JP3663300B2 - High frequency porcelain composition, high frequency porcelain and method for producing the same - Google Patents

High frequency porcelain composition, high frequency porcelain and method for producing the same Download PDF

Info

Publication number
JP3663300B2
JP3663300B2 JP17591598A JP17591598A JP3663300B2 JP 3663300 B2 JP3663300 B2 JP 3663300B2 JP 17591598 A JP17591598 A JP 17591598A JP 17591598 A JP17591598 A JP 17591598A JP 3663300 B2 JP3663300 B2 JP 3663300B2
Authority
JP
Japan
Prior art keywords
sio
crystal phase
weight
porcelain
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17591598A
Other languages
Japanese (ja)
Other versions
JP2000007376A (en
Inventor
吉健 寺師
信也 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP17591598A priority Critical patent/JP3663300B2/en
Priority to US09/338,023 priority patent/US6201307B1/en
Publication of JP2000007376A publication Critical patent/JP2000007376A/en
Application granted granted Critical
Publication of JP3663300B2 publication Critical patent/JP3663300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子収納用パッケージや多層配線基板等に適用される配線基板に関するものであり、特に、銅や銀と同時焼成が可能であり、また、GaAs等のチップ部品やプリント基板などの有機樹脂からなる外部電気回路基板に対する高い信頼性をもって実装可能であり、配線基板における絶縁基板として用いられる高周波用磁器組成物、高周波用磁器および高周波用磁器の製造方法に関するものである。
【0002】
【従来技術】
従来より、セラミック多層配線基板としては、アルミナ質焼結体からなる絶縁基板の表面または内部にタングステンやモリブデンなどの高融点金属からなる配線層が形成されたものが最も普及している。
【0003】
また、最近に至り、高度情報化時代を迎え、使用される周波数帯域はますます高周波化に移行しつつある。このような、高周波の信号の伝送を必要とする高周波配線基板においては、高周波信号を損失なく伝送する上で、配線層を形成する導体の抵抗が小さいこと、また絶縁基板の高周波領域での誘電損失が小さいことが要求される。
【0004】
ところが、従来のタングステン(W)や、モリブデン(Mo)などの高融点金属は導体抵抗が大きく、信号の伝搬速度が遅く、また、1GHz以上の高周波領域の信号伝搬も困難であることから、W、Moなどの金属に代えて銅、銀、金などの低抵抗金属を使用することが必要である。
【0005】
このような低抵抗金属からなる配線層は、融点が低く、アルミナと同時焼成することが不可能であるため、最近では、ガラス、またはガラスとセラミックスとの複合材料からなる、いわゆるガラスセラミックスを絶縁基板として用いた配線基板が開発されつつある。例えば、特公平4−12639号のように、ガラスにSiO2 系フィラーを添加し、銅、銀、金などの低抵抗金属からなる配線層と900〜1000℃の温度で同時焼成した多層配線基板や、特開昭60−240135号のように、ホウケイ酸亜鉛系ガラスに、Al2 3 、ジルコニア、ムライトなどのフィラーを添加したものを低抵抗金属と同時焼成したものなどが提案されている。その他、特開平5−298919号には、ムライトやコージェライトを結晶相として析出させたガラスセラミック材料も提案されている。
【0006】
また、多層配線基板や半導体素子収納用パッケージなどの配線基板にGaAsなどのチップ部品を実装したり、また配線基板をマサーボードなどの有機樹脂を含むプリント基板に実装する上で、絶縁基板とチップ部品あるいはプリント基板との熱膨張差に起因して発生する応力により実装部分が剥離したり、クラックなどが発生するのを防止する観点から、絶縁基板の熱膨張係数がチップ部品やプリント基板のそれと近似していることが望まれる。
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来のガラスセラミックスは、銅、銀、金などの低抵抗金属との同時焼成が可能であっても、熱膨張係数が3〜5ppm/℃程度と低く、GaAs等のチップ部品(熱膨張係数6〜7.5ppm/℃)を実装したりプリント基板(熱膨張係数12〜15ppm/℃)に実装する場合に、実装の信頼性が低く実用上満足できるものではなかった。
【0008】
また、従来のガラスセラミックスは、マイクロ波やミリ波などの高周波信号を用いる配線基板の絶縁基板として具体的に検討されておらず、そのほとんどが誘電損失が高く、十分満足できる高周波特性を有するものではなかった。
【0009】
従って、本発明は、金、銀、銅を配線導体として多層化が可能となるように800〜1000℃で焼成可能であるとともに、GaAs等のチップ部品やプリント基板の熱膨張係数と近似した熱膨張係数を有し、かつ高周波領域においても低誘電率および誘電損失の低い磁器を作製可能な高周波用磁器組成物、高周波用磁器および高周波用磁器の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は、上記課題を鋭意検討した結果、SiO2 、Al2 3 、MgO、ZnOおよびB2 3 を含むスピネル型酸化物結晶相を析出可能なガラス粉末に対して、SrOとSiO2 との複合酸化物、さらにはSiO2 を特定の比率で配合した組成物を用い、これを成形後、800〜1000℃の温度で焼成することによって、低誘電率を維持しつつGaAs等のチップ部品やプリント基板の熱膨張係数と近似した熱膨張係数を有し、かつ、高周波領域においても低誘電損失の磁器が得られることを知見し、本発明に至った。
【0011】
即ち、本発明の高周波用磁器組成物は、SiO2 、Al2 3 、MgO、ZnOおよびB2 3 を含むスピネル型酸化物結晶相を析出可能なガラス粉末50〜95重量%と、SiO2 0〜40重量%、SrOとSiO2 との複合酸化物0.1〜50重量%とからなることを特徴とするものである。
【0012】
また、前記ガラス粉末は、SiO2 40〜52重量%、Al2 3 14〜32重量%、MgO5〜24重量%、ZnO1〜16重量%、B2 3 5〜15重量%の割合であることが望ましい。
【0013】
また、上記高周波用磁器組成物を成形し、800〜1000℃で焼成して得られる磁器としては、Si、Al、Mg、ZnおよびSr構成元素として含むとともに、結晶相として、SiO2 結晶相と、少なくともMg、Alを含むスピネル型酸化物結晶相と、少なくともSr、AlおよびSiを含む複合酸化物結晶相とを含有し、かつ室温から400℃における熱膨張係数が5.5ppm/℃以上、誘電率が7以下、20〜30GHzでの誘電損失が50×10-4以下であることを特徴とするものである。
【0014】
【発明の実施の形態】
本発明の高周波用磁器組成物は、SiO、Al、MgO、ZnOおよびBを含むスピネル型酸化物結晶相を析出可能なガラス粉末50〜95重量%と、SiO 粉末0〜40重量%、SrOとSiOとの複合酸化物粉末0.1〜50重量%との混合物からなるものである。
【0015】
各成分組成を上記の範囲に限定したのは、上記ガラス粉末が50重量%よりも少ないと、1000℃以下の温度での焼成が不可能であり、95重量%よりも多いと、焼成温度でガラスが溶融してしまい、焼結体を作製することができなくなるためである。
【0016】
ここで、前記ガラス粉末は、スピネル型酸化物結晶相を析出可能であり、また、ガラスの軟化点が500〜800℃であることが望ましく、その組成はSiO2 40〜52重量%、Al2 3 14〜32重量%、MgO5〜24重量%、ZnO1〜16重量%、B2 3 5〜15重量%の割合であることが望ましい。上記組成のガラス粉末よりスピネル型酸化物結晶相を析出させることにより、磁器の低誘電率化、高熱膨張率化、強度の向上を図ることができる。
【0017】
また、かかるスピネル型酸化物結晶相の析出による効果を発揮させる上では、ガラス中におけるZnO+MgOが6〜30重量%であることが望ましい。なお、かかるガラスから析出するスピネル型酸化物結晶相としては、MgAl2 4 やZnAl2 4 および両者が固溶した(Zn,Mg)Al2 4 からなる。
【0018】
ガラス粉末に対して、フィラー成分として添加するSrOとSiO2 は、SrSiO3 の形態の複合酸化物として添加することが最も望ましく、このSrOおよびSiO2 の添加により、かかる系の焼結性を大幅に向上させることができ、低温焼成化とともに、焼結体中のボイドの低減を図ることができる。
【0019】
このため、本発明の磁器組成物を焼成した磁器を蓋体により気密に封止されるパッケージ構造を有する配線基板の絶縁基板として用いることにより、Heガスによる気密性評価の際に、磁器中へのHeガスの吸着がないため、評価の感度が向上する。
【0020】
また、一般に、Al2 3 やSiO2 を含むガラス相の熱膨張係数は4〜5ppm/℃と低い。しかし、SrOとガラス中のAl2 3 やSiO2 との反応を進行させて、スラウソナイト等の複合酸化物を析出させると、このスラウソナイトが約7ppm/℃の高熱膨張特性を有することから、磁器全体の熱膨張係数をSrOを添加しない場合に比較して0.5〜2ppm/℃程度高めることができる。なお、フィラー中の残余のSiO2 (熱膨張係数13〜20ppm/℃)も磁器中クォーツとして析出し、熱膨張係数を高くする役割をなす。
【0021】
従って、SrOおよびSiO2 の添加量が0.1重量%よりも少ないと、焼結性の向上効果およびボイドの低減効果が小さく、また、Sr、Al、Si含有複合酸化物結晶が生成されず、50重量%よりも多いとガラスに対するSiO2 (クォーツ)の比率が過剰となるため、焼結性が阻害される。
【0022】
また、前記組成物において、フィラーとしてSiO2 は高熱膨張係数を有するSiO2 型結晶、例えばクォーツ、クリストバライト、トリマジンなどを生成し、磁器の熱膨張係数を高める役割を有するが、そのSiO2 量が40重量%を越えると、難焼結性となり、1000℃以下の焼成温度で緻密化できない。
【0023】
上記の態様の磁器組成物は、800〜1000℃の温度範囲での焼成によって相対密度97%以上まで緻密化することができ、これによって形成される磁器の全体組成としては、Si、Al、Mg、ZnおよびSrの各金属元素の酸化物換算による合量を100重量%とした時、SiO2 を30〜60重量%、Al2 3 を19〜28重量%、MgOを5〜13重量%、ZnOを5〜35重量%、B2 3 を5〜12重量%、SrO1〜3重量%の割合から構成されることが望ましい。
【0024】
また、上記磁器は、図1の磁器組織の概略図に示すように、結晶相として、ガラスから析出するMgOやZnOとAl2 3 とを含むスピネル型酸化物結晶相(SP)以外にSiO2 系結晶相(Si)および少なくともSr、AlおよびSiを含む複合酸化物結晶相(SL)を含有するものである。
【0025】
少なくともMgO、ZnOとAl2 3 とを主体とするスピネル型酸化物結晶相(SP)としては、MgAl2 4 で表されるスピネル結晶相あるいはZnAl2 4 で表されるガーナイト結晶相などが挙げられ、磁器中には、スピネル結晶相あるいはスピネル結晶相とガーナイト結晶相との混相として存在する。
【0026】
SiO2 系結晶相(Si)は、クオーツ結晶相からなることが望ましく、また、少なくともSr、AlおよびSiを含む複合酸化物結晶相(SL)は、単斜晶からなり、特にSrAl2 Si2 8 で表されるスラウソナイト結晶相であることが望ましい。
【0027】
なお、上記の各結晶相中には、主たる構成金属元素以外に結晶構造を変化させない範囲で、他の金属元素が固溶していてもよい。例えば、MgAl2 4 には、ZnAl2 4 が固溶して、(Mg、Zn)Al2 4 のスピネル型結晶相からなる場合もある。また、本発明によれば、焼結体組織において、前記結晶相の粒界に、SiO2 またはSiO2 、B2 3 、Al2 3 およびSrOを含む非晶質ガラス相(G)が存在する場合もある。
【0028】
上記のような非晶質ガラス相の熱膨張係数は、2〜5ppm/℃と低いが、結晶相として、前記SiO2 結晶相、スピネル型結晶相およびSr、AlおよびSiを含む複合酸化物結晶相(例えば、スラウソナイト結晶相)は、室温〜400℃において、それ自体が高い熱膨張特性を有し、例えば、クオーツ結晶は13〜20ppm/℃、ガーナイト結晶およびスラウソナイト結晶は7〜8ppm/℃の熱膨張係数を有することから、磁器中にこれらの結晶相を析出量を高め、非晶質ガラス相の割合を低めることにより、磁器の熱膨張係数も大きくなる傾向にある。
【0029】
熱膨張係数を高める上では、望ましくは、SiO2 系結晶相が最も多いのがよい。なお、SiO2 結晶相としてクオーツの他にクリストバライト、トリジマイトがあるが、クリストバライトは、200℃付近に熱膨張係数の屈曲点を有することからSiO2 系結晶相としてはクォーツ結晶が最も望ましい。
【0030】
本発明の磁器組成物は、焼成によって得られる磁器が、室温から400℃における熱膨張係数が5.5ppm/℃以上、誘電率が7以下、20〜30GHzでの誘電損失が50×10-4以下の優れた低誘電率、低誘電損失並びに高熱膨張係数を有するものである。したがって、本発明の磁器組成物は、1GHz以上、特に20GHz以上、さらには50GHz以上、またさらには70GHz以上の高周波用配線基板の絶縁層を形成するのに好適な磁器である。
【0031】
本発明によれば、焼成後の磁器を配線基板の絶縁基板として用いる場合、高周波信号の電送特性への影響を低減するため、誘電率が7以下、特に5以下と低いことが望ましい。また、磁器の室温から400℃における熱膨張係数は、実装するチップ部品等やプリント基板等の熱膨張係数に近似するように適宜調整することが望ましい。これは、上記の焼成後の磁器の熱膨張係数が実装されるチップ部品等やプリント基板のそれと差がある場合、半田実装時や半導体素子の作動停止による繰り返し温度サイクルによって、チップ部品等やプリント基板とパッケージとの実装部に熱膨張差に起因する応力が発生し、実装部にクラック等が発生し、実装構造の信頼性を損ねてしまうためである。
【0032】
具体的には、GaAs系のチップ部品との整合を図る上ではGaAs系のチップ部品との熱膨張係数の差が2ppm/℃以下であり、一方、プリント基板との整合を図る上ではプリント基板との熱膨張係数の差が2ppm/℃以下であることが望ましい。
【0033】
次に、本発明における高周波用磁器組成物を用い磁器を製造する方法について説明する。まず、出発原料として、SiO、Al、MgO、ZnO、Bを含み、スピネル型結晶相を析出可能な結晶化ガラス粉末と、フィラー成分としてSrSiOなどのSrOとSiOとの複合酸化物粉末、あるいはSiO粉末を組み合わせて用い、これらを前記の比率で混合する。
【0034】
そして、上記の組成で秤量混合された混合粉末を用いて所定の成形体を作製し、その成形体を800〜1000℃の酸化性雰囲気または不活性雰囲気中で焼成することにより作製することができる。
【0035】
また、配線層を具備する配線基板を作製するには、前記混合粉末に、適当な有機溶剤、溶媒を用いて混合してスラリーを調製し、これを従来周知のドクターブレード法やカレンダーロール法、あるいは圧延法、プレス成形法により、シート状に成形する。そして、このシート状成形体に所望によりスルーホールを形成した後、スルーホール内に、銅、金、銀のうちの少なくとも1種を含む金属ペーストを充填する。そして、シート状成形体表面には、高周波信号が伝送可能な高周波線路パターン等を前記金属ペーストを用いてスクリーン印刷法、グラビア印刷法などによって配線層の厚みが5〜30μmとなるように、印刷塗布する。
【0036】
その後、複数のシート状成形体を位置合わせして積層圧着し、830〜1000℃のN2 やN2 +H2 等の非酸化性雰囲気で焼成することにより、配線基板を作製することができる。
【0037】
そして、この配線基板の表面には、適宜半導体素子等のチップ部品が搭載され配線層と信号の伝達が可能なように接続される。接続方法としては、配線層上に直接搭載させて接続させたり、あるいは50μm程度の樹脂、Ag−エポキシ、Ag−ガラス、Au−Si等の樹脂、金属、セラミックス等の接着剤によりチップ部品を絶縁基板表面に固着し、ワイヤーボンディングや、TABテープなどにより配線層と半導体素子とを接続する。
【0038】
なお、この半導体素子としては、Si系やGaAs系等のチップ部品が使用でき、特に熱膨張係数の近似性の点では、最もGaAs系のチップ部品の実装に有効である。
【0039】
さらに、半導体素子が搭載された配線基板表面に、絶縁基板と同種の絶縁材料や、その他の絶縁材料、あるいは放熱性が良好な金属等からなり、電磁波遮蔽性を有するキャップをガラス、樹脂、ロウ材等の接着剤により接合することにより、半導体素子を気密に封止することができ、これにより高周波用配線基板を作製することができる。
【0040】
本発明の磁器組成物を好適に使用しうる半導体素子収納用パッケージの具体的な構造とその実装構造について図2をもとに説明する。図2は、半導体収納用パッケージ、特に、接続端子がボール状端子からなるボールグリッドアレイ(BGA)型パッケージの概略断面図である。図2によれば、パッケージAは、絶縁材料からなる絶縁基板1と蓋体2によりキャビティ3が形成されており、そのキャビティ3内には、GaAs等のチップ部品4が前述の方法により実装されている。
【0041】
また、絶縁基板1の表面および内部には、チップ部品4と電気的に接続された配線層5が形成されている。この配線層5は、高周波信号の伝送時に導体損失を極力低減するために、銅、銀あるいは金などの低抵抗金属からなることが望ましい。また、この配線層5に1GHz以上の高周波信号を伝送する場合には、高周波信号が損失なく伝送されることが必要となるため、配線層5は周知のストリップ線路、マイクロストリップ線路、コプレーナ線路、誘電体導波管線路のうちの少なくとも1種から構成される。
【0042】
また、図2のパッケージAにおいて、絶縁基板1の底面には、接続用電極層6が被着形成されており、パッケージA内の配線層5と接続されている。そして、接続用電極層6には、半田などのロウ材7によりボール状端子8が被着形成されている。
【0043】
また、上記パッケージAを外部回路基板に実装するには、図2に示すように、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂などの有機樹脂を含む絶縁材料からなる絶縁基板9の表面に配線導体10が形成された外部回路基板Bに対して、ロウ材を介して実装される。具体的には、パッケージAにおける絶縁基板1の底面に取付けられているボール状端子8と、外部回路基板Bの配線導体10とを当接させてPb−Snなどの半田等のロウ材11によりロウ付けして実装される。また、ボール状端子8自体を溶融させて配線導体10と接続させてもよい。
【0044】
本発明によれば、GaAs等のチップ部品4をロウ付けや接着剤により実装したり、このようなボール状端子8を介在したロウ付けによりプリント基板等の外部回路基板に実装されるような表面実装型のパッケージにおいて、GaAs等のチップ部品や有機樹脂を含む絶縁基板からなる外部電気回路基板にロウ付け実装した場合においても、GaAs等のチップ部品や外部電気回路基板の絶縁基板との熱膨張差を従来のセラミック材料よりも小さくできることから、かかる実装構造に対して、熱サイクルが印加された場合においても、応力の発生を抑制することができる結果、実装構造の長期信頼性を高めることができる。
【0045】
【実施例】
下記の組成からなる2種のスピネル型酸化物結晶相を析出可能な結晶化ガラスを準備した。
【0046】

Figure 0003663300
そして、この結晶化ガラス粉末に対して、平均粒径が1μm以下のSiO2 (クオーツ)粉末、SrSiO3 粉末を用いて、表1、表2の組成に従い混合した。
【0047】
そして、この混合物に有機バインダー、可塑剤、トルエンを添加し、スラリーを調製した後、このスラリーを用いてドクターブレード法により厚さ300μmのグリーンシートを作製した。そして、このグリーンシートを5枚積層し、50℃の温度で100kg/cm2 の圧力を加えて熱圧着した。得られた積層体を水蒸気含有/窒素雰囲気中で700℃で脱バインダーした後、乾燥窒素中で表1、表2の条件において焼成して絶縁基板用磁器を得た。
【0048】
得られた磁器について誘電率、誘電損失を以下の方法で評価した。誘電率、誘電損失は、形状が直径10mm、厚み5mmの試料を切り出し、20〜30GHzにてネットワークアナライザー、シンセサイズドスイーパーを用いて誘電体円柱共振器法により測定した。測定では、φ50のCu板治具の間に試料の誘電体基板を挟んで測定した。共振器のTE011モードの共振特性より、誘電率、誘電損失を算出した。また、室温から400℃における熱膨張曲線をとり、熱膨張係数を算出した。また、焼結体中における結晶相をX線回折測定から同定した。結果は表1、表2に示した。
【0049】
また、一部の試料については、フィラー成分として、SrSiO3 、SiO2 に代わり、Al2 3 粉末、コージェライト粉末を用いて同様に磁器を作製し評価した(試料No.9、10、22、23)。また、上記結晶化ガラスA、Bに代わり、以下の組成からなるガラスC、DおよびガラスEを用いて同様に評価を行った(試料No.24〜28)。
【0050】
Figure 0003663300
【0051】
【表1】
Figure 0003663300
【0052】
【表2】
Figure 0003663300
【0053】
表1の結果から明らかなように、本発明の組成物を用いて作製した磁器は、いずれも熱膨張係数が5.5ppm/℃以上、20〜30GHzの測定周波数にて、誘電率7以下、誘電損失が50×10-4以下の優れた誘電特性を有するものであった。
【0054】
これに対して、SiO2 、Al2 3 、MgO、ZnO、B2 3 を含むガラス量が、95重量%を越える試料No.1では、溶融してしまい、また試料No.2では、誘電損失が50×10-4を越えてしまい、ガラス量が50重量%よりも少ない試料No.14および15では、低温で焼結することが困難であり、緻密化しなかった。また、SrSiO3 量が0.1重量%より少ない試料No.8では、熱膨張係数5.5ppm/℃以上が達成されず、また、封止試験において磁器へのHeの吸着により正しい評価が不可能となり、配線基板の信頼性が判定できなかった。
【0055】
試料No.9、10、22、23は、ガラスへの添加成分としてAl2 3 やコージェライトを配合したものであるが、焼結体中にコージェライトやAl2 3 などの結晶が多く析出して熱膨張係数が低いものであった。
【0056】
さらに、ガラスとして、MgOやZnOを含まないガラスC、Dを用いた試料No.24〜27では、スピネル型結晶相が析出せず、誘電損失が大きくなる傾向にあった。
【0057】
さらにまた、B2 3 の含有量が多いガラスEとCaSiO3 とAl2 3 を組み合わせた試料No.28では、B2 3 を含む非晶質ガラス量が多く、また、クォーツが析出しないため、高周波帯での誘電損失が大きくなった。
【0058】
【発明の効果】
以上詳述した通り、本発明の高周波用磁器組成物によれば、1000℃以下の低温で焼成できることから、銅などの低抵抗金属による配線層を形成でき、しかも1GHz以上の高周波領域において、低誘電率、低誘電損失を有することから、高周波信号を極めて良好に損失なく伝送することができる。しかも、この組成物を用いて得られる磁器は、GaAsチップあるいはプリント基板と近似した熱膨張特性に制御できることから、GaAsチップを実装した場合、あるいは有機樹脂を含む絶縁基板を具備するプリント基板などのマザーボードに対してロウ材等により実装した場合において優れた耐熱サイクル性を有し、高信頼性の実装構造を提供できる。
【図面の簡単な説明】
【図1】本発明の組成物を焼成して得られる磁器の組織を説明するための概略図である。
【図2】本発明の組成物を焼成した磁器を用いた半導体素子収納用パッケージの実装構造の一例を説明するための概略断面図である。
【符号の説明】
Si SiO2 系結晶相
SP スピネル型酸化物結晶相
SL Sr、AlおよびSi含有複合酸化物結晶相
G 非晶質(ガラス)相
A 半導体素子収納用パッケージ
B 外部電気回路基板
1 絶縁基板
2 蓋体
3 キャビティ
4 チップ部品
5 配線層
6 接続用電極層
7 ロウ材
8 ボール状端子
9 絶縁基板
10 配線導体
11 ロウ材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board applied to a package for housing semiconductor elements, a multilayer wiring board, and the like, and in particular, can be co-fired with copper and silver, and also can be used for chip parts such as GaAs and printed boards. The present invention relates to a high-frequency porcelain composition, a high-frequency porcelain, and a method for producing a high- frequency porcelain that can be mounted with high reliability on an external electric circuit board made of an organic resin and is used as an insulating substrate in a wiring board.
[0002]
[Prior art]
Conventionally, a ceramic multilayer wiring board in which a wiring layer made of a refractory metal such as tungsten or molybdenum is formed most widely on the surface or inside of an insulating substrate made of an alumina sintered body has been most popular.
[0003]
In recent years, with the advent of advanced information technology, the frequency band used is increasingly shifting to higher frequencies. In such a high-frequency wiring board that requires transmission of a high-frequency signal, the resistance of the conductor forming the wiring layer is small in order to transmit the high-frequency signal without loss, and the dielectric in the high-frequency region of the insulating substrate. Small loss is required.
[0004]
However, conventional refractory metals such as tungsten (W) and molybdenum (Mo) have high conductor resistance, slow signal propagation speed, and signal propagation in a high frequency region of 1 GHz or more is difficult. It is necessary to use a low resistance metal such as copper, silver or gold in place of a metal such as Mo.
[0005]
Since the wiring layer made of such a low-resistance metal has a low melting point and cannot be co-fired with alumina, recently, so-called glass ceramics made of glass or a composite material of glass and ceramics is insulated. A wiring substrate used as a substrate is being developed. For example, as in Japanese Examined Patent Publication No. 4-12639, a multilayer wiring board obtained by adding a SiO 2 filler to glass and simultaneously firing a wiring layer made of a low-resistance metal such as copper, silver or gold at a temperature of 900 to 1000 ° C. In addition, as disclosed in JP-A-60-240135, a zinc borosilicate glass added with a filler such as Al 2 O 3 , zirconia, and mullite is co-fired with a low-resistance metal. . In addition, JP-A-5-298919 also proposes a glass ceramic material in which mullite or cordierite is precipitated as a crystal phase.
[0006]
In addition, when mounting chip parts such as GaAs on a wiring board such as a multilayer wiring board or a package for housing a semiconductor element, or mounting a wiring board on a printed board containing an organic resin such as a mother board, an insulating substrate and a chip part Alternatively, the thermal expansion coefficient of the insulating substrate is similar to that of the chip component or printed board from the viewpoint of preventing the mounting part from peeling or cracking due to the stress caused by the thermal expansion difference with the printed board. It is hoped that
[0007]
[Problems to be solved by the invention]
However, the conventional glass ceramics have a low coefficient of thermal expansion of about 3 to 5 ppm / ° C. even when cofiring with a low resistance metal such as copper, silver, and gold, and chip components such as GaAs (heat When mounting an expansion coefficient of 6 to 7.5 ppm / ° C. or mounting on a printed circuit board (thermal expansion coefficient of 12 to 15 ppm / ° C.), the mounting reliability is low and not practically satisfactory.
[0008]
Further, conventional glass ceramics have not been specifically studied as an insulating substrate of a wiring board using a high frequency signal such as a microwave or a millimeter wave, and most of them have a high dielectric loss and a sufficiently satisfactory high frequency characteristic. It wasn't.
[0009]
Therefore, the present invention can be fired at 800 to 1000 ° C. so that it can be multi-layered using gold, silver and copper as wiring conductors, and has a thermal expansion coefficient approximate to the thermal expansion coefficient of chip parts such as GaAs and printed circuit boards. It is an object of the present invention to provide a high- frequency porcelain composition, a high-frequency porcelain, and a high-frequency porcelain manufacturing method capable of producing a porcelain having an expansion coefficient and having a low dielectric constant and low dielectric loss even in a high-frequency region.
[0010]
[Means for Solving the Problems]
As a result of diligent examination of the above problems, the present inventors have found that SrO and SrO are formed on a glass powder capable of precipitating a spinel oxide crystal phase containing SiO 2 , Al 2 O 3 , MgO, ZnO, and B 2 O 3. A composite oxide with SiO 2, and a composition in which SiO 2 is blended at a specific ratio are used. After forming this, it is fired at a temperature of 800 to 1000 ° C. It has been found that a ceramic having a thermal expansion coefficient close to that of the chip component or the printed circuit board and having a low dielectric loss can be obtained even in a high-frequency region.
[0011]
That is, high-frequency ceramic composition of the present invention, the SiO 2, Al 2 O 3, MgO, ZnO and B 2 O 3 50 to 95 wt% treatable glass powder precipitating a spinel-type oxide crystal phase containing, SiO 2 to 40% by weight and 0.1 to 50% by weight of a composite oxide of SrO and SiO 2 .
[0012]
Further, the glass powder, SiO 2 40 to 52 wt%, Al 2 O 3 14 to 32 wt%, MgO5~24 wt% is the proportion of ZnO1~16 wt%, B 2 O 3 5 to 15 wt% It is desirable.
[0013]
In addition, as a porcelain obtained by molding the above high-frequency porcelain composition and firing at 800 to 1000 ° C., it contains Si, Al, Mg, Zn and Sr constituent elements, and as a crystal phase, an SiO 2 crystal phase and , Containing a spinel-type oxide crystal phase containing at least Mg and Al, and a composite oxide crystal phase containing at least Sr, Al and Si, and having a thermal expansion coefficient of 5.5 ppm / ° C. or more from room temperature to 400 ° C., The dielectric constant is 7 or less, and the dielectric loss at 20 to 30 GHz is 50 × 10 −4 or less.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
High-frequency ceramic composition of the present invention, SiO 2, Al 2 O 3 , MgO, ZnO and B and the glass powder to 95 wt% can be deposited a spinel type oxide crystal phase containing 2 O 3, SiO 2 powder It consists of a mixture of 0 to 40% by weight and 0.1 to 50% by weight of composite oxide powder of SrO and SiO 2 .
[0015]
Each component composition is limited to the above range because if the glass powder is less than 50% by weight, firing at a temperature of 1000 ° C. or less is impossible, and if more than 95% by weight, This is because the glass melts and a sintered body cannot be produced.
[0016]
Here, the glass powder is capable of precipitating a spinel oxide crystal phase, and the glass softening point is preferably 500 to 800 ° C., and the composition thereof is SiO 2 40 to 52% by weight, Al 2. O 3 14 to 32 wt%, MgO5~24 wt%, ZnO1~16 wt%, B 2 O 3 is desirably the proportion of 5 to 15 wt%. By precipitating the spinel oxide crystal phase from the glass powder having the above composition, it is possible to lower the dielectric constant, increase the thermal expansion coefficient, and improve the strength of the porcelain.
[0017]
Moreover, in order to exhibit the effect by precipitation of this spinel type oxide crystal phase, it is desirable that ZnO + MgO in the glass is 6 to 30% by weight. The spinel oxide crystal phase precipitated from such glass is composed of MgAl 2 O 4 or ZnAl 2 O 4 and (Zn, Mg) Al 2 O 4 in which both are dissolved.
[0018]
SrO and SiO 2 added as filler components to the glass powder are most preferably added as a composite oxide in the form of SrSiO 3 , and the addition of SrO and SiO 2 greatly increases the sinterability of such a system. The voids in the sintered body can be reduced along with the low-temperature firing.
[0019]
For this reason, the porcelain obtained by firing the porcelain composition of the present invention is used as an insulating substrate of a wiring board having a package structure hermetically sealed by a lid, so that the airtightness evaluation by He gas can be performed into the porcelain. Since there is no adsorption of He gas, the sensitivity of evaluation is improved.
[0020]
In general, the thermal expansion coefficient of the glass phase containing Al 2 O 3 or SiO 2 is 4~5ppm / ℃ low. However, when the reaction between SrO and Al 2 O 3 or SiO 2 in the glass proceeds to precipitate a complex oxide such as slausonite, this slausonite has a high thermal expansion characteristic of about 7 ppm / ° C. The overall thermal expansion coefficient can be increased by about 0.5 to 2 ppm / ° C. as compared with the case where SrO is not added. Residual SiO 2 (thermal expansion coefficient: 13 to 20 ppm / ° C.) in the filler also precipitates as quartz in the porcelain and serves to increase the thermal expansion coefficient.
[0021]
Therefore, if the amount of SrO and SiO 2 added is less than 0.1% by weight, the effect of improving the sinterability and the effect of reducing voids are small, and no Sr, Al, Si-containing composite oxide crystals are produced. If it exceeds 50% by weight, the ratio of SiO 2 (quartz) to the glass becomes excessive, so that the sinterability is hindered.
[0022]
Further, in the composition, SiO 2 is SiO 2 type crystal having a high thermal expansion coefficient as a filler, for example quartz, cristobalite, and generates and Torimajin, have a role to increase the thermal expansion coefficient of the porcelain, its SiO 2 weight When it exceeds 40% by weight, it becomes difficult to sinter and cannot be densified at a firing temperature of 1000 ° C. or less.
[0023]
The porcelain composition of the above aspect can be densified to a relative density of 97% or more by firing in a temperature range of 800 to 1000 ° C. The overall composition of the porcelain formed thereby is Si, Al, Mg When the total amount of metal elements of Zn, Zn and Sr in terms of oxide is 100% by weight, SiO 2 is 30 to 60% by weight, Al 2 O 3 is 19 to 28% by weight, and MgO is 5 to 13% by weight. ZnO is preferably 5 to 35% by weight, B 2 O 3 5 to 12% by weight, and SrO 1 to 3 % by weight.
[0024]
Further, as shown in the schematic diagram of the porcelain structure of FIG. 1, the porcelain is composed of SiO2 other than spinel oxide crystal phase (SP) containing MgO, ZnO and Al 2 O 3 precipitated from glass as a crystal phase. It contains a double crystal phase (Si) and a complex oxide crystal phase (SL) containing at least Sr, Al and Si.
[0025]
The spinel oxide crystal phase (SP) mainly composed of at least MgO, ZnO and Al 2 O 3 includes a spinel crystal phase represented by MgAl 2 O 4 or a garnite crystal phase represented by ZnAl 2 O 4. In porcelain, it exists as a mixed phase of a spinel crystal phase or a spinel crystal phase and a garnite crystal phase.
[0026]
The SiO 2 -based crystal phase (Si) is preferably composed of a quartz crystal phase, and the composite oxide crystal phase (SL) containing at least Sr, Al and Si is composed of a monoclinic crystal, particularly SrAl 2 Si 2. A slausonite crystal phase represented by O 8 is desirable.
[0027]
In each of the above crystal phases, other metal elements may be dissolved in a range that does not change the crystal structure other than the main constituent metal elements. For example, MgAl 2 O 4 may be composed of a spinel crystal phase of (Mg, Zn) Al 2 O 4 in which ZnAl 2 O 4 is dissolved. Further, according to the present invention, in the sintered body tissue, the grain boundary of the crystalline phase, SiO 2 or SiO 2, B 2 O 3, Al amorphous glass phase comprising 2 O 3 and SrO (G) is May be present.
[0028]
Although the thermal expansion coefficient of the amorphous glass phase as described above is as low as 2 to 5 ppm / ° C., the SiO 2 crystal phase, the spinel crystal phase, and the composite oxide crystal containing Sr, Al and Si as the crystal phase The phase (eg, slausonite crystal phase) itself has high thermal expansion properties at room temperature to 400 ° C., for example, quartz crystals are 13-20 ppm / ° C., garnite crystals and sulsonite crystals are 7-8 ppm / ° C. Since it has a thermal expansion coefficient, it tends to increase the thermal expansion coefficient of the porcelain by increasing the amount of precipitation of these crystal phases in the porcelain and decreasing the proportion of the amorphous glass phase.
[0029]
In order to increase the thermal expansion coefficient, it is desirable that the SiO 2 crystal phase is the most desirable. In addition to quartz, there are cristobalite and tridymite as the SiO 2 crystal phase, but cristobalite has the inflection point of the thermal expansion coefficient around 200 ° C., so that the quartz crystal is the most desirable as the SiO 2 crystal phase.
[0030]
In the porcelain composition of the present invention, the porcelain obtained by firing has a thermal expansion coefficient of 5.5 ppm / ° C. or more from room temperature to 400 ° C., a dielectric constant of 7 or less, and a dielectric loss at 20 to 30 GHz of 50 × 10 −4. It has the following excellent low dielectric constant, low dielectric loss, and high thermal expansion coefficient. Therefore, the porcelain composition of the present invention is a porcelain suitable for forming an insulating layer of a high-frequency wiring board having a frequency of 1 GHz or more, particularly 20 GHz or more, further 50 GHz or more, or even 70 GHz or more.
[0031]
According to the present invention, when the fired porcelain is used as an insulating substrate of a wiring board, it is desirable that the dielectric constant is as low as 7 or less, particularly 5 or less, in order to reduce the influence on the transmission characteristics of high-frequency signals. Further, it is desirable that the thermal expansion coefficient of the porcelain from room temperature to 400 ° C. is appropriately adjusted so as to approximate the thermal expansion coefficient of a chip component or the like to be mounted or a printed board. This is because when the thermal expansion coefficient of the porcelain after firing is different from that of a chip component or a printed circuit board mounted, the chip component or the printed This is because stress due to the difference in thermal expansion occurs in the mounting portion between the substrate and the package, cracks occur in the mounting portion, and the reliability of the mounting structure is impaired.
[0032]
Specifically, when matching with a GaAs chip component, the difference in thermal expansion coefficient from the GaAs chip component is 2 ppm / ° C. or less, whereas when matching with a printed circuit board, the printed circuit board is used. It is desirable that the difference in thermal expansion coefficient with respect to 2 ppm / ° C. or less.
[0033]
Next, a method for producing a porcelain using the high frequency porcelain composition of the present invention will be described. First, crystallized glass powder containing SiO 2 , Al 2 O 3 , MgO, ZnO, B 2 O 3 as starting materials and capable of precipitating a spinel crystal phase, and SrO and SiO 2 such as SrSiO 3 as filler components. A composite oxide powder or SiO 2 powder is used in combination, and these are mixed in the above ratio.
[0034]
And a predetermined molded object is produced using the mixed powder weighed and mixed with said composition, and it can produce by baking the molded object in 800-1000 degreeC oxidizing atmosphere or inert atmosphere. .
[0035]
Moreover, in order to produce a wiring board having a wiring layer, a slurry is prepared by mixing the mixed powder with an appropriate organic solvent or solvent, and this is conventionally known as a doctor blade method or a calender roll method, Alternatively, it is formed into a sheet by a rolling method or a press forming method. And after forming a through hole as needed in this sheet-like molded object, the metal paste containing at least 1 sort (s) of copper, gold | metal | money, and silver is filled in a through hole. Then, on the surface of the sheet-like molded body, a high-frequency line pattern or the like capable of transmitting a high-frequency signal is printed using the metal paste so that the thickness of the wiring layer becomes 5 to 30 μm by a screen printing method or a gravure printing method. Apply.
[0036]
Thereafter, a plurality of sheet-like molded bodies are aligned, laminated and pressure-bonded, and fired in a non-oxidizing atmosphere such as N 2 or N 2 + H 2 at 830 to 1000 ° C., whereby a wiring board can be manufactured.
[0037]
A chip component such as a semiconductor element is appropriately mounted on the surface of the wiring board and connected to the wiring layer so that signals can be transmitted. As a connection method, it is mounted directly on the wiring layer or connected, or the chip component is insulated by an adhesive such as resin of 50 μm, resin such as Ag-epoxy, Ag-glass, Au-Si, metal, ceramics, etc. Adhering to the substrate surface, the wiring layer and the semiconductor element are connected by wire bonding or TAB tape.
[0038]
As this semiconductor element, a Si-based or GaAs-based chip component can be used, and is particularly effective for mounting a GaAs-based chip component in terms of the closeness of the thermal expansion coefficient.
[0039]
In addition, on the surface of the wiring board on which the semiconductor element is mounted, an insulating material of the same type as that of the insulating substrate, other insulating materials, or a metal having good heat dissipation, etc., and a cap having electromagnetic wave shielding properties are made of glass, resin, brazing. By bonding with an adhesive such as a material, the semiconductor element can be hermetically sealed, whereby a high-frequency wiring board can be manufactured.
[0040]
A specific structure of a package for housing a semiconductor element that can suitably use the ceramic composition of the present invention and its mounting structure will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of a semiconductor storage package, in particular, a ball grid array (BGA) type package in which connection terminals are formed of ball-shaped terminals. According to FIG. 2, the package A has a cavity 3 formed by an insulating substrate 1 made of an insulating material and a lid 2, and a chip component 4 such as GaAs is mounted in the cavity 3 by the method described above. ing.
[0041]
A wiring layer 5 electrically connected to the chip component 4 is formed on the surface and inside of the insulating substrate 1. The wiring layer 5 is preferably made of a low resistance metal such as copper, silver or gold in order to reduce the conductor loss as much as possible when transmitting a high frequency signal. In addition, when a high frequency signal of 1 GHz or more is transmitted to the wiring layer 5, the high frequency signal needs to be transmitted without loss. Therefore, the wiring layer 5 includes a known strip line, microstrip line, coplanar line, It is composed of at least one of dielectric waveguide lines.
[0042]
Further, in the package A of FIG. 2, a connection electrode layer 6 is deposited on the bottom surface of the insulating substrate 1 and connected to the wiring layer 5 in the package A. A ball-shaped terminal 8 is formed on the connection electrode layer 6 with a brazing material 7 such as solder.
[0043]
In order to mount the package A on an external circuit board, as shown in FIG. 2, a wiring conductor 10 is formed on the surface of an insulating substrate 9 made of an insulating material containing an organic resin such as polyimide resin, epoxy resin, or phenol resin. It is mounted on the formed external circuit board B through a brazing material. Specifically, the ball terminal 8 attached to the bottom surface of the insulating substrate 1 in the package A and the wiring conductor 10 of the external circuit board B are brought into contact with a brazing material 11 such as solder such as Pb-Sn. Mounted with brazing. Further, the ball terminal 8 itself may be melted and connected to the wiring conductor 10.
[0044]
According to the present invention, a surface on which a chip component 4 such as GaAs is mounted by brazing or adhesive, or is mounted on an external circuit board such as a printed circuit board by brazing such a ball-shaped terminal 8 is interposed. Even when mounted on an external electric circuit board made of a chip part such as GaAs or an organic resin in a mounting package, the thermal expansion of the chip part such as GaAs or the insulating board of the external electric circuit board Since the difference can be made smaller than that of a conventional ceramic material, even when a thermal cycle is applied to such a mounting structure, it is possible to suppress the generation of stress, thereby improving the long-term reliability of the mounting structure. it can.
[0045]
【Example】
A crystallized glass capable of precipitating two kinds of spinel oxide crystal phases having the following compositions was prepared.
[0046]
Figure 0003663300
Then, the crystallized glass powder was mixed according to the composition of Tables 1 and 2 using SiO 2 (quartz) powder and SrSiO 3 powder having an average particle size of 1 μm or less.
[0047]
Then, an organic binder, a plasticizer, and toluene were added to this mixture to prepare a slurry, and then a green sheet having a thickness of 300 μm was produced using this slurry by a doctor blade method. And 5 sheets of this green sheet were laminated | stacked, the pressure of 100 kg / cm < 2 > was applied at the temperature of 50 degreeC, and the thermocompression bonding was carried out. The resulting laminate was debindered at 700 ° C. in a steam-containing / nitrogen atmosphere, and then fired in dry nitrogen under the conditions shown in Tables 1 and 2 to obtain an insulating substrate porcelain.
[0048]
The dielectric constant and dielectric loss of the obtained porcelain were evaluated by the following methods. Dielectric constant and dielectric loss were measured by a dielectric cylindrical resonator method using a network analyzer and a synthesized sweeper at 20 to 30 GHz by cutting a sample having a diameter of 10 mm and a thickness of 5 mm. In the measurement, the sample dielectric substrate was sandwiched between φ50 Cu plate jigs. The dielectric constant and dielectric loss were calculated from the resonance characteristics of the TE011 mode of the resonator. Further, a thermal expansion curve from room temperature to 400 ° C. was taken to calculate a thermal expansion coefficient. Moreover, the crystal phase in the sintered body was identified from the X-ray diffraction measurement. The results are shown in Tables 1 and 2.
[0049]
For some samples, porcelain was similarly prepared and evaluated using Al 2 O 3 powder and cordierite powder instead of SrSiO 3 and SiO 2 as filler components (Sample Nos. 9, 10, and 22). 23). Moreover, it evaluated similarly using the glass C, D and the glass E which consist of the following compositions instead of the said crystallized glass A, B (sample No. 24-28).
[0050]
Figure 0003663300
[0051]
[Table 1]
Figure 0003663300
[0052]
[Table 2]
Figure 0003663300
[0053]
As is clear from the results in Table 1, all the porcelains produced using the composition of the present invention have a thermal expansion coefficient of 5.5 ppm / ° C. or higher and a dielectric constant of 7 or lower at a measurement frequency of 20 to 30 GHz. It had excellent dielectric properties with a dielectric loss of 50 × 10 −4 or less.
[0054]
On the other hand, Sample No. in which the amount of glass containing SiO 2 , Al 2 O 3 , MgO, ZnO, and B 2 O 3 exceeds 95% by weight. In No. 1, the sample was melted and sample No. 2, the dielectric loss exceeded 50 × 10 −4 , and the glass amount was less than 50 wt%. In Nos. 14 and 15, it was difficult to sinter at a low temperature, and it was not densified. In addition, sample No. SrSiO 3 amount is less than 0.1 wt%. In No. 8, the thermal expansion coefficient of 5.5 ppm / ° C. or more was not achieved, and correct evaluation was impossible due to adsorption of He to the porcelain in the sealing test, and the reliability of the wiring board could not be determined.
[0055]
Sample No. 9, 10, 22, and 23 are those in which Al 2 O 3 or cordierite is blended as an additive component to the glass, but many crystals such as cordierite and Al 2 O 3 are precipitated in the sintered body. The thermal expansion coefficient was low.
[0056]
Furthermore, sample No. using glass C, D which does not contain MgO or ZnO as glass. In 24-27, the spinel type crystal phase did not precipitate and the dielectric loss tended to increase.
[0057]
Furthermore, the sample No. which combined glass E with a large content of B 2 O 3 , CaSiO 3 and Al 2 O 3 was used. In No. 28, the amount of amorphous glass containing B 2 O 3 was large, and quartz did not precipitate, so that the dielectric loss in the high frequency band increased.
[0058]
【The invention's effect】
As described above in detail, according to the high-frequency porcelain composition of the present invention, since it can be fired at a low temperature of 1000 ° C. or less, a wiring layer made of a low-resistance metal such as copper can be formed, and in a high-frequency region of 1 GHz or more, low Since it has a dielectric constant and a low dielectric loss, a high-frequency signal can be transmitted very well without loss. Moreover, since the porcelain obtained using this composition can be controlled to have a thermal expansion characteristic approximate to that of a GaAs chip or a printed circuit board, when a GaAs chip is mounted or a printed circuit board having an insulating substrate containing an organic resin, etc. When mounted on a mother board with a brazing material or the like, it has excellent heat cycle characteristics and can provide a highly reliable mounting structure.
[Brief description of the drawings]
FIG. 1 is a schematic view for explaining the structure of a porcelain obtained by firing the composition of the present invention.
FIG. 2 is a schematic cross-sectional view for explaining an example of a mounting structure of a package for housing a semiconductor element using a porcelain obtained by firing the composition of the present invention.
[Explanation of symbols]
Si SiO 2 -based crystal phase SP Spinel-type oxide crystal phase SL Sr, Al and Si-containing composite oxide crystal phase G Amorphous (glass) phase A Package for housing semiconductor elements B External electric circuit board 1 Insulating board 2 Lid 3 Cavity 4 Chip component 5 Wiring layer 6 Electrode layer for connection 7 Brazing material 8 Ball-shaped terminal 9 Insulating substrate 10 Wiring conductor 11 Brazing material

Claims (5)

SiO、Al、MgO、ZnOおよびBを含むスピネル型酸化物結晶相を析出可能なガラス粉末50〜95重量%と、SiO 粉末0〜40重量%、SrOとSiOとの複合酸化物粉末0.1〜50重量%との混合物からなることを特徴とする高周波用磁器組成物。 SiO 2, Al 2 O 3, MgO, ZnO and B and the glass powder to 95 wt% can be deposited a spinel type oxide crystal phase containing 2 O 3, SiO 2 powder 0-40 wt%, SrO and SiO 2 A high-frequency porcelain composition comprising a mixture of 0.1 to 50% by weight of a composite oxide powder . 前記ガラス粉末が、SiO40〜52重量%と、Al14〜32重量%と、MgO5〜24重量%と、ZnO1〜16重量%と、B5〜15重量%とからなることを特徴とする請求項1記載の高周波用磁器組成物。From the glass powder, and SiO 2 40 to 52 wt%, and Al 2 O 3 14 to 32 wt%, and MgO5~24 wt%, and ZnO1~16 wt%, B 2 O 3 5 to 15% by weight The high-frequency porcelain composition according to claim 1, wherein 結晶相として、SiOAs crystal phase, SiO 2 結晶相と、少なくともMg、Alを含むスピネル型酸化物結晶相と、少なくともSr、AlおよびSiを含む複合酸化物結晶相とを含有し、且つ室温から400℃における熱膨張係数が5.5ppm/℃以上、誘電率が7以下、20〜30GHzでの誘電損失が50×10A crystal phase, a spinel-type oxide crystal phase containing at least Mg and Al, and a composite oxide crystal phase containing at least Sr, Al and Si, and having a thermal expansion coefficient of 5.5 ppm / from room temperature to 400 ° C. More than 50 ° C., dielectric constant is 7 or less, and dielectric loss at 20-30 GHz is 50 × 10 −4-4 以下であることを特徴とする高周波用磁器。A high-frequency porcelain characterized by: SiO、Al、MgO、ZnOおよびBを含むスピネル型酸化物結晶相を析出可能なガラス粉末50〜95重量%と、SiO粉末0〜40重量%、SrOとSiOとの複合酸化物粉末0.1〜50重量%とからなる混合物を成形後、800〜1000℃の温度で焼成してなることを特徴とする高周波用磁器の製造方法。 SiO 2, Al 2 O 3, MgO, ZnO and B and the glass powder to 95 wt% can be deposited a spinel type oxide crystal phase containing 2 O 3, SiO 2 powder 0-40 wt%, SrO and SiO 2 A method for producing a high-frequency porcelain comprising: forming a mixture of 0.1 to 50% by weight of a composite oxide powder and firing at a temperature of 800 to 1000 ° C. 前記ガラス粉末が、SiOThe glass powder is SiO 2 40〜52重量%と、Al40-52% by weight, Al 2 O 3 14〜32重量%と、MgO5〜24重量%と、ZnO1〜16重量%と、B14 to 32% by weight, MgO 5 to 24% by weight, ZnO 1 to 16% by weight, B 2 O 3 5〜15重量%とからなることを特徴とする請求項4記載の高周波用磁器の製造方法。5. The method for producing a high-frequency porcelain according to claim 4, comprising 5 to 15% by weight.
JP17591598A 1998-06-23 1998-06-23 High frequency porcelain composition, high frequency porcelain and method for producing the same Expired - Fee Related JP3663300B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17591598A JP3663300B2 (en) 1998-06-23 1998-06-23 High frequency porcelain composition, high frequency porcelain and method for producing the same
US09/338,023 US6201307B1 (en) 1998-06-23 1999-06-22 Ceramics for wiring boards and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17591598A JP3663300B2 (en) 1998-06-23 1998-06-23 High frequency porcelain composition, high frequency porcelain and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000007376A JP2000007376A (en) 2000-01-11
JP3663300B2 true JP3663300B2 (en) 2005-06-22

Family

ID=16004483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17591598A Expired - Fee Related JP3663300B2 (en) 1998-06-23 1998-06-23 High frequency porcelain composition, high frequency porcelain and method for producing the same

Country Status (1)

Country Link
JP (1) JP3663300B2 (en)

Also Published As

Publication number Publication date
JP2000007376A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US6232251B1 (en) Dielectric ceramics
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
US6201307B1 (en) Ceramics for wiring boards and method of producing the same
JP3588224B2 (en) High frequency wiring board
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP3556475B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP3827491B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP3865967B2 (en) Porcelain and wiring board using the same
JP3663300B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3441924B2 (en) Wiring board and its mounting structure
JP3085667B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3441941B2 (en) Wiring board and its mounting structure
JP3064273B2 (en) High frequency porcelain
JP3441950B2 (en) Wiring board and its mounting structure
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP3793558B2 (en) High frequency porcelain
JP3663335B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3131191B2 (en) High frequency porcelain composition and high frequency porcelain
JP3764626B2 (en) Wiring board
JP2002255636A (en) Porcelain fired at low temperature and method of producing the same
JP4028673B2 (en) Wiring board
JP3610226B2 (en) Wiring board and its mounting structure
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board
JP3466545B2 (en) High frequency wiring board
JP3401147B2 (en) Low temperature firing porcelain composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees