JP3663335B2 - High frequency porcelain composition, high frequency porcelain and method for producing the same - Google Patents

High frequency porcelain composition, high frequency porcelain and method for producing the same Download PDF

Info

Publication number
JP3663335B2
JP3663335B2 JP2000115682A JP2000115682A JP3663335B2 JP 3663335 B2 JP3663335 B2 JP 3663335B2 JP 2000115682 A JP2000115682 A JP 2000115682A JP 2000115682 A JP2000115682 A JP 2000115682A JP 3663335 B2 JP3663335 B2 JP 3663335B2
Authority
JP
Japan
Prior art keywords
glass
porcelain
high frequency
thermal expansion
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000115682A
Other languages
Japanese (ja)
Other versions
JP2000335960A (en
Inventor
吉健 寺師
信也 川井
哲也 木村
均 隈田原
保秀 民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10276260A external-priority patent/JP3085667B2/en
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000115682A priority Critical patent/JP3663335B2/en
Publication of JP2000335960A publication Critical patent/JP2000335960A/en
Application granted granted Critical
Publication of JP3663335B2 publication Critical patent/JP3663335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子収納用パッケージや多層配線基板等に適用される配線基板に関するものであり、特に、銅や銀と同時焼成が可能であり、また、GaAs等のチップ部品やプリント基板などの有機樹脂からなる外部回路基板に対し、高い信頼性をもって実装可能であり、配線基板における絶縁基板として用いられる高周波用磁器組成物および高周波用磁器並びにその製造方法に関するものである。
【0002】
【従来技術】
従来より、セラミック多層配線基板としては、アルミナ質焼結体からなる絶縁基板の表面または内部にタングステンやモリブデンなどの高融点金属からなる配線層が形成されたものが最も普及している。
【0003】
また、最近に至り、高度情報化時代を迎え、使用される周波数帯域はますます高周波化に移行しつつある。このような、高周波の信号の伝送を必要とする高周波配線基板においては、高周波信号を損失なく伝送する上で、配線層を形成する導体の抵抗が小さいこと、また絶縁基板の高周波領域での誘電損失が小さいことが要求される。
【0004】
ところが、従来のタングステン(W)や、モリブデン(Mo)などの高融点金属は導体抵抗が大きく、信号の伝搬速度が遅く、また、1GHz以上の高周波領域の信号伝搬も困難であることから、W、Moなどの金属に代えて銅、銀、金などの低抵抗金属を使用することが必要となっている。このような低抵抗金属からなる配線層は、融点が低く、アルミナと同時焼成することが不可能であるため、最近では、ガラス、またはガラスとセラミックスとの複合材料からなる、いわゆるガラスセラミックスを絶縁基板として用いた配線基板が開発されつつある。例えば、特開昭60−240135号のように、ホウケイ酸亜鉛系ガラスに、Al23、ジルコニア、ムライトなどのフィラーを添加したものを低抵抗金属と同時焼成した多層配線基板や、特開平5−298919号のように、ムライトやコージェライトを結晶相として析出させたガラスセラミック材料が提案されている。
【0005】
また、多層配線基板や半導体素子収納用パッケージなどの配線基板にGaAsなどのチップ部品を実装したり、また配線基板をマサーボードなどの有機樹脂を含むプリント基板に実装する上で、絶縁基板とチップ部品あるいはプリント基板との熱膨張差に起因して発生する応力により実装部分が剥離したり、クラックなどが発生するのを防止する観点から、絶縁基板の熱膨張係数がチップ部品やプリント基板のそれと近似していることが望まれる。
【0006】
そこで、本出願人は、先に特開平9−17904号に開示されるように、結晶化が可能なリチウム珪酸ガラスを用いることにより、絶縁基板の熱膨張係数を高めることができることを提案した。
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来のガラスセラミックスは、銅、銀、金などの低抵抗金属との同時焼成が可能であっても、熱膨張係数が3〜5ppm/℃程度と低く、GaAs等のチップ部品(熱膨張係数6〜7.5ppm/℃)を実装したり、プリント基板(熱膨張係数12〜15ppm/℃)に実装する場合に、実装の信頼性が低く実用上満足できるものではなかった。
【0008】
また、特開平9−17904号に開示されるようにアルカリ金属を含有するガラスを用いる方法では、長時間高温多湿雰囲気に曝されると、アルカリ金属が大気中の水分と反応し表面にシリケート結晶相が析出して表面が変質してしまう場合があった。
【0009】
また、従来のガラスセラミックスは、ミリ波などの高周波信号を用いる配線基板の絶縁基板として具体的に検討されておらず、そのほとんどは誘電損失が高く、十分満足できる高周波特性を有するものではなかった。
【0010】
従って、本発明は、金、銀、銅を配線導体として多層化が可能な800〜1000℃での焼成が可能であるとともに、GaAs等のチップ部品やプリント基板の熱膨張係数と近似した熱膨張係数を有し、高周波領域においても低誘電率でかつ誘電損失が低い磁器およびその製造方法並びにそれを作製可能な高周波用磁器組成物を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者は、上記課題を鋭意検討した結果、SiO2、Al23、MgOおよびCaOを含み、ディオプサイド型酸化物結晶相を析出可能なガラス粉末に対して、アモルファスシリカ粉末を特定の比率で配合した組成物を用い、これを成形後、800〜1000℃の温度で焼成することによって、低誘電率で、かつGaAs等のチップ部品やプリント基板の熱膨張係数と近似した熱膨張係数を有し、1GHz以上の高周波領域においても低誘電損失を有する磁器が得られることを知見し、本発明に至った。
【0012】
即ち、本発明の高周波用磁器組成物は、SiO2、Al23、MgOおよびCaOを含み、ディオプサイド型酸化物結晶相を析出可能なガラス粉末を50〜95重量%と、アモルファスシリカ粉末を5〜50重量%との割合で含有することを特徴とするものである。
【0013】
また、前記ガラス粉末は、SiO245〜55重量%と、Al233〜10重量%と、MgO13〜24重量%と、CaO20〜30重量%とからなることが望ましい。
【0014】
また、本発明の高周波用磁器は、少なくともMg、Ca、Siを含むディオプサイド型酸化物結晶相とSiO非晶質相とを含有し、且つ室温から400℃における熱膨張係数が5.5ppm/℃以上、誘電率が5.9以下、60〜77GHzでの誘電損失が10×10 −4 以下であることを特徴とするものである。
【0015】
さらに、本発明の高周波用磁器の製造方法は、SiO2、Al23、MgOおよびCaOを含み、ディオプサイド型酸化物結晶相を析出可能なガラス粉末を50〜99重量%と、アモルファスシリカを5〜50重量%との割合で含有する混合物を成形後、800〜1000℃の温度で焼成してなるものである。
【0016】
【発明の実施の形態】
本発明の高周波用磁器組成物は、SiO2、Al23、MgOおよびCaOを含み、ディオプサイド型酸化物結晶相を析出可能なガラス粉末を50〜95重量%と、アモルファスシリカ粉末を5〜50重量%との割合で含有するものである。
【0017】
各成分組成を上記の範囲に限定したのは、上記ガラス粉末が50重量%よりも少ないと、1000℃以下の温度での焼成により磁器を緻密化させることが困難であり、95重量%よりも多いとガラスの結晶化が不十分となり、誘電損失の大きなガラス相が残留し、磁器の高周波での誘電損失が増大するためである。ガラス粉末の特に望ましい範囲は、60〜85重量%である。
【0018】
ここで、前記ガラス粉末は、ガラスの軟化点が500〜800℃であることが望ましく、その組成はSiO245〜55重量%、Al233〜10重量%、MgO13〜24重量%、CaO20〜30重量%の割合であることが望ましい。
【0019】
一般に、Al23やSiO2を含むガラス相の熱膨張係数は4〜5ppm/℃と低い。これに対し、MgCaSi26のディオプサイド型酸化物結晶相は約8〜9ppm/℃の高熱膨張特性を有することから、上記組成のガラス粉末よりディオプサイド型酸化物結晶相を析出させるとともに、磁器の低熱膨張化が必要な場合、熱膨張係数2〜5ppm/℃のアモルファスシリカを含有せしめ、また、その一部をクォーツに代えて含有せしめることもでき、目的の特性に応じて適宜調整すればよい。
【0020】
しかも、ディオプサイドはミリ波帯での誘電損失が小さいものであることから、磁器の低誘電損失化をも図ることができる。
【0021】
また、MgCaSi26のディオプサイド型酸化物結晶相は、誘電率6〜8を有するものであるが、これに誘電率3.8〜4.2のアモルファスシリカ粉末を特定量添加することにより、誘電率を5.9以下に低誘電率化することが可能である。
【0022】
上記のガラスからのディオプサイド型酸化物結晶相の析出割合を高める上では、ガラス中におけるCaOとMgOの合計量が35〜50重量%であることが望ましい。
【0023】
アモルファスシリカ粉末の総量が5重量%よりも少ないと、ガラスの残存率が高くなり誘電損失が大きくなる。逆に、50重量%を越えると、難焼結性となり1000℃以下の焼成温度で緻密化することができない。アモルファスシリカの総量の望ましい範囲は、15〜40重量%である。
【0024】
上記の態様の磁器組成物は、800〜1000℃の温度範囲での焼成によって相対密度97%以上まで緻密化することができ、これによって形成される磁器の全体組成としては、Si、Al、MgおよびCaの各金属元素の酸化物換算による合量を100重量%とした時、SiO2を55〜75重量%、Al23を3〜5重量%、MgOを10〜14重量%、CaO15〜21重量%の割合から構成されることが望ましい。
【0025】
また、上記磁器は、少なくともMg、Ca、Siを含むディオプサイド型酸化物結晶相とSiO非晶質相とを含有し、且つ室温から400℃における熱膨張係数が5.5ppm/℃以上、誘電率が5.9以下、60〜77GHzでの誘電損失が10×10 −4 以下であることが望ましい。
【0026】
したがって、本発明の磁器組成物は、1GHz以上、特に20GHz以上、さらには50GHz以上、またさらには70GHz以上の高周波用配線基板の絶縁層を形成するのに好適な磁器である。本発明の磁器を配線基板の絶縁基板として用いる場合、高周波信号の伝送特性への影響を低減するため、誘電率が5.9以下と低いことが重要である。
【0027】
また、磁器の室温から400℃における熱膨張係数は、実装するチップ部品等やプリント基板等の熱膨張係数に近似するように適宜調整することが望ましい。これは、上記の磁器の熱膨張係数が実装されるチップ部品等やプリント基板のそれと差がある場合、半田実装時や半導体素子の作動停止による繰り返し温度サイクルによって、チップ部品等やプリント基板とパッケージとの実装部に熱膨張差に起因する応力が発生し、実装部にクラック等が発生し、実装構造の信頼性を損ねてしまうためである。
【0028】
具体的には、GaAs系のチップ部品との整合を図る上ではGaAs系のチップ部品との熱膨張係数の差が2ppm/℃以下であり、一方、プリント基板との整合を図る上ではプリント基板との熱膨張係数の差が2ppm/℃以下であることが望ましい。
【0029】
次に、本発明における高周波用磁器組成物を用い磁器を製造する方法について説明する。
【0030】
まず、出発原料として、SiO2、Al23、MgO、CaOを含みディオプサイド型結晶相を析出可能な結晶化ガラス粉末を50〜95重量%と、アモルファスシリカを5〜50重量%との割合で秤量混合する。
【0031】
そして、この混合粉末を用いてドクターブレード法やカレンダーロール法、あるいは圧延法、プレス成形法の周知の成型法により所定形状の成形体を作製した後、該成形体を800〜1000℃の酸化性雰囲気または不活性雰囲気中で焼成することにより作製することができる。
【0032】
また、配線層を具備する配線基板を作製するには、前記混合粉末に、適当な有機溶剤、溶媒を用い混合してスラリーを調製し、これを従来周知のドクターブレード法やカレンダーロール法、あるいは圧延法、プレス成形法により、シート状に成形する。そして、このシート状成形体に所望によりスルーホールを形成した後、スルーホール内に、銅、金、銀のうちの少なくとも1種を含む金属ペーストを充填する。そして、シート状成形体表面には、高周波信号が伝送可能な高周波線路パターン等に前記金属ペーストを用いてスクリーン印刷法、グラビア印刷法などによって配線層の厚みが5〜30μmとなるように、印刷塗布する。
【0033】
その後、複数のシート状成形体を位置合わせして積層圧着し、800〜1000℃の窒素ガスや窒素−酸素混合ガス等の非酸化性雰囲気で焼成することにより、配線基板を作製することができる。そして、この配線基板の表面には、適宜半導体素子等のチップ部品が搭載され配線層と信号の伝達が可能なように接続される。接続方法としては、配線層上に直接搭載させて接続させたり、あるいは50μm程度の樹脂、Ag−エポキシ、Ag−ガラス、Au−Si等の樹脂、金属、セラミックス等の接着剤によりチップ部品を絶縁基板表面に固着し、ワイヤーボンディングや、TABテープなどにより配線層と半導体素子とを接続する。
【0034】
なお、この半導体素子としては、Si系やGaAs系等のチップ部品が使用できるが、特に熱膨張係数の近似性の点では、最もGaAs系のチップ部品の実装に有効である。
【0035】
さらに、半導体素子が搭載された配線基板表面に、絶縁基板と同種の絶縁材料や、その他の絶縁材料、あるいは放熱性が良好な金属等からなり、電磁波遮蔽性を有するキャップをガラス、樹脂、ロウ材等の接着剤により接合してもよく、これにより半導体素子を気密に封止することができる。
【0036】
本発明の磁器組成物を好適に使用しうる高周波用配線基板の一例である半導体素子収納用パッケージの具体的な構造とその実装構造について図2をもとに説明する。図2は、半導体収納用パッケージ、特に、接続端子がボール状端子からなるボールグリッドアレイ(BGA)型パッケージの概略断面図である。
【0037】
図2によれば、パッケージAは、絶縁材料からなる絶縁基板1と蓋体2によりキャビティ3が形成されており、そのキャビティ3内には、GaAs等のチップ部品4が前述の接着剤により実装されている。
【0038】
また、絶縁基板1の表面および内部には、チップ部品4と電気的に接続された配線層5が形成されている。この配線層5は、高周波信号の伝送時に導体損失を極力低減するために、銅、銀あるいは金などの低抵抗金属からなることが望ましい。また、この配線層5に1GHz以上の高周波信号を伝送する場合には、高周波信号が損失なく伝送されることが必要となるため、配線層5は周知のストリップ線路、マイクロストリップ線路、コプレーナ線路、誘電体導波管線路のうちの少なくとも1種から構成される。
【0039】
また、図2のパッケージAにおいて、絶縁基板1の底面には、接続用電極層6が被着形成されており、パッケージA内の配線層5と接続されている。そして、接続用電極層6には、半田などのロウ材7によりボール状端子8が被着形成されている。
【0040】
また、上記パッケージAを外部回路基板Bに実装するには、図2に示すように、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂などの有機樹脂を含む絶縁材料からなる絶縁基板9の表面に配線導体10が形成された外部回路基板Bに対して、ロウ材を介して実装される。具体的には、パッケージAにおける絶縁基板1の底面に取付けられているボール状端子8と、外部回路基板Bの配線導体10とを当接させてPb−Snなどの半田等のロウ材11によりロウ付けして実装される。また、ボール状端子8自体を溶融させて配線導体10と接続させてもよい。
【0041】
本発明によれば、GaAs等のチップ部品4をロウ付けや接着剤により実装したり、このようなボール状端子8を介在したロウ付けによりプリント基板等の外部回路基板に実装されるような表面実装型のパッケージにおいて、GaAs等のチップ部品や外部回路基板の絶縁基板との熱膨張差を従来のセラミック材料よりも小さくできることから、かかる実装構造に対して、熱サイクルが印加された場合においても、実装部での応力の発生を抑制することができる結果、実装構造の長期信頼性を高めることができる。
【0042】
【実施例】
下記の組成からなるディオプサイド型酸化物結晶相を析出可能な結晶化ガラスを準備した。
ガラスA:SiO250重量%−Al235.5重量%
−MgO18.5重量%−CaO26重量%
そして、この結晶化ガラス粉末に対して、平均粒径が5μmのクオーツおよび平均粒径が2μmのアモルファスシリカ粉末を用いて、焼成後の磁器が表1の組成となるように混合した。
【0043】
そして、この混合物に有機バインダ、可塑剤、トルエンを添加し、スラリーを調製した後、このスラリーを用いてドクターブレード法により厚さ300μmのグリーンシートを作製した。そして、このグリーンシートを10〜15枚積層し、50℃の温度で100kg/cm2の圧力を加えて熱圧着した。得られた積層体を水蒸気含有/窒素雰囲気中、700℃で脱バインダ処理を行った後、乾燥窒素中で表1の条件で焼成し絶縁基板用磁器を得た。
【0044】
得られた磁器について誘電率、誘電正接を以下の方法で評価した。測定は形状、直径2〜7mm、厚み1.5〜2.5mmの形状に切り出し、60GHzにてネットワークアナライザー、シンセサイズドスイーパーを用いて誘電体円柱共振器法により行った。測定では、NRDガイド(非放射性誘電体線路)で、誘電体共振器の励起を行い、TE021、TE031モードの共振特性より、誘電率、誘電損失を算出した。
【0045】
また、室温から400℃における熱膨張曲線をとり、熱膨張係数を算出した。さらに、焼結体中における結晶相をX線回折チャートから同定した。結果は表1に示した。
【0046】
また、一部の試料については、フィラー成分として、アモルファスシリカに代わり、ZrO2粉末、CaZrO3粉末を用いて同様に磁器を作製し評価した(試料No.2〜4)。
【0047】
また、上記結晶化ガラスAに代わり、以下の組成からなるガラスCを用いて同様に評価を行った(試料No.11、12)。

Figure 0003663335
【0048】
【表1】
Figure 0003663335
【0049】
表1の結果から明らかなように、SiO2、Al23、MgO、CaOを含むガラス量が95重量%を越える試料No.1では、誘電損失が30×10-4を越えてしまい、ガラス量が50重量%よりも少ない試料No.6〜8では、低温で焼結することが困難であり、緻密化しなかった。
【0050】
試料No.2〜4は、ガラスへの添加成分として、ZrO2やCaZrO3を配合したものであるが、焼結体中にZrO2やCaZrO3などが析出し誘電損失が増大した。また、ガラスとして、B23を多く含むガラスCを用いた試料No.11、12では、Bを含むガラスが多く残留し、誘電損失が大きくなる傾向にあった。
【0051】
これに対して、本発明に従い、特定量のアモルファスシリカ粉末を添加した試料No.5、9、10では、磁器中にアモルファスシリカ相が存在し、また、いずれも熱膨張係数が5.5ppm/℃以上、60GHzの測定周波数にて、誘電率5.9以下、誘電損失が10×10 −4 以下の優れた特性を有するものであった。
【0052】
【発明の効果】
以上詳述した通り、本発明の高周波用磁器組成物によれば、1000℃以下の低温にて焼成できることから、銅などの低抵抗金属による配線層を形成でき、しかも1GHz以上の高周波領域において、低誘電率、低誘電損失を有することから、高周波信号を極めて良好に損失なく伝送することができる。しかも、この組成物を用いて得られる磁器は、GaAsチップあるいはプリント基板と近似した熱膨張特性に制御できることから、GaAsチップを実装した場合、あるいは有機樹脂を含む絶縁基板を具備するプリント基板などのマザーボードに対してロウ材等により実装した場合において優れた耐熱サイクル性を有し、高信頼性の実装構造を提供できる。
【図面の簡単な説明】
【図1】本発明の組成物を焼成して得られる磁器の組織を説明するための概略図である。
【図2】本発明の組成物を焼成した磁器を用いた高周波用配線基板の一例である半導体素子収納用パッケージの実装構造の一例を説明するための概略断面図である。
【符号の説明】
Si SiO2結晶相
DI ディオプサイド型酸化物結晶相
G 非晶質(ガラス)相
AM アモルファスシリカ相
A 半導体素子収納用パッケージ
B 外部回路基板
1 絶縁基板
2 蓋体
3 キャビティ
4 チップ部品
5 配線層
6 接続用電極層
7 ロウ材
8 ボール状端子
9 絶縁基板
10 配線導体
11 ロウ材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board applied to a package for housing semiconductor elements, a multilayer wiring board, and the like, and in particular, can be co-fired with copper and silver, and also can be used for chip parts such as GaAs and printed boards. The present invention relates to a high-frequency porcelain composition, a high-frequency porcelain that can be mounted with high reliability on an external circuit substrate made of an organic resin, and is used as an insulating substrate in a wiring board, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, a ceramic multilayer wiring board in which a wiring layer made of a refractory metal such as tungsten or molybdenum is formed most widely on the surface or inside of an insulating substrate made of an alumina sintered body has been most popular.
[0003]
In recent years, with the advent of advanced information technology, the frequency band used is increasingly shifting to higher frequencies. In such a high-frequency wiring board that requires transmission of a high-frequency signal, the resistance of the conductor forming the wiring layer is small in order to transmit the high-frequency signal without loss, and the dielectric in the high-frequency region of the insulating substrate. Small loss is required.
[0004]
However, conventional refractory metals such as tungsten (W) and molybdenum (Mo) have high conductor resistance, slow signal propagation speed, and signal propagation in a high frequency region of 1 GHz or more is difficult. It is necessary to use low resistance metals such as copper, silver, and gold instead of metals such as Mo. Since the wiring layer made of such a low-resistance metal has a low melting point and cannot be co-fired with alumina, recently, so-called glass ceramics made of glass or a composite material of glass and ceramics is insulated. A wiring substrate used as a substrate is being developed. For example, as disclosed in JP-A-60-240135, a multilayer wiring board in which a filler such as Al 2 O 3 , zirconia, and mullite is added to zinc borosilicate glass and simultaneously fired with a low-resistance metal, As described in Japanese Patent No. 5-298919, a glass ceramic material in which mullite or cordierite is precipitated as a crystal phase has been proposed.
[0005]
In addition, when mounting chip parts such as GaAs on a wiring board such as a multilayer wiring board or a package for housing a semiconductor element, or mounting a wiring board on a printed board containing an organic resin such as a mother board, an insulating substrate and a chip part Alternatively, the thermal expansion coefficient of the insulating substrate is similar to that of the chip component or printed board from the viewpoint of preventing the mounting part from peeling or cracking due to the stress caused by the thermal expansion difference with the printed board. It is hoped that
[0006]
Therefore, the present applicant has proposed that the thermal expansion coefficient of the insulating substrate can be increased by using lithium silicate glass that can be crystallized, as disclosed in JP-A-9-17904.
[0007]
[Problems to be solved by the invention]
However, the conventional glass ceramics have a low coefficient of thermal expansion of about 3 to 5 ppm / ° C. even when cofiring with a low resistance metal such as copper, silver, and gold, and chip components such as GaAs (heat When mounting an expansion coefficient of 6 to 7.5 ppm / ° C. or mounting on a printed circuit board (thermal expansion coefficient of 12 to 15 ppm / ° C.), the mounting reliability is low and it is not practically satisfactory.
[0008]
Further, in the method using glass containing alkali metal as disclosed in JP-A-9-17904, when exposed to a high-temperature and high-humidity atmosphere for a long time, the alkali metal reacts with moisture in the air to form a silicate crystal on the surface. In some cases, the phase was precipitated and the surface was altered.
[0009]
In addition, conventional glass ceramics have not been specifically studied as an insulating substrate of a wiring board using a high-frequency signal such as millimeter waves, and most of them have a high dielectric loss and do not have sufficiently satisfactory high-frequency characteristics. .
[0010]
Therefore, the present invention can be fired at 800 to 1000 ° C., which can be multilayered using gold, silver and copper as wiring conductors, and has a thermal expansion approximate to the thermal expansion coefficient of chip parts such as GaAs and printed circuit boards. An object of the present invention is to provide a porcelain having a coefficient, a low dielectric constant and a low dielectric loss even in a high frequency region, a method for producing the same, and a high frequency porcelain composition capable of producing the same.
[0011]
[Means for Solving the Problems]
As a result of earnestly examining the above problems, the present inventor has identified amorphous silica powder with respect to glass powder containing SiO 2 , Al 2 O 3 , MgO and CaO and capable of precipitating a diopside oxide crystal phase. The composition is blended at a ratio of ## EQU1 ## and is molded, and then fired at a temperature of 800 to 1000 ° C., so that it has a low dielectric constant and thermal expansion coefficient approximate to that of chip parts such as GaAs and printed circuit boards. It has been found that a porcelain having a coefficient and having a low dielectric loss even in a high frequency region of 1 GHz or more can be obtained, and the present invention has been achieved.
[0012]
That is, high-frequency ceramic composition of the present invention comprises SiO 2, Al 2 O 3, MgO and CaO, and 50 to 95 wt% of glass powder capable precipitated diopside-type oxide crystal phase, amorphous silica The powder is contained at a ratio of 5 to 50% by weight.
[0013]
Further, the glass powder is a SiO 2 45 to 55 wt%, and Al 2 O 3 3 to 10 wt%, and MgO13~24 wt%, it is preferably made of a CaO20~30 wt%.
[0014]
The high-frequency porcelain of the present invention contains a diopside-type oxide crystal phase containing at least Mg, Ca, and Si and an SiO 2 amorphous phase, and has a thermal expansion coefficient of 5.degree. It is characterized by being 5 ppm / ° C. or more, a dielectric constant of 5.9 or less, and a dielectric loss at 60 to 77 GHz of 10 × 10 −4 or less.
[0015]
Furthermore, the method of manufacturing the high-frequency ceramics of the present invention comprises SiO 2, Al 2 O 3, MgO and CaO, and 50 to 99 wt% of glass powder capable precipitated diopside-type oxide crystal phase, amorphous A mixture containing 5 to 50% by weight of silica is molded and then fired at a temperature of 800 to 1000 ° C.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The high-frequency porcelain composition of the present invention comprises 50 to 95% by weight of a glass powder containing SiO 2 , Al 2 O 3 , MgO and CaO and capable of precipitating a diopside oxide crystal phase, and an amorphous silica powder. It is contained at a ratio of 5 to 50% by weight.
[0017]
Each component composition is limited to the above range because if the glass powder is less than 50% by weight, it is difficult to densify the porcelain by firing at a temperature of 1000 ° C. or less, and more than 95% by weight. If the amount is too large, crystallization of the glass becomes insufficient, a glass phase having a large dielectric loss remains, and the dielectric loss at a high frequency of the porcelain increases. A particularly desirable range of the glass powder is 60 to 85% by weight.
[0018]
Here, the glass powder preferably has a glass softening point of 500 to 800 ° C., and the composition thereof is SiO 2 45 to 55 wt%, Al 2 O 3 3 to 10 wt%, MgO 13 to 24 wt%, The proportion is preferably 20 to 30% by weight of CaO.
[0019]
In general, the thermal expansion coefficient of a glass phase containing Al 2 O 3 or SiO 2 is as low as 4 to 5 ppm / ° C. In contrast, since the diopside oxide crystal phase of MgCaSi 2 O 6 has a high thermal expansion characteristic of about 8 to 9 ppm / ° C., the diopside oxide crystal phase is precipitated from the glass powder having the above composition. In addition, when it is necessary to reduce the thermal expansion of the porcelain, amorphous silica having a thermal expansion coefficient of 2 to 5 ppm / ° C. can be contained, and a part of the silica can be contained instead of quartz. Adjust it.
[0020]
In addition, since the diopside has a small dielectric loss in the millimeter wave band, the dielectric loss of the porcelain can be reduced.
[0021]
Further, the diopside oxide crystal phase of MgCaSi 2 O 6 has a dielectric constant of 6 to 8, and a specific amount of amorphous silica powder having a dielectric constant of 3.8 to 4.2 is added thereto. Thus, the dielectric constant can be lowered to 5.9 or less.
[0022]
In order to increase the precipitation ratio of the diopside oxide crystal phase from the glass, the total amount of CaO and MgO in the glass is preferably 35 to 50% by weight.
[0023]
When the total amount of the amorphous silica powder is less than 5% by weight, the residual ratio of the glass is increased and the dielectric loss is increased. Conversely, if it exceeds 50% by weight, it becomes difficult to sinter and cannot be densified at a firing temperature of 1000 ° C. or less. A desirable range of the total amount of amorphous silica is 15 to 40% by weight.
[0024]
The porcelain composition of the above aspect can be densified to a relative density of 97% or more by firing in a temperature range of 800 to 1000 ° C. The overall composition of the porcelain formed thereby is Si, Al, Mg and when the total amount of an oxide in terms of the metal element Ca is 100% by weight, a SiO 2 55 to 75 wt%, the Al 2 O 3 3 to 5 wt%, 10 to 14 wt% of MgO, CaO15 It is desirable to be composed of a proportion of ˜21% by weight.
[0025]
The porcelain contains at least a diopside oxide crystal phase containing Mg, Ca, and Si and an amorphous SiO 2 phase, and has a thermal expansion coefficient of 5.5 ppm / ° C. or more from room temperature to 400 ° C. The dielectric constant is preferably 5.9 or less, and the dielectric loss at 60 to 77 GHz is preferably 10 × 10 −4 or less.
[0026]
Therefore, the porcelain composition of the present invention is a porcelain suitable for forming an insulating layer of a high-frequency wiring board having a frequency of 1 GHz or more, particularly 20 GHz or more, further 50 GHz or more, or even 70 GHz or more. When the porcelain of the present invention is used as an insulating substrate of a wiring board, it is important that the dielectric constant is as low as 5.9 or less in order to reduce the influence on the transmission characteristics of high-frequency signals.
[0027]
Further, it is desirable that the thermal expansion coefficient of the porcelain from room temperature to 400 ° C. is appropriately adjusted so as to approximate the thermal expansion coefficient of a chip component or the like to be mounted or a printed board. This is because if the thermal expansion coefficient of the above porcelain is different from that of a chip component or printed circuit board on which the ceramics are mounted, the chip component or printed circuit board and the package may be affected by repeated temperature cycles during solder mounting or by stopping the operation of the semiconductor element. This is because a stress due to a difference in thermal expansion occurs in the mounting portion, and cracks or the like occur in the mounting portion, thereby impairing the reliability of the mounting structure.
[0028]
Specifically, when matching with a GaAs chip component, the difference in thermal expansion coefficient from the GaAs chip component is 2 ppm / ° C. or less, whereas when matching with a printed circuit board, the printed circuit board is used. It is desirable that the difference in thermal expansion coefficient with respect to 2 ppm / ° C. or less.
[0029]
Next, a method for producing a porcelain using the high frequency porcelain composition of the present invention will be described.
[0030]
First, as starting materials, and SiO 2, Al 2 O 3, MgO, a crystallized glass powder capable of precipitating a diopside-type crystal phase comprises CaO 50 to 95 wt%, 5-50 wt% of amorphous silica Weigh and mix at a ratio of
[0031]
Then, using this mixed powder, a molded body having a predetermined shape is prepared by a known molding method such as a doctor blade method, a calender roll method, a rolling method, or a press molding method, and then the molded body is oxidized at 800 to 1000 ° C. It can be produced by firing in an atmosphere or an inert atmosphere.
[0032]
Further, in order to produce a wiring board having a wiring layer, a slurry is prepared by mixing the mixed powder with an appropriate organic solvent or solvent, and this is prepared by a conventionally known doctor blade method or calendar roll method, or It is formed into a sheet by a rolling method or a press forming method. And after forming a through hole as needed in this sheet-like molded object, the metal paste containing at least 1 sort (s) of copper, gold | metal | money, and silver is filled in a through hole. Then, on the surface of the sheet-like molded body, printing is performed so that the wiring layer has a thickness of 5 to 30 μm by a screen printing method, a gravure printing method or the like using the metal paste on a high-frequency line pattern or the like capable of transmitting a high-frequency signal. Apply.
[0033]
Thereafter, a plurality of sheet-like molded bodies are aligned, laminated and pressure-bonded, and then fired in a non-oxidizing atmosphere such as nitrogen gas or nitrogen-oxygen mixed gas at 800 to 1000 ° C., whereby a wiring board can be produced. . A chip component such as a semiconductor element is appropriately mounted on the surface of the wiring board and connected to the wiring layer so that signals can be transmitted. As a connection method, it is mounted directly on the wiring layer or connected, or the chip component is insulated by an adhesive such as resin of 50 μm, resin such as Ag-epoxy, Ag-glass, Au-Si, metal, ceramics, etc. Adhering to the substrate surface, the wiring layer and the semiconductor element are connected by wire bonding or TAB tape.
[0034]
As this semiconductor element, a Si-based or GaAs-based chip component can be used, but it is most effective for mounting a GaAs-based chip component, particularly in terms of the closeness of the thermal expansion coefficient.
[0035]
In addition, on the surface of the wiring board on which the semiconductor element is mounted, an insulating material of the same type as that of the insulating substrate, other insulating materials, or a metal having good heat dissipation, etc., and a cap having electromagnetic wave shielding properties are made of glass, resin, brazing. The semiconductor element may be hermetically sealed by bonding with an adhesive such as a material.
[0036]
A specific structure of a package for housing a semiconductor element, which is an example of a high-frequency wiring board that can suitably use the porcelain composition of the present invention, and its mounting structure will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of a semiconductor storage package, in particular, a ball grid array (BGA) type package in which connection terminals are formed of ball-shaped terminals.
[0037]
According to FIG. 2, the package A has a cavity 3 formed by an insulating substrate 1 made of an insulating material and a lid 2, and a chip component 4 such as GaAs is mounted in the cavity 3 by the above-described adhesive. Has been.
[0038]
A wiring layer 5 electrically connected to the chip component 4 is formed on the surface and inside of the insulating substrate 1. The wiring layer 5 is preferably made of a low resistance metal such as copper, silver or gold in order to reduce the conductor loss as much as possible when transmitting a high frequency signal. In addition, when a high frequency signal of 1 GHz or more is transmitted to the wiring layer 5, the high frequency signal needs to be transmitted without loss. Therefore, the wiring layer 5 includes a known strip line, microstrip line, coplanar line, It is composed of at least one of dielectric waveguide lines.
[0039]
Further, in the package A of FIG. 2, a connection electrode layer 6 is deposited on the bottom surface of the insulating substrate 1 and connected to the wiring layer 5 in the package A. A ball-shaped terminal 8 is formed on the connection electrode layer 6 with a brazing material 7 such as solder.
[0040]
In order to mount the package A on the external circuit board B, as shown in FIG. 2, a wiring conductor 10 is formed on the surface of an insulating board 9 made of an insulating material containing an organic resin such as polyimide resin, epoxy resin, or phenol resin. It is mounted on the external circuit board B formed with a brazing material. Specifically, the ball terminal 8 attached to the bottom surface of the insulating substrate 1 in the package A and the wiring conductor 10 of the external circuit board B are brought into contact with a brazing material 11 such as solder such as Pb-Sn. Mounted with brazing. Further, the ball terminal 8 itself may be melted and connected to the wiring conductor 10.
[0041]
According to the present invention, a surface on which a chip component 4 such as GaAs is mounted by brazing or adhesive, or is mounted on an external circuit board such as a printed circuit board by brazing such a ball-shaped terminal 8 is interposed. In a mounting type package, the thermal expansion difference between the chip part such as GaAs and the insulating substrate of the external circuit board can be made smaller than that of a conventional ceramic material. Therefore, even when a thermal cycle is applied to such a mounting structure As a result of suppressing the generation of stress in the mounting portion, the long-term reliability of the mounting structure can be improved.
[0042]
【Example】
A crystallized glass capable of depositing a diopside oxide crystal phase having the following composition was prepared.
Glass A: SiO 2 50 wt% -Al 2 O 3 5.5 wt%
-MgO 18.5 wt%-CaO 26 wt%
Then, this crystallized glass powder was mixed with quartz having an average particle diameter of 5 μm and amorphous silica powder having an average particle diameter of 2 μm so that the fired porcelain had the composition shown in Table 1.
[0043]
Then, an organic binder, a plasticizer, and toluene were added to this mixture to prepare a slurry, and then a green sheet having a thickness of 300 μm was produced using this slurry by a doctor blade method. And 10-15 sheets of this green sheet were laminated | stacked, the pressure of 100 kg / cm < 2 > was applied at the temperature of 50 degreeC, and thermocompression bonded. The obtained laminate was subjected to binder removal treatment at 700 ° C. in a steam-containing / nitrogen atmosphere, and then fired in dry nitrogen under the conditions shown in Table 1 to obtain an insulating substrate ceramic.
[0044]
The dielectric constant and dielectric loss tangent of the obtained porcelain were evaluated by the following methods. The measurement was cut into a shape having a shape, a diameter of 2 to 7 mm, and a thickness of 1.5 to 2.5 mm, and was performed by a dielectric cylindrical resonator method using a network analyzer and a synthesized sweeper at 60 GHz. In the measurement, the dielectric resonator was excited with an NRD guide (non-radiative dielectric line), and the dielectric constant and dielectric loss were calculated from the resonance characteristics of the TE 021 and TE 031 modes.
[0045]
Further, a thermal expansion curve from room temperature to 400 ° C. was taken to calculate a thermal expansion coefficient. Furthermore, the crystal phase in the sintered body was identified from the X-ray diffraction chart. The results are shown in Table 1.
[0046]
For some samples, porcelain was similarly prepared and evaluated using ZrO 2 powder and CaZrO 3 powder instead of amorphous silica as the filler component (Sample Nos. 2 to 4).
[0047]
Moreover, it evaluated similarly using the glass C which consists of the following compositions instead of the said crystallized glass A (sample No.11,12).
Figure 0003663335
[0048]
[Table 1]
Figure 0003663335
[0049]
As is apparent from the results in Table 1, the sample No. 1 in which the amount of glass containing SiO 2 , Al 2 O 3 , MgO and CaO exceeds 95% by weight. In Sample No. 1, the dielectric loss exceeded 30 × 10 −4 and the glass amount was less than 50% by weight. In 6-8, it was difficult to sinter at low temperature, and it was not densified.
[0050]
Sample No. In Nos. 2 to 4, ZrO 2 or CaZrO 3 was added as an additive component to the glass, but ZrO 2 or CaZrO 3 was precipitated in the sintered body, resulting in an increase in dielectric loss. Sample No. using glass C containing a large amount of B 2 O 3 as the glass was used. In Nos. 11 and 12, a large amount of glass containing B remained and the dielectric loss tended to increase.
[0051]
On the other hand, according to the present invention, sample No. 1 to which a specific amount of amorphous silica powder was added. In 5, 9, and 10, an amorphous silica phase is present in the porcelain, and all of them have a thermal expansion coefficient of 5.5 ppm / ° C. or higher and a dielectric loss of 10 or less at a measurement frequency of 60 GHz. It had the outstanding characteristic of * 10 < -4> or less.
[0052]
【The invention's effect】
As described in detail above, according to the high frequency porcelain composition of the present invention, since it can be fired at a low temperature of 1000 ° C. or less, a wiring layer made of a low resistance metal such as copper can be formed, and in a high frequency region of 1 GHz or more, Since it has a low dielectric constant and low dielectric loss, it is possible to transmit a high-frequency signal without loss. Moreover, since the porcelain obtained using this composition can be controlled to have a thermal expansion characteristic approximate to that of a GaAs chip or a printed circuit board, when a GaAs chip is mounted or a printed circuit board having an insulating substrate containing an organic resin, etc. When mounted on a mother board with a brazing material or the like, it has excellent heat cycle characteristics and can provide a highly reliable mounting structure.
[Brief description of the drawings]
FIG. 1 is a schematic view for explaining the structure of a porcelain obtained by firing the composition of the present invention.
FIG. 2 is a schematic cross-sectional view for explaining an example of a mounting structure of a package for housing a semiconductor element, which is an example of a high-frequency wiring board using a ceramic made by firing the composition of the present invention.
[Explanation of symbols]
Si SiO 2 crystal phase DI Diopside oxide crystal phase G Amorphous (glass) phase AM Amorphous silica phase A Package for housing semiconductor element B External circuit substrate 1 Insulating substrate 2 Lid 3 Cavity 4 Chip component 5 Wiring layer 6 Electrode layer for connection 7 Brazing material 8 Ball-shaped terminal 9 Insulating substrate 10 Wiring conductor 11 Brazing material

Claims (4)

SiO、Al、MgOおよびCaOを含み、ディオプサイド型酸化物結晶相を析出可能なガラス粉末を50〜95重量%と、アモルファスシリカ粉末を5〜50重量%との割合で含有することを特徴とする高周波用磁器組成物。Include SiO 2, Al 2 O 3, MgO and CaO, in a proportion between 50 to 95 wt% of glass powder capable precipitated diopside-type oxide crystal phase, 5 to 50 wt% of amorphous silica powder A high-frequency porcelain composition comprising: 前記ガラス粉末が、SiO45〜55重量%と、Al3〜10重量%と、MgO13〜24重量%と、CaO20〜30重量%とからなることを特徴とする請求項1記載の高周波用磁器組成物。The glass powder, and SiO 2 45 to 55 wt%, and Al 2 O 3 3 to 10 wt%, and MgO13~24 wt%, according to claim 1, characterized in that it consists of a CaO20~30 wt% High frequency porcelain composition. 少なくともMg、Ca、Siを含むディオプサイド型酸化物結晶相とSiO非晶質相とを含有し、且つ室温から400℃における熱膨張係数が5.5ppm/℃以上、誘電率が5.9以下、60〜77GHzでの誘電損失が10×10 −4 以下であることを特徴とする高周波用磁器。It contains a diopside oxide crystal phase containing at least Mg, Ca, and Si and an amorphous SiO 2 phase, has a thermal expansion coefficient of 5.5 ppm / ° C. or more from room temperature to 400 ° C., and a dielectric constant of 5. 9 or less, and a dielectric loss at 60 to 77 GHz is 10 × 10 −4 or less. SiO、Al、MgOおよびCaOを含むディオプサイド型酸化物結晶相を析出可能なガラス粉末を50〜95重量%と、アモルファスシリカ粉末を5〜50重量%との割合で含有する混合物を成形後、800〜1000℃の温度で焼成してなることを特徴とする高周波用磁器の製造方法。50 to 95% by weight of glass powder capable of precipitating a diopside oxide crystal phase containing SiO 2 , Al 2 O 3 , MgO and CaO, and 5 to 50% by weight of amorphous silica powder A method for producing a high-frequency porcelain, wherein the mixture is formed and then fired at a temperature of 800 to 1000 ° C.
JP2000115682A 1998-08-29 2000-04-17 High frequency porcelain composition, high frequency porcelain and method for producing the same Expired - Fee Related JP3663335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000115682A JP3663335B2 (en) 1998-08-29 2000-04-17 High frequency porcelain composition, high frequency porcelain and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10276260A JP3085667B2 (en) 1998-09-29 1998-09-29 High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2000115682A JP3663335B2 (en) 1998-08-29 2000-04-17 High frequency porcelain composition, high frequency porcelain and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10276260A Division JP3085667B2 (en) 1998-08-29 1998-09-29 High frequency porcelain composition, high frequency porcelain and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000335960A JP2000335960A (en) 2000-12-05
JP3663335B2 true JP3663335B2 (en) 2005-06-22

Family

ID=34751900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115682A Expired - Fee Related JP3663335B2 (en) 1998-08-29 2000-04-17 High frequency porcelain composition, high frequency porcelain and method for producing the same

Country Status (1)

Country Link
JP (1) JP3663335B2 (en)

Also Published As

Publication number Publication date
JP2000335960A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US6232251B1 (en) Dielectric ceramics
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
US6201307B1 (en) Ceramics for wiring boards and method of producing the same
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP3588224B2 (en) High frequency wiring board
JP3827491B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP3865967B2 (en) Porcelain and wiring board using the same
JP3556475B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP3085667B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3377898B2 (en) Low temperature firing porcelain composition
JP3663335B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3764626B2 (en) Wiring board
JP3064273B2 (en) High frequency porcelain
JP3441924B2 (en) Wiring board and its mounting structure
JP3131191B2 (en) High frequency porcelain composition and high frequency porcelain
JP3793558B2 (en) High frequency porcelain
JP3441941B2 (en) Wiring board and its mounting structure
JP4028673B2 (en) Wiring board
JP2001015878A (en) High-frequency wiring board and its manufacture
JP3441950B2 (en) Wiring board and its mounting structure
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP3663300B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2002255636A (en) Porcelain fired at low temperature and method of producing the same
JP3466545B2 (en) High frequency wiring board
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees