JPH08222711A - Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film - Google Patents

Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film

Info

Publication number
JPH08222711A
JPH08222711A JP7047863A JP4786395A JPH08222711A JP H08222711 A JPH08222711 A JP H08222711A JP 7047863 A JP7047863 A JP 7047863A JP 4786395 A JP4786395 A JP 4786395A JP H08222711 A JPH08222711 A JP H08222711A
Authority
JP
Japan
Prior art keywords
electrode
film
ferroelectric
pzt
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7047863A
Other languages
Japanese (ja)
Inventor
Katsuhiro Aoki
克裕 青木
Yukio Fukuda
幸夫 福田
Akitoshi Nishimura
明俊 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Japan Ltd
Original Assignee
Texas Instruments Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Japan Ltd filed Critical Texas Instruments Japan Ltd
Priority to JP7047863A priority Critical patent/JPH08222711A/en
Publication of JPH08222711A publication Critical patent/JPH08222711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE: To provide a ferroelectric capacitor having an electrode structure, which is a dense structure in a film-forming method, such as a sol-gel method, and makes the formation of a ferroelectric film, such as a PZT ferroelectric film which shows good electrical characteristics, possible, and methods of forming this ferroelectric capacitor and the ferroelectric film. CONSTITUTION: A ferroelectric capacitor is formed into a structure, wherein the capacitor is provided with a Pt electrode 6 and a PZT ferroelectric film 7 formed on this electrode 6 and a TiOX layer 31, which is one of the constituent metallic element oxide layers of the ferroelectric film, is deposited on the interface between the electrode 6 and the film 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強誘電体キャパシタ
(特に、チタン酸ジルコン酸鉛(PZT)膜を有する半
導体メモリセルのキャパシタ)と、強誘電体キャパシタ
及び強誘電体膜の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric capacitor (in particular, a capacitor for a semiconductor memory cell having a lead zirconate titanate (PZT) film), a ferroelectric capacitor and a method for forming a ferroelectric film. It is a thing.

【0002】[0002]

【従来の技術】例えば、ダイナミックRAMのメモリセ
ルのキャパシタを構成する絶縁膜(誘電体膜)として
は、SiO2 とSi3 4 とSiO2 とが順次積層され
た構造のONO膜が使われている。
2. Description of the Related Art For example, an ONO film having a structure in which SiO 2 , Si 3 N 4 and SiO 2 are sequentially stacked is used as an insulating film (dielectric film) which constitutes a capacitor of a memory cell of a dynamic RAM. ing.

【0003】しかし、このONO膜の実効的な比誘電率
は約5程度と小さいため、 256Mb以降の大容量メモリに
適用した場合、面積的な制約下でキャパシタ誘電体膜の
膜厚を薄くしたり、面積を拡張するために複雑な形状が
要求される等、プロセス的に大きな困難を伴う。
However, since the effective relative permittivity of this ONO film is as small as about 5, when it is applied to a large-capacity memory of 256 Mb or more, the film thickness of the capacitor dielectric film is reduced under the restriction of area. In addition, a complicated shape is required to expand the area, which causes great difficulty in the process.

【0004】これに対して、ペロブスカイト結晶構造型
の強誘電体材料は、比誘電率が数100 から数1000と極め
て大きいことから、将来のダイナミックRAM用のキャ
パシタの絶縁膜材料として注目されている。
On the other hand, since the perovskite crystal structure type ferroelectric material has an extremely large relative dielectric constant of several hundreds to several thousands, it is attracting attention as an insulating film material for a capacitor for future dynamic RAM. .

【0005】強誘電体材料のうちPb(Zr,Ti)O
3 で示されるPZT膜を形成するには、薄膜形成法とし
てゾルーゲル法、CVD(化学的気相成長法)、スパッ
タリング法等が採用可能であるが、そのなかでもゾルー
ゲル法による形成が好適である。
Of the ferroelectric materials, Pb (Zr, Ti) O
To form the PZT film indicated by 3 , a sol-gel method, a CVD (chemical vapor deposition method), a sputtering method, or the like can be adopted as a thin film forming method, and among them, the sol-gel method is preferable. .

【0006】ゾルーゲル法による成膜においては、調製
された原料溶液(ゾルーゲル溶液)の良し悪し、成膜工
程とその条件、及び基板の選択が最終的に得られる薄膜
の電気的特性を決定することになる。
In the film formation by the sol-gel method, the quality of the prepared raw material solution (sol-gel solution), the film formation process and its conditions, and the choice of the substrate should determine the electrical characteristics of the finally obtained thin film. become.

【0007】図18には、従来の下部電極構造の二例
(1)と(2)を示す。即ち、誘電体の下部電極構造と
して、上部から順にPt/Ti/TiN構造の電極(以
下、Pt/Ti/TiNと略すことがある。)、又は、
Pt/TiN構造の電極(以下、Pt/TiNと略すこ
とがある。)が設けられ、SiO2 下地層21のコンタク
トホール12中のポリSi(Poly-silicon)導電層30に接
合されている。各下部電極の上面にそれぞれ、ゾルーゲ
ル法により形成した膜厚 200nmのPZT膜7−1又は7
−2が形成されている。各電極においては、TiNバリ
ア層20が設けられているが、前者の電極では、Pt層6
の直下にTi層22が更に設けられている。
FIG. 18 shows two examples (1) and (2) of the conventional lower electrode structure. That is, as the lower electrode structure of the dielectric, an electrode having a Pt / Ti / TiN structure (hereinafter, may be abbreviated as Pt / Ti / TiN) in order from the top, or
An electrode having a Pt / TiN structure (hereinafter sometimes abbreviated as Pt / TiN) is provided and joined to the poly-Si (Poly-silicon) conductive layer 30 in the contact hole 12 of the SiO 2 underlayer 21. A PZT film 7-1 or 7 with a film thickness of 200 nm formed by the sol-gel method on the upper surface of each lower electrode.
-2 is formed. Each electrode is provided with a TiN barrier layer 20, but the former electrode has a Pt layer 6
A Ti layer 22 is further provided immediately below.

【0008】これらのPZT薄膜を比較すると、図3の
(B)と(C)にそれらのPZT薄膜のSEM(Scanni
ng electron microscope)観察写真に示す如く、Pt/
Ti/TiN電極では、微細な粒子が形成されており、
極めて緻密なPZT薄膜が得られるが、Pt/TiN電
極においては、ロゼット(rosette)と呼ばれる粒径が50
0nmから1000nmの巨大な粒子が形成されていることが分
かる。
Comparing these PZT thin films, the SEM (Scanni) of these PZT thin films is shown in FIGS. 3B and 3C.
ng electron microscope) As shown in the observation photograph, Pt /
In the Ti / TiN electrode, fine particles are formed,
An extremely dense PZT thin film can be obtained, but in the Pt / TiN electrode, the particle size called rosette is 50
It can be seen that huge particles of 0 nm to 1000 nm are formed.

【0009】そして、これら2つのPZT薄膜の表面に
白金電極を形成し、電気測定を行うと、Pt/Ti/T
iN上に形成した薄膜は4Vを印加したときの漏れ電流
値が約6×10-7A/cm2であるのに対して、Pt/TiN
上に形成した薄膜では約2×10-5A/cm2である(図5参
照)。これは、Ti層をPt層とTiN層との間に設け
た電極の上に形成した薄膜の方が優れたI−V特性を示
すことを示している。
Then, when platinum electrodes were formed on the surfaces of these two PZT thin films and electric measurement was performed, Pt / Ti / T was obtained.
The thin film formed on iN has a leakage current value of about 6 × 10 −7 A / cm 2 when 4 V is applied, whereas Pt / TiN
The thickness of the thin film formed above is about 2 × 10 −5 A / cm 2 (see FIG. 5). This indicates that the thin film formed by depositing the Ti layer on the electrode provided between the Pt layer and the TiN layer exhibits superior IV characteristics.

【0010】この理由は、Pt/Ti/TiN電極で
は、熱処理の際に、下地のTiがPt表面まで拡散し、
酸化されてTiOX が形成され、これがPZT薄膜の成
長時にPZT結晶化を促進する核密度を増加させるため
に緻密な膜構造のPZTになるものと考えられる。
The reason for this is that in the Pt / Ti / TiN electrode, the underlying Ti diffuses to the Pt surface during heat treatment,
It is considered that oxidization forms TiO x , which becomes PZT having a dense film structure because it increases the nucleus density that promotes PZT crystallization during growth of the PZT thin film.

【0011】しかしながら、Pt/Ti/TiN電極に
おいては、ゾルーゲル法におけるPZT焼結の際に下地
のTi層22が酸化されるために、Pt−TiN間のコン
タクト抵抗が増加する(例えば、通常の80Ω/μm2が30
00Ω/μm2となる。)などの深刻な問題が発生し易い。
このため、良好な結晶状態のPZT薄膜の形成と、Ti
中間層の酸化の問題の解消とを同時に実現することが難
しい。
However, in the Pt / Ti / TiN electrode, the underlying Ti layer 22 is oxidized during the PZT sintering in the sol-gel method, so that the contact resistance between Pt and TiN increases (for example, in a normal case). 80Ω / μm 2 is 30
It becomes 00 Ω / μm 2 . ) And other serious problems are likely to occur.
Therefore, formation of a PZT thin film in a good crystalline state and Ti
It is difficult to simultaneously solve the problem of oxidation of the intermediate layer.

【0012】他方、PZTの結晶性を改善するために、
一旦、結晶化し易いペロブスカイト系物質をPt電極上
に形成する方法が知られている。例えば、Pt上に膜厚
50nmのPTO(チタン酸鉛、PbTiO3 )層を形成し
た後にゾルーゲル法でPZT薄膜を形成する方法があ
る。また、CVD法によるPZTについては、PLT
(チタン酸鉛ランタン、(Pb,La)X (Ti,Z
r)1-X 3 )層をPt上に形成した後にPZT薄膜を
形成している。
On the other hand, in order to improve the crystallinity of PZT,
A method is known in which a perovskite-based substance that easily crystallizes once is formed on a Pt electrode. For example, the film thickness on Pt
There is a method of forming a PZT thin film by a sol-gel method after forming a 50 nm PTO (lead titanate, PbTiO 3 ) layer. For PZT by the CVD method, PLT
(Lead lanthanum titanate, (Pb, La) x (Ti, Z
r) The 1-X O 3 ) layer is formed on Pt and then the PZT thin film is formed.

【0013】しかし、これらの方法はいずれも、Ptと
PZTとの界面に、PZTとは誘電率の異なるPTO層
やPLT層が存在するために、キャパシタとしての性能
(例えば残留分極密度、誘電率等)が劣化し易い。
However, in all of these methods, since a PTO layer or a PLT layer having a dielectric constant different from that of PZT exists at the interface between Pt and PZT, performance as a capacitor (for example, remanent polarization density, dielectric constant). Etc.) easily deteriorate.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、ゾル
ーゲル法等の成膜方法において緻密な構造であってかつ
良好な電気的特性を示すPZT等の強誘電体薄膜の形成
を可能にする電極構造を有するキャパシタと、このキャ
パシタ及び強誘電体膜の形成方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to enable formation of a ferroelectric thin film such as PZT having a dense structure and good electrical characteristics in a film forming method such as a sol-gel method. An object of the present invention is to provide a capacitor having an electrode structure and a method for forming the capacitor and the ferroelectric film.

【0015】[0015]

【課題を解決するための手段】本発明者は、上記したP
tの表面に意図的に塊状の酸化チタンTiOX を分散堆
積させ、PZT結晶化の核生成を促進することによって
PZT粒子を微細化し、緻密な構造のPZT薄膜の形成
を可能にする電極構造と、それを用いたPZTキャパシ
タの製造方法を見出し、Pt電極におけるTiの振舞い
を明らかにし、新規な電極構造とPZTキャパシタの製
造方法を確立し、本発明に到達したのである。
Means for Solving the Problems The present inventor
An electrode structure that intentionally disperses and deposits lumpy titanium oxide TiO x on the surface of t to promote the nucleation of PZT crystallization to make PZT particles finer and form a PZT thin film having a dense structure. The inventors have found a method of manufacturing a PZT capacitor using the same, clarified the behavior of Ti in a Pt electrode, established a novel electrode structure and a method of manufacturing a PZT capacitor, and arrived at the present invention.

【0016】即ち、本発明は、電極と、この電極上に形
成された強誘電体膜とを具備し、前記電極と前記強誘電
体膜との界面に、前記強誘電体膜の構成金属元素のうち
の少なくとも1種の元素の酸化物が堆積されている強誘
電体キャパシタに係るものである。
That is, the present invention comprises an electrode and a ferroelectric film formed on the electrode, and a metal element constituting the ferroelectric film is provided at the interface between the electrode and the ferroelectric film. Of these, a ferroelectric capacitor in which an oxide of at least one element is deposited.

【0017】本発明のキャパシタにおいて、上記の電極
が常温で酸化されにくいPt等の導体からなり、上記の
酸化物が常温で酸化され易い金属の酸化物(例えばTi
2等のTiOX )からなり、また、この金属酸化物
が、膜厚0.01〜10nmの堆積物からなるのがよい。
In the capacitor of the present invention, the electrode is made of a conductor such as Pt which is not easily oxidized at room temperature, and the oxide is a metal oxide (eg Ti) which is easily oxidized at room temperature.
It is preferable that the metal oxide is TiO x such as O 2 ) and the metal oxide is a deposit having a film thickness of 0.01 to 10 nm.

【0018】また、上記の電極下には、キャパシタ構成
元素の拡散を防止するためのTiN等のバリア層を設け
ておくのがよい。上記の強誘電体膜がチタン酸ジルコン
酸鉛系、例えばPZTであるのがよい。
Further, it is preferable to provide a barrier layer such as TiN under the electrodes to prevent the diffusion of the constituent elements of the capacitor. It is preferable that the ferroelectric film is lead zirconate titanate-based, for example, PZT.

【0019】本発明によれば、例えば、Pt−TiN間
に従来のようにTi中間層を設けることなしに、緻密な
構造のPZT薄膜の形成が可能になり、かつ、Ti中間
層のように酸化によるコンタクト抵抗の増大の問題も生
じない。従って、PZT等の強誘電体膜を良好な結晶状
態で形成すること(リーク電流の減少)と中間層の酸化
の問題の解消(コンタクト抵抗の減少)とを同時に実現
できる。
According to the present invention, for example, it is possible to form a PZT thin film having a dense structure without providing a Ti intermediate layer between Pt and TiN as in the prior art, and to form a PZT thin film like a Ti intermediate layer. The problem of increase in contact resistance due to oxidation does not occur. Therefore, it is possible to simultaneously form a ferroelectric film such as PZT in a good crystal state (reduction of leak current) and solve the problem of oxidation of the intermediate layer (reduction of contact resistance).

【0020】本発明はまた、上記の強誘電体キャパシタ
又は強誘電体膜を形成するに際し、前記強誘電体膜の構
成金属元素のうちの少なくとも1種の元素の酸化物を電
極上に堆積させ、この堆積された金属酸化物を含む前記
電極上に前記強誘電体膜を形成する、強誘電体キャパシ
タ又は強誘電体膜の形成方法も提供するものである。
According to the present invention, when forming the above ferroelectric capacitor or ferroelectric film, an oxide of at least one element of the metal elements constituting the ferroelectric film is deposited on the electrode. The present invention also provides a method for forming a ferroelectric capacitor or a ferroelectric film, which comprises forming the ferroelectric film on the electrode containing the deposited metal oxide.

【0021】この方法においては、キャパシタ電極の形
成に際し、強誘電体膜と接する電極の最表面に金属酸化
物を島状に堆積させた後、ゾルーゲル法によって強誘電
体膜を形成するのがよい。
In this method, when forming the capacitor electrode, it is preferable to deposit the metal oxide in an island shape on the outermost surface of the electrode in contact with the ferroelectric film and then form the ferroelectric film by the sol-gel method. .

【0022】[0022]

【実施例】以下、本発明を実施例について説明する。EXAMPLES The present invention will be described below with reference to examples.

【0023】まず、図1について、本発明によるPZT
薄膜を有する強誘電体キャパシタCAPと、これを組み
込んだ半導体デバイス、例えば揮発性記憶素子であるダ
イナミックRAMを概略的に説明する。
First, referring to FIG. 1, the PZT according to the present invention.
A ferroelectric capacitor CAP having a thin film and a semiconductor device incorporating the same, for example, a dynamic RAM which is a volatile memory element will be schematically described.

【0024】このデバイスにおいては、シリコン基板1
上に例えばN+ 型ソース領域3とN+ 型ドレイン領域4
が不純物拡散でそれぞれ形成され、これら両領域間には
ゲート酸化膜5を介してワードラインWLが設けられ、
ドレイン領域4にはビットラインBLが接続されてい
る。
In this device, the silicon substrate 1
On top of it, for example, an N + type source region 3 and an N + type drain region 4
Are formed by impurity diffusion, and a word line WL is provided between these regions via a gate oxide film 5.
The bit line BL is connected to the drain region 4.

【0025】キャパシタCAPはスタック型と称される
ものであって、ソース領域3−ポリシリコン層30−バリ
ア層20−Pt層6−TiOX 層31からなる下部電極が接
続され、この下部電極上にPZT強誘電体膜17及び上部
電極18が順次積層されている。この構造では、Pt6上
にTiOX 31を核付けしたPt電極を形成していること
が特徴的である。
The capacitor CAP is called a stack type, and a lower electrode composed of a source region 3-polysilicon layer 30-barrier layer 20-Pt layer 6-TiO x layer 31 is connected to the lower electrode. A PZT ferroelectric film 17 and an upper electrode 18 are sequentially laminated on the above. This structure is characterized in that a Pt electrode in which TiO x 31 is nucleated is formed on Pt6.

【0026】次に、図1の強誘電体キャパシタCAPの
基本的な下部電極、強誘電体膜を、例えばSiウエハ上
のSiO2 層を下地層として、その上に形成する方法を
図2について説明する。まず、工程1において、熱酸化
したSiウェハ1上にSiO2 層21を膜厚 100nmに成長
させ、この上に膜厚 200nmのTiN薄膜20を反応性スパ
ッタ法によって形成した。
Next, referring to FIG. 2, a method of forming the basic lower electrode and the ferroelectric film of the ferroelectric capacitor CAP of FIG. 1 on the SiO 2 layer on the Si wafer as a base layer will be described. explain. First, in step 1, a SiO 2 layer 21 was grown to a thickness of 100 nm on a thermally oxidized Si wafer 1, and a TiN thin film 20 having a thickness of 200 nm was formed on this by a reactive sputtering method.

【0027】次いで、工程2において、工程1で形成し
たTiN薄膜20上に膜厚 200nmのPt薄膜6を電子線加
熱方式の蒸着法によって形成した。
Next, in step 2, a Pt thin film 6 having a film thickness of 200 nm was formed on the TiN thin film 20 formed in step 1 by an electron beam heating evaporation method.

【0028】次いで、工程3において、工程2で形成し
たPt薄膜6上にTiO2 ターゲットを用いたRFスパ
ッタリング法により膜厚2nm相当のTiOX 31を堆積さ
せた。図7に、酸化チタン(TiOX )を核付けしたP
t/TiN電極(A)と未処理のPt/TiN電極
(B)の各表面のAFM(Atomic force microscope:原
子間力顕微鏡)像を示した。図7(A)で島状に観察さ
れるものが酸化チタンであり、電極表面に散在している
ことが分かる。
Next, in step 3, TiO x 31 having a thickness of 2 nm was deposited on the Pt thin film 6 formed in step 2 by the RF sputtering method using a TiO 2 target. In FIG. 7, P with nucleated titanium oxide (TiO x ).
An AFM (Atomic force microscope) image of each surface of the t / TiN electrode (A) and the untreated Pt / TiN electrode (B) is shown. It can be seen that what is observed in an island shape in FIG. 7A is titanium oxide, which is scattered on the electrode surface.

【0029】工程1から工程3において作製したTiO
X /Pt/TiN構造が核付けしたPt電極である。こ
のPt薄膜表面に堆積させたTiOX がPZT結晶の核
として働く。
TiO produced in steps 1 to 3
It is a Pt electrode with a nucleated X / Pt / TiN structure. The TiO x deposited on the surface of this Pt thin film acts as the nucleus of the PZT crystal.

【0030】次いで、工程4において、膜厚 200nmの非
晶質状態のPZT薄膜17’をゾルーゲル法により形成し
た。非晶質薄膜の形成温度は 480℃(10分間、空気中)
であった。このゾルーゲル法の原料溶液は、Pb(CH
3 COO)2・3H2 O、Ti{(CH3)2 CHO}4
Zr{CH3(CH2)2 CH2 O}4 及びNH(CH2
2 OH)2のCH3 OC2 4 OH溶液であってよく、
これを塗布、乾燥した。
Next, in step 4, an amorphous PZT thin film 17 'having a film thickness of 200 nm was formed by the sol-gel method. Amorphous thin film formation temperature is 480 ℃ (10 minutes, in air)
Met. The raw material solution of this sol-gel method is Pb (CH
3 COO) 2 · 3H 2 O , Ti {(CH 3) 2 CHO} 4,
Zr {CH 3 (CH 2 ) 2 CH 2 O} 4 and NH (CH 2 C
H 2 OH) 2 in CH 3 OC 2 H 4 OH,
This was applied and dried.

【0031】次いで、工程5において、工程4で形成し
た非晶質PZT薄膜17’を大気中で600℃、10分間焼結
した。この焼結処理によってPZTは結晶化し、ペロブ
スカイト構造の強誘電体薄膜17になる。この結晶化の際
に、非晶質PZT17’とPt6との界面のTiOX 31が
PZTの核密度を増加させ、緻密な構造の薄膜17を形成
させる。
Next, in step 5, the amorphous PZT thin film 17 'formed in step 4 was sintered in air at 600 ° C. for 10 minutes. By this sintering treatment, PZT is crystallized and becomes a ferroelectric thin film 17 having a perovskite structure. During this crystallization, TiO X 31 at the interface between the amorphous PZT 17 ′ and Pt 6 increases the PZT nucleus density and forms a thin film 17 having a dense structure.

【0032】次いで、工程6において、工程5で形成し
たペロブスカイト結晶のPZT薄膜17上に膜厚 200nmの
Pt上部電極18を電子線加熱方式の蒸着法により形成し
た。これにより、PZTキャパシタCAPが形成され
た。このPZT薄膜の組成は、原子数比でPb:Zr:
Ti=1.1 :0.5 :0.5 であってよい。
Next, in step 6, a Pt upper electrode 18 having a film thickness of 200 nm was formed on the PZT thin film 17 of perovskite crystal formed in step 5 by an electron beam heating evaporation method. As a result, the PZT capacitor CAP was formed. The composition of this PZT thin film is Pb: Zr:
Ti = 1.1: 0.5: 0.5 may be sufficient.

【0033】図3(A)に、TiOX を核付けした上記
のPt/TiN電極上に形成したPZT薄膜17のSEM
観察写真を示す。これによれば、図3(B)や(C)に
示したようにPt/Ti/TiN電極やPt/TiN電
極上に形成したPZTの粒径は 500nmから1000nmと極め
て大きいのに対して、図3(A)に示したようにTiO
X /Pt/TiN電極上に形成したPZTは粒径 100nm
以下の微細な粒子であり、かつ緻密な構造(厚み方向も
一様な膜構造)の薄膜になっている。即ち、本発明に基
づいて、核として堆積させたTiOX がPZT粒子を微
細化及び緻密化する効果が確認された。
FIG. 3A is a SEM of the PZT thin film 17 formed on the above Pt / TiN electrode with TiO x nucleated.
An observation photograph is shown. According to this, as shown in FIGS. 3B and 3C, the particle size of PZT formed on the Pt / Ti / TiN electrode or the Pt / TiN electrode is extremely large from 500 nm to 1000 nm. As shown in FIG.
PZT formed on the X / Pt / TiN electrode has a particle size of 100 nm
It is a fine particle having the following fine particles and a dense structure (a film structure having a uniform thickness direction). That is, based on the present invention, it was confirmed that the TiO x deposited as nuclei has the effect of making the PZT particles finer and denser.

【0034】図4には、核として堆積させたTiOX
粒径によるPZT薄膜の表面を示すものである。これに
よれば、TiOX の粒径によってPZTの粒径が異なっ
ているが、これらの間にはTiOX の粒径に対応した関
係が直接には存在していないようである。図4に示した
粒径は勿論のことであるが、TiOX の粒径が 0.5〜50
0nm の範囲ではPZT薄膜の微細化、緻密化の効果が得
られる。
FIG. 4 shows the surface of the PZT thin film depending on the grain size of TiO x deposited as nuclei. According to this, although the particle size of the PZT by the particle size of the TiO X are different, between which it is such that the relationship corresponding to the particle size of the TiO X is not present directly. Not to mention the particle size shown in Fig. 4, the particle size of TiO x is 0.5 to 50
In the range of 0 nm, the effect of miniaturization and densification of the PZT thin film can be obtained.

【0035】次に、上記のように、TiOX を核付けし
たPt/TiN電極上に形成したPZT薄膜と、TiO
X を核付けしないPt/TiN電極上に形成したPZT
薄膜とについて、電気特性を比較する。
Next, as described above, the PZT thin film formed on the Pt / TiN electrode with TiO x nucleated, and TiO 2.
PZT formed on Pt / TiN electrode that does not nucleate X
The electrical characteristics of the thin film are compared.

【0036】まず、図5にI−V特性を示す。このデー
タによれば、Pt/TiN電極上に形成したPZT薄膜
の漏れ電流値は印加電圧の増加に伴って著しい増加を示
すが、TiOX 核付けしたPt/TiN電極上に形成し
たPZT薄膜の漏れ電流値は印加電圧に依存せず、ほぼ
一定である。4Vを印加したときの漏れ電流値は、Ti
X 核付けしたPt/TiN電極においては1×10-7
/cm2程度であるが 、核付けしないPt/TiN電極に
おいては約2×10-5A/cm2(Pt/Ti/TiN電極の
場合は約6×10-7A/cm2)である。核付けによってI−
V特性が著しく向上したことが明らかである。
First, FIG. 5 shows the IV characteristic. According to this data, the leakage current value of the PZT thin film formed on the Pt / TiN electrode shows a remarkable increase with the increase of the applied voltage, but the leakage current value of the PZT thin film formed on the TiO x nucleated Pt / TiN electrode is increased. The leakage current value does not depend on the applied voltage and is almost constant. The leakage current value when 4 V is applied is Ti
1 × 10 -7 A for Pt / TiN electrode with O x nucleation
/ cm 2 but about 2 × 10 -5 A / cm 2 for Pt / TiN electrode without nucleation (about 6 × 10 -7 A / cm 2 for Pt / Ti / TiN electrode) . I-by nucleation
It is clear that the V characteristic has been remarkably improved.

【0037】また、図5に示すように、電極として、T
iOX 核付けしたPt/TiN以外にも、TiOX 核付
けしたIr(イリジウム)を使用した場合も、漏れ電流
値が約1×10-7A/cm2であり、Pt/TiN電極と同等
の優れたI−V特性を示すことが分かる。Irを電極と
して用いた場合、PZT薄膜の表面を図8に示すが、P
ZTは粒径 100nm以下の微細な粒子であって緻密である
ことが分かる。
Further, as shown in FIG.
The leakage current value is about 1 × 10 −7 A / cm 2 when using TiO X nucleated Ir (iridium) in addition to iO X nucleated Pt / TiN, which is equivalent to the Pt / TiN electrode. It can be seen that the excellent IV characteristics of The surface of the PZT thin film when Ir is used as the electrode is shown in FIG.
It can be seen that ZT is a fine particle having a particle size of 100 nm or less and is dense.

【0038】図6には、核付けしたPt/TiN電極上
に形成した薄膜について、最大電圧3V及び5Vにおい
て測定したヒステリシス曲線を示す。3Vでは残留分極
密度13.7μC/cm2、抗電界値53kV/cm の特性が得られて
いる。5Vにおいては残留分極密度18.7μC/cm2、抗電
界値62kV/cm を示した。一方、核付けしないPt/Ti
N電極上に形成した薄膜では、漏れ電流値が大きいため
に分極特性を測定できなかった。
FIG. 6 shows the hysteresis curves of thin films formed on nucleated Pt / TiN electrodes at maximum voltages of 3V and 5V. At 3 V, the characteristics of remanent polarization density of 13.7 μC / cm 2 and coercive electric field value of 53 kV / cm are obtained. At 5 V, the remanent polarization density was 18.7 μC / cm 2 , and the coercive electric field value was 62 kV / cm 2 . On the other hand, Pt / Ti without nucleation
In the thin film formed on the N electrode, the polarization characteristics could not be measured because the leakage current value was large.

【0039】上記したTiOX を核付けしたPt/Ti
N上にPZT薄膜を形成してなるキャパシタについて、
そのキャパシタ性能であるI−V特性や分極率は、図5
及び図6に示した通り、良好であった。また、このキャ
パシタのコンタクト抵抗は、80Ω/μm2と良好であっ
た。
Pt / Ti with nucleated TiO x described above
Regarding a capacitor formed by forming a PZT thin film on N,
The IV characteristics and polarizability which are the capacitor performance are shown in FIG.
And as shown in FIG. 6, it was good. Further, the contact resistance of this capacitor was as good as 80 Ω / μm 2 .

【0040】以上に説明した実施例では、TiOX を核
付けしたPt基板上にゾルーゲル法によってPZT成膜
を行った。この場合、TiOX の粒径は通常 0.5〜500n
m であり、5〜200nm が望ましいが、TiOX の粒径が
あまり小さくても大きくても、核付けの効果に乏しくな
る。また、TiOX の膜厚は通常0.01〜10nmであり、0.
5〜5nmがよく、 1.5〜2.5nm が更によいが、あまり膜
厚が薄すぎると核付けの効果に乏しく、厚すぎるとTi
が膜中で凝集(偏析)して不均一な膜となり易い。
In the examples described above, PZT film formation was carried out by the sol-gel method on the Pt substrate on which TiO x was nucleated. In this case, the particle size of TiO x is usually 0.5 to 500n.
m is preferably 5 to 200 nm, but if the particle size of TiO x is too small or large, the nucleating effect becomes poor. The film thickness of TiO x is usually 0.01 to 10 nm, and
5 to 5 nm is preferable, 1.5 to 2.5 nm is even better, but if the film thickness is too thin, the nucleating effect is poor, and if it is too thick, Ti
Tend to aggregate (segregate) in the film to form a non-uniform film.

【0041】次に、本実施例によるキャパシタを組み込
んだ半導体デバイス、例えば揮発性メモリであるダイナ
ミックRAMのメモリセル(例えばスタック型のもの)
を説明する。
Next, a semiconductor device incorporating the capacitor according to the present embodiment, for example, a memory cell of a dynamic RAM which is a volatile memory (for example, a stack type)
Will be explained.

【0042】まず、図16及び図17について、ダイナミッ
クRAMのメモリセルの一例を示す。
First, referring to FIGS. 16 and 17, an example of a memory cell of the dynamic RAM is shown.

【0043】例えばP- 型シリコン基板1の一主面に
は、フィールド酸化膜2で区画された素子領域が形成さ
れ、ここに、MOSトランジスタからなるトランスファ
ゲートTRとキャパシタCAPとからなるメモリセルM
−CELが設けられている。
For example, an element region partitioned by the field oxide film 2 is formed on one main surface of the P type silicon substrate 1, and a memory cell M including a transfer gate TR composed of a MOS transistor and a capacitor CAP is formed therein.
-CEL is provided.

【0044】トランスファゲートTRにおいては、例え
ばN+ 型ソース領域3とN+ 型ドレイン領域4が不純物
拡散でそれぞれ形成され、これら両領域間にはゲート酸
化膜5を介してワードラインWLが設けられ、ドレイン
領域4にはSiO2 等の絶縁層9、10のコンタクトホー
ル11を介してビットラインBLが接続されている。
In the transfer gate TR, for example, an N + type source region 3 and an N + type drain region 4 are formed by impurity diffusion, and a word line WL is provided between these regions via a gate oxide film 5. The bit line BL is connected to the drain region 4 through a contact hole 11 of insulating layers 9 and 10 made of SiO 2 or the like.

【0045】キャパシタCAPはスタック型と称される
ものであって、ソース領域3に絶縁層10のコンタクトホ
ール12を介してバリア層20(更には、図示省略したポリ
Si層)及び下部電極6が接続され、この下部電極上に
TiOX 核付け層31を介してPZT強誘電体膜17及び上
部電極18が順次積層されている。
The capacitor CAP is called a stack type, and the barrier layer 20 (further, a poly-Si layer (not shown)) and the lower electrode 6 are provided in the source region 3 through the contact hole 12 of the insulating layer 10. The PZT ferroelectric film 17 and the upper electrode 18 are sequentially stacked on the lower electrode with the TiO x nucleation layer 31 interposed therebetween.

【0046】キャパシタCAPを構成する強誘電体膜17
は、原料溶液を用いてゾルーゲル法で形成したPZT、
即ちPb(Zr,Ti)O3 膜からなっている。また、
下部電極6は、例えばTiN層の上にPt等を付着した
ものからなっている。また、強誘電体膜17と接する上部
電極18はPt、Au又はアルミニウム等からなってい
る。
Ferroelectric film 17 forming the capacitor CAP
Is a PZT formed by a sol-gel method using a raw material solution,
That is, it is composed of a Pb (Zr, Ti) O 3 film. Also,
The lower electrode 6 is made of, for example, Pt or the like deposited on a TiN layer. The upper electrode 18 in contact with the ferroelectric film 17 is made of Pt, Au, aluminum or the like.

【0047】次に、このメモリセルM−CELの作製方
法を図9〜図16について説明する。
Next, a method of manufacturing this memory cell M-CEL will be described with reference to FIGS.

【0048】まず、図9のように、P- 型シリコン基板
(ウエハ)1上に選択酸化法によりフィールド酸化膜2
を形成し、熱酸化法によるゲート酸化膜5及び化学的気
相成長法によるポリシリコンワードラインWLをそれぞ
れ形成し、更にAs等のN型不純物の熱拡散でN+ 型ソ
ース領域3及びドレイン領域4をそれぞれ形成する。
First, as shown in FIG. 9, a field oxide film 2 is formed on a P type silicon substrate (wafer) 1 by a selective oxidation method.
To form the gate oxide film 5 by the thermal oxidation method and the polysilicon word line WL by the chemical vapor deposition method, respectively, and further by thermal diffusion of N type impurities such as As, the N + type source region 3 and the drain region. 4 are formed respectively.

【0049】そして、全面に化学的気相成長法で堆積さ
せたSiO2 絶縁層10に対し、ソース領域3上にフォト
リソグラフィでコンタクトホール12を形成する。
Then, a contact hole 12 is formed on the source region 3 by photolithography with respect to the SiO 2 insulating layer 10 deposited on the entire surface by chemical vapor deposition.

【0050】次いで、図10のように、コンタクトホール
12においてソース領域3に接合するように、TiN層
(この下にはポリSi層を設けてよい。)20の上にPt
層6を有する下部電極を形成し、更にTiOX 層31をス
パッタで形成する。これは、全面に被着したTiN層、
Pt層及びTiOX 層をフォトリソグラフィでパターニ
ングすることにより形成可能である。
Then, as shown in FIG. 10, contact holes are formed.
On top of the TiN layer (which may be provided with a poly-Si layer) 20 to join to the source region 3 at 12, Pt.
A lower electrode having a layer 6 is formed, and a TiO x layer 31 is further formed by sputtering. This is a TiN layer deposited on the entire surface,
It can be formed by patterning the Pt layer and the TiO x layer by photolithography.

【0051】次いで、図11のように、下部電極及びTi
X 層を含め全面にスピンコート法又はディップコート
法によって、ゾルーゲル原料溶液27’を塗布する。
Then, as shown in FIG. 11, the lower electrode and the Ti
On the entire surface including the O X layer by spin coating or dip coating, applying a sol-gel raw material solution 27 '.

【0052】次いで、原料溶液27’を塗布したウェハを
所定の温度(100〜300 ℃、例えば 170℃)で例えば3分
間加熱し、塗布した溶液の乾燥を行い、図12のように、
乾燥ゲル膜27を形成する。
Next, the wafer coated with the raw material solution 27 'is heated at a predetermined temperature (100 to 300 ° C., for example 170 ° C.) for 3 minutes to dry the coated solution, and as shown in FIG.
A dry gel film 27 is formed.

【0053】次いで、乾燥を完了したウエハを 480℃で
処理して非晶質化した。そして、大気中でペロブスカイ
ト結晶が生成する温度(600℃以上、例えば 600℃)で例
えば10分間焼結(酸化焼結)し、図13のように、強誘電
体膜17を全面に形成する。
Then, the dried wafer was processed at 480 ° C. to be amorphized. Then, it is sintered (oxidized and sintered) for 10 minutes, for example, at a temperature (600 ° C. or higher, for example 600 ° C.) at which perovskite crystals are generated in the atmosphere, and the ferroelectric film 17 is formed on the entire surface as shown in FIG.

【0054】なお、強誘電体膜17を所定の膜厚(例えば
2000Å)に形成するには、必要に応じて図11の塗布工程
と図12の乾燥工程と上記焼結工程とを繰り返し、一度に
目的とする塗布厚にするのではなく、乾燥膜を積層して
最終膜厚を得ることができる。
The ferroelectric film 17 has a predetermined thickness (for example,
2000 Å), the coating process of FIG. 11 and the drying process of FIG. 12 and the above-mentioned sintering process are repeated as necessary, and the dried film is laminated instead of the intended coating thickness at once. To obtain the final film thickness.

【0055】次いで、図14のように、全面に形成した強
誘電体薄膜17の不要な部分をドライエッチング法などに
よって除去し、下部電極6上にPZT強誘電体膜17を所
定パターンに形成する。
Then, as shown in FIG. 14, unnecessary portions of the ferroelectric thin film 17 formed on the entire surface are removed by a dry etching method or the like to form the PZT ferroelectric film 17 on the lower electrode 6 in a predetermined pattern. .

【0056】次いで、図15のように、フォトリソグラフ
ィによって、強誘電体薄膜17との接合部に白金等からな
る上部電極18を所定パターンに形成する。
Next, as shown in FIG. 15, an upper electrode 18 made of platinum or the like is formed in a predetermined pattern on the junction with the ferroelectric thin film 17 by photolithography.

【0057】更に、公知の方法で層間絶縁膜9、コンタ
クトホール11、ビットラインBLをそれぞれ形成し、図
16に示した如きメモリセルを作製する。
Further, the interlayer insulating film 9, the contact hole 11 and the bit line BL are respectively formed by a known method,
A memory cell as shown in 16 is manufactured.

【0058】このメモリセルでは、キャパシタCAPの
強誘電体膜17を本発明に基づくTiOX 核付けしたPt
電極上に形成しているので、上記したようにその膜組織
が緻密で粒子が微細であり、残留分極値が大きく、リー
ク電流の少ない電気特性を得ることができる。
In this memory cell, the ferroelectric film 17 of the capacitor CAP is Pt in which TiO x nuclei based on the present invention are nucleated.
Since it is formed on the electrode, as described above, the film structure is dense, the particles are fine, the remanent polarization value is large, and the electrical characteristics with little leak current can be obtained.

【0059】以上、本発明の実施例を説明したが、上述
の実施例は本発明の技術的思想に基いて更に変形が可能
である。
Although the embodiments of the present invention have been described above, the above embodiments can be further modified based on the technical idea of the present invention.

【0060】例えば、電極材料と核付け物質について、
まず、電極材料としては、PZTの結晶化温度に耐え、
酸化しにくく、常温で導体であり、Tiを含まないメタ
ル又は酸化物であれば、Pt以外にも、Ir、Pd、P
t−Pd合金、Cr、Ni、Ni−Cu合金、Ru
2 、TiN、TaN、IrO2 等であってよい。そし
て、この電極の表面に堆積させる核付け物質としては、
TiO2 等のTiOX を用いたが、常温下で酸化物とな
り易い金属であればTiをはじめ、Ti以外のZr、P
b、Sr、Ba、La、Zn、Nb、Feの元素のうち
の1種又は1種以上の酸化物を電極上に堆積させること
ができる。
For example, regarding the electrode material and the nucleating substance,
First, as an electrode material, it withstands the crystallization temperature of PZT,
In addition to Pt, Ir, Pd, P other than Pt can be used as long as it is a metal or oxide that does not easily oxidize, is a conductor at room temperature, and does not contain Ti.
t-Pd alloy, Cr, Ni, Ni-Cu alloy, Ru
It may be O 2 , TiN, TaN, IrO 2 or the like. And as a nucleating substance to be deposited on the surface of this electrode,
Although TiO x such as TiO 2 is used, if the metal is a metal that easily forms an oxide at room temperature, it includes Ti, Zr other than Ti, P
Oxides of one or more of the elements b, Sr, Ba, La, Zn, Nb, Fe can be deposited on the electrodes.

【0061】ここで使用可能な上記金属のうち、La、
Zn、Nb及びFeは強誘電体膜に添加可能な元素であ
る。Ti、Zr及びPbはPZTの主成分であり、Sr
及びBaはBSTO((Sr,Ba)TiO3 )の主成
分である。
Of the above metals that can be used here, La,
Zn, Nb and Fe are elements that can be added to the ferroelectric film. Ti, Zr and Pb are the main components of PZT, and Sr
And Ba are the main components of BSTO ((Sr, Ba) TiO 3 ).

【0062】上記金属の酸化物を形成するには、スパッ
タ法だけでなく、高真空中での電子線加熱方式の蒸着法
などにより、Ti、Zr、Pb、Sr、Ba、La、Z
n、Nb、Feを堆積させた後、含酸素環境(例えば、
大気中)で自然酸化させる方法も可能である。
In order to form the above-mentioned metal oxide, not only the sputtering method but also the vapor deposition method of electron beam heating in a high vacuum is used, and Ti, Zr, Pb, Sr, Ba, La and Z are formed.
After depositing n, Nb, and Fe, an oxygen-containing environment (for example,
A method of natural oxidation in the atmosphere) is also possible.

【0063】この場合、中でもTiは極めて活性な物質
であるため、電子線加熱方式の蒸着法により形成される
堆積物は蒸着室中の残留酸素により酸化されるので、強
いて酸化処理を行う必要がない。TiOX の膜厚は0.01
nmから10nmが好ましい。酸化物の堆積方法はスパッタ
法、CVD法、蒸着法が挙げられる。
In this case, since Ti is an extremely active substance in particular, the deposit formed by the electron beam heating vapor deposition method is oxidized by the residual oxygen in the vapor deposition chamber, so that it is necessary to strongly perform the oxidation treatment. Absent. The film thickness of TiO x is 0.01
nm to 10 nm is preferred. Examples of the oxide deposition method include a sputtering method, a CVD method, and a vapor deposition method.

【0064】核付けによる効果は電極層の厚みに係わら
ず期待できることから、電極層の厚みは0.05nm以上とし
てよい。
Since the effect of nucleation can be expected regardless of the thickness of the electrode layer, the thickness of the electrode layer may be 0.05 nm or more.

【0065】電極構造としては、核付け物質層/電極層
/バリア層であり、電極下部のバリア層は、その下部に
下地層、例えばSiO2 層を設け、SiO2 下地層に設
けたコンタクトホール中のポリSi導電層に接合される
構造が考えられる。適用可能な構造は例えばTiOX
Pt/TiN/Siであるが、上記した材料の組み合わ
せから他の代表的な構造として、TiOX /Ir/Ti
N/Si、TiOX /IrO2 /Si、TiOX /Pt
/RuO2 /Si、TiOX /Pt/IrO2/Si、
TiOX /RuO2 /Si、TiOX /TiN/Si、
TiOX /Ni/Ti/Si、TiOX /ITO(Indi
um tin oxide)/Si、ZrOX /Pt/RuO2 /S
i等が挙げられる。
The electrode structure is a nucleating material layer / electrode layer / barrier layer, and the barrier layer below the electrode is provided with an underlayer, for example, a SiO 2 layer thereunder, and a contact hole provided in the SiO 2 underlayer. A structure joined to the poly-Si conductive layer inside is conceivable. Applicable structures are eg TiO x /
Pt / TiN / Si, but another typical structure from the combination of the above materials is TiO x / Ir / Ti.
N / Si, TiO x / IrO 2 / Si, TiO x / Pt
/ RuO 2 / Si, TiO x / Pt / IrO 2 / Si,
TiO x / RuO 2 / Si, TiO x / TiN / Si,
TiO x / Ni / Ti / Si, TiO x / ITO (Indi
um tin oxide) / Si, ZrO x / Pt / RuO 2 / S
i and the like.

【0066】ゾルーゲル法以外のPZT薄膜の形成方法
として、スパッタ法、CVD法、レーザアブレーション
法等が挙げられる。CVD法やスパッタ法による成膜で
は、まずPt基板上にTiOX などの核になる物質を堆
積させ、その後にPZT薄膜を形成することも可能であ
る。
As a method of forming a PZT thin film other than the sol-gel method, a sputtering method, a CVD method, a laser ablation method and the like can be mentioned. In the film formation by the CVD method or the sputtering method, it is possible to first deposit a substance such as TiO x as a nucleus on a Pt substrate and then form a PZT thin film.

【0067】使用可能な強誘電体膜の材質は、上記のP
ZT以外にも、PZTにNb、Zr、Fe等を添加した
PZT、BSTO((Sr,Ba)TiO3 )、PLT
((Pb,La)X (Ti,Zr)1-X 3 )等であっ
てよい。
The material of the ferroelectric film that can be used is P
In addition to ZT, PZT added with Nb, Zr, Fe, etc., BSTO ((Sr, Ba) TiO 3 ), PLT
It may be ((Pb, La) x (Ti, Zr) 1-x O 3 ).

【0068】本発明に基づく強誘電体膜は、例えば図1
に示したPt/PZT/Pt/バリア層/ポリ−Si構
造のキャパシタ(スタック型キャパシタ)を有するデバ
イスに適用可能であるが、これに限らず、SiO2 膜上
に上述のスタック型キャパシタを設けてこのキャパシタ
の下部電極を延設してトランスファゲートのソース領域
と接続する構造としてよいし、或いはスタック型ではな
く、いわゆるトレンチ(溝)内にキャパシタを組み込ん
だ構造のキャパシタにも適用可能である。
A ferroelectric film according to the present invention is shown in FIG.
The present invention can be applied to a device having a Pt / PZT / Pt / barrier layer / poly-Si structure capacitor (stack type capacitor) shown in FIG. 1, but is not limited to this, and the above stack type capacitor is provided on the SiO 2 film. The lower electrode of the lever capacitor may be extended and connected to the source region of the transfer gate, or may be applied to a capacitor having a structure in which a capacitor is incorporated in a so-called trench (groove) instead of the stack type. .

【0069】[0069]

【発明の作用効果】本発明は、上述した如く、電極と、
この電極上に形成された強誘電体膜とを具備し、前記電
極と前記強誘電体膜との界面に、前記強誘電体膜の構成
金属元素のうちの少なくとも1種の元素の酸化物が堆積
されているので、ゾルーゲル法等の成膜方法において緻
密な構造であってかつ良好な電気的特性を示すPZT等
の強誘電体薄膜の形成を可能にする電極構造を有するキ
ャパシタと、このキャパシタ及び強誘電体膜の形成方法
を提供することができる。
The present invention, as described above, includes an electrode,
A ferroelectric film formed on the electrode, wherein an oxide of at least one element of the metal elements constituting the ferroelectric film is present at the interface between the electrode and the ferroelectric film. A capacitor having an electrode structure capable of forming a ferroelectric thin film, such as PZT, which has a dense structure in a film forming method such as a sol-gel method and which exhibits good electrical characteristics because of being deposited, and this capacitor And a method for forming a ferroelectric film can be provided.

【0070】即ち、本発明は、既述した従来技術とは異
なり、酸化チタン等の比較的に容易に形成できる物質を
電極表面に塊状に分散、堆積させることによってPZT
等の核密度を増加させ、その結晶化を促進し、結晶粒子
を微細化し、緻密な構造の強誘電体薄膜の形成を可能に
するものである。
That is, the present invention differs from the above-mentioned prior art in that PZT is formed by dispersing and depositing a substance such as titanium oxide, which can be formed relatively easily, in a lump form on the electrode surface.
Etc. to increase the nucleus density, promote crystallization thereof, miniaturize crystal grains, and enable formation of a ferroelectric thin film having a dense structure.

【0071】従って、本発明によれば、強誘電体膜の厚
み方向に一様な膜構造を提供できる。そして、下部電極
の下地層としてTi層を必要としないので、含酸素雰囲
気における成膜においても電極内部にTiOX 層が形成
されることがないので、コンタクト抵抗増加の問題が発
生しない。本発明はこれらの問題点を一挙に解決するも
のである。
Therefore, according to the present invention, it is possible to provide a uniform film structure in the thickness direction of the ferroelectric film. Further, since the Ti layer is not required as the underlying layer of the lower electrode, the TiO X layer is not formed inside the electrode even in the film formation in the oxygen-containing atmosphere, so that the problem of increasing contact resistance does not occur. The present invention solves these problems at once.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく強誘電体キャパシタを組み込ん
だ半導体デバイスの概略断面図である。
FIG. 1 is a schematic cross-sectional view of a semiconductor device incorporating a ferroelectric capacitor according to the present invention.

【図2】同キャパシタの作製フローを示す各概略断面図
である。
FIG. 2 is each schematic cross-sectional view showing the flow of manufacturing the same capacitor.

【図3】Pt基板上に形成したPZT薄膜のSEM像を
比較して示す各スケッチ図である。
FIG. 3 is a sketch diagram showing a comparison of SEM images of PZT thin films formed on a Pt substrate.

【図4】種々のTiOX 核を持つPt基板上に形成した
PZT薄膜のSEM像を比較して示す各スケッチ図であ
る。
FIG. 4 is each sketch diagram showing SEM images of PZT thin films formed on Pt substrates having various TiO x nuclei for comparison.

【図5】各種基板上に形成したPZT薄膜のI−V特性
図である。
FIG. 5 is an IV characteristic diagram of PZT thin films formed on various substrates.

【図6】同PZT薄膜の分極値のヒステリシス曲線図で
ある。
FIG. 6 is a hysteresis curve diagram of polarization values of the PZT thin film.

【図7】TiOX を核付けした電極と同核付けをしない
電極の各表面のAFM像を比較して示す各スケッチ図で
ある。
FIGS. 7A and 7B are sketch diagrams showing AFM images of respective surfaces of an electrode with nucleated TiO x and an electrode without nucleated, which are compared with each other.

【図8】TiOX を核付けしたIr基板上に形成したP
ZT薄膜のSEM像のスケッチ図である。
FIG. 8: P formed on an Ir substrate with TiO x nucleated
It is a sketch drawing of the SEM image of a ZT thin film.

【図9】本発明に基づく強誘電体キャパシタを組み込ん
だダイナミックRAMのメモリセルの製造方法の一工程
段階を示す拡大断面図である。
FIG. 9 is an enlarged cross-sectional view showing one process step of a method of manufacturing a memory cell of a dynamic RAM incorporating a ferroelectric capacitor according to the present invention.

【図10】同メモリセルの製造方法の他の一工程段階を示
す拡大断面図である。
FIG. 10 is an enlarged cross-sectional view showing another process step of the method for manufacturing the memory cell.

【図11】同メモリセルの製造方法の他の一工程段階を示
す拡大断面図である。
FIG. 11 is an enlarged cross-sectional view showing another process step of the method for manufacturing the memory cell.

【図12】同メモリセルの製造方法の他の一工程段階を示
す拡大断面図である。
FIG. 12 is an enlarged cross-sectional view showing another process step of the method for manufacturing the memory cell.

【図13】同メモリセルの製造方法の他の一工程段階を示
す拡大断面図である。
FIG. 13 is an enlarged cross-sectional view showing another process step of the method for manufacturing the memory cell.

【図14】同メモリセルの製造方法の他の一工程段階を示
す拡大断面図である。
FIG. 14 is an enlarged cross-sectional view showing another process step of the method for manufacturing the memory cell.

【図15】同メモリセルの製造方法の更に他の一工程段階
を示す拡大断面図である。
FIG. 15 is an enlarged cross-sectional view showing still another process step of the method for manufacturing the same memory cell.

【図16】同メモリセルの拡大断面図(図17の XVI−XVI
線断面図)である。
FIG. 16 is an enlarged cross-sectional view of the memory cell (XVI-XVI in FIG. 17).
It is a line sectional view).

【図17】同メモリセルの拡大平面図である。FIG. 17 is an enlarged plan view of the memory cell.

【図18】従来の強誘電体キャパシタの二例の概略断面図
である。
FIG. 18 is a schematic cross-sectional view of two examples of conventional ferroelectric capacitors.

【符号の説明】[Explanation of symbols]

1・・・シリコン基板 3・・・N+ 型ソース領域 4・・・N+ 型ドレイン領域 6・・・Pt電極 7−1、7−2、17・・・強誘電体膜(PZT薄膜) 18・・・上部電極 20・・・バリア層 21・・・下地層 22・・・Ti層 30・・・ポリSi層 31・・・TiOX 層 CAP・・・強誘電体キャパシタ TR・・・トランスファゲート M−CEL・・・メモリセル WL・・・ワードライン(ゲート電極) BL・・・ビットライン1 ... Silicon substrate 3 ... N + type source region 4 ... N + type drain region 6 ... Pt electrode 7-1, 7-2, 17 ... Ferroelectric film (PZT thin film) 18 ... Upper electrode 20 ... Barrier layer 21 ... Underlayer 22 ... Ti layer 30 ... Poly Si layer 31 ... TiO X layer CAP ... Ferroelectric capacitor TR ... Transfer gate M-CEL ... Memory cell WL ... Word line (gate electrode) BL ... Bit line

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電極と、この電極上に形成された強誘電
体膜とを具備し、前記電極と前記強誘電体膜との界面
に、前記強誘電体膜の構成金属元素のうちの少なくとも
1種の元素の酸化物が堆積されている強誘電体キャパシ
タ。
1. An electrode and a ferroelectric film formed on the electrode, wherein at least one of constituent metal elements of the ferroelectric film is provided at an interface between the electrode and the ferroelectric film. A ferroelectric capacitor in which an oxide of one element is deposited.
【請求項2】 電極が常温で酸化されにくい導体からな
り、酸化物が常温で酸化され易い金属の酸化物からな
る、請求項1に記載した強誘電体キャパシタ。
2. The ferroelectric capacitor according to claim 1, wherein the electrode is made of a conductor that is not easily oxidized at room temperature, and the oxide is made of a metal oxide that is easily oxidized at room temperature.
【請求項3】 酸化物が、膜厚0.01〜10nmの堆積物から
なる、請求項1又は2に記載した強誘電体キャパシタ。
3. The ferroelectric capacitor according to claim 1, wherein the oxide is a deposit having a film thickness of 0.01 to 10 nm.
【請求項4】 電極下にバリア層が設けられている、請
求項1〜3のいずれか1項に記載した強誘電体キャパシ
タ。
4. The ferroelectric capacitor according to claim 1, wherein a barrier layer is provided under the electrode.
【請求項5】 強誘電体膜がチタン酸ジルコン酸鉛系で
ある、請求項1〜4のいずれか1項に記載した強誘電体
キャパシタ。
5. The ferroelectric capacitor according to claim 1, wherein the ferroelectric film is a lead zirconate titanate system.
【請求項6】 請求項1〜5のいずれか1項に記載した
強誘電体キャパシタを形成するに際し、前記強誘電体膜
の構成金属元素のうちの少なくとも1種の元素の酸化物
を電極上に堆積させ、この堆積された酸化物を含む前記
電極上に前記強誘電体膜を形成する、強誘電体キャパシ
タの形成方法。
6. When forming the ferroelectric capacitor according to claim 1, an oxide of at least one element of the metal elements constituting the ferroelectric film is formed on the electrode. And forming the ferroelectric film on the electrode containing the deposited oxide.
【請求項7】 請求項1〜5のいずれか1項に記載した
強誘電体膜を形成するに際し、前記強誘電体膜の構成金
属元素のうちの少なくとも1種の元素の酸化物を堆積さ
せた電極上に、前記強誘電体膜を形成する、強誘電体膜
の形成方法。
7. When forming the ferroelectric film according to claim 1, depositing an oxide of at least one element of the constituent metal elements of the ferroelectric film. A method of forming a ferroelectric film, comprising forming the ferroelectric film on an electrode.
【請求項8】 強誘電体膜をゾルーゲル法によって形成
する、請求項7に記載した形成方法。
8. The forming method according to claim 7, wherein the ferroelectric film is formed by a sol-gel method.
JP7047863A 1995-02-13 1995-02-13 Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film Pending JPH08222711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7047863A JPH08222711A (en) 1995-02-13 1995-02-13 Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047863A JPH08222711A (en) 1995-02-13 1995-02-13 Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film

Publications (1)

Publication Number Publication Date
JPH08222711A true JPH08222711A (en) 1996-08-30

Family

ID=12787216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047863A Pending JPH08222711A (en) 1995-02-13 1995-02-13 Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film

Country Status (1)

Country Link
JP (1) JPH08222711A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027888A (en) * 1996-07-12 1998-01-27 Sony Corp Laminated electrode for ferroelectrics capacity insulating film and ferroelectrics capacity element using the same
US6333066B1 (en) 1997-11-21 2001-12-25 Samsung Electronics Co., Ltd. Method for forming PZT thin film using seed layer
US6376090B1 (en) 1998-09-25 2002-04-23 Sharp Kabushiki Kaisha Method for manufacturing a substrate with an oxide ferroelectric thin film formed thereon and a substrate with an oxide ferroelectric thin film formed thereon
WO2003052840A1 (en) * 2001-12-18 2003-06-26 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
KR100393197B1 (en) * 1996-10-31 2003-11-01 삼성전자주식회사 Ferroelectric capacitor and manufacturing method thereof
KR100498439B1 (en) * 1999-01-06 2005-07-01 삼성전자주식회사 Manufacturing method of capacitor using metallo-organics
KR100657897B1 (en) * 2004-08-21 2006-12-14 삼성전자주식회사 Memory Device Comprising Voltage Controller and Method of Manufacturing the Same
JP2006351827A (en) * 2005-06-16 2006-12-28 Tokyo Electron Ltd Film-formation method
KR100697272B1 (en) * 2004-08-06 2007-03-21 삼성전자주식회사 A ferroelectric memory device and a method of forming the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027888A (en) * 1996-07-12 1998-01-27 Sony Corp Laminated electrode for ferroelectrics capacity insulating film and ferroelectrics capacity element using the same
KR100393197B1 (en) * 1996-10-31 2003-11-01 삼성전자주식회사 Ferroelectric capacitor and manufacturing method thereof
US6333066B1 (en) 1997-11-21 2001-12-25 Samsung Electronics Co., Ltd. Method for forming PZT thin film using seed layer
US6376090B1 (en) 1998-09-25 2002-04-23 Sharp Kabushiki Kaisha Method for manufacturing a substrate with an oxide ferroelectric thin film formed thereon and a substrate with an oxide ferroelectric thin film formed thereon
KR100498439B1 (en) * 1999-01-06 2005-07-01 삼성전자주식회사 Manufacturing method of capacitor using metallo-organics
US7033001B2 (en) 2001-12-18 2006-04-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
WO2003052840A1 (en) * 2001-12-18 2003-06-26 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
US7478558B2 (en) 2001-12-18 2009-01-20 Panasonic Corporation Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
KR100697272B1 (en) * 2004-08-06 2007-03-21 삼성전자주식회사 A ferroelectric memory device and a method of forming the same
US7517703B2 (en) 2004-08-06 2009-04-14 Samsung Electronics Co., Ltd. Method for forming ferroelectric memory device
KR100657897B1 (en) * 2004-08-21 2006-12-14 삼성전자주식회사 Memory Device Comprising Voltage Controller and Method of Manufacturing the Same
JP2006351827A (en) * 2005-06-16 2006-12-28 Tokyo Electron Ltd Film-formation method
JP4536607B2 (en) * 2005-06-16 2010-09-01 東京エレクトロン株式会社 Film forming method and computer storage medium

Similar Documents

Publication Publication Date Title
US6194228B1 (en) Electronic device having perovskite-type oxide film, production thereof, and ferroelectric capacitor
US6351006B1 (en) Ferroelectric capacitor with means to prevent deterioration
US7598095B2 (en) Ferroelectric memory and ferroelectric capacitor with Ir-alloy electrode or Ru-alloy electrode and method of manufacturing same
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
US6608383B2 (en) Semiconductor device including capacitor with lower electrode including iridium and iridium oxide layers
JP3373525B2 (en) Multilayer ferroelectric cell and perovskite electron heterostructure integrated on silicon
KR100417743B1 (en) Ferroelectric memory with ferroelectric thin film having thickness of 90 nanometers or less, and method of making same
JP4772188B2 (en) Method for making ferroelectric capacitor and method for growing PZT layer on substrate
JP3832617B2 (en) Lead germanate ferroelectric structure of multilayer electrode and its deposition method
JPH1050960A (en) Ferroelectric capacitor, ferroelectric memory and production thereof
KR19990013720A (en) Ferroelectric Capacitor, Manufacturing Method Thereof and Memory Cell Using the Capacitor
JPH10326755A (en) Method of forming preferred orientation-controlled platinum films using oxygen and element manufactured thereby
JPH08222711A (en) Ferroelectric capacitor and formation of ferroelectric capacitor and ferroelectric film
US6297085B1 (en) Method for manufacturing ferroelectric capacitor and method for manufacturing ferroelectric memory
JPH1012832A (en) Method for manufacturing ferroelectrics capacitor and method for manufacturing ferroelectrics memory device
US20040109280A1 (en) Ferroelectric capacitor and process for its manufacture
US20040058492A1 (en) Vapor growth method for metal oxide dielectric film and pzt film
US5776788A (en) Method for forming a strong dielectric film by the sol-gel technique and a method for manufacturing a capacitor
JPH10173140A (en) Manufacture of ferroelectric capacitor and manufacture of ferroelectric memory device
JP3837712B2 (en) Ferroelectric capacitor and manufacturing method thereof
US6504228B1 (en) Semiconductor device and method for manufacturing the same
JPH09129827A (en) Ferroelectric capacitor
JP2001326337A (en) Method for manufacturing dielectric film, method for manufacturing capacitor and method for manufacturing semiconductor device
JP2002334875A (en) Vapor growth method for metal oxide dielectric film
JP3294214B2 (en) Thin film capacitors

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021022