JPH09208298A - Porcelain composition fired at a low temperature - Google Patents

Porcelain composition fired at a low temperature

Info

Publication number
JPH09208298A
JPH09208298A JP8012284A JP1228496A JPH09208298A JP H09208298 A JPH09208298 A JP H09208298A JP 8012284 A JP8012284 A JP 8012284A JP 1228496 A JP1228496 A JP 1228496A JP H09208298 A JPH09208298 A JP H09208298A
Authority
JP
Japan
Prior art keywords
crystal phase
glass
sio
weight
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8012284A
Other languages
Japanese (ja)
Other versions
JP3314130B2 (en
Inventor
Yoshitake Terashi
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01228496A priority Critical patent/JP3314130B2/en
Publication of JPH09208298A publication Critical patent/JPH09208298A/en
Application granted granted Critical
Publication of JP3314130B2 publication Critical patent/JP3314130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a porcelain compsn. stably having a low dielectric constant and a low dielectric tangent in a high-frequency region as a circuit substrate for high frequency, having satisfactory mechanical strength as a multilayered circuit substrate and capable of attaining a multilayered state with Au, Ag or Cu as a circuit conductor by simultaneous firing at a low temp. of 800-1,000 deg.C. SOLUTION: A powdery mixture contg. 50-99.9wt.% glass consisting of SiO2 , Al2 O3 , MgO, ZnO and B2 O3 , 0.01-49.9wt.% zinc oxide and 0.01-49.9wt.% amorphous silica is compacted and fired at 800-1,000 deg.C in a nonoxidizing atmosphere to obtain the objective porcelain compsn. contg. a gahnite crystal phase 1, an enstatite crystal phase 2, an SiO2 crystal phase 3, an Mg2 B2 O5 crystal phase 4 and a glass phase 5 or further contg. a willemite crystal phase and a ZnO crystal phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多層回路基板用の
低温焼成磁器組成物に関するものであり、とりわけ半導
体素子や各種電子部品を搭載した多層に積層して成る複
合回路基板等に適用される金(Au)や銀(Ag)ある
いは銅(Cu)の配線が可能な高周波用の低温焼成磁器
組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature fired porcelain composition for a multi-layer circuit board, and more particularly, it is applied to a multi-layer composite circuit board on which semiconductor elements and various electronic parts are mounted. The present invention relates to a high-frequency low-temperature fired porcelain composition capable of wiring gold (Au), silver (Ag) or copper (Cu).

【0002】[0002]

【従来の技術】近年、高度情報化時代を迎え、情報伝達
はより高速化、高周波化が進み、搭載される半導体素子
もより高速化、高集積化され、更に実装のより高密度化
が要求されるようになり、従来より多用されてきたアル
ミナ製の各種回路基板では、比誘電率が3GHzで9〜
9.5とかなり大きいことから、昨今の高周波用の回路
基板等には不適当であると言われている。
2. Description of the Related Art In recent years, with the advent of advanced information technology, information transmission has become faster and higher in frequency, and semiconductor elements to be mounted have also become faster and more highly integrated, and higher packaging density is required. In various circuit boards made of alumina, which have been frequently used, the relative dielectric constant is 9 to 3 at 3 GHz.
Since it is quite large at 9.5, it is said that it is unsuitable for a recent high frequency circuit board or the like.

【0003】即ち、信号を高速で伝搬させるためには基
板材料としてより低い誘電率が要求されており、その
上、多層回路基板に種々の電子部品や入出力端子等を接
続する工程で該基板に加わる応力から基板自体が破壊し
たり、欠けを生じたりすることを防止するために、機械
的強度がより高いことも要求されている。
That is, in order to propagate signals at high speed, a lower dielectric constant is required as a substrate material, and further, in the process of connecting various electronic parts and input / output terminals to the multilayer circuit substrate, the substrate is required. Higher mechanical strength is also required in order to prevent the substrate itself from breaking or chipping from the stress applied to the substrate.

【0004】そこで前記諸要求を満足する基板材料とし
て、例えば、SiO2 、Al2 3、MgOを主成分と
するガラス組成物から成るガラス焼結体が提案されてい
るが、かかる提案のガラス焼結体では誘電率は低いもの
の、機械的強度が低いという問題が残り、完全に前記諸
要求を満足するものではなく、そのために係る問題を解
消せんとして種々の研究開発が進められている。
Therefore, as a substrate material satisfying the above requirements, for example, a glass sintered body made of a glass composition containing SiO 2 , Al 2 O 3 and MgO as a main component has been proposed. Although the sintered body has a low dielectric constant, it still has a problem of low mechanical strength, and it does not completely satisfy the above-mentioned requirements. Therefore, various researches and developments have been made to solve the problems.

【0005】その結果、低誘電率でかつ高強度を有する
組成物として、例えば、熱処理によりムライトとコーデ
ィエライトを主たる結晶相として析出するガラス組成物
が提案されている(特開平05−298919号公報参
照)。
As a result, as a composition having a low dielectric constant and high strength, for example, a glass composition in which mullite and cordierite are precipitated as a main crystal phase by heat treatment has been proposed (Japanese Patent Laid-Open No. 05-298919). See the bulletin).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記提
案のガラス組成物から成る多層回路基板は、とりわけ高
周波用の回路基板として要求される誘電率や誘電正接、
及び機械的強度等の諸特性全てを必ずしも満足するもの
ではないという課題があった。
However, the multilayer circuit board made of the glass composition proposed above has a dielectric constant and a dielectric loss tangent which are required especially as a circuit board for high frequencies.
In addition, there is a problem that not all properties such as mechanical strength are necessarily satisfied.

