〜100%に対して、アルミナ、ムライト等のセラミック粉末0〜30%を添加、混合して焼成した磁器が提案され、2GHzの周波数での誘電損失を3〜7×10−4に低減できることが開示されている(特許文献2、3参照)。 Further, for example, a ceramic is proposed in which 0 to 30% ceramic powder such as alumina and mullite is added to 70 to 100% glass powder capable of precipitating a diopside crystal phase, mixed and fired, and a frequency of 2 GHz. It is disclosed that the dielectric loss can be reduced to 3-7 × 10 −4 (see Patent Documents 2 and 3).

特開昭60−240135号JP-A-60-240135 特開平10−120436号公報JP-A-10-120436 特開平11−49531号公報JP 11-49531 A

しかしながら、MgCaSi、及びCa(Mg,Al)(Si,Al)6のディオプサイド型酸化物結晶相は、高周波帯における誘電損失が低い結晶であるが、表面結晶化しやすくガラス原料粒子内部にガラスが残存して、Agとの同時焼成が最適な温度850℃付近の焼成温度にて、磁器中のディオプサイド結晶相の割合を高めることが難しい材料であることが知られている。
従って、本発明は、850℃付近の焼成温度においても磁器の結晶化度を高め、高周波領域における誘電損失をさらに低減できる磁器およびその製造方法並びにそれを作製可能な磁器用組成物を提供することを目的とする。
However, the diopside oxide crystal phases of MgCaSi 2 O 6 and Ca (Mg, Al) (Si, Al) 2 O 6 are crystals with low dielectric loss in the high frequency band, but are easily crystallized on the surface. It is known that glass remains in the raw material particles, and it is difficult to increase the proportion of diopside crystal phase in the porcelain at a firing temperature around 850 ° C., which is optimal for simultaneous firing with Ag. ing.
Accordingly, the present invention provides a porcelain capable of increasing the crystallinity of the porcelain even at a firing temperature of around 850 ° C. and further reducing the dielectric loss in the high frequency region, a method for producing the same, and a composition for porcelain capable of producing the same. With the goal.

本発明者は、上記課題を鋭意検討した結果、SiO2、MgO及びCaO、又はSiO2、MgO、CaO及び含有量が0.4質量%以下のAl23からなり、主結晶としてディオプサイド型酸化物結晶相を析出可能なガラスにおいて、フィラーとして少なくともAlを所定の比率で配合することによって、850℃付近の低温においても焼結の際に磁器中でのディオプサイド型酸化物結晶相の析出割合を高めることができ、かつ誘電損失の増加の原因となるガラスの残留量を低減することができることを見出し本発明を完成させた。
尚、これにより、高周波領域における誘電損失を大幅に低減することが可能である。
As a result of earnest examination of the above problems, the present inventor has made SiO 2 , MgO and CaO, or SiO 2 , MgO, CaO and Al 2 O 3 with a content of 0.4% by mass or less, and has diop as the main crystal. In a glass capable of precipitating a side-type oxide crystal phase, by mixing at least Al 2 O 3 as a filler in a predetermined ratio, a diopside type in a porcelain during sintering even at a low temperature around 850 ° C. The present invention has been completed by finding that the precipitation ratio of the oxide crystal phase can be increased and the residual amount of glass that causes an increase in dielectric loss can be reduced.
As a result, the dielectric loss in the high frequency region can be significantly reduced.

すなわち、本発明は、SiO2、MgO、CaO及び含有量が0.4質量%以下のAl23からなり、主結晶としてディオプサイド型酸化物結晶相を析出可能な結晶性ガラス粉末を40〜70質量%、並びにフィラーとして少なくともAlを1〜60質量%含有する金属酸化物粉末を30〜60質量%の割合で含有することを特徴とする磁器用組成物に関する発明である。
本発明の磁器用組成物においては更に
(1)前記結晶性ガラス粉末が、SiO240〜65質量%、MgO11〜30質量%、CaO20〜35質量%、及びAl230〜0.4質量%とからなること
(2)前記フィラーとしてAl以外にMgAl24、ZnAl24、3Al23・2SiO2、Mg2Al4Si518、SiO2、TiO、MgTiO、SrTiO、BaTiO、CaTiO、ZnTiO、CuO、及びCuOをすくなくとも1種以上含有すること
(3)前記結晶性ガラス粉末の軟化点および結晶化温度がそれぞれ、830℃以下、870℃以下であること
が望ましい。
That is, the present invention provides a crystalline glass powder comprising SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4% by mass or less and capable of precipitating a diopside oxide crystal phase as a main crystal. It is an invention relating to a composition for porcelain comprising 40 to 70% by mass, and a metal oxide powder containing at least 1 to 60% by mass of Al 2 O 3 as a filler in a proportion of 30 to 60% by mass. .
In the porcelain composition of the present invention, (1) the crystalline glass powder is SiO 2 40 to 65 mass%, MgO 11 to 30 mass%, CaO 20 to 35 mass%, and Al 2 O 3 0 to 0.4. (2) In addition to Al 2 O 3 , MgAl 2 O 4 , ZnAl 2 O 4 , 3Al 2 O 3 .2SiO 2 , Mg 2 Al 4 Si 5 O 18 , SiO 2 , TiO 2 as the filler MgTiO 3 , SrTiO 3 , BaTiO 3 , CaTiO 3 , Zn 2 TiO 4 , CuO, and Cu 2 O at least one kind (3) the softening point and the crystallization temperature of the crystalline glass powder, It is desirable that it is 830 degrees C or less and 870 degrees C or less.

また、本発明は、少なくともSiO2、MgO、CaO及び含有量が0.4質量%以下のAlからなり、主結晶がディオプサイド型酸化物結晶である相と、フィラーとして少なくともAlを含有し、60〜77GHzでの誘電損失が20×10-4以下であることを特徴とする磁器に関する発明である。
本発明の磁器においては更に
(1)焼成温度850℃以上で焼成され、SiO2、MgO、CaO及び含有量が0.4質量%以下のAlからなる相中に含まれる、残留ガラス相の割合が12質量%以下であること
(2)室温から400℃における熱膨張係数が5×10−6/℃以上、誘電率が12以下、磁器強度250MPa以上であること
が望ましい。
The present invention also includes a phase comprising at least SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4% by mass or less, the main crystal being a diopside oxide crystal, and at least Al as a filler. The invention relates to a porcelain containing 2 O 3 and having a dielectric loss of 60 × 10 −4 or less at 60 to 77 GHz.
In the porcelain of the present invention, (1) a residual glass which is fired at a firing temperature of 850 ° C. or higher and contained in a phase composed of SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4 mass% or less. The proportion of the phase is 12% by mass or less. (2) The thermal expansion coefficient from room temperature to 400 ° C. is preferably 5 × 10 −6 / ° C. or more, the dielectric constant is 12 or less, and the ceramic strength is 250 MPa or more.

更に、本発明は、SiO2、MgO、CaO及び含有量が0.4質量%以下のAl23からなり、主結晶としてディオプサイド型酸化物結晶相を析出可能な結晶化ガラス粉末40〜70質量%と、フィラーとして少なくともAlを1〜60質量%含有する金属酸化物30〜60質量%とからなる混合物を成形後、800〜1000℃の温度で焼成して、SiO2、MgO及びCaO、又はSiO2、MgO、CaO及びAl23を含むディオプサイド型酸化物結晶相と、少なくともAlとを含有する磁器を作製することを特徴とする磁器の製造方法に関する発明である。
本発明の磁器の製造方法においては更に、前記結晶化ガラス粉末が、SiO240〜65質量%と、MgO11〜30質量%と、CaO20〜35質量%と、Al230〜0.4質量%とからなることが望ましい。
Further, the present invention is a crystallized glass powder 40 comprising SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4% by mass or less and capable of depositing a diopside oxide crystal phase as a main crystal. and 70 wt%, after molding at least Al 2 O 3 and composed of a metal oxide 30 to 60% by weight, containing 1 to 60 wt% mixture as a filler, and fired at a temperature of 800 to 1000 ° C., SiO 2 , the production of porcelain, wherein the MgO and CaO, or SiO 2, MgO, diopside-type oxide containing CaO and Al 2 O 3 crystalline phase, to produce a ceramic containing at least Al 2 O 3 The invention relates to a method.
Further in the production method of the ceramic according to the present invention, the crystallized glass powder, and SiO 2 40 to 65 wt%, and MgO11~30 mass%, and CaO20~35 mass%, Al 2 O 3 0 to 0.4 It is desirable to consist of mass%.

本発明の磁器用組成物によれば、1000℃以下の低温にて焼成できることから、銅などの低抵抗金属による配線層を形成でき、しかも60〜77GHzでの誘電損失が20×10-4以下と誘電損失が低いことから、1GHz以上の高周波領域において高周波信号を極めて良好に損失なく伝送することができる。
しかも、この組成物を用いて得られる磁器は、磁器強度が250MPa以上と高く、誘電率が12以下で、かつGaAsチップあるいはプリント基板と近似した熱膨張特性に制御できることから、特に配線基板の絶縁基板として優れた特性を有するとともに、GaAsチップを実装した場合、あるいは有機樹脂を含む絶縁基板を具備するプリント基板などのマザーボードに対してロウ材等により実装した場合において優れた耐熱サイクル性を有し、高信頼性の実装構造を提供できる。
According to the porcelain composition of the present invention, since it can be fired at a low temperature of 1000 ° C. or less, a wiring layer made of a low resistance metal such as copper can be formed, and the dielectric loss at 60 to 77 GHz is 20 × 10 −4 or less. Since the dielectric loss is low, a high-frequency signal can be transmitted very well without loss in a high-frequency region of 1 GHz or higher.
Moreover, the porcelain obtained using this composition has a high porcelain strength of 250 MPa or more, a dielectric constant of 12 or less, and can be controlled to have a thermal expansion characteristic similar to that of a GaAs chip or printed circuit board. In addition to having excellent characteristics as a substrate, it has excellent heat cycle characteristics when mounted with a GaAs chip or when mounted with a brazing material on a motherboard such as a printed circuit board having an insulating substrate containing an organic resin. Can provide a highly reliable mounting structure.

本発明の磁器用組成物は、SiO2、MgO、CaO及び含有量が0.4質量%以下のAl23からなり、主結晶としてディオプサイド型酸化物結晶相を析出可能な結晶性ガラス粉末40〜70質量%と、フィラーとして少なくともAlを1〜60質量%との割合で含有するものである。
各成分組成を上記の範囲に限定したのは、上記結晶性ガラス粉末が40質量%未満であると、1000℃以下の温度での焼成により磁器を緻密化させることが困難であり、70質量%を超えると、磁器中のディオプサイドの含有量が低下し磁器の強度が弱くなるためである。
結晶性ガラス粉末の特に望ましい範囲は、50〜65質量%、更に特に望ましいのは55〜60質量%である。
The porcelain composition of the present invention comprises SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4% by mass or less, and has crystallinity capable of precipitating a diopside oxide crystal phase as a main crystal. It contains 40 to 70% by mass of glass powder and 1 to 60% by mass of at least Al 2 O 3 as a filler.
The reason why each component composition is limited to the above range is that when the crystalline glass powder is less than 40% by mass, it is difficult to densify the porcelain by firing at a temperature of 1000 ° C. or less, and 70% by mass. This is because the content of diopside in the porcelain decreases and the strength of the porcelain becomes weak.
A particularly desirable range of the crystalline glass powder is 50 to 65% by mass, and more particularly 55 to 60% by mass.

ここで、該結晶性ガラス粉末の組成は、SiO40〜65質量%、MgO11〜30質量%、CaO20〜35質量%、及びAl230〜0.4質量%の割合であることが望ましい。
上記ディオプサイド型酸化物結晶相を析出可能なガラスは、一般に通常ガラス原料粒子の表面のみが結晶化して中心部に誘電損失の大きなガラス相が残存しやすいものである。
しかし、本発明によれば、前記ガラスの成分中のAl23を0.4質量%以下とすることによって、磁器中のディオプサイド型酸化物結晶相の析出割合を高めることができ、特に1GHz以上、さらに20GHz以上、さらには50GHz以上、さらにまた70GHz以上の高周波領域における誘電損失を大幅に低減できる。
Here, the composition of the crystalline glass powder is a ratio of SiO 2 40 to 65 mass%, MgO 11 to 30 mass%, CaO 20 to 35 mass%, and Al 2 O 3 0 to 0.4 mass%. desirable.
In general, the glass capable of precipitating the diopside-type oxide crystal phase is usually one in which only the surface of the glass raw material particles is crystallized, and a glass phase having a large dielectric loss tends to remain in the center.
However, according to the present invention, by making Al 2 O 3 in the glass component 0.4 mass% or less, the precipitation ratio of the diopside oxide crystal phase in the porcelain can be increased, In particular, the dielectric loss in a high frequency region of 1 GHz or more, further 20 GHz or more, further 50 GHz or more, and also 70 GHz or more can be greatly reduced.

上記磁器用組成物中にフィラーとして配合されるAlの含有量は、1〜60質量%であることが重要である。すなわち、Alの含有量が1質量%未満であると、磁器中のヤング率が低下して磁器強度が弱くなるためであり、逆に、Alの含有量が60質量%を越えると、難焼結性となり、1000℃以下の焼成温度で緻密化することができないためである。フィラーとしてのAlの望ましい範囲は30〜60質量%、特に望ましい範囲は30〜40質量%である。フィラー量が30質量%未満であると磁器強度が低下し、一方、60質量%を越えると磁器の緻密化が困難となる。
また、上記組成物中にはフィラーとして、Alは、α−Al、及びγ−Alが使用可能であり、特に結晶性を高める上でα−Alが好ましい。またAl以外の金属酸化物としてはMgAl24、ZnAl24、3Al23・2SiO2、Mg2Al4Si518、SiO2、TiO、MgTiO、SrTiO、BaTiO、CaTiO、ZnTiO、CuO、CuO等が望ましく、これらの中でも特にγ−Al、β−Al、MgAl24、ZnAl24、MgTiO、CaTiOが望ましい。
上記の態様の磁器用組成物は、800〜1000℃の温度範囲での焼成によって好ましくは相対密度97%以上、特に好ましくは99%以上まで緻密化することができる。
本発明の樹脂組成物に用いる結晶性ガラス粉末の軟化点は、850℃付近での焼結を可能とするために830℃以下、特に750〜830℃であることが望ましく、結晶化温度は870℃以下であることが望ましい。
It is important that the content of Al 2 O 3 blended as a filler in the porcelain composition is 1 to 60% by mass. That is, when the content of Al 2 O 3 is less than 1% by mass, the Young's modulus in the porcelain is lowered and the porcelain strength is weakened. Conversely, the content of Al 2 O 3 is 60% by mass. This is because it is difficult to sinter and cannot be densified at a firing temperature of 1000 ° C. or less. A desirable range of Al 2 O 3 as the filler is 30 to 60% by mass, and a particularly desirable range is 30 to 40% by mass. If the filler amount is less than 30% by mass, the porcelain strength is lowered, while if it exceeds 60% by mass, it becomes difficult to densify the porcelain.
Further, as filler in the composition, Al 2 O 3 is, α-Al 2 O 3, and γ-Al 2 O 3 are possible using, α-Al 2 O 3 in terms of particular enhance crystallinity Is preferred. Metal oxides other than Al 2 O 3 include MgAl 2 O 4 , ZnAl 2 O 4 , 3Al 2 O 3 .2SiO 2 , Mg 2 Al 4 Si 5 O 18 , SiO 2 , TiO 2 , MgTiO 3 , SrTiO 3. , BaTiO 3 , CaTiO 3 , Zn 2 TiO 4 , CuO, Cu 2 O and the like are preferable, among which γ-Al 2 O 3 , β-Al 2 O 3 , MgAl 2 O 4 , ZnAl 2 O 4 , MgTiO 3 and CaTiO 3 are desirable.
The porcelain composition of the above aspect can be densified to a relative density of preferably 97% or more, particularly preferably 99% or more by firing in a temperature range of 800 to 1000 ° C.
The softening point of the crystalline glass powder used in the resin composition of the present invention is desirably 830 ° C. or less, particularly 750 to 830 ° C., in order to enable sintering at around 850 ° C., and the crystallization temperature is 870. It is desirable that the temperature is not higher than ° C.

また、本発明の磁器は、結晶相として、少なくとも前記α−Al相と、少なくともSiO2、MgO、CaO及び含有量が0.4質量%以下のAl23を含むディオプサイド型酸化物結晶相であるCa(Mg,Al)(Si,Al)(DI)とを含有するとともに、磁器中の非晶質ガラス相の比率が10質量%以下であることが望ましい。
また、上記磁器は、主結晶として上記ディオプサイド型酸化物結晶相Ca(Mg,Al)(Si,Al)(DI)を析出すること割合が高いことが望ましく、また、それ以外に、CaMgSi(akermanite)、CaMgSiO(monticellite)、CaMgSi(merwinite)等の類似の相が析出してもよい。
さらに、Al相は、例えば、球状、針状、不定形等の粒状をなし、磁器中に分散して存在することが望ましい。
The porcelain of the present invention is a diopside containing at least the α-Al 2 O 3 phase, at least SiO 2 , MgO, CaO and Al 2 O 3 with a content of 0.4% by mass or less as crystal phases. It is desirable that it contains Ca (Mg, Al) (Si, Al) 2 O 6 (DI), which is a type oxide crystal phase, and the ratio of the amorphous glass phase in the porcelain is 10% by mass or less. .
The porcelain preferably has a high ratio of depositing the diopside oxide crystal phase Ca (Mg, Al) (Si, Al) 2 O 6 (DI) as a main crystal. In addition, a similar phase such as Ca 2 MgSi 2 O 7 (akermanite), CaMgSiO 4 (montellite), or Ca 3 MgSi 2 O 8 (merwinite) may be precipitated.
Furthermore, it is desirable that the Al 2 O 3 phase has, for example, a spherical shape, a needle shape, an indeterminate shape, and the like and is dispersed in the porcelain.

なお、磁器中には上記の結晶相の粒界に非晶質ガラス(G)が残在するが、非晶質ガラス(G)は誘電損失を低減するため、また磁器強度向上の点で磁器中のガラスの存在割合を10質量%以下、特に5質量%以下、さらに2質量%以下に低めることが望ましい。これにより、誘電損失を低減することができる。
上記形態の磁器は、60〜77GHzにおける誘電損失20×10-4以下、特に10×10-4以下の高周波帯で誘電損失の小さいものであり、1GHz以上、特に20GHz以上、さらには50GHz以上、またさらには70GHz以上の高周波用配線基板の絶縁層を形成するのに好適な磁器となる。
In the porcelain, amorphous glass (G) remains at the grain boundary of the crystal phase. However, the amorphous glass (G) reduces the dielectric loss, and the porcelain from the viewpoint of improving the porcelain strength. It is desirable to reduce the content of glass in the glass to 10% by mass or less, particularly 5% by mass or less, and further 2% by mass or less. Thereby, dielectric loss can be reduced.
The porcelain of the above form has a dielectric loss of 60 × 77 −4 GHz or less, particularly 10 × 10 −4 or less in a high frequency band, and has a small dielectric loss, 1 GHz or more, particularly 20 GHz or more, further 50 GHz or more, Furthermore, it is a porcelain suitable for forming an insulating layer of a high frequency wiring board of 70 GHz or higher.

また、上記ディオプサイド型酸化物結晶相は、約8〜9×10−6/℃の高熱膨張特性を有することから、上記組成のガラスよりディオプサイド型酸化物結晶相を析出させることにより、熱膨張係数を5×10−6/℃以上に高めるとともに、磁器の誘電率を12以下、特に11以下と低く、磁器強度が250MPa以上、特に300MPa以上に高めることが可能である。
すなわち、磁器の熱膨張係数は、実装するチップ部品等やプリント基板等の熱膨張係数に近似するように適宜調整することが望ましく、特に室温から400℃における熱膨張係数が5×10−6/℃以上、特に8×10−6/℃以上であることが望ましい。これは、上記の磁器の熱膨張係数が実装されるチップ部品等やプリント基板のそれと差がある場合、半田実装時や半導体素子の作動停止による繰り返し温度サイクルによって、チップ部品等やプリント基板とパッケージとの実装部に熱膨張差に起因する応力が発生し、実装部にクラック等が発生し、実装構造の信頼性を損ねてしまうためである。
具体的には、GaAs系のチップ部品との整合を図る上ではGaAs系のチップ部品との熱膨張係数の差が2×10−6/℃以下であり、一方、プリント基板との整合を図る上ではプリント基板との熱膨張係数の差が2×10−6/℃以下であることが望ましい。
In addition, since the diopside oxide crystal phase has a high thermal expansion characteristic of about 8 to 9 × 10 −6 / ° C., the diopside oxide crystal phase is precipitated from the glass having the above composition. The coefficient of thermal expansion can be increased to 5 × 10 −6 / ° C. or higher, the dielectric constant of the porcelain can be lowered to 12 or less, particularly 11 or less, and the porcelain strength can be increased to 250 MPa or more, particularly 300 MPa or more.
That is, it is desirable to adjust the thermal expansion coefficient of the porcelain appropriately so as to approximate the thermal expansion coefficient of the chip component or the like to be mounted, the printed circuit board, or the like. In particular, the thermal expansion coefficient from room temperature to 400 ° C. is 5 × 10 −6 / It is desirable that the temperature is not lower than ° C., particularly 8 × 10 −6 / ° C. or higher. This is because if the thermal expansion coefficient of the above porcelain is different from that of a chip component or printed circuit board on which the ceramics are mounted, the chip component or printed circuit board and the package may be affected by repeated temperature cycles during solder mounting or by stopping the operation of the semiconductor element. This is because a stress due to a difference in thermal expansion occurs in the mounting portion, and cracks or the like occur in the mounting portion, thereby impairing the reliability of the mounting structure.
Specifically, when matching with a GaAs chip component, the difference in thermal expansion coefficient from the GaAs chip component is 2 × 10 −6 / ° C. or less, while matching with a printed circuit board is attempted. Above, it is desirable that the difference in thermal expansion coefficient from the printed circuit board is 2 × 10 −6 / ° C. or less.

さらに、本発明の磁器を配線基板の絶縁基板として用いる場合、誘電率が12以下、特に11以下と低いために高周波伝送線路やアンテナの伝送損失を低めることができる。
また、磁器強度が250MPa以上、特に300MPa以上と高めることによって、半導体素子等の電子部品の実装時、または入出力端子部に施すリード接続時に磁器にかかる応力による破損等を防止することができる。
次に、本発明における磁器用組成物を用い磁器を製造する方法について説明する。
Furthermore, when the porcelain of the present invention is used as an insulating substrate of a wiring board, the dielectric loss is as low as 12 or less, particularly 11 or less, so that the transmission loss of a high-frequency transmission line or antenna can be reduced.
Further, by increasing the porcelain strength to 250 MPa or more, particularly 300 MPa or more, it is possible to prevent damage due to stress applied to the porcelain when mounting electronic parts such as semiconductor elements or connecting leads to the input / output terminal portions.
Next, a method for producing a porcelain using the porcelain composition of the present invention will be described.

まず、出発原料として、SiO2、MgO、CaO及び含有量が0.4質量%以下のAl23を含みディオプサイド型結晶相を析出可能な結晶性ガラス粉末40〜60質量%と、Alを40〜60質量%もしくはAlと他の金属酸化物であるフィラーの合計量が40〜60質量%との割合となるよう秤量混合する。
なお、上記Alとしては、球状、針状、不定形状等の粉末状であることが望ましく、該粉末中には低温焼成化の点で、例えばSi、Mg、Ca、Sr等の不可避不純物が酸化物として8質量%以下、特に1質量%以下含有されていてもよい。
そして、この混合粉末を用いてドクターブレード法やカレンダーロール法、あるいは圧延法、プレス成形法の周知の成型法により所定形状の成形体を作製した後、該成形体を800〜1000℃の酸化性雰囲気または不活性雰囲気中で焼成することにより作製することができる。
First, as a starting material, 40 to 60% by mass of crystalline glass powder that contains SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4% by mass or less and can precipitate a diopside-type crystal phase; Al 2 O 3 is weighed and mixed so that the total amount of Al 2 O 3 is 40 to 60% by mass or the total amount of Al 2 O 3 and other metal oxide fillers is 40 to 60% by mass.
The Al 2 O 3 is preferably in the form of a powder such as a sphere, needle, or indefinite shape. In the powder, for example, Si, Mg, Ca, Sr, etc. are unavoidable in terms of low-temperature firing. Impurities may be contained as oxides in an amount of 8% by mass or less, particularly 1% by mass or less.
Then, using this mixed powder, a molded body having a predetermined shape is prepared by a known molding method such as a doctor blade method, a calender roll method, a rolling method, or a press molding method, and then the molded body is oxidized at 800 to 1000 ° C. It can be produced by firing in an atmosphere or an inert atmosphere.

ここで、焼成温度を上記範囲に限定した理由は、焼成温度が800℃未満であると、磁器を緻密化できないとともにガラスの結晶化度が低く、高周波領域での誘電損失が増大するためであり、逆に1000℃を越えると、CuやAg等の低抵抗金属との同時焼成ができないためである。
また、配線層を具備する配線基板を作製するには、前記混合粉末に、適当な有機溶剤、溶媒を用い混合してスラリーを調製し、これを従来周知のドクターブレード法やカレンダーロール法、あるいは圧延法、プレス成形法により、シート状に成形する。そして、このシート状成形体に所望によりスルーホールを形成した後、スルーホール内に、銅、金、銀のうちの少なくとも1種を含む金属ペーストを充填する。そして、シート状成形体表面には、高周波信号が伝送可能な高周波線路パターン等に前記金属ペーストを用いてスクリーン印刷法、グラビア印刷法などによって配線層の厚みが5〜30μmとなるように、印刷塗布する。
Here, the reason for limiting the firing temperature to the above range is that if the firing temperature is less than 800 ° C., the porcelain cannot be densified, the crystallinity of the glass is low, and the dielectric loss in the high frequency region increases. Conversely, if the temperature exceeds 1000 ° C., simultaneous firing with a low-resistance metal such as Cu or Ag cannot be performed.
Further, in order to produce a wiring board having a wiring layer, a slurry is prepared by mixing the mixed powder with an appropriate organic solvent or solvent, and this is prepared by a conventionally known doctor blade method or calendar roll method, or It is formed into a sheet by a rolling method or a press forming method. And after forming a through hole as needed in this sheet-like molded object, the metal paste containing at least 1 sort (s) of copper, gold | metal | money, and silver is filled in a through hole. Then, on the surface of the sheet-like molded body, printing is performed so that the wiring layer has a thickness of 5 to 30 μm by a screen printing method, a gravure printing method or the like using the metal paste on a high-frequency line pattern or the like capable of transmitting a high-frequency signal. Apply.

その後、複数のシート状成形体を位置合わせして積層圧着し、800〜1000℃の窒素ガスや窒素−酸素混合ガス等の非酸化性雰囲気で焼成することにより、高周波用配線基板を作製することができる。
そして、この配線基板の表面には、適宜半導体素子等のチップ部品が搭載され配線層と信号の伝達が可能なように接続される。接続方法としては、配線層上に直接搭載させて接続させたり、あるいは樹脂、Ag−エポキシ、Ag−ガラス、Au−Si等の樹脂、金属、セラミックス等の厚み50μm程度の接着剤によりチップ部品を絶縁基板表面に固着し、ワイヤーボンディング、TABテープなどにより配線層と半導体素子とを接続したりする。
Thereafter, a plurality of sheet-like molded bodies are aligned, pressure-bonded, and fired in a non-oxidizing atmosphere such as nitrogen gas or nitrogen-oxygen mixed gas at 800 to 1000 ° C. to produce a high-frequency wiring board. Can do.
A chip component such as a semiconductor element is appropriately mounted on the surface of the wiring board and connected to the wiring layer so that signals can be transmitted. As a connection method, the chip component is directly mounted on the wiring layer to be connected, or the chip component is bonded with an adhesive having a thickness of about 50 μm such as resin, Ag-epoxy, Ag-glass, Au-Si resin, metal, ceramics, or the like. It adheres to the surface of the insulating substrate and connects the wiring layer and the semiconductor element by wire bonding, TAB tape or the like.

なお、半導体素子としては、Si系やGaAs系等のチップ部品が使用できるが、特に熱膨張係数の近似の点で、GaAs系のチップ部品の実装に有効である。
さらに、半導体素子が搭載された配線基板表面に、絶縁基板と同種の絶縁材料や、その他の絶縁材料、あるいは放熱性が良好な金属等からなり、電磁波遮蔽性を有するキャップをガラス、樹脂、ロウ材等の接着剤により接合してもよく、これにより半導体素子を気密に封止することができる。
As the semiconductor element, a Si-based or GaAs-based chip component can be used, but it is particularly effective for mounting a GaAs-based chip component in terms of approximation of the thermal expansion coefficient.
In addition, on the surface of the wiring board on which the semiconductor element is mounted, an insulating material of the same type as that of the insulating substrate, other insulating materials, or a metal having good heat dissipation, etc., and a cap having electromagnetic wave shielding properties are made of glass, resin, brazing. The semiconductor element may be hermetically sealed by bonding with an adhesive such as a material.

(配線基板の構成)
本発明の磁器組成物を好適に使用しうる高周波用配線基板の一例である半導体素子収納用パッケージの具体的な構造とその実装構造について図1をもとに説明する。図1は、半導体収納用パッケージ、特に、接続端子がボール状端子からなるボールグリッドアレイ(BGA)型パッケージの概略断面図である。図1によれば、パッケージAは、絶縁材料からなる絶縁基板1と蓋体2によりキャビティ3が形成されており、そのキャビティ3内には、GaAs等のチップ部品4が前述の接着剤等により実装されている。
また、絶縁基板1の表面および内部には、チップ部品4と電気的に接続された配線層5が形成されている。この配線層5は、高周波信号の伝送時に導体損失を極力低減するために、銅、銀あるいは金などの低抵抗金属からなることが望ましい。また、この配線層5に1GHz以上の高周波信号を伝送する場合には、高周波信号が損失なく伝送されることが必要となるため、配線層5は周知のストリップ線路、マイクロストリップ線路、コプレーナ線路、誘電体導波管線路のうちの少なくとも1種から構成される。
さらに、図1のパッケージAにおいて、絶縁基板1の底面には、接続用電極層6が被着形成されており、パッケージA内の配線層5と接続されている。そして、接続用電極層6には、ボール状端子8が被着形成されている。
(Configuration of wiring board)
A specific structure of a package for housing a semiconductor element, which is an example of a high-frequency wiring board that can suitably use the porcelain composition of the present invention, and its mounting structure will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of a semiconductor storage package, in particular, a ball grid array (BGA) type package in which connection terminals are formed of ball-shaped terminals. According to FIG. 1, the package A has a cavity 3 formed by an insulating substrate 1 made of an insulating material and a lid 2, and a chip component 4 such as GaAs is formed in the cavity 3 by the above-described adhesive or the like. Has been implemented.
A wiring layer 5 electrically connected to the chip component 4 is formed on the surface and inside of the insulating substrate 1. The wiring layer 5 is preferably made of a low resistance metal such as copper, silver or gold in order to reduce the conductor loss as much as possible when transmitting a high frequency signal. In addition, when a high frequency signal of 1 GHz or more is transmitted to the wiring layer 5, the high frequency signal needs to be transmitted without loss. Therefore, the wiring layer 5 includes a known strip line, microstrip line, coplanar line, It is composed of at least one of dielectric waveguide lines.
Further, in the package A of FIG. 1, a connection electrode layer 6 is formed on the bottom surface of the insulating substrate 1 and connected to the wiring layer 5 in the package A. A ball-shaped terminal 8 is formed on the connection electrode layer 6.

また、上記パッケージAを外部回路基板に実装するには、図1に示すように、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂などの有機樹脂を含む絶縁材料からなる絶縁基板9の表面に配線導体10が形成された外部回路基板Bに対して、ロウ材を介して実装される。具体的には、パッケージAにおける絶縁基板1の底面に取付けられているボール状端子8と、外部回路基板Bの配線導体10とを当接させてPb−Snなどのロウ材11によりロウ付けして実装される。また、ボール状端子8自体を溶融させて配線導体10と接続させてもよい。   In order to mount the package A on an external circuit board, as shown in FIG. 1, a wiring conductor 10 is formed on the surface of an insulating substrate 9 made of an insulating material containing an organic resin such as polyimide resin, epoxy resin, or phenol resin. It is mounted on the formed external circuit board B through a brazing material. Specifically, the ball terminal 8 attached to the bottom surface of the insulating substrate 1 in the package A and the wiring conductor 10 of the external circuit board B are brought into contact with each other and brazed with a brazing material 11 such as Pb-Sn. Implemented. Further, the ball terminal 8 itself may be melted and connected to the wiring conductor 10.

本発明によれば、パッケージAを構成する絶縁基板として、本発明の請求項5の磁器を用いることが重要であり、特に磁器として請求項7に規定する磁器であることが望ましい。
また、GaAs等のチップ部品4のロウ付けや接着剤により実装したり、このようなボール状端子8を介在したロウ付けによりプリント基板等の外部回路基板に実装されたりするような表面実装型パッケージにおいて、GaAs等のチップ部品や外部回路基板の絶縁基板との熱膨張差を従来のセラミック材料よりも小さくできることから、かかる実装構造に対して、熱サイクルが印加された場合においても実装部での応力の発生を抑制することができる結果、実装構造の長期信頼性を高めることができる。
According to the present invention, it is important to use the porcelain according to claim 5 of the present invention as the insulating substrate constituting the package A, and it is particularly desirable to use the porcelain defined in claim 7 as the porcelain.
Further, a surface-mount package that can be mounted by brazing or bonding the chip component 4 such as GaAs, or mounted on an external circuit board such as a printed circuit board by brazing with the ball terminals 8 interposed therebetween. Therefore, the difference in thermal expansion between the chip part such as GaAs and the insulating substrate of the external circuit board can be made smaller than that of the conventional ceramic material. As a result of suppressing the generation of stress, the long-term reliability of the mounting structure can be enhanced.

下記の組成からなる平均粒径2μmのディオプサイド結晶相析出可能なガラス粉末2種(ガラスA、B)と、ディオプサイド結晶相が析出しないガラス粉末Cを準備した。
(1)ガラスA:SiO;52.2質量%、MgO;1.8質量%、CaO;25.85質量%、Al;0.15質量%
(2)ガラスB:SiO;50質量%、MgO;20質量%、CaO;30重量%
(3)ガラスC:SiO;10.4質量%、B23;45.3質量%、CaO;35.2質量%、Al;2.5質量%、Na2O;6.6質量%
そして、上記ガラスに対して表1、2に示すフィラー(純度99%)を添加した。なお、各フィラーとして、Alはα−Al、及びγ−Alを用い、その平均粒径は3μmの粉末、それ以外については平均粒径2μmの粉末を用いた。
更に、この混合物に有機バインダ、可塑剤、トルエンを添加し、スラリーを調製した後、このスラリーを用いてドクターブレード法により厚さ300μmのグリーンシートを作製した。そして、このグリーンシートを10〜15枚積層し、50℃の温度で100kg/cm2の圧力を加えて熱圧着した。得られた積層体を水蒸気含有/窒素雰囲気中、700℃で脱バインダ処理を行った後、乾燥窒素中で表1、2の焼成温度で2時間焼成し絶縁基板用磁器を得た。
Two kinds of glass powders (glasses A and B) having an average particle diameter of 2 μm and capable of being precipitated with the following composition (glasses A and B) and glass powder C on which no diopside crystal phase is precipitated were prepared.
(1) Glass A: SiO 2 ; 52.2 mass%, MgO; 1.8 mass%, CaO; 25.85 mass%, Al 2 O 3 ; 0.15 mass%
(2) Glass B: SiO 2 ; 50% by mass, MgO; 20% by mass, CaO; 30% by weight
(3) Glass C: SiO 2 ; 10.4 mass%, B 2 O 3 ; 45.3 mass%, CaO; 35.2 mass%, Al 2 O 3 ; 2.5 mass%, Na 2 O; 6 .6% by mass
And the filler (purity 99%) shown in Tables 1 and 2 was added with respect to the said glass. As the filler, with Al 2 O 3 is α-Al 2 O 3, and γ-Al 2 O 3, powder of an average particle size 3 [mu] m, about others using powder having an average particle size of 2μm .
Furthermore, an organic binder, a plasticizer, and toluene were added to this mixture to prepare a slurry, and then a green sheet having a thickness of 300 μm was produced using this slurry by a doctor blade method. And 10-15 sheets of this green sheet were laminated | stacked, the pressure of 100 kg / cm < 2 > was applied at the temperature of 50 degreeC, and the thermocompression bonding was carried out. The obtained laminate was subjected to binder removal treatment at 700 ° C. in a steam-containing / nitrogen atmosphere, and then fired in dry nitrogen at the firing temperature shown in Tables 1 and 2 for 2 hours to obtain a ceramic for an insulating substrate.

得られた磁器について誘電率、誘電損失を以下の方法で評価した。測定は形状、直径2〜7mm、厚み1.5〜2.5mmの形状に切り出し、60GHzにてネットワークアナライザー、シンセサイズドスイーパーを用いて誘電体円柱共振器法により行った。測定では、NRDガイド(非放射性誘電体線路)で、誘電体共振器の励起を行い、TE021、TE031モードの共振特性より、誘電率、誘電損失を算出した。
また、室温から400℃における熱膨張曲線をとり、熱膨張係数を算出した。
The dielectric constant and dielectric loss of the obtained porcelain were evaluated by the following methods. The measurement was cut into a shape having a shape, a diameter of 2 to 7 mm, and a thickness of 1.5 to 2.5 mm, and was performed by a dielectric cylindrical resonator method using a network analyzer and a synthesized sweeper at 60 GHz. In the measurement, the dielectric resonator was excited with an NRD guide (non-radiative dielectric line), and the dielectric constant and dielectric loss were calculated from the resonance characteristics of the TE 021 and TE 031 modes.
Further, a thermal expansion curve from room temperature to 400 ° C. was taken to calculate a thermal expansion coefficient.

また、磁器中のガラス相の比率をリートベルト法より評価した。具体的には、評価する磁器を粉砕した後、内部標準試料としてZnOを所定の比率で添加し、エタノールを加えて湿式混合した。これを乾燥した後、X線回折測定を行い、ZnOの添加比率と、リートベルト法によって得られるZnOと磁器中の結晶相との比率から磁器中に存在するガラス相の比率を算出した。また、TEMによりガラス相中のSiの比率を測定してSiO2換算での比率を算出した。さらに、JISR1601に基づいて磁器の4点曲げ強度を測定し、1mm厚みの試料に対してレーザーフラッシュ法により熱伝導率を測定した。結果は表1、2に示した。 Moreover, the ratio of the glass phase in the porcelain was evaluated by the Rietveld method. Specifically, after the porcelain to be evaluated was pulverized, ZnO was added at a predetermined ratio as an internal standard sample, and ethanol was added and wet mixed. After drying this, X-ray diffraction measurement was performed, and the ratio of the glass phase present in the porcelain was calculated from the addition ratio of ZnO and the ratio of ZnO obtained by the Rietveld method to the crystal phase in the porcelain. Further, the ratio of Si in the glass phase was measured by TEM, and the ratio in terms of SiO 2 was calculated. Furthermore, the 4-point bending strength of the porcelain was measured based on JIS R1601, and the thermal conductivity was measured by a laser flash method on a 1 mm thick sample. The results are shown in Tables 1 and 2.

Figure 2005101095
Figure 2005101095

Figure 2005101095
Figure 2005101095

表1、2の結果から明らかなように、SiO2、Al23、MgO、CaOを含むガラスA、Bの量が、50質量%より少ない試料No.1、18では、低温で焼結することが困難であり、緻密化しなかった。
また、フィラーとしてのAl23の添加量が1質量%よりも少ない試料No.10、22では、磁器強度が低下した。
また、ガラスとして、Bを多く含むガラスCを用いた試料No.27は溶融してしまい、また、試料No.28では、ディオプサイド型結晶相が消失することによって、ホウ素を含むガラスが多く残留し、誘電損失が大きくなる傾向にあった。
また、フィラー量が本発明で規定する量よりも少ない試料No.7〜11、及び22では磁器強度が最高でも240MPaと低かった。
これに対して、本発明に従ったものは、いずれも60GHzにおける誘電損失が16×10-4以下、熱膨張係数が5×10−6/℃以上、60GHzの測定周波数にて、誘電率12以下、磁器強度250MPa以上の優れた特性を有するものであった。
As is clear from the results in Tables 1 and 2 , the amount of glass A and B containing SiO 2 , Al 2 O 3 , MgO, and CaO is less than 50% by mass. In Nos. 1 and 18, it was difficult to sinter at a low temperature, and it was not densified.
In addition, Sample No. 2 in which the amount of Al 2 O 3 added as a filler is less than 1% by mass. In 10 and 22, the porcelain strength decreased.
Sample No. using glass C containing a large amount of B 2 O 3 as glass. No. 27 was melted, and Sample No. In No. 28, since the diopside crystal phase disappeared, a lot of glass containing boron remained and the dielectric loss tended to increase.
In addition, the sample No. in which the filler amount is smaller than the amount specified in the present invention. In 7 to 11 and 22, the porcelain strength was as low as 240 MPa at the maximum.
On the other hand, all of the devices according to the present invention have a dielectric loss of 12 × 10 −4 or less at 60 GHz, a thermal expansion coefficient of 5 × 10 −6 / ° C. or more and a measurement frequency of 60 GHz. Hereinafter, it had excellent characteristics with a porcelain strength of 250 MPa or more.

本発明の磁器用組成物および磁器は、半導体素子収納用パッケージや多層配線基板等に適用される配線基板、特に、マイクロ波やミリ波等の高周波帯で用いられる配線基板における絶縁基板として用いられる。   The porcelain composition and porcelain of the present invention are used as an insulating substrate in a wiring board applied to a package for housing a semiconductor element, a multilayer wiring board, and the like, particularly a wiring board used in a high frequency band such as a microwave and a millimeter wave. .

本発明の組成物を焼成した磁器を用いた高周波用配線基板の一例である半導体素子収納用パッケージの実装構造の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the mounting structure of the package for a semiconductor element accommodation which is an example of the high frequency wiring board using the ceramic which baked the composition of this invention.

符号の説明Explanation of symbols

A 半導体素子収納用パッケージ
B 外部回路基板
1 絶縁基板
2 蓋体
3 キャビティ
4 チップ部品
5 配線層
6 接続用電極層
8 ボール状端子
9 絶縁基板
10 配線導体
11 ロウ材
A Package for housing semiconductor element B External circuit board 1 Insulating board 2 Lid 3 Cavity 4 Chip component 5 Wiring layer 6 Connection electrode layer 8 Ball terminal 9 Insulating board 10 Wiring conductor 11 Brazing material

Claims (9)

SiO2、MgO、CaO及び含有量が0.4質量%以下のAl23からなり、主結晶としてディオプサイド型酸化物結晶相を析出可能な結晶性ガラス粉末を40〜70質量%、並びにフィラーとして少なくともAlを1〜60質量%含有する金属酸化物粉末を30〜60質量%の割合で含有することを特徴とする磁器用組成物。 40 to 70% by mass of a crystalline glass powder composed of SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4% by mass or less and capable of precipitating a diopside oxide crystal phase as a main crystal; A porcelain composition comprising 30 to 60% by mass of a metal oxide powder containing at least 1 to 60% by mass of Al 2 O 3 as a filler. 前記結晶性ガラス粉末が、SiO240〜65質量%、MgO11〜30質量%、CaO20〜35質量%、及びAl230〜0.4質量%とからなることを特徴とする請求項1記載の磁器用組成物。 The crystalline glass powder, SiO 2 40 to 65 wt%, claim, characterized in that it consists MgO11~30 wt%, CaO20~35 mass%, and Al 2 and O 3 0 to 0.4 wt% 1 The composition for porcelain described. 前記フィラーとしてAl以外にMgAl24、ZnAl24、3Al23・2SiO2、Mg2Al4Si518、SiO2、TiO、MgTiO、SrTiO、BaTiO、CaTiO、ZnTiO、CuO、及びCuOをすくなくとも1種以上含有することを特徴とする請求項1又は2記載の磁器用組成物。 In addition to Al 2 O 3 , MgAl 2 O 4 , ZnAl 2 O 4 , 3Al 2 O 3 .2SiO 2 , Mg 2 Al 4 Si 5 O 18 , SiO 2 , TiO 2 , MgTiO 3 , SrTiO 3 , BaTiO 3 are used as the filler. 3. The porcelain composition according to claim 1, comprising at least one of CaTiO 3 , Zn 2 TiO 4 , CuO, and Cu 2 O. 4 . 前記結晶性ガラス粉末の軟化点および結晶化温度がそれぞれ、830℃以下、870℃以下であることを特徴とする請求項1乃至3のいずれかに記載の磁器組成物。   The porcelain composition according to any one of claims 1 to 3, wherein the crystalline glass powder has a softening point and a crystallization temperature of 830 ° C or lower and 870 ° C or lower, respectively. 少なくともSiO2、MgO、CaO及び含有量が0.4質量%以下のAlからなり、主結晶がディオプサイド型酸化物結晶である相と、フィラーとして少なくともAlを含有し、60〜77GHzでの誘電損失が20×10-4以下であることを特徴とする磁器。 It is composed of at least SiO 2 , MgO, CaO and Al 2 O 3 with a content of 0.4% by mass or less, the main crystal being a diopside oxide crystal, and at least Al 2 O 3 as a filler. A porcelain having a dielectric loss of 20 × 10 −4 or less at 60 to 77 GHz. 焼成温度850℃以上で焼成され、SiO2、MgO、CaO及び含有量が0.4質量%以下のAlからなる相中に含まれる、残留ガラス相の割合が10質量%以下であることを特徴とする請求項5記載の磁器。 The ratio of the residual glass phase, which is baked at a baking temperature of 850 ° C. or more and is contained in a phase composed of SiO 2 , MgO, CaO and Al 2 O 3 having a content of 0.4 mass% or less, is 10 mass% or less. The porcelain according to claim 5. 室温から400℃における熱膨張係数が5×10−6/℃以上、誘電率が12以下、磁器強度250MPa以上であることを特徴とする請求項5又は6記載の磁器。 7. The porcelain according to claim 5 or 6, wherein a thermal expansion coefficient from room temperature to 400 ° C. is 5 × 10 −6 / ° C. or more, a dielectric constant is 12 or less, and a porcelain strength is 250 MPa or more. SiO2、MgO、CaO及び含有量が0.4質量%以下のAl23からなり、主結晶としてディオプサイド型酸化物結晶相を析出可能な結晶性ガラス粉末40〜70質量%と、フィラーとして少なくともAlを1〜60質量%含有する金属酸化物30〜60質量%とからなる混合物を成形後、800〜1000℃の温度で焼成して、SiO2、MgO及びCaO、又はSiO2、MgO、CaO及びAl23を含むディオプサイド型酸化物結晶相と、少なくともAlとを含有する磁器の製造方法。 SiO 2 , MgO, CaO and a content of Al 2 O 3 of 0.4 mass% or less, crystalline glass powder 40-70 mass% capable of precipitating a diopside oxide crystal phase as a main crystal, after molding at least Al 2 O 3 and composed of a metal oxide 30 to 60% by weight, containing 1 to 60 wt% mixture as a filler, and fired at a temperature of 800 to 1000 ° C., SiO 2, MgO and CaO, or A method for producing a porcelain containing a diopside oxide crystal phase containing SiO 2 , MgO, CaO and Al 2 O 3 and at least Al 2 O 3 . 前記結晶化ガラス粉末が、SiO240〜65質量%と、MgO11〜30質量%と、CaO20〜35質量%と、Al230〜0.4質量%とからなることを特徴とする請求項8記載の磁器の製造方法。

Wherein the crystallized glass powder, to the SiO 2 40 to 65 wt%, and MgO11~30 mass%, characterized in that it consists and CaO20~35 mass%, and Al 2 O 3 0 to 0.4 wt% Item 9. A method for producing a porcelain according to Item 8.

JP2003330239A 2003-09-22 2003-09-22 Porcelain composition, porcelain, and its manufacturing method Pending JP2005101095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330239A JP2005101095A (en) 2003-09-22 2003-09-22 Porcelain composition, porcelain, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330239A JP2005101095A (en) 2003-09-22 2003-09-22 Porcelain composition, porcelain, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005101095A true JP2005101095A (en) 2005-04-14

Family

ID=34459272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330239A Pending JP2005101095A (en) 2003-09-22 2003-09-22 Porcelain composition, porcelain, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005101095A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602449A (en) * 2013-10-30 2015-05-06 英飞凌科技股份有限公司 System and Method for a Millimeter Wave Circuit Board
WO2018155559A1 (en) 2017-02-22 2018-08-30 京セラ株式会社 Wiring substrate, electronic device, and electronic module
WO2018155434A1 (en) 2017-02-21 2018-08-30 京セラ株式会社 Wiring substrate, electronic device, and electronic module
CN115432933A (en) * 2022-08-30 2022-12-06 电子科技大学 High bending strength glass ceramic material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602449A (en) * 2013-10-30 2015-05-06 英飞凌科技股份有限公司 System and Method for a Millimeter Wave Circuit Board
WO2018155434A1 (en) 2017-02-21 2018-08-30 京セラ株式会社 Wiring substrate, electronic device, and electronic module
US11024554B2 (en) 2017-02-21 2021-06-01 Kyocera Corporation Wiring substrate, electronic device, and electronic module
WO2018155559A1 (en) 2017-02-22 2018-08-30 京セラ株式会社 Wiring substrate, electronic device, and electronic module
US10937707B2 (en) 2017-02-22 2021-03-02 Kyocera Corporation Wiring substrate, electronic device, and electronic module
CN115432933A (en) * 2022-08-30 2022-12-06 电子科技大学 High bending strength glass ceramic material and preparation method thereof
CN115432933B (en) * 2022-08-30 2023-08-04 电子科技大学 Glass ceramic material with high bending strength and preparation method thereof

Similar Documents

Publication Publication Date Title
US6232251B1 (en) Dielectric ceramics
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
US6753277B2 (en) Ceramics having excellent high-frequency characteristics and method of producing the same
JP2001240470A (en) Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP2003342060A (en) Glass ceramic sintered compact and wiring board
JP3827491B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP3865967B2 (en) Porcelain and wiring board using the same
JP3556475B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP3085667B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3793558B2 (en) High frequency porcelain
JP3441924B2 (en) Wiring board and its mounting structure
JP2005179137A (en) Porcelain having excellent high frequency transmission characteristics
JP3064273B2 (en) High frequency porcelain
JP2002255636A (en) Porcelain fired at low temperature and method of producing the same
JP3441941B2 (en) Wiring board and its mounting structure
JP3441950B2 (en) Wiring board and its mounting structure
JP3131191B2 (en) High frequency porcelain composition and high frequency porcelain
JP3663335B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP4028673B2 (en) Wiring board
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board
JP3663300B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3764626B2 (en) Wiring board
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519