JP2002329844A - Thin-film multilayer wiring circuit board and its manufacturing method - Google Patents

Thin-film multilayer wiring circuit board and its manufacturing method

Info

Publication number
JP2002329844A
JP2002329844A JP2001134067A JP2001134067A JP2002329844A JP 2002329844 A JP2002329844 A JP 2002329844A JP 2001134067 A JP2001134067 A JP 2001134067A JP 2001134067 A JP2001134067 A JP 2001134067A JP 2002329844 A JP2002329844 A JP 2002329844A
Authority
JP
Japan
Prior art keywords
thin film
film
thin
interlayer insulating
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001134067A
Other languages
Japanese (ja)
Inventor
Takaaki Suzuki
孝明 鈴木
Toshihide Namatame
俊秀 生田目
Yasuhiko Murata
康彦 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001134067A priority Critical patent/JP2002329844A/en
Publication of JP2002329844A publication Critical patent/JP2002329844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a thin-film multilayer wiring board that has a large capacity and can operate speedily. SOLUTION: A wiring layer 15 is used for at least one of electrodes 15 and 17 where a thin-film capacitor using a ferroelectric thin film 16 is formed in the thin-film multilayer wiring board. The thin-film multilayer wiring circuit board includes a process for forming the wiring layer 15 that is patterned onto an interlayer insulating film layer 12b, a process for forming the ferroelectric film 16 that is patterned onto the patterned wiring layer 15, and a process for annealing the ferroelectric film 16 selectively by irradiating laser beams. The patterning method may include the lift-off method or a method using a mask, and a formation method by patterning due to etching after the entire surface is film-formed. Also, the wiring layer 15 and the ferroelectric film 16 may be patterned simultaneously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体薄膜コン
デンサを組み込んだ回路基板及びその製造方法に関す
る。
The present invention relates to a circuit board incorporating a ferroelectric thin film capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、高速動作できるメモリとして、強
誘電体の高い自発分極及び抗電界を利用した不揮発性メ
モリが注目されている。不揮発性メモリに用いられる強
誘電体としては、大きな分極量を有するPb(Zr/T
i)O3(PZT)、或いは膜疲労特性に優れたSrB
2Ta29(SBT)等のBi層状強誘電体が知られ
ている。図4は、従来の薄膜コンデンサの構造を示す略
断面図である。従来の薄膜コンデンサは、強誘電体薄膜
46の上下に電極47を配置した構造を有する。配線層
48は、層間絶縁層42を介して電極47と接続されて
いる。
2. Description of the Related Art In recent years, non-volatile memories utilizing a high spontaneous polarization and coercive electric field of a ferroelectric have attracted attention as memories which can operate at high speed. As a ferroelectric used in a nonvolatile memory, Pb (Zr / T
i) O 3 (PZT) or SrB with excellent film fatigue properties
Bi-layered ferroelectrics such as i 2 Ta 2 O 9 (SBT) are known. FIG. 4 is a schematic sectional view showing the structure of a conventional thin film capacitor. The conventional thin film capacitor has a structure in which electrodes 47 are arranged above and below a ferroelectric thin film 46. The wiring layer 48 is connected to the electrode 47 via the interlayer insulating layer 42.

【0003】[0003]

【発明が解決しようとする課題】一般的に強誘電体薄膜
の成膜方法としてスパッタリング法が用いられるが、室
温で成膜した薄膜は非晶質であるため、そのままでは強
誘電体特性は得られない。従って、強誘電体が持つ本来
の特性を得るためには、高い温度での結晶化熱処理(結
晶化アニール)が必要である。その結果、従来の強誘電
体薄膜コンデンサは、強誘電体薄膜と電極の反応や周辺
への熱的ダメージにより、コンタクト不良等の問題が発
生し、高速動作や大容量化が困難であった。
Generally, a sputtering method is used as a method for forming a ferroelectric thin film. However, since a thin film formed at room temperature is amorphous, ferroelectric characteristics cannot be obtained as it is. I can't. Therefore, a crystallization heat treatment (crystallization anneal) at a high temperature is required to obtain the original characteristics of the ferroelectric. As a result, in the conventional ferroelectric thin film capacitor, a problem such as contact failure occurs due to a reaction between the ferroelectric thin film and the electrode and thermal damage to the periphery, and it has been difficult to operate at high speed and increase the capacitance.

【0004】誘電体薄膜を選択的に加熱する方法とし
て、特開平9−219587号公報にレーザアニールを
用いる方法が開示されているが、耐熱性の低い樹脂製の
層間絶縁層を用いているため高温加熱が不十分となり、
その結果、誘電体中に非晶質相が残るために誘電体が持
つ本来の特性が得られ難いという問題がある。また、融
点の低い材料を配線に用いた多層配線回路基板中に前記
強誘電体を用いた薄膜コンデンサを形成しようとする
と、前記したように高温度での結晶化アニールが必要な
ため配線の酸化によるコンタクト不良等が生じる。
As a method of selectively heating a dielectric thin film, a method using laser annealing is disclosed in Japanese Patent Application Laid-Open No. 9-219587, but since a resin-made interlayer insulating layer having low heat resistance is used. Insufficient high-temperature heating,
As a result, since the amorphous phase remains in the dielectric, there is a problem that it is difficult to obtain the original characteristics of the dielectric. Also, when a thin film capacitor using the ferroelectric is to be formed in a multilayer wiring circuit board using a material having a low melting point for wiring, crystallization annealing at a high temperature is necessary as described above. Causes a contact failure or the like.

【0005】本発明は、このような従来技術の問題点に
鑑み、コンタクト不良を防止し、高速動作が可能な強誘
電体薄膜を用いた薄膜コンデンサを組み込んだ回路基板
及びその製造方法を提供することを目的とする。本発明
は、また、強誘電体薄膜コンデンサを組み込んだ構造が
簡単な回路基板及びその製造方法を提供することを目的
とする。
The present invention has been made in view of the above problems of the prior art, and provides a circuit board incorporating a thin film capacitor using a ferroelectric thin film capable of preventing contact failure and operating at high speed, and a method of manufacturing the same. The purpose is to: Another object of the present invention is to provide a circuit board having a simple structure incorporating a ferroelectric thin film capacitor and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明では、層間絶縁層
と配線層を交互に積層した薄膜多層回路基板内に強誘電
体薄膜を用いた薄膜コンデンサを形成することにより前
記目的を達成する。本発明による薄膜多層配線回路基板
は、基板上に交互に積層された層間絶縁層及び配線層
と、強誘電体薄膜を上部電極と下部電極で挟んだ薄膜コ
ンデンサとを備え、薄膜コンデンサの上部電極及び下部
電極の少なくとも一方が配線層であることを特徴とす
る。薄膜コンデンサの上部電極及び下部電極の両方が配
線層であってもよい。
According to the present invention, the above object is achieved by forming a thin film capacitor using a ferroelectric thin film in a thin film multilayer circuit board in which interlayer insulating layers and wiring layers are alternately stacked. A thin-film multilayer wiring circuit board according to the present invention includes an interlayer insulating layer and a wiring layer alternately stacked on a substrate, and a thin-film capacitor in which a ferroelectric thin film is sandwiched between an upper electrode and a lower electrode. And at least one of the lower electrodes is a wiring layer. Both the upper electrode and the lower electrode of the thin film capacitor may be wiring layers.

【0007】配線層はCu又はTiN/Cu/TiNの
積層構造とする。融点の低い元素で配線層を構成する
と、アニールの際に溶融し、コンタクト不良の原因にな
る。配線層としてCuを用いることにより、配線層を溶
融させることなく強誘電体層をアニールすることができ
る。更に、TiNを積層することで、配線層の酸化を防
止し、良好なコンタクトを実現できる。
The wiring layer has a laminated structure of Cu or TiN / Cu / TiN. If the wiring layer is composed of an element having a low melting point, the wiring layer is melted at the time of annealing and causes a contact failure. By using Cu as the wiring layer, the ferroelectric layer can be annealed without melting the wiring layer. Further, by stacking TiN, it is possible to prevent oxidation of the wiring layer and realize good contact.

【0008】薄膜コンデンサを形成する上部電極又は下
部電極層に特に限定はないが、Cu,Au,Pt,Ir
及びRuから選択された少なくとも1種類の金属、ある
いはIrOx及びSrRuO3から選択された少なくとも
1種類の導電性酸化物を用いることで高速動作を実現で
きる。
The upper electrode or the lower electrode layer forming the thin film capacitor is not particularly limited, but may be Cu, Au, Pt, Ir.
High-speed operation can be realized by using at least one kind of metal selected from the group consisting of Ir and Ru, or at least one kind of conductive oxide selected from the group consisting of IrO x and SrRuO 3 .

【0009】さらに、薄膜コンデンサを形成する強誘電
体としては特に限定はないが、(Pb/A)(Zr/T
i)O3(式中のAはLa,Ba,Nb,Ca,Srか
ら選ばれた1の元素)、又はSrBi2Ta2-xNbx9
(式中のxは0ないし1)、さらに、(Ba/Sr)T
iO3からなる組成の強誘電体を用いることで高い強誘
電体特性を有する薄膜コンデンサが得られる。
Further, the ferroelectric material forming the thin film capacitor is not particularly limited, but may be (Pb / A) (Zr / T
i) O 3 (where A is one element selected from La, Ba, Nb, Ca, and Sr) or SrBi 2 Ta 2-x Nb x O 9
(Where x is 0 to 1), and (Ba / Sr) T
By using a ferroelectric having a composition of iO 3 , a thin film capacitor having high ferroelectric characteristics can be obtained.

【0010】本発明による薄膜多層配線回路基板の製造
方法は、層間絶縁層と配線層とが交互に積層され、内部
に強誘電体薄膜を用いた薄膜コンデンサを備える薄膜多
層配線基板の製造方法において、層間絶縁層上にパター
ニングした配線層を形成する工程と、パターニングした
配線層上にパターニングした強誘電体薄膜を形成する工
程と、強誘電体薄膜を選択的にアニールする工程とを含
むことを特徴とする。パターニングの方法は、リフトオ
フ法やマスク等を用いた方法でも、全面成膜後エッチン
グによるパターニングで形成する方法でもよい。また、
配線層と強誘電体薄膜を同時にパターニングしてもよ
い。
A method of manufacturing a thin-film multilayer wiring circuit board according to the present invention is directed to a method of manufacturing a thin-film multilayer wiring board having an interlayer insulating layer and a wiring layer alternately stacked and including therein a thin-film capacitor using a ferroelectric thin film. Forming a patterned wiring layer on the interlayer insulating layer, forming a patterned ferroelectric thin film on the patterned wiring layer, and selectively annealing the ferroelectric thin film. Features. A patterning method may be a lift-off method, a method using a mask, or the like, or a method of forming the entire surface by patterning by etching. Also,
The wiring layer and the ferroelectric thin film may be simultaneously patterned.

【0011】また、本発明による薄膜多層配線回路基板
の製造方法は、層間絶縁層と配線層とが交互に積層さ
れ、内部に強誘電体薄膜を用いた薄膜コンデンサを備え
る薄膜多層配線基板の製造方法において、パターニング
した配線層又は下部電極層上にパターニングした強誘電
体薄膜を形成する工程と、強誘電体薄膜を選択的にアニ
ールする工程と、強誘電体薄膜上に層間絶縁層を形成す
る工程と、層間絶縁層にコンタクトホールを形成する工
程と、層間絶縁層上にパターニングした配線層を形成
し、当該配線層と強誘電体薄膜とを接続する工程とを含
むことを特徴とする。
Further, the method of manufacturing a thin-film multilayer wiring circuit board according to the present invention is directed to a method of manufacturing a thin-film multilayer wiring board including a thin-film capacitor in which interlayer insulating layers and wiring layers are alternately laminated and a ferroelectric thin film is used therein. Forming a patterned ferroelectric thin film on the patterned wiring layer or lower electrode layer, selectively annealing the ferroelectric thin film, and forming an interlayer insulating layer on the ferroelectric thin film. A step of forming a contact hole in the interlayer insulating layer, a step of forming a patterned wiring layer on the interlayer insulating layer, and connecting the wiring layer and the ferroelectric thin film.

【0012】アニールはレーザ光照射によって行うこと
ができる。この場合、強誘電体薄膜の表面にレーザ光を
照射し、強誘電体薄膜のみを選択的にアニールし結晶化
する。用いるレーザとしてはエキシマレーザが最適であ
り、レーザ光照射条件としては、レーザ光強度が40〜
200mJ/cm2・pulseで良好な特性が得られる。2
00mJ/cm2・pulseより高い強度では、強誘電体薄
膜がアブレーション(飛散)により破壊される。また、
40mJ/cm2・pulseより低い強度では強誘電体薄膜
の結晶化が不十分で強誘電性が得られない。
The annealing can be performed by laser light irradiation. In this case, the surface of the ferroelectric thin film is irradiated with laser light, and only the ferroelectric thin film is selectively annealed and crystallized. An excimer laser is most suitable as the laser to be used.
Good characteristics can be obtained with 200 mJ / cm 2 · pulse. 2
At an intensity higher than 00 mJ / cm 2 · pulse, the ferroelectric thin film is broken by ablation (scattering). Also,
If the strength is lower than 40 mJ / cm 2 · pulse, the crystallization of the ferroelectric thin film is insufficient and ferroelectricity cannot be obtained.

【0013】レーザアニール時の基板温度は300℃以
下とするのが好ましい。基板温度を300℃より高くし
てレーザアニールすると、配線の酸化によるコンタクト
不良が生じ易くなることから、300℃以下で行うこと
が良い。レーザアニール時の雰囲気は、酸素、不活性ガ
ス、あるいは真空とすることができる。
The substrate temperature during laser annealing is preferably set to 300 ° C. or lower. If laser annealing is performed at a substrate temperature higher than 300 ° C., contact failure due to oxidation of the wiring is likely to occur. The atmosphere during the laser annealing can be oxygen, an inert gas, or a vacuum.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。 〔実施の形態1〕図1は、本発明による薄膜多層配線回
路基板を示す略断面図である。図1において、11はS
iウエハ、12は層間絶縁層、13は埋め込みプラグ、
14は1層目の配線、15は2層目の配線、16は強誘
電体薄膜、17はコンデンサ電極、18は3層目の配線
である。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a schematic sectional view showing a thin-film multilayer wiring circuit board according to the present invention. In FIG. 1, 11 is S
i wafer, 12 an interlayer insulating layer, 13 a buried plug,
14 is a first layer wiring, 15 is a second layer wiring, 16 is a ferroelectric thin film, 17 is a capacitor electrode, and 18 is a third layer wiring.

【0015】まず、Siウエハ11の表面に熱酸化によ
りSiO2層間絶縁層12aを形成した。次に、マスク
を用いたエッチングによりコンタクトホールを開口し
た。更に、コンタクトホール中に導電性プラグ(W)1
3を形成した。なお、SiO2層間絶縁層12aの形成
方法及び導電性プラグ13の材質には特に限定はない。
First, an SiO 2 interlayer insulating layer 12a was formed on the surface of a Si wafer 11 by thermal oxidation. Next, a contact hole was opened by etching using a mask. Further, a conductive plug (W) 1 is provided in the contact hole.
3 was formed. The method of forming the SiO 2 interlayer insulating layer 12a and the material of the conductive plug 13 are not particularly limited.

【0016】次に、SiO2層間絶縁層12a上に第1
層目のTiN/Cu/TiN積層構造の配線層14を厚
み約2μm形成する。Cu配線を用いることで、従来の
Al配線より抵抗率が約1μΩ・cm低くなり、高速動
作が可能になる。さらに、Cu層の上下にTiN層を配
置することによりCuの酸化を防止する効果が得られ
る。配線の形成方法は特に限定しない。例えば、マスク
を用いた形成方法でも、全面に成膜してエッチング除去
する方法でも良い。
Next, a first layer is formed on the SiO 2 interlayer insulating layer 12a.
A wiring layer 14 having a layered TiN / Cu / TiN laminated structure is formed to a thickness of about 2 μm. By using the Cu wiring, the resistivity becomes lower than that of the conventional Al wiring by about 1 μΩ · cm, and high-speed operation becomes possible. Further, by arranging the TiN layers above and below the Cu layer, an effect of preventing oxidation of Cu can be obtained. The method for forming the wiring is not particularly limited. For example, a formation method using a mask or a method of forming a film over the entire surface and removing it by etching may be used.

【0017】更に、配線層14を覆うようにSiO2
間絶縁層12bを形成し、前記したようにコンタクトホ
ールを形成し、Wプラグ13を形成する。層間絶縁層1
2b上に第2層目のTiN/Cu/TiN積層構造の配
線層15を配線層14と直交するようにパターニングし
て形成する。続いて、配線層15の上にレジストを用い
たリフトオフ法及びスパッタ法により、Pb(Zr/T
i)O3強誘電体薄膜16を100nmの厚さに形成す
る。Pb(Zr/Ti)O3強誘電体薄膜16の成膜は
室温で行う。X線回折の結果、成膜したPb(Zr/T
i)O3薄膜16は非晶質であることが分かった。
Further, an SiO 2 interlayer insulating layer 12b is formed so as to cover the wiring layer 14, a contact hole is formed as described above, and a W plug 13 is formed. Interlayer insulating layer 1
A wiring layer 15 of a second-layer TiN / Cu / TiN laminated structure is patterned and formed on 2b so as to be orthogonal to the wiring layer. Subsequently, Pb (Zr / Tr) is formed on the wiring layer 15 by a lift-off method using a resist and a sputtering method.
i) The O 3 ferroelectric thin film 16 is formed to a thickness of 100 nm. The Pb (Zr / Ti) O 3 ferroelectric thin film 16 is formed at room temperature. As a result of X-ray diffraction, the deposited Pb (Zr / T
i) The O 3 thin film 16 was found to be amorphous.

【0018】このPb(Zr/Ti)O3強誘電体薄膜
16の表面のみを選択的にKrFエキシマレーザ光を2
00mJ/cm2・pulse、100Hzの条件で照射し、
瞬間的なアニールを行う。レーザ光の選択的照射はレー
ザ光をPb(Zr/Ti)O 3強誘電体薄膜16の表面
を走査させて行った。この段階でX線回折を行った結
果、ペロブスカイト構造に起因するピークが認められ、
エキシマレーザ光照射のアニールにより強誘電体薄膜1
6が結晶化していることが確認できた。
This Pb (Zr / Ti) OThreeFerroelectric thin film
The KrF excimer laser beam was selectively applied to only 16 surfaces.
00mJ / cmTwo・ Irradiate under pulse and 100Hz conditions,
Instantaneous annealing is performed. Selective irradiation of laser light
The light is Pb (Zr / Ti) O ThreeSurface of ferroelectric thin film 16
Was scanned. X-ray diffraction was performed at this stage.
As a result, a peak due to the perovskite structure was observed,
Ferroelectric thin film 1 by annealing with excimer laser light irradiation
It was confirmed that 6 was crystallized.

【0019】比較として、前記方法で同様のサンプルを
作製し、レーザ光強度を37〜210mJ/cm2・pul
seの条件でレーザ光照射のアニールを行い、結晶性を調
べた。その結果、レーザ光強度が40mJ/cm2・pul
seより小さい領域では非晶質のピークのみが同定でき、
結晶化していなかった。また、レーザ光強度が200m
J/cm2・pulseより大きい領域では、アブレーション
によりPb(Zr/Ti)O3強誘電体薄膜が破壊され
ていることが確認できた。この結果、レーザ光照射によ
るアニール条件は40〜200mJ/cm2・pulseが最
も良いことが分かった。
For comparison, a similar sample was prepared by the above method, and the laser beam intensity was 37 to 210 mJ / cm 2 · pul.
Annealing of laser beam irradiation was performed under the conditions of se, and the crystallinity was examined. As a result, the laser beam intensity was 40 mJ / cm 2 · pul
In the region smaller than se, only the amorphous peak can be identified,
Had not crystallized. In addition, the laser beam intensity is 200m
In a region larger than J / cm 2 · pulse, it was confirmed that the Pb (Zr / Ti) O 3 ferroelectric thin film was destroyed by ablation. As a result, it was found that the best annealing condition by laser light irradiation was 40 to 200 mJ / cm 2 · pulse.

【0020】また、レーザ光を用いた選択的なアニール
法では、Cu等の配線層がレーザ光を反射する効果があ
ることから、強誘電体薄膜を十分に加熱することが可能
である。さらに、Cu(融点:1083℃)等の高い融
点の材料を配線層に用いることでアニールによる熱的ダ
メージを受け難くなる。従って、レーザ光を用いた選択
的なアニールが可能となる。
In the selective annealing method using laser light, since the wiring layer of Cu or the like has an effect of reflecting laser light, it is possible to sufficiently heat the ferroelectric thin film. Furthermore, by using a material having a high melting point such as Cu (melting point: 1083 ° C.) for the wiring layer, thermal damage due to annealing becomes less likely. Therefore, selective annealing using laser light can be performed.

【0021】また、本実施の形態では、レーザ光照射に
よるアニールを室温で実施したが、レーザ光照射の際、
基板を配線が酸化しない温度まで加熱することで、より
高いレーザアニールの効果が得られる。基板の加熱温度
は、Cu配線の場合、300℃以下が望ましい。
In this embodiment, annealing by laser light irradiation is performed at room temperature.
By heating the substrate to a temperature at which the wiring is not oxidized, a higher laser annealing effect can be obtained. The heating temperature of the substrate is desirably 300 ° C. or less in the case of Cu wiring.

【0022】次に、前記Pb(Zr/Ti)O3強誘電
体薄膜上にAuの上部電極17を100nm形成した。
さらに、SiO2層間絶縁層12cを形成し、SiO2
間絶縁層12cにコンタクトホールを形成した後、配線
層18を形成することにより、強誘電体薄膜を有する薄
膜多層配線回路基板を作製した。得られた薄膜多層配線
回路基板の電気特性を評価した結果、印加電圧:2Vで
50μC/cm2の残留分極(2Pr)が得られた。以
上の方法で作製した薄膜多層配線回路基板は、印加電
圧:2Vの低電圧でも動作し、更に、高速での書き込み
が可能であった。
Next, an Au upper electrode 17 was formed to a thickness of 100 nm on the Pb (Zr / Ti) O 3 ferroelectric thin film.
Further, to form a SiO 2 interlayer insulating layer 12c, after forming a contact hole in the SiO 2 interlayer insulating layer 12c, by forming the wiring layer 18, to produce a thin-film multilayer wiring circuit board having a ferroelectric thin film. As a result of evaluating the electrical characteristics of the obtained thin-film multilayer wiring circuit board, remanent polarization (2Pr) of 50 μC / cm 2 was obtained at an applied voltage of 2 V. The thin-film multilayer wiring circuit board manufactured by the above-described method operated even at a low voltage of 2 V applied, and was capable of high-speed writing.

【0023】〔実施の形態2〕図2は、本発明による薄
膜多層配線回路基板の他の例を示す略断面図である。実
施の形態1と同様に、Siウエハ21の表面に熱酸化に
よりSiO2層間絶縁層22aを形成し、マスクを用い
たエッチングによりコンタクトホールを開口し、コンタ
クトホール中にWプラグ23を形成した。次に、層間絶
縁層22a上に第1層目のTiN/Cu/TiN構造の
配線層24を厚み約1.2μm形成した。形成方法に特
に限定はない。Cuの上下にTiNを積層することで、
強誘電体薄膜や電極層との密着性がより向上する効果が
ある。更に、配線層24を覆うように層間絶縁層22b
を形成し、前記したようにコンタクトホールを形成し、
プラグ23を形成した。層間絶縁層22b上に第2層目
のTiN/Cu/TiN構造の配線層25をパターニン
グして形成する。続いて層間絶縁層22cを形成後、コ
ンタクトホールを形成した後、Wプラグを形成しマスク
蒸着を用いてPt下部電極27を形成した。
[Embodiment 2] FIG. 2 is a schematic sectional view showing another example of a thin-film multilayer wiring circuit board according to the present invention. As in the first embodiment, an SiO 2 interlayer insulating layer 22a was formed on the surface of a Si wafer 21 by thermal oxidation, a contact hole was opened by etching using a mask, and a W plug 23 was formed in the contact hole. Next, a first-layer wiring layer 24 having a TiN / Cu / TiN structure of about 1.2 μm was formed on the interlayer insulating layer 22a. There is no particular limitation on the forming method. By laminating TiN above and below Cu,
This has the effect of further improving the adhesion to the ferroelectric thin film and the electrode layer. Further, the interlayer insulating layer 22b is formed so as to cover the wiring layer 24.
And forming a contact hole as described above,
The plug 23 was formed. A second-layer wiring layer 25 having a TiN / Cu / TiN structure is formed on the interlayer insulating layer 22b by patterning. Subsequently, after forming an interlayer insulating layer 22c, a contact hole was formed, a W plug was formed, and a Pt lower electrode 27 was formed using mask evaporation.

【0024】下部電極27の上にレジストを用いたリフ
トオフ法及びスパッタ法を用いて厚み約150nmのS
rBi2.4Ta29強誘電体薄膜26を形成した。続い
て、SrBi2.4Ta29強誘電体薄膜26の表面のみ
を選択的にKrFエキシマレーザ光を200mJ/cm
2・pulse、100Hzの条件で照射し、瞬間的なアニー
ルを行った。この時の基板温度は室温とした。レーザア
ニール後の結晶性を調べた結果、SrBi2.4Ta29
の(105)面のメインピークが強調される回折結果が
得られ、レーザアニールにより結晶化していることが分
かった。最後に、層間絶縁層22dを形成し、次いでコ
ンタクトホールを形成した。その後、第3層目のTiN
/Cu/TiN構造の配線層28を形成し、第3層目の
配線層28が上部電極となる様にSrBi2.4Ta29
強誘電体薄膜26に接続した。
A lift-off method using a resist on the lower electrode 27 and a sputtering method with a thickness of about 150 nm are used.
An rBi 2.4 Ta 2 O 9 ferroelectric thin film 26 was formed. Subsequently, only the surface of the SrBi 2.4 Ta 2 O 9 ferroelectric thin film 26 is selectively irradiated with KrF excimer laser light at 200 mJ / cm.
Irradiation was performed under the conditions of 2 · pulse and 100 Hz, and instantaneous annealing was performed. The substrate temperature at this time was room temperature. As a result of examining the crystallinity after laser annealing, SrBi 2.4 Ta 2 O 9
The diffraction result in which the main peak of (105) plane was emphasized was obtained, and it was found that the crystal was crystallized by laser annealing. Finally, an interlayer insulating layer 22d was formed, and then a contact hole was formed. Then, the third layer of TiN
/ Cu / TiN wiring layer 28 is formed, and SrBi 2.4 Ta 2 O 9 is formed so that the third wiring layer 28 becomes an upper electrode.
It was connected to the ferroelectric thin film 26.

【0025】以上の方法により、上部電極28に配線層
を用いた薄膜コンデンサを内蔵する薄膜多層配線回路基
板を作製することができた。得られた薄膜多層配線回路
基板の書き換え(fatigue)特性を評価した結果、±3
Vの電圧反転を1012回繰り返し行っても、2Prの変
化は無く、初期分極値(25μC/cm2)と同じであ
り、劣化のないことを確認した。
By the above-described method, a thin-film multilayer wiring circuit board having a built-in thin-film capacitor using a wiring layer for the upper electrode 28 could be manufactured. As a result of evaluating the rewriting (fatigue) characteristics of the obtained thin film multilayer wiring circuit board, ± 3
Even when the voltage reversal of V was repeated 10 12 times, there was no change in 2Pr, the same as the initial polarization value (25 μC / cm 2 ), and it was confirmed that there was no deterioration.

【0026】〔実施の形態3〕図3は、本発明による薄
膜多層配線回路基板の更に別の例を示す略断面図であ
る。実施の形態1と同様に、Siウエハ31の表面に熱
酸化により層間絶縁層32aを形成し、マスクを用いた
エッチングによりコンタクトホールを開口し、コンタク
トホール中にWプラグ33を形成した。次に、層間絶縁
層32a上に第1層目のTiN/Cu/TiN構造の配
線層34を厚み約2μm形成した。更に、配線層34を
覆うように層間絶縁層32bを形成し、前記したように
コンタクトホールを形成し、Wプラグ33を形成した。
次に、層間絶縁層32b上に第2層目の配線層35を配
線層34と直交するようにパターニングして形成した。
[Embodiment 3] FIG. 3 is a schematic sectional view showing still another example of a thin-film multilayer wiring circuit board according to the present invention. As in the first embodiment, an interlayer insulating layer 32a was formed on the surface of a Si wafer 31 by thermal oxidation, a contact hole was opened by etching using a mask, and a W plug 33 was formed in the contact hole. Next, a first-layer wiring layer having a TiN / Cu / TiN structure of about 2 μm was formed on the interlayer insulating layer 32a. Further, an interlayer insulating layer 32b was formed so as to cover the wiring layer 34, a contact hole was formed as described above, and a W plug 33 was formed.
Next, a second wiring layer 35 was formed on the interlayer insulating layer 32b by patterning so as to be orthogonal to the wiring layer 34.

【0027】続いて、配線層35の上にレジストを用い
たリフトオフ法及びスパッタ法を用いてPb(Zr/T
i)O3強誘電体薄膜36を100nmの厚さに形成し
た。次に、Pb(Zr/Ti)O3強誘電体薄膜36の
表面のみを選択的にKrFエキシマレーザ光を200m
J/cm2・pulse、100Hzの条件で照射して瞬間的
なアニールを行い、強誘電体薄膜36を結晶化した。こ
の時の基板温度は300℃とした。続いて層間絶縁層3
2cを形成後、コンタクトホールを形成し、配線38を
形成した。以上の方法により、薄膜コンデンサを形成す
る上部電極及び下部電極に配線層35,38を用いた薄
膜多層配線回路基板を作製することができた。
Subsequently, Pb (Zr / Tr) is formed on the wiring layer 35 by a lift-off method using a resist and a sputtering method.
i) An O 3 ferroelectric thin film 36 was formed to a thickness of 100 nm. Next, only the surface of the Pb (Zr / Ti) O 3 ferroelectric thin film 36 was selectively irradiated with KrF excimer laser light for 200 m.
Irradiation was performed under the conditions of J / cm 2 · pulse and 100 Hz to perform instantaneous annealing, and the ferroelectric thin film 36 was crystallized. At this time, the substrate temperature was 300 ° C. Then, the interlayer insulating layer 3
After forming 2c, a contact hole was formed, and a wiring 38 was formed. By the above method, a thin-film multilayer wiring circuit board using the wiring layers 35 and 38 for the upper electrode and the lower electrode for forming the thin-film capacitor could be manufactured.

【0028】本発明によると、図4に示した従来の上部
電極及び下部電極を有する構造に比べて、強誘電体薄膜
を用いた薄膜コンデンサの構造を簡略化できる。従来の
構造では、上部電極及び下部電極が必須なため、強誘電
体薄膜を薄膜化してトータルの厚みを薄くしていた。し
かし、強誘電体薄膜を薄くすると、膜中に電流パスが生
じ易くなり、その結果、耐電圧特性が低下する問題があ
った。
According to the present invention, the structure of a thin film capacitor using a ferroelectric thin film can be simplified as compared with the conventional structure having an upper electrode and a lower electrode shown in FIG. In the conventional structure, since the upper electrode and the lower electrode are indispensable, the ferroelectric thin film is thinned to reduce the total thickness. However, when the ferroelectric thin film is made thin, a current path is easily generated in the film, and as a result, there is a problem that the withstand voltage characteristic is reduced.

【0029】本発明による薄膜コンデンサの構造は、配
線を電極とする構造であるため、既にトータルの厚みは
薄くなっているので、上記問題は生じない。また、強誘
電体の結晶化をレーザ照射による瞬間的なアニールで行
うため、強誘電体と配線との反応なく行える。更に、ア
ニール時の基板加熱を配線が酸化しない温度で行うた
め、コンタクト不良を防止することが可能である。以
上、本発明を好ましい実施の形態について説明したが、
本発明はかかる特定の実施の形態に限定されるものでは
なく、特許請求の範囲に記載した趣旨の範囲内において
様々な変形・変更が可能である。
Since the structure of the thin film capacitor according to the present invention has a structure in which wiring is used as an electrode, the total thickness has already been reduced, so that the above problem does not occur. Further, since the crystallization of the ferroelectric is performed by instantaneous annealing by laser irradiation, it can be performed without a reaction between the ferroelectric and the wiring. Further, since the substrate is heated during annealing at a temperature at which the wiring is not oxidized, contact failure can be prevented. As described above, the present invention has been described with reference to the preferred embodiments.
The present invention is not limited to the specific embodiment, and various modifications and changes can be made within the scope of the gist described in the claims.

【0030】[0030]

【発明の効果】本発明によると、コンタクト不良を防止
し高速動作が可能な、強誘電体薄膜を用いた薄膜コンデ
ンサを得ることができる。また、配線を電極とし、その
配線上に強誘電体薄膜を形成することで、構造の簡略化
が可能となり、その結果、生産性が向上する等の効果が
得られる。また、レーザ光を用いた瞬間加熱で強誘電体
薄膜のみを選択的にアニールすることにより、配線や層
間絶縁層にダメージを与えることなく大容量でかつ高い
分極特性を有する薄膜多層配線回路を製造することがで
きる。
According to the present invention, it is possible to obtain a thin film capacitor using a ferroelectric thin film, which can prevent contact failure and can operate at high speed. Further, by using a wiring as an electrode and forming a ferroelectric thin film on the wiring, the structure can be simplified, and as a result, effects such as improvement in productivity can be obtained. In addition, by selectively annealing only the ferroelectric thin film by instantaneous heating using laser light, a thin film multilayer wiring circuit having a large capacity and high polarization characteristics without damaging the wiring and the interlayer insulating layer is manufactured. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による薄膜多層配線回路基板を示す略断
面図。
FIG. 1 is a schematic sectional view showing a thin-film multilayer wiring circuit board according to the present invention.

【図2】本発明による薄膜多層配線回路基板の他の例を
示す略断面図。
FIG. 2 is a schematic sectional view showing another example of the thin-film multilayer wiring circuit board according to the present invention.

【図3】本発明による薄膜多層配線回路基板の更に別の
例を示す略断面図。
FIG. 3 is a schematic sectional view showing still another example of the thin-film multilayer wiring circuit board according to the present invention.

【図4】従来の薄膜コンデンサの構造を示す略断面図。FIG. 4 is a schematic sectional view showing the structure of a conventional thin film capacitor.

【符号の説明】[Explanation of symbols]

14,15,18,24,25,28,34,35,3
8,48…配線層 16,26,36,46c…強誘電体薄膜 17,27,47…電極 13,23,33…Wプラグ 12a,12b,12c,42…層間絶縁層 22a,22b,22c,22d…層間絶縁層 32a,32b,32c…層間絶縁層 11,21,31,41…Siウエハ
14, 15, 18, 24, 25, 28, 34, 35, 3
8, 48 wiring layers 16, 26, 36, 46c ferroelectric thin film 17, 27, 47 electrodes 13, 23, 33 W plugs 12a, 12b, 12c, 42 interlayer insulating layers 22a, 22b, 22c, 22d: interlayer insulating layer 32a, 32b, 32c: interlayer insulating layer 11, 21, 31, 41: Si wafer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 27/04 (72)発明者 村田 康彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4M104 AA01 BB04 BB06 BB09 BB18 BB30 CC01 DD16 DD34 FF18 GG19 HH16 HH20 5F033 HH07 HH11 HH33 JJ01 JJ19 KK01 KK11 KK13 KK33 MM08 MM13 QQ08 QQ09 QQ37 QQ54 QQ74 QQ83 RR04 SS25 SS27 VV10 WW03 XX10 XX13 XX20 5F038 AC05 AC15 CD12 CD18 EZ14 EZ15 EZ16 EZ17 EZ20 5F083 FR01 GA01 JA14 JA15 JA17 JA37 JA38 JA39 JA40 MA06 MA16 NA08 PR33 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01L 27/04 (72) Inventor Yasuhiko Murata 7-1-1, Omikamachi, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Research, Ltd. Hitachi Research, Ltd. house F-term (reference) 4M104 AA01 BB04 BB06 BB09 BB18 BB30 CC01 DD16 DD34 FF18 GG19 HH16 HH20 5F033 HH07 HH11 HH33 JJ01 JJ19 KK01 KK11 KK13 KK33 MM08 MM13 QQ08 QQ09 QQ37 QQ54 QQ74 QQ83 RR04 SS25 SS27 VV10 WW03 XX10 XX13 XX20 5F038 AC05 AC15 CD12 CD18 EZ14 EZ15 EZ16 EZ17 EZ20 5F083 FR01 GA01 JA14 JA15 JA17 JA37 JA38 JA39 JA40 MA06 MA16 NA08 PR33

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に交互に積層された層間絶縁層及
び配線層と、強誘電体薄膜を上部電極と下部電極で挟ん
だ薄膜コンデンサとを備え、前記薄膜コンデンサの前記
上部電極及び下部電極の少なくとも一方が前記配線層で
あることを特徴とする薄膜多層配線回路基板。
1. A thin-film capacitor comprising an interlayer insulating layer and a wiring layer alternately laminated on a substrate, and a thin-film capacitor having a ferroelectric thin film sandwiched between an upper electrode and a lower electrode, wherein the upper electrode and the lower electrode of the thin-film capacitor are provided. Characterized in that at least one of them is the wiring layer.
【請求項2】 基板上に交互に積層された層間絶縁層及
び配線層と、強誘電体薄膜を上部電極と下部電極で挟ん
だ薄膜コンデンサとを備え、前記薄膜コンデンサの前記
上部電極及び下部電極が前記配線層であることを特徴と
する薄膜多層配線回路基板。
2. A thin film capacitor comprising an interlayer insulating layer and a wiring layer alternately laminated on a substrate, and a thin film capacitor having a ferroelectric thin film sandwiched between an upper electrode and a lower electrode, wherein the upper electrode and the lower electrode of the thin film capacitor are provided. Is the wiring layer.
【請求項3】 請求項1又は2記載の薄膜多層配線回路
基板において、前記配線層はCu又はTiN/Cu/T
iNの積層構造であることを特徴とする薄膜多層配線回
路基板。
3. The thin-film multilayer wiring circuit board according to claim 1, wherein said wiring layer is made of Cu or TiN / Cu / T.
A thin-film multilayer wiring circuit board having a laminated structure of iN.
【請求項4】 層間絶縁層と配線層とが交互に積層さ
れ、内部に強誘電体薄膜を用いた薄膜コンデンサを備え
る薄膜多層配線基板の製造方法において、 層間絶縁層上にパターニングした配線層を形成する工程
と、 前記パターニングした配線層上にパターニングした強誘
電体薄膜を形成する工程と、 前記強誘電体薄膜を選択的にアニールする工程とを含む
ことを特徴とする薄膜多層配線回路基板の製造方法。
4. A method for manufacturing a thin-film multilayer wiring board comprising an interlayer insulating layer and a wiring layer alternately laminated and including a thin-film capacitor using a ferroelectric thin film therein, wherein the patterned wiring layer is formed on the interlayer insulating layer. Forming a patterned ferroelectric thin film on the patterned wiring layer; and selectively annealing the ferroelectric thin film. Production method.
【請求項5】 層間絶縁層と配線層とが交互に積層さ
れ、内部に強誘電体薄膜を用いた薄膜コンデンサを備え
る薄膜多層配線基板の製造方法において、 パターニングした配線層又は下部電極層上にパターニン
グした強誘電体薄膜を形成する工程と、 前記強誘電体薄膜を選択的にアニールする工程と、 前記強誘電体薄膜上に層間絶縁層を形成する工程と、 前記層間絶縁層にコンタクトホールを形成する工程と、 前記層間絶縁層上にパターニングした配線層を形成し、
当該配線層と前記強誘電体薄膜とを接続する工程とを含
むことを特徴とする薄膜多層配線回路基板の製造方法。
5. A method for manufacturing a thin-film multilayer wiring board comprising an interlayer insulating layer and a wiring layer alternately laminated and including a thin-film capacitor using a ferroelectric thin film therein, the method comprising the steps of: Forming a patterned ferroelectric thin film; selectively annealing the ferroelectric thin film; forming an interlayer insulating layer on the ferroelectric thin film; and forming a contact hole in the interlayer insulating layer. Forming, forming a patterned wiring layer on the interlayer insulating layer,
Connecting the wiring layer and the ferroelectric thin film to each other.
【請求項6】 請求項4又は5記載の薄膜多層配線回路
基板の製造方法において、前記アニールはレーザ光照射
によって行うことを特徴とする薄膜多層配線回路基板の
製造方法。
6. The method for manufacturing a thin-film multilayer wiring circuit board according to claim 4, wherein the annealing is performed by laser light irradiation.
【請求項7】 請求項4,5又は6記載の薄膜多層配線
回路基板の製造方法において、前記アニールは基板温度
300℃以下で行うことを特徴とする薄膜多層配線回路
基板の製造方法。
7. The method according to claim 4, wherein the annealing is performed at a substrate temperature of 300 ° C. or less.
JP2001134067A 2001-05-01 2001-05-01 Thin-film multilayer wiring circuit board and its manufacturing method Pending JP2002329844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134067A JP2002329844A (en) 2001-05-01 2001-05-01 Thin-film multilayer wiring circuit board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134067A JP2002329844A (en) 2001-05-01 2001-05-01 Thin-film multilayer wiring circuit board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002329844A true JP2002329844A (en) 2002-11-15

Family

ID=18981821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134067A Pending JP2002329844A (en) 2001-05-01 2001-05-01 Thin-film multilayer wiring circuit board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002329844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020085843A (en) * 2001-05-08 2002-11-16 닛본 덴기 가부시끼가이샤 Method for producing semiconductor device
JP2008004734A (en) * 2006-06-22 2008-01-10 Nec Corp Integrated passive element, and multi-layer wiring substrate incorporating the same
JP2010129690A (en) * 2008-11-26 2010-06-10 Mitsubishi Electric Corp Semiconductor device and method of manufacturing semiconductor device
WO2020044919A1 (en) 2018-08-30 2020-03-05 富士フイルム株式会社 Piezoelectric device and method of manufacturing piezoelectric device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020085843A (en) * 2001-05-08 2002-11-16 닛본 덴기 가부시끼가이샤 Method for producing semiconductor device
JP2008004734A (en) * 2006-06-22 2008-01-10 Nec Corp Integrated passive element, and multi-layer wiring substrate incorporating the same
JP2010129690A (en) * 2008-11-26 2010-06-10 Mitsubishi Electric Corp Semiconductor device and method of manufacturing semiconductor device
WO2020044919A1 (en) 2018-08-30 2020-03-05 富士フイルム株式会社 Piezoelectric device and method of manufacturing piezoelectric device
US12063864B2 (en) 2018-08-30 2024-08-13 Fujifilm Corporation Piezoelectric device and method of manufacturing piezoelectric device

Similar Documents

Publication Publication Date Title
JP3587004B2 (en) Capacitor structure of semiconductor memory cell and method of manufacturing the same
KR100857699B1 (en) Semiconductor Device Having a Ferroelectric Capacitor and Fabrication Process Thereof
JP3929513B2 (en) Dielectric capacitor and manufacturing method thereof
KR100417743B1 (en) Ferroelectric memory with ferroelectric thin film having thickness of 90 nanometers or less, and method of making same
JP3103916B2 (en) Ferroelectric capacitor, method of manufacturing the same, and memory cell using the same
EP1675161A1 (en) Ferroelectric material, manufacturing method and ferroelectric memory
JP2000208725A (en) Semiconductor device and its manufacture
KR20000002485A (en) Semiconductor device and production method thereof
JP2000040800A (en) Ferroelectric storage element and manufacture thereof
KR100353804B1 (en) A method for forming ferroelectric capacitor in semiconductor device
JP2004296929A (en) Process for fabricating ferroelectric capacitor, ferroelectric capacitor, memory element, electronic element, memory device and electronic apparatus
JP3299909B2 (en) Multilayer structure electrode using oxide conductor
JP2002329844A (en) Thin-film multilayer wiring circuit board and its manufacturing method
JPH08222711A (en) Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film
JP3419974B2 (en) Method for manufacturing ferroelectric capacitor
KR100459796B1 (en) A method for fabricating a storage capacitor and a semiconductor component fabricated by using a storage capacitor based on the same method
JP2009239129A (en) Method of manufacturing ferroelectric memory element
US20010023951A1 (en) Method of manufacturing a ferroelectric capacitor
JP2002252336A (en) Semiconductor device and its manufacturing method
KR100498608B1 (en) Method for forming ferroelectric capacitor
JP2003243628A (en) Ferroelectric thin film, ferroelectric capacitor, and method of manufacturing ferroelectric memory device
JP2002124644A (en) Semiconductor device and its manufacturing method
KR100321699B1 (en) A method for forming ferroelectric capacitor using niobium-tantalum alloy glue layer
JP2004288943A (en) Process for fabricating ferroelectric capacitor, process for fabricating ferroelectric memory
JP2000236071A (en) Semiconductor memory element