【0007】[0007]

【発明の目的】本発明は、前記課題を解消せんとして成
されたもので、その目的は、多層回路基板として十分な
機械的強度を有し、高周波領域における誘電率及び誘電
正接が低く安定であるという特性を併せ持ち、かつ80
0〜1000℃という低温で同時焼成してAuやAg、
Cuを配線導体とした多層化が可能となる高周波用に好
適な低温焼成磁器組成物を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and its object is to have a sufficient mechanical strength as a multilayer circuit board and to have a low dielectric constant and a low dielectric loss tangent in a high frequency region and to be stable. It also has the characteristic of being 80
Au and Ag, which are simultaneously fired at a low temperature of 0 to 1000 ° C,
An object is to provide a low-temperature fired porcelain composition suitable for high frequencies, which enables multilayering using Cu as a wiring conductor.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記問題点
を鋭意検討した結果、ガラスの軟化流動を利用して80
0〜1000℃で焼成することにより、配線導体として
Au、Ag及びCuを用いて多層化、及び微細配線化が
可能であること、また亜鉛(Zn)の酸化物及び非晶質
のシリカと特定のガラスを組み合わせ、前記亜鉛の酸化
物量を非晶質のシリカ量より小にして、結晶相をガーナ
イト結晶相と、エンスタタイト結晶相と、SiO2 結晶
相と、Mg2 2 5 結晶相と、ガラス相を析出させる
か、あるいは前記組合せで亜鉛の酸化物量が非晶質のシ
リカ量と同量以上にして、結晶相をガーナイト結晶相
と、SiO2 結晶相と、ウイレマイト結晶相と、エンス
タタイト結晶相と、Mg2 2 5 結晶相と、ZnO結
晶相と、ガラス相を析出させることにより、比誘電率及
び誘電正接を低くすることが可能となり、またスピネル
型結晶相であるガーナイト結晶相を析出させることによ
り、より高強度化が達成できることを知見し、本発明に
至った。
DISCLOSURE OF THE INVENTION As a result of earnest studies on the above-mentioned problems, the present inventor made use of the softening flow of glass to obtain 80
By firing at 0 to 1000 ° C., it is possible to use Au, Ag, and Cu as wiring conductors for multilayering and fine wiring, and to specify zinc (Zn) oxide and amorphous silica. Glass is combined, the amount of zinc oxide is made smaller than the amount of amorphous silica, and the crystal phases are the garnite crystal phase, the enstatite crystal phase, the SiO 2 crystal phase, and the Mg 2 B 2 O 5 crystal phase. A glass phase is precipitated, or the amount of zinc oxide in the above combination is equal to or more than the amount of amorphous silica, and the crystal phase is a garnite crystal phase, a SiO 2 crystal phase, and a willemite crystal phase, By precipitating the enstatite crystal phase, the Mg 2 B 2 O 5 crystal phase, the ZnO crystal phase, and the glass phase, it becomes possible to lower the relative dielectric constant and the dielectric loss tangent, and it is a spinel crystal phase. Ghana By precipitating the door crystalline phase was found that higher strength can be attained, leading to the present invention.

【0009】即ち、本発明の低温焼成磁器組成物は、少
なくともSiO2 、Al2 3 、MgO、ZnO及びB
2 3 を含むガラスを50〜99.9重量%と、Znの
酸化物を0.01〜49.9重量%と、非晶質のシリカ
を0.01〜49.9重量%の割合で含有する高周波用
の多層回路基板に好適な低温焼成磁器組成物であって、
前記Znの酸化物量と非晶質のシリカ量を比率を変えて
800〜1000℃の低温度での焼成によって得られた
焼結体が、ガーナイト結晶相と、エンスタタイト結晶相
と、SiO2 結晶相と、Mg2 2 5 結晶相と、ガラ
ス相とを含有するか、あるいはガーナイト結晶相と、S
iO2 結晶相と、ウイレマイト結晶相と、エンスタタイ
ト結晶相と、Mg2 2 5 結晶相と、ZnO結晶相
と、ガラス相とを含有することを特徴とするものであ
る。
That is, the low temperature fired porcelain composition of the present invention comprises at least SiO 2 , Al 2 O 3 , MgO, ZnO and B.
50 to 99.9% by weight of glass containing 2 O 3 , 0.01 to 49.9% by weight of Zn oxide, and 0.01 to 49.9% by weight of amorphous silica. A low temperature fired porcelain composition suitable for a multi-layer circuit board for high frequency containing,
A sintered body obtained by firing at a low temperature of 800 to 1000 ° C. by changing the ratio of the amount of Zn oxide and the amount of amorphous silica is a garnite crystal phase, an enstatite crystal phase, and a SiO 2 crystal. Phase, a Mg 2 B 2 O 5 crystal phase, and a glass phase, or a garnite crystal phase and S
It is characterized by containing an iO 2 crystal phase, a willemite crystal phase, an enstatite crystal phase, a Mg 2 B 2 O 5 crystal phase, a ZnO crystal phase and a glass phase.

【0010】[0010]

【作用】本発明の低温焼成磁器組成物によれば、フィラ
ー成分として酸化亜鉛を含むことにより、低誘電率と低
い誘電正接を示すガーナイト結晶相や、ウイレマイト結
晶相を析出させ、更に前記フィラー成分として非晶質の
シリカを含むことにより、同様に低誘電率と低い誘電正
接を示すエンスタタイト結晶相を析出させることによ
り、高周波用に好適な低い誘電率と誘電正接を得ること
ができる。
According to the low temperature fired porcelain composition of the present invention, by containing zinc oxide as a filler component, a garnite crystal phase or a willemite crystal phase exhibiting a low dielectric constant and a low dielectric loss tangent is precipitated, and the filler component is further added. By including amorphous silica as described above, similarly, by depositing an enstatite crystal phase exhibiting a low dielectric constant and a low dielectric loss tangent, a low dielectric constant and a dielectric loss tangent suitable for high frequencies can be obtained.

【0011】また、SiO2 −Al2 3 −MgO−Z
nO−B2 3 系ガラスとともにフィラー成分として酸
化亜鉛を配合することにより、該ガラス成分よりスピネ
ル型結晶相であるガーナイト結晶相を析出させることに
より、得られた焼結体の抗折強度は高くなる。
Further, SiO 2 --Al 2 O 3 --MgO--Z
with nO-B 2 O 3 based glass by blending zinc oxide as a filler component, by precipitating the gahnite crystal phase is a spinel-type crystal phase from the glass component, resulting flexural strength of the sintered body Get higher

【0012】更に、本発明の低温焼成磁器組成物は、8
00〜1000℃の低温度でAu、AgあるいはCuの
内部配線層と同時に焼成することができることから、こ
れらの配線導体を具備する多層回路基板や半導体素子収
納用パッケージの微細配線化が容易に達成できる。
Furthermore, the low temperature fired porcelain composition of the present invention comprises 8
Since it can be fired at the same time as the internal wiring layer of Au, Ag or Cu at a low temperature of 00 to 1000 ° C., it is easy to achieve a fine wiring of a multilayer circuit board or a package for accommodating semiconductor elements equipped with these wiring conductors. it can.

【0013】[0013]

【発明の実施の形態】本発明の低温焼成磁器組成物につ
いて以下詳細に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The low temperature fired porcelain composition of the present invention will be described in detail below.

【0014】本発明の低温焼成磁器組成物によれば、少
なくともSiO2 、Al2 3 、MgO、ZnO及びB
2 3 を含むガラス量が50重量%より少ないか、言い
換えればフィラー成分としてのZnの酸化物量と非晶質
のシリカ量との合計量が50重量%より多いと、800
〜1000℃の焼成温度では磁器は十分に緻密化するこ
とができず、逆に前記ガラス量が99.9重量%より多
いか、前記フィラー成分が0.1重量%より少ないと誘
電率が5.6以上と高くなり、また誘電正接も20×1
-4より大きくなる。
According to the low temperature fired porcelain composition of the present invention, at least SiO 2 , Al 2 O 3 , MgO, ZnO and B are used.
If the amount of glass containing 2 O 3 is less than 50% by weight, in other words, if the total amount of the amount of oxides of Zn as a filler component and the amount of amorphous silica is more than 50% by weight, then 800
At a firing temperature of up to 1000 ° C., the porcelain cannot be sufficiently densified, and conversely, when the glass amount is more than 99.9% by weight or the filler component is less than 0.1% by weight, the dielectric constant is 5%. Higher than 0.6 and dielectric loss tangent is 20 × 1
Greater than 0-4.

【0015】従って、前記ガラスの含有量は50〜9
9.9重量%に特定され、より望ましくは60〜95重
量%の範囲となる。
Therefore, the content of the glass is 50 to 9
It is specified to be 9.9% by weight, and more preferably in the range of 60 to 95% by weight.

【0016】次に、本発明の低温焼成磁器組成物の焼結
体の組織の概略図を図1及び図2に示す。
Next, a schematic diagram of the structure of the sintered body of the low temperature fired porcelain composition of the present invention is shown in FIGS.

【0017】図1に示すように、本発明の低温焼成磁器
組成物は、ガーナイト結晶相1と、エンスタタイト結晶
相2と、SiO2 結晶相3と、Mg2 2 5 結晶相4
と、ガラス相5とから構成されており、ガーナイト結晶
相1は焼結体中における主結晶として存在する。
As shown in FIG. 1, the low temperature fired porcelain composition of the present invention comprises a garnite crystal phase 1, an enstatite crystal phase 2, a SiO 2 crystal phase 3, and a Mg 2 B 2 O 5 crystal phase 4.
And a glass phase 5, and the garnite crystal phase 1 exists as a main crystal in the sintered body.

【0018】このように本発明によれば、焼結体中にガ
ーナイト結晶相を存在させ、同時にエンスタタイト結晶
相とSiO2 結晶相を存在させることにより低誘電率と
低い誘電正接を得ることができる。
As described above, according to the present invention, a low dielectric constant and a low dielectric loss tangent can be obtained by allowing the sintered body to contain the garnite crystal phase and simultaneously the enstatite crystal phase and the SiO 2 crystal phase. it can.

【0019】また、焼成温度を調整して焼結体中にスピ
ネル型結晶相であるガーナイト結晶相を析出させること
により、該結晶相は各結晶相のネットワークを補強する
形態で存在するため、機械的強度の高い焼結体を得るこ
とができる。
Further, by adjusting the firing temperature and precipitating the garnite crystal phase, which is a spinel type crystal phase, in the sintered body, the crystal phase exists in a form that reinforces the network of each crystal phase. It is possible to obtain a sintered body having high dynamic strength.

【0020】更に、前記ガラス中のB2 3 を反応させ
てMg2 2 5 結晶相を析出させることにより、耐薬
品性を著しく向上することができる。
Further, by reacting B 2 O 3 in the glass to precipitate a Mg 2 B 2 O 5 crystal phase, chemical resistance can be remarkably improved.

【0021】また、図2に示すように、本発明の低温焼
成磁器組成物はガーナイト結晶相1と、SiO2 結晶相
3と、ウイレマイト結晶相6と、エンスタタイト結晶相
2と、Mg2 2 5 結晶相4と、ZnO結晶相7と、
ガラス相5とから構成されており、ガーナイト結晶相1
は焼結体中における主結晶として存在する。
Further, as shown in FIG. 2, the low temperature fired porcelain composition of the present invention has a garnite crystal phase 1, a SiO 2 crystal phase 3, a willemite crystal phase 6, an enstatite crystal phase 2 and Mg 2 B 2. 2 O 5 crystalline phase 4, ZnO crystalline phase 7,
It is composed of a glass phase 5 and a garnite crystal phase 1
Exists as a main crystal in the sintered body.

【0022】このように前記焼結体中にガーナイト結晶
相を存在させ、同時にSiO2 結晶相と、ウイレマイト
結晶相と、エンスタタイト結晶相と、Mg2 2 5
晶相と、ZnO結晶相を存在させることによっても低誘
電率と低い誘電正接を得ることができる。
As described above, the garnite crystal phase is allowed to exist in the sintered body, and at the same time, the SiO 2 crystal phase, the willemite crystal phase, the enstatite crystal phase, the Mg 2 B 2 O 5 crystal phase, and the ZnO crystal phase. It is possible to obtain a low dielectric constant and a low dielectric loss tangent also by allowing the presence of.

【0023】また、図1の記述と同様に、ガーナイト結
晶相を析出させて機械的強度を高めることや、Mg2
2 5 結晶相を析出させて耐薬品性を向上させることも
可能となる。
Further, similarly to the description of FIG. 1, precipitation of a garnite crystal phase to enhance mechanical strength, and Mg 2 B
It is also possible to improve the chemical resistance by precipitating a 2 O 5 crystal phase.

【0024】尚、前記図2に示す結晶相で構成される系
では、ガラスがほとんど結晶化して三重点の様なところ
にしか存在しないため、誘電正接が低く、機械的強度も
高くなっている。
In the system composed of the crystal phase shown in FIG. 2, the glass is almost crystallized and exists only at the triple point, so that the dielectric loss tangent is low and the mechanical strength is high. .

【0025】次に、本発明の低温焼成磁器組成物を製造
する具体的な方法は、出発原料として、SiO2 −Al
2 3 −MgO−ZnO−B2 3 系ガラスを50〜9
9.9重量%、特に望ましくは60〜95重量%と、フ
ィラー成分として亜鉛の酸化物を0.01〜49.9重
量%と非晶質のシリカを0.01〜49.9重量%を、
特に前記亜鉛の酸化物を全量中5〜29重量%、非晶質
のシリカを1〜25重量%の割合となるように混合す
る。
Next, a specific method of manufacturing a low-temperature fired ceramic composition of the present invention, as a starting material, SiO 2 -Al
2 O 3 —MgO—ZnO—B 2 O 3 based glass 50 to 9
9.9% by weight, particularly preferably 60 to 95% by weight, 0.01 to 49.9% by weight of zinc oxide and 0.01 to 49.9% by weight of amorphous silica as filler components. ,
Particularly, the zinc oxide is mixed in an amount of 5 to 29% by weight, and the amorphous silica is mixed in an amount of 1 to 25% by weight.

【0026】このフィラー成分としての亜鉛の酸化物
は、ZnOの粉末や焼成過程でZnOを形成し得る炭酸
塩や、硝酸塩、酢酸塩等、各種形態で添加可能である。
The zinc oxide as the filler component can be added in various forms such as ZnO powder, carbonate capable of forming ZnO in the firing process, nitrate, acetate and the like.

【0027】また、前記亜鉛の酸化物は、ガラスとの反
応によりガーナイト結晶相やウイレマイト結晶相を析出
させることが重要であり、かかる観点からは前記粉末の
粒径は1.5μm以下、特に1.0μm以下の微粉末で
あることが望ましい。
It is important for the zinc oxide to precipitate a garnite crystal phase or a willemite crystal phase by a reaction with glass. From this viewpoint, the particle size of the powder is 1.5 μm or less, particularly 1 μm. It is desirable that the powder is a fine powder having a particle size of 0.0 μm or less.

【0028】一方、前記フィラー成分として非晶質のシ
リカを用いる場合には、ガラスとの反応によりエンスタ
タイト結晶相を析出させることが肝要であり、該非晶質
のシリカ粉末は1.5μm以下、特に1.0μm以下の
粒径を有する微粉末であることが望ましい。
On the other hand, when amorphous silica is used as the filler component, it is important to precipitate an enstatite crystal phase by reaction with glass, and the amorphous silica powder has a particle size of 1.5 μm or less. In particular, fine powder having a particle size of 1.0 μm or less is desirable.

【0029】更に、出発原料として、SiO2 −Al2
3 −MgO−ZnO−B2 3 系ガラスを用いるの
は、この系のガラスを用いることによりスピネル型結晶
相が析出し、この結晶相はガラスのネットワークを補強
する形態で存在し、高強度の焼結体を得ることができる
からである。
Further, as a starting material, SiO 2 --Al 2
The O 3 —MgO—ZnO—B 2 O 3 system glass is used because the spinel type crystal phase is precipitated by using this system glass, and this crystal phase exists in a form that reinforces the glass network, This is because a strong sintered body can be obtained.

【0030】また、かかる系のガラスを50〜99.9
重量%の範囲で添加したのは、ガラス量が50重量%よ
り少ない場合には、焼結体の緻密化温度が1000℃よ
り高くなり金や銀、銅の導体を用いることができず、ガ
ラス量が99.9重量%より多いと磁器自体の抗折強度
が低下するためである。
Further, glass of such a system is used in an amount of 50 to 99.9.
The amount added in the range of wt% is that when the glass amount is less than 50 wt%, the densification temperature of the sintered body becomes higher than 1000 ° C. and the conductor of gold, silver or copper cannot be used, This is because the bending strength of the porcelain itself decreases when the amount is more than 99.9% by weight.

【0031】従って、SiO2 −Al2 3 −MgO−
ZnO−B2 3 系ガラスの添加量は、60〜95重量
%がより望ましく、70〜85重量%が最も好ましい。
Therefore, SiO 2 --Al 2 O 3 --MgO--
The addition amount of ZnO-B 2 O 3 based glass, more preferably 60-95 wt%, and most preferably 70 to 85 wt%.

【0032】かかる系のガラスのより具体的な組成とし
てはSiO2 が40〜45重量%、Al2 3 が25〜
30重量%、MgOが8〜12重量%、ZnOが6〜9
重量%、B2 3 が8〜11重量%が望ましい。
As a more specific composition of the glass of such a system, SiO 2 is 40 to 45% by weight and Al 2 O 3 is 25 to 45% by weight.
30 wt%, MgO 8-12 wt%, ZnO 6-9
Wt%, B 2 O 3 is desirably 8-11% by weight.

【0033】前記のような割合で添加混合した混合粉末
に適宜バインダーを添加した後、所定形状に成形し、N
2 、Ar等の非酸化性雰囲気中において800〜100
0℃の温度で0.1〜5時間焼成する。この時の焼成温
度は800℃より低いと磁器が十分に緻密化せず、10
00℃を越えると金や銀、銅の導体を用いることができ
なくなる。
A binder is appropriately added to the mixed powder which is added and mixed in the above-described proportion, and then the powder is molded into a predetermined shape.
2 , 800 to 100 in a non-oxidizing atmosphere such as Ar
Baking at a temperature of 0 ° C. for 0.1 to 5 hours. If the firing temperature at this time is lower than 800 ° C, the porcelain will not be sufficiently densified and
If the temperature exceeds 00 ° C, the conductor of gold, silver or copper cannot be used.

【0034】また、かかる低温焼成磁器組成物を用いて
配線基板を作製する場合には、例えば、前記のようにし
て調合した混合粉末を公知のテープ成形法、例えばドク
ターブレード法、圧延法等に従い、絶縁層形成用のグリ
ーンシートを成形した後、そのシートの表面に配線層用
のメタライズとして、AuやAg、Cuの粉末、特にC
u粉末を含む金属ペーストを用いて、シート表面に配線
パターンをスクリーン印刷、グラビア印刷、オフセット
印刷等の手段により形成し、場合によってはシートにス
ルーホールを形成して該スルーホール内に上記ペースト
を充填する。その後、複数のシートを積層圧着した後、
前述した条件で焼成することにより、配線層と絶縁層と
を同時に焼成することができる。
When a wiring board is produced using such a low temperature fired porcelain composition, for example, the mixed powder prepared as described above is subjected to a known tape forming method such as a doctor blade method or a rolling method. After molding a green sheet for forming an insulating layer, a powder of Au, Ag, or Cu, particularly C, is formed on the surface of the green sheet as a metallization for a wiring layer.
Using a metal paste containing u powder, a wiring pattern is formed on the surface of the sheet by means of screen printing, gravure printing, offset printing, or the like. In some cases, a through hole is formed in the sheet and the paste is placed in the through hole. Fill. Then, after laminating and pressing multiple sheets,
By firing under the conditions described above, the wiring layer and the insulating layer can be fired at the same time.

【0035】[0035]

【実施例】以下、本発明の低温焼成磁器組成物について
具体的に詳述する。先ず、SiO2 −Al2 3 −Mg
O−ZnO−B2 3 系結晶性ガラスとして、 結晶性ガラスA:SiO2 44重量%−Al2 3 29重量% −MgO11重量% −ZnO7重量% −B2 3 9重量% 結晶性ガラスB:SiO2 50重量%−Al2 3 25重量% −MgO9重量% −ZnO8重量% −B2 3 8重量% の2種のガラスと、平均粒径が1μm以下の酸化亜鉛
(ZnO)及び非晶質のシリカ(SiO2 )を表1の組
成に従って混合した。
EXAMPLES Hereinafter, the low-temperature fired porcelain composition of the present invention will be described in detail. First, SiO 2 -Al 2 O 3 -Mg
As O-ZnO-B 2 O 3 based crystalline glass, crystalline glass A: SiO 2 44 wt% -Al 2 O 3 29 wt% -MgO11 wt% -ZnO7 wt% -B 2 O 3 9 wt% crystalline Glass B: Two kinds of glass of 50% by weight of SiO 2, 25% by weight of Al 2 O 3, 9 % by weight of MgO, 8% by weight of ZnO and 8% by weight of B 2 O 3, and zinc oxide (ZnO having an average particle diameter of 1 μm or less). ) And amorphous silica (SiO 2 ) were mixed according to the composition of Table 1.

【0036】そして、前記混合物に有機バインダー、可
塑剤、トルエンを添加し、ドクターブレード法により厚
さ300μmのグリーンシートを作製した。その後、こ
のグリーンシートを5枚積層し、50℃の温度で100
kg/cm2 の圧力を加えて熱圧着した。
Then, an organic binder, a plasticizer, and toluene were added to the mixture, and a green sheet having a thickness of 300 μm was prepared by the doctor blade method. After that, 5 sheets of this green sheet are laminated, and 100 at a temperature of 50 ° C.
A pressure of kg / cm 2 was applied for thermocompression bonding.

【0037】かくして得られた積層体を水蒸気含有した
窒素雰囲気中で、700℃の温度にて脱バインダーした
後、乾燥窒素中で表1の条件にて焼成して低温焼成磁器
組成物の焼結体を得た。
The thus obtained laminate was debindered at a temperature of 700 ° C. in a nitrogen atmosphere containing water vapor and then fired in dry nitrogen under the conditions shown in Table 1 to sinter the low temperature fired porcelain composition. Got the body

【0038】[0038]

【表1】 [Table 1]

【0039】前記評価用の焼結体を用いて誘電率、誘電
正接、抗折強度をそれぞれ以下の方法で測定評価した。
Using the sintered body for evaluation, the dielectric constant, dielectric loss tangent and flexural strength were measured and evaluated by the following methods.

【0040】先ず、誘電率及び誘電正接は、前記焼結体
から直径10mm、厚さ5mmの試料を切り出し、15
〜20GHzにてネットワークアナライザー、シンセサ
イズドスイーパーを用いて円柱共振器法により測定し
た。
First, with respect to the dielectric constant and the dielectric loss tangent, a sample with a diameter of 10 mm and a thickness of 5 mm was cut out from the sintered body, and
It was measured by a cylindrical resonator method using a network analyzer and a synthesized sweeper at -20 GHz.

【0041】具体的には、直径50mmの銅板治具の間
に試料の誘電体基板を挟んで測定し、共振器のTE011
モードの共振特性より誘電率、誘電正接を算出した。
Specifically, the dielectric substrate of the sample is sandwiched between copper plate jigs having a diameter of 50 mm for measurement, and TE011 of the resonator is measured.
The dielectric constant and dielectric loss tangent were calculated from the resonance characteristics of the modes.

【0042】次に抗折強度は、前記焼結体から長さ70
mm、厚さ3mm、幅4mmの測定試料を作製し、JI
S−C−2141の規定に準じて3点曲げ試験を行っ
た。
Next, the bending strength is 70 mm from the sintered body.
mm, thickness 3 mm, width 4 mm to prepare a measurement sample, JI
A three-point bending test was performed according to the specifications of S-C-2141.

【0043】また、比較例として、フィラー成分として
前記酸化亜鉛及び非晶質のシリカに代えて、結晶性のシ
リカ及びカルシア(CaO)を用いて前記同様に焼結体
を作製し評価した。
Further, as a comparative example, a sintered body was prepared and evaluated in the same manner as above, except that crystalline silica and calcia (CaO) were used as the filler component instead of the zinc oxide and the amorphous silica.

【0044】更に、前記結晶性ガラスに代わり、 結晶性ガラスC:SiO2 55.2重量%−Al2 3 12重量% −B2 3 4.4重量% −BaO20重量% −ZnO6.7重量% −Na2 O1.6重量% −ZrO2 0.1重量% 結晶性ガラスD:SiO2 60.7重量%−Al2 3 9.3重量% −B2 3 5重量% −SrO15.4重量% −ZnO8.6重量% −K2 O1重量% の2種のガラスを用いて、平均粒径が1.0μmの前記
各フィラーを種々組み合わせて前記同様に評価した。
Further, instead of the crystalline glass, crystalline glass C: SiO 2 55.2% by weight-Al 2 O 3 12% by weight-B 2 O 3 4.4% by weight-BaO 20% by weight-ZnO 6.7 wt% -Na 2 O1.6 wt% -ZrO 2 0.1 wt% crystalline glass D: SiO 2 60.7 wt% -Al 2 O 3 9.3 wt% -B 2 O 3 5 wt% -SrO15 with .4 wt% -ZnO8.6 wt% -K 2 O1 wt% of the two glass was evaluated in the same manner as described above the average particle size of various combinations of the respective filler 1.0 .mu.m.

【0045】[0045]

【表2】 [Table 2]

【0046】表の結果から明らかなように、結晶相とし
てガーナイト結晶相と、エンスタタイト結晶相と、Si
2 結晶相と、Mg2 2 5 結晶相と、ガラス相が析
出したもの、あるいはガーナイト結晶相と、SiO2
晶相と、ウイレマイト結晶相と、エンスタタイト結晶相
と、Mg2 2 5 結晶相と、ZnO結晶相と、ガラス
相が析出した本発明は、いずれも誘電率が5.6未満、
誘電正接が10×10-4以下、強度が22kg/mm2
以上と高い値を示し、特に誘電特性に優れていることが
分かる。
As is clear from the results shown in the table, a garnite crystal phase, an enstatite crystal phase, and a Si
O 2 crystal phase, Mg 2 B 2 O 5 crystal phase and glass phase precipitated, or garnite crystal phase, SiO 2 crystal phase, willemite crystal phase, enstatite crystal phase, Mg 2 B 2 The present invention in which the O 5 crystal phase, the ZnO crystal phase, and the glass phase are precipitated has a dielectric constant of less than 5.6,
Dielectric loss tangent is 10 × 10 -4 or less, strength is 22 kg / mm 2
The above values are high, and it can be seen that the dielectric characteristics are particularly excellent.

【0047】これに対して、ガラス量が50重量%未満
である試料番号1、14、15及び27では、焼成温度
を1200℃以上1400℃まで高めないと緻密化する
ことができず、誘電正接も20×10-4以上と高く、逆
に99.9重量%を越える試料番号10及び23では強
度が18kg/mm2 以下と低く、誘電正接も20×1
-4と高くなっている。
On the other hand, in Sample Nos. 1, 14, 15 and 27 in which the amount of glass is less than 50% by weight, densification cannot be achieved unless the firing temperature is raised to 1200 ° C. or higher and 1400 ° C. Is also as high as 20 × 10 −4 or more, and conversely, in Sample Nos. 10 and 23 in which the weight exceeds 99.9% by weight, the strength is low as 18 kg / mm 2 or less and the dielectric loss tangent is also 20 × 1.
It is as high as 0-4 .

【0048】また、試料番号11及び24の如くフィラ
ーのいずれか一方の量が0.01重量%未満になると、
いずれも強度が20kg/mm2 以下と低くなってい
る。
When the amount of one of the fillers is less than 0.01% by weight, as in sample numbers 11 and 24,
Both of them have a low strength of 20 kg / mm 2 or less.

【0049】一方、比較例として、結晶性のシリカをフ
ィラーに用いた試料番号32は、誘電率は低いものの、
誘電正接が35×10-4とかなり高く、カルシアを用い
た試料番号33では、誘電率も誘電正接も高く本発明の
目的を満足しない。
On the other hand, as a comparative example, sample No. 32 using crystalline silica as the filler has a low dielectric constant,
The dielectric loss tangent is as high as 35 × 10 −4, and sample number 33 using calcia has a high dielectric constant and a high dielectric loss tangent, which does not satisfy the object of the present invention.

【0050】また、結晶化ガラスCおよびDを用いた比
較例の試料番号34〜37では、800〜1000℃の
低温域での焼成では充分に緻密化させることができず、
いずれも低誘電率、低誘電正接、高強度の焼結体を得ら
れないことが分かる。
Further, in Sample Nos. 34 to 37 of Comparative Examples using the crystallized glasses C and D, it was not possible to sufficiently densify by firing in a low temperature range of 800 to 1000 ° C.,
It can be seen that in any case, a sintered body having a low dielectric constant, a low dielectric loss tangent and a high strength cannot be obtained.

【0051】[0051]

【発明の効果】以上詳述した通り、本発明の低温焼成磁
器組成物は、誘電率が低く誘電正接が小さいので、高周
波用途のマイクロ波用回路素子等において最適で小型化
も可能であり、更に、基板材料の高強度化により入出力
端子部に施すリードの接合や、実装における基板の信頼
性を向上できる上、800〜1000℃の低温度で焼成
可能なため、Au、Ag、Cu等による配線を同時焼成
により形成することができ、各種高周波用の多層配線基
板や半導体素子収納用パッケージ用基板として適用する
ことができる。
As described in detail above, since the low temperature fired porcelain composition of the present invention has a low dielectric constant and a small dielectric loss tangent, it can be optimized and miniaturized in microwave circuit elements for high frequency applications. Further, by strengthening the substrate material, it is possible to improve the bonding of leads to the input / output terminal portion and the reliability of the substrate during mounting, and since it is possible to fire at a low temperature of 800 to 1000 ° C., Au, Ag, Cu, etc. Can be formed by simultaneous firing, and can be applied as a multilayer wiring substrate for various high frequencies or a substrate for a package for housing a semiconductor element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の低温焼成磁器組成物の組織の概略図で
ある。
FIG. 1 is a schematic view of the structure of the low-temperature fired porcelain composition of the present invention.

【図2】本発明の低温焼成磁器組成物の他の組織の概略
図である。
FIG. 2 is a schematic view of another structure of the low temperature fired porcelain composition of the present invention.

【符号の説明】[Explanation of symbols]

1 ガーナイト結晶相 2 エンスタタイト結晶相 3 SiO2 結晶相 4 Mg2 2 5 結晶相 5 ガラス相 6 ウイレマイト結晶相 7 ZnO結晶相1 Garnite Crystalline Phase 2 Enstatite Crystalline Phase 3 SiO 2 Crystalline Phase 4 Mg 2 B 2 O 5 Crystalline Phase 5 Glass Phase 6 Willemite Crystalline Phase 7 ZnO Crystalline Phase

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくともシリカ(SiO2 )、アルミナ
(Al2 3 )、マグネシア(MgO)、酸化亜鉛(Z
nO)及び酸化硼素(B2 3 )を含むガラスを50〜
99.9重量%と、亜鉛(Zn)の酸化物を0.01〜
49.9重量%と、非晶質のシリカ(SiO2 )を0.
01〜49.9重量%の割合で含み、かつ前記酸化亜鉛
(ZnO)の量が非晶質のシリカ(SiO2 )量より小
である混合粉末から成る成形体を、窒素(N2 )、アル
ゴン(Ar)等の非酸化性雰囲気中、800〜1000
℃の温度で焼成して得られる焼結体が、ガーナイト結晶
相と、エンスタタイト結晶相と、SiO2 結晶相と、M
2 2 5 結晶相と、ガラス相とを含むことを特徴と
する低温焼成磁器組成物。
1. At least silica (SiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), zinc oxide (Z
nO) and a glass containing boron oxide (B 2 O 3 ) of 50 to
99.9% by weight and 0.01 to 0.01% of zinc (Zn) oxide.
49.9% by weight, and amorphous silica (SiO 2 ) of 0.
01 to 49.9 comprises a proportion by weight%, and the molded article the amount of the zinc oxide (ZnO) is composed of amorphous silica mixed powder is smaller than (SiO 2) content, nitrogen (N 2), 800 to 1000 in a non-oxidizing atmosphere such as argon (Ar)
The sintered body obtained by firing at a temperature of ℃, Gunite crystal phase, Enstatite crystal phase, SiO 2 crystal phase, M
A low temperature fired porcelain composition comprising a g 2 B 2 O 5 crystal phase and a glass phase.
【請求項2】少なくともシリカ(SiO2 )、アルミナ
(Al2 3 )、マグネシア(MgO)、酸化亜鉛(Z
nO)及び酸化硼素(B2 3 )を含むガラスを50〜
99.9重量%と、亜鉛(Zn)の酸化物を0.01〜
49.9重量%と、非晶質のシリカ(SiO2 )を0.
01〜49.9重量%の割合で含み、かつ前記酸化亜鉛
(ZnO)の量が非晶質のシリカ(SiO2 )量と同量
以上である混合粉末から成る成形体を、窒素(N2 )、
アルゴン(Ar)等の非酸化性雰囲気中、800〜10
00℃の温度で焼成して得られる焼結体が、ガーナイト
結晶相と、SiO2 結晶相と、ウイレマイト結晶相と、
エンスタタイト結晶相と、Mg2 2 5 結晶相と、Z
nO結晶相と、ガラス相とを含むことを特徴とする低温
焼成磁器組成物。
2. At least silica (SiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), zinc oxide (Z
nO) and a glass containing boron oxide (B 2 O 3 ) of 50 to
99.9% by weight and 0.01 to 0.01% of zinc (Zn) oxide.
49.9% by weight, and amorphous silica (SiO 2 ) of 0.
A molded body made of a mixed powder containing 01 to 49.9% by weight and containing zinc oxide (ZnO) in an amount equal to or more than the amount of amorphous silica (SiO 2 ) is mixed with nitrogen (N 2 ),
800 to 10 in a non-oxidizing atmosphere such as argon (Ar)
The sintered body obtained by firing at a temperature of 00 ° C. contains a garnite crystal phase, a SiO 2 crystal phase, a willemite crystal phase,
Enstatite crystal phase, Mg 2 B 2 O 5 crystal phase, Z
A low-temperature fired porcelain composition comprising an nO crystal phase and a glass phase.
JP01228496A 1996-01-26 1996-01-26 Low temperature firing porcelain composition Expired - Fee Related JP3314130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01228496A JP3314130B2 (en) 1996-01-26 1996-01-26 Low temperature firing porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01228496A JP3314130B2 (en) 1996-01-26 1996-01-26 Low temperature firing porcelain composition

Publications (2)

Publication Number Publication Date
JPH09208298A true JPH09208298A (en) 1997-08-12
JP3314130B2 JP3314130B2 (en) 2002-08-12

Family

ID=11801068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01228496A Expired - Fee Related JP3314130B2 (en) 1996-01-26 1996-01-26 Low temperature firing porcelain composition

Country Status (1)

Country Link
JP (1) JP3314130B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348424B1 (en) 1998-11-11 2002-02-19 Nec Corporation Low-temperature calcined glass ceramic and a manufacturing process therefor
JP2002255645A (en) * 2001-02-27 2002-09-11 Kyocera Corp Porcelain fired at low temperature and wiring board using the same
US6713417B2 (en) 2000-07-21 2004-03-30 Murata Manufacturing Co., Ltd. Insulative ceramic compact
US6753070B2 (en) 2000-07-21 2004-06-22 Murata Manufacturing Co., Ltd. Insulating ceramic compact, ceramic multilayer substrate, and ceramic electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348424B1 (en) 1998-11-11 2002-02-19 Nec Corporation Low-temperature calcined glass ceramic and a manufacturing process therefor
US6713417B2 (en) 2000-07-21 2004-03-30 Murata Manufacturing Co., Ltd. Insulative ceramic compact
US6753070B2 (en) 2000-07-21 2004-06-22 Murata Manufacturing Co., Ltd. Insulating ceramic compact, ceramic multilayer substrate, and ceramic electronic device
JP2002255645A (en) * 2001-02-27 2002-09-11 Kyocera Corp Porcelain fired at low temperature and wiring board using the same

Also Published As

Publication number Publication date
JP3314130B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JP3297569B2 (en) Low temperature firing porcelain composition
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP3517062B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JP2002111210A (en) Wiring board and its manufacturing method
JP2001240470A (en) Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP3314130B2 (en) Low temperature firing porcelain composition
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP3377898B2 (en) Low temperature firing porcelain composition
JP3550270B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP3363299B2 (en) Low temperature firing porcelain composition
JP3527818B2 (en) Low-temperature firing porcelain and method of manufacturing the same
JP3101970B2 (en) Glass-ceramic sintered body and method for producing the same
JP2002053368A (en) Porcelain excellent in high-frequency characteristic and its manufacturing method
JP3363297B2 (en) Low temperature firing porcelain composition
JP3311924B2 (en) Porcelain composition and method for producing porcelain
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3441924B2 (en) Wiring board and its mounting structure
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP3101971B2 (en) Glass-ceramic sintered body and method for producing the same
JP3628146B2 (en) Low temperature fired ceramic composition and low temperature fired ceramic
JP3101967B2 (en) Glass-ceramic sintered body and method for producing the same
JP2001130959A (en) Ceramic composition for high frequency wave, ceramic for high frequency wave and method for producing ceramic for high frequency wave
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP2000264719A (en) Porcelain composition, porcelain and circuit board using same
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140531

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees