JP2002327043A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2002327043A
JP2002327043A JP2001134772A JP2001134772A JP2002327043A JP 2002327043 A JP2002327043 A JP 2002327043A JP 2001134772 A JP2001134772 A JP 2001134772A JP 2001134772 A JP2001134772 A JP 2001134772A JP 2002327043 A JP2002327043 A JP 2002327043A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
resin
phenol
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001134772A
Other languages
Japanese (ja)
Inventor
Yusuke Ito
祐輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001134772A priority Critical patent/JP2002327043A/en
Publication of JP2002327043A publication Critical patent/JP2002327043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition enabling it to fill an inorganic filler therein by an amount higher than a conventional level and having an excellent fluidity, and to provide a semiconductor device obtained by sealing a semiconductor element using this epoxy resin composition. SOLUTION: In an epoxy resin composition comprising, essentially, (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator and (D) an inorganic filler, this epoxy resin composition is specified by that the relative standard deviation of the ratio of the peak area derived from the epoxy resin to that derived from the phenol resin, which is obtained by pyrolysis GC/MS(gas chromatography/mass spectrometry), is <=10 and the semiconductor device is obtained by sealing a semiconductor element using this composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動性が良好で、
且つ無機充填材の高充填化による耐半田クラック性に優
れたエポキシ樹脂組成物、及びこのエポキシ樹脂組成物
を用いた半導体装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for improving the fluidity,
The present invention also relates to an epoxy resin composition excellent in solder crack resistance due to high filling of an inorganic filler, and a semiconductor device using the epoxy resin composition.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、I
C、LSI等の半導体素子は、外的刺激(機械的・熱的
衝撃、化学的作用等)から保護するためにエポキシ樹脂
組成物で封止されてきた。しかし、近年の半導体素子の
集積度向上とそれに伴う大型化の一方で、最近の電子機
器の小型化による半導体装置の小型化・薄型化が求めら
れ、且つプリント回路基板への実装方法も従来のピン挿
入型から表面実装型へ移行してきた。しかしながら、表
面実装の半田処理時の熱衝撃による半導体装置のクラッ
クや、チップ・リードフレームとエポキシ樹脂組成物の
硬化物との界面の剥離といった問題が生じ、耐半田クラ
ック性がエポキシ樹脂組成物に強く求められている。こ
れらのクラックや剥離は、半田処理前の半導体装置自身
が吸湿し、半田処理時の高温下でその水分が水蒸気爆発
を起こすことによって生じると考えられており、それを
防ぐためにエポキシ樹脂組成物に低吸湿性を付与する等
の手法がよく用いられている。その低吸湿化の手法の一
つとして、低粘度の結晶性エポキシ樹脂を用いて無機充
填材を高充填化し、樹脂成分の含有量を減少させる技術
がある。従来、このような手法に用いられるエポキシ樹
脂としては、ビフェニル型エポキシ樹脂が挙げられ、無
機充填材を高充填化したエポキシ樹脂組成物によく使用
されるものである。しかしながら、ビフェニル型エポキ
シ樹脂の様な低粘度の結晶性エポキシ樹脂を用いても無
機充填材を90重量%以上配合したエポキシ樹脂組成物
を製造することは容易ではなく、流動性や粘度の大幅な
悪化を避けることは困難であった。その解決策として、
ビフェニル型エポキシ樹脂よりも、更に低粘度のエポキ
シ樹脂を用いることが考えられるが、現状ではビスフェ
ノール型エポキシ樹脂等の低分子量エポキシ樹脂を用い
ざるを得ない。しかしながら、これらのエポキシ樹脂は
室温で液体或いは半固形状であり、取り扱い作業性が悪
いことが大きな欠点として挙げられる。
2. Description of the Related Art Conventionally, diodes, transistors, I
Semiconductor elements such as C and LSI have been sealed with an epoxy resin composition to protect them from external stimuli (mechanical / thermal shock, chemical action, etc.). However, while the degree of integration of semiconductor elements has been improved in recent years and their size has been increased, miniaturization and thinning of semiconductor devices due to recent downsizing of electronic devices have been demanded, and mounting methods on printed circuit boards have been conventionally used. There has been a shift from pin insertion to surface mount. However, problems such as cracks in semiconductor devices due to thermal shock during the surface-mounting soldering process and peeling of the interface between the chip / lead frame and the cured product of the epoxy resin composition occur. Strongly sought. It is believed that these cracks and peeling are caused by the semiconductor device itself before the soldering process absorbs moisture and the moisture causes a steam explosion at a high temperature during the soldering process. Techniques such as imparting low hygroscopicity are often used. As one of the techniques for reducing the moisture absorption, there is a technique in which a low-viscosity crystalline epoxy resin is used to highly fill an inorganic filler to reduce the content of a resin component. Conventionally, as an epoxy resin used in such a method, a biphenyl-type epoxy resin can be mentioned, which is often used for an epoxy resin composition in which an inorganic filler is highly filled. However, even if a crystalline epoxy resin having a low viscosity such as a biphenyl type epoxy resin is used, it is not easy to produce an epoxy resin composition containing an inorganic filler in an amount of 90% by weight or more. It was difficult to avoid deterioration. As a solution,
Although it is conceivable to use an epoxy resin having a lower viscosity than the biphenyl type epoxy resin, at present, a low molecular weight epoxy resin such as a bisphenol type epoxy resin must be used. However, these epoxy resins are liquid or semi-solid at room temperature, and the poor workability is a major drawback.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来以上の
無機充填材の高充填化を実現し、且つ流動性に優れたエ
ポキシ樹脂組成物、及びこのエポキシ樹脂組成物によっ
て半導体素子を封止してなる半導体装置を提供するのも
のである。
DISCLOSURE OF THE INVENTION The present invention provides an epoxy resin composition which achieves a higher filling of inorganic fillers than before and has excellent fluidity, and encapsulating a semiconductor element with the epoxy resin composition. And a semiconductor device comprising:

【0004】[0004]

【課題を解決するための手段】本発明は、(A)エポキ
シ樹脂、(B)フェノール樹脂、(C)硬化促進剤、
(D)無機質充填材を必須成分とするエポキシ樹脂組成
物において、熱分解GC/MSによるエポキシ樹脂由来
のピーク面積とフェノール樹脂由来のピーク面積との比
の相対標準偏差が10以下であるエポキシ樹脂組成物及
びこれを用いて半導体素子を封止してなる半導体装置で
ある。
The present invention provides (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator,
(D) an epoxy resin composition containing an inorganic filler as an essential component, wherein the epoxy resin has a relative standard deviation of 10 or less in the ratio of the peak area derived from the epoxy resin to the peak area derived from the phenol resin by pyrolysis GC / MS. A composition and a semiconductor device in which a semiconductor element is sealed using the composition.

【0005】[0005]

【発明の実施の形態】本発明に用いられるエポキシ樹脂
は、1分子中に2個以上のエポキシ基を有するモノマ
ー、オリゴマー、ポリマー全般を指し、例えば、ビスフ
ェノールA型エポキシ樹脂、フェノールノボラック型エ
ポキシ樹脂、オルソクレゾールノボラック型エポキシ樹
脂、ナフトールノボラック型エポキシ樹脂、トリフェノ
ールメタン型エポキシ樹脂、ジシクロペンタジエン変性
フェノール型エポキシ樹脂、フェノールアラルキル型エ
ポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、
ビフェニル型エポキシ樹脂、ハイドロキノン型エポキシ
樹脂、スチルベン型エポキシ樹脂、ビスフェノールF型
エポキシ樹脂等が挙げられるが、これらに限定されるも
のではない。又、これらのエポキシ樹脂は単独でも混合
して用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having two or more epoxy groups in one molecule, such as bisphenol A type epoxy resin and phenol novolak type epoxy resin. , Ortho-cresol novolak epoxy resin, naphthol novolak epoxy resin, triphenolmethane epoxy resin, dicyclopentadiene modified phenol epoxy resin, phenol aralkyl epoxy resin, terpene modified phenol epoxy resin,
Examples include, but are not limited to, biphenyl-type epoxy resins, hydroquinone-type epoxy resins, stilbene-type epoxy resins, and bisphenol-F-type epoxy resins. These epoxy resins may be used alone or as a mixture.

【0006】半導体装置の耐半田特性を向上することを
目的に樹脂組成物中の無機質充填材の配合量を増大さ
せ、得られた樹脂組成物の硬化物の低吸湿化、低熱膨張
化、高強度化を達成させる場合には、全エポキシ樹脂中
に、常温で結晶性を示し、融点を越えると極めて低粘度
の液状となる結晶性エポキシ樹脂を30重量%以上用い
ることが特に好ましい。本発明での結晶性エポキシ樹脂
の融点は、示差走査熱量計を用いて、常温から5℃/分
で昇温した結晶融解の吸熱ピークの頂点の温度を示す。
[0006] In order to improve the solder resistance of the semiconductor device, the amount of the inorganic filler in the resin composition is increased, and the cured product of the obtained resin composition has low moisture absorption, low thermal expansion, and high thermal expansion. In order to achieve strength, it is particularly preferable to use 30% by weight or more of a crystalline epoxy resin which exhibits crystallinity at room temperature and becomes a very low-viscosity liquid above its melting point in all epoxy resins. The melting point of the crystalline epoxy resin in the present invention indicates the temperature at the top of the endothermic peak of crystal melting at a temperature rising from room temperature at 5 ° C./min using a differential scanning calorimeter.

【0007】本発明で用いられるフェノール樹脂として
は、1分子中に2個以上のフェノール性水酸基を有する
モノマー、オリゴマー、ポリマー全般を指し、例えば、
フェノールノボラック樹脂、クレゾールノボラック樹
脂、フェノールアラルキル樹脂、テルペン変性フェノー
ル樹脂、ジシクロペンタジエン変性フェノール樹脂、ナ
フトールアラルキル樹脂、トリフェノールメタン型樹
脂、ビスフェノール化合物等が挙げられるが、これらに
限定されるものではない。又、これらのフェノール樹脂
は単独でも混合して用いてもよい。本発明におけるフェ
ノール樹脂の軟化点は、JIS K 2406の環球法
に準じて測定した。
The phenolic resin used in the present invention refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule.
Phenol novolak resin, cresol novolak resin, phenol aralkyl resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, naphthol aralkyl resin, triphenolmethane-type resin, bisphenol compound, and the like, but are not limited thereto. . Further, these phenol resins may be used alone or in combination. The softening point of the phenolic resin in the present invention was measured according to the ring and ball method of JIS K2406.

【0008】本発明の最も重要な点は(A)成分のエポ
キシ樹脂、(B)成分のフェノール樹脂を樹脂の劣化を
伴うことなく均一分散を行うことである。本発明におけ
るエポキシ樹脂組成物の均一性を確認する手段として熱
分解GC/MSの測定、評価が有効な手段であることを
見いだした。熱分解GC/MSは、熱分解炉に投入され
た試料を分解、気化しガス化を行う。そのガスをガスク
ロマトグラフ(GC)によって分離をする。分離された
各成分をマススペクトル測定(MS)により定性分析を
行い、物質を特定するものである。表1に熱分解GC/
MS測定により得られたチャートの一例を示す。この測
定を行うことによりエポキシ樹脂組成物中のエポキシ樹
脂由来のピーク面積とフェノール樹脂由来のピーク面積
を分離、帰属することが出来る。この時、帰属されるエ
ポキシ樹脂由来のピーク面積とフェノール樹脂由来のピ
ーク面積の比率を求める。表2にエポキシ樹脂由来のピ
ーク面積とフェノール樹脂由来のピーク面積の比率の一
例を示す。このピーク面積比は半定量性があり、同一の
材料を複数回測定した場合、分散が完全に行われていれ
ばピーク面積比率は同じとなる。従って、同じエポキシ
樹脂組成物を複数回測定し、同様に比率を求めそのばら
つきを見ることによってエポキシ樹脂組成物の均一性を
確認することが出来る。この時、測定した結果を基に相
対標準偏差を計算することによってばらつきを数値化す
ることが可能である。複数回測定する際の測定回数とし
ては3回以上であり、好ましくは5回以上、より好まし
くは10回以上である。測定回数が3未満では正確な相
対標準偏差が得られない可能性がある。相対標準偏差は
小さいほどエポキシ樹脂組成物中のエポキシ樹脂とフェ
ノール樹脂の分散性が良好であることを示し、この相対
標準偏差は10以下が好ましい。10よりも大きいとエ
ポキシ樹脂組成物中のエポキシ樹脂とフェノール樹脂の
分散性が不十分で、流動性や硬化性の低下が見られる。
The most important point of the present invention is to uniformly disperse the epoxy resin (A) and the phenol resin (B) without deterioration of the resin. As a means for confirming the uniformity of the epoxy resin composition in the present invention, it has been found that measurement and evaluation of pyrolysis GC / MS are effective means. In the pyrolysis GC / MS, a sample put in a pyrolysis furnace is decomposed, vaporized, and gasified. The gas is separated by gas chromatography (GC). Each of the separated components is subjected to qualitative analysis by mass spectrometry (MS) to specify a substance. Table 1 shows the pyrolysis GC /
3 shows an example of a chart obtained by MS measurement. By performing this measurement, the peak area derived from the epoxy resin and the peak area derived from the phenol resin in the epoxy resin composition can be separated and assigned. At this time, the ratio of the assigned peak area derived from the epoxy resin to the peak area derived from the phenol resin is determined. Table 2 shows an example of the ratio of the peak area derived from the epoxy resin to the peak area derived from the phenol resin. This peak area ratio is semi-quantitative, and when the same material is measured a plurality of times, the peak area ratio becomes the same if dispersion is completely performed. Therefore, the uniformity of the epoxy resin composition can be confirmed by measuring the same epoxy resin composition a plurality of times, calculating the ratio in the same manner, and observing the variation. At this time, the variation can be quantified by calculating the relative standard deviation based on the measured result. The number of times of measurement in multiple measurements is 3 or more, preferably 5 or more, more preferably 10 or more. If the number of measurements is less than 3, an accurate relative standard deviation may not be obtained. The smaller the relative standard deviation, the better the dispersibility of the epoxy resin and the phenolic resin in the epoxy resin composition, and the relative standard deviation is preferably 10 or less. If it is larger than 10, the dispersibility of the epoxy resin and the phenol resin in the epoxy resin composition is insufficient, and a decrease in fluidity and curability is observed.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】均一分散には、(A)成分のエポキシ樹
脂、(B)成分のフェノール樹脂の混合が重要である
が、混合する方法として、樹脂の劣化を伴うことなく均
一分散を行うことができれば方法は問わないが、好まし
くは、(A)成分、(B)成分を加熱、溶融混合を行
い、溶融した後に高速撹拌や剪断をかけて微分散化を短
時間で行う方法である。(A)成分のエポキシ樹脂、
(B)成分のフェノール樹脂との均一な溶融混合物を得
るために、従来の加熱溶融による混合撹拌だけではエポ
キシ樹脂とフェノール樹脂が偏在している部分が存在
し、エポキシ樹脂とフェノール樹脂が十分に均一分散さ
れていない。また分散を向上させるために加熱溶融状態
で長時間混合を続けると樹脂の酸化劣化や反応が進行し
てしまうおそれがある。従って、エポキシ樹脂とフェノ
ール樹脂の劣化を伴うことなく均一分散させる手段とし
ては、樹脂を溶融後、短時間で分散を行うことが重要と
なる。そのための工程の一例として、超高速ミキサーで
高速撹拌を行い、且つミキサー周辺にスリットを設ける
ことで、溶融され、撹拌されている樹脂がスリットを通
過する際に剪断力を与え、それによる微分散化を短時間
で行う方法が挙げられる。これによって、エポキシ樹脂
とフェノール樹脂を溶融した後に樹脂を長時間加熱状態
に置くことが無く短時間で樹脂をナノレベルにまで分散
することが可能である。樹脂を劣化させることなく均一
に分散させることにより粘度の低下に伴う流動性の向上
や、エポキシ樹脂とフェノール樹脂の反応性が向上する
事で硬化性の改善、曲げ強度の向上等、特性の改善効果
が得られる。
For uniform dispersion, it is important to mix the epoxy resin (A) and the phenol resin (B), but if the mixing method is such that uniform dispersion can be achieved without deterioration of the resin. There is no limitation on the method, but preferably, the component (A) and the component (B) are heated and melt-mixed, and after being melted, high-speed stirring or shearing is performed to perform fine dispersion in a short time. (A) an epoxy resin of the component,
In order to obtain a uniform molten mixture with the phenol resin of the component (B), there is a portion where the epoxy resin and the phenol resin are unevenly distributed only by the conventional mixing and stirring by heating and melting, and the epoxy resin and the phenol resin are sufficiently mixed. Not uniformly dispersed. Further, if mixing is continued for a long time in a heated and molten state in order to improve the dispersion, there is a possibility that the oxidative deterioration of the resin and the reaction proceed. Therefore, as a means for uniformly dispersing the epoxy resin and the phenol resin without deterioration, it is important to disperse the resin in a short time after melting the resin. As an example of a process for this, high-speed stirring is performed with an ultra-high-speed mixer, and a slit is provided around the mixer, so that the resin that is melted and stirred gives a shearing force when passing through the slit, thereby causing fine dispersion. For example, in a short time. This makes it possible to disperse the resin to the nano level in a short time without leaving the resin in a heated state for a long time after the epoxy resin and the phenol resin are melted. Improve properties such as improving fluidity due to viscosity decrease by dispersing the resin uniformly without deterioration, and improving curability and bending strength by improving the reactivity between epoxy resin and phenolic resin. The effect is obtained.

【0012】本発明で用いられる硬化促進剤としては、
前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒
となり得るものを指し、具体例としては、トリブチルア
ミン、1,8−ジアザビシクロ(5,4,0)ウンデセ
ン−7等のアミン系化合物、トリフェニルホスフィン、
テトラフェニルホスホニウム・テトラフェニルボレート
塩等の有機リン系化合物、2−メチルイミダゾール等の
イミダゾール化合物等が挙げられるが、これらに限定さ
れるものではない。又これらの硬化促進剤は単独でも混
合して用いてもよい。
The curing accelerator used in the present invention includes:
A substance that can serve as a catalyst for a cross-linking reaction between the epoxy resin and the phenol resin. Specific examples include amine compounds such as tributylamine and 1,8-diazabicyclo (5,4,0) undecene-7, and triphenylphosphine. ,
Examples include organic phosphorus compounds such as tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.

【0013】本発明で用いられる無機質充填材として
は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化
珪素、窒化アルミ等が挙げられる。無機質充填材の配合
量を多くする場合は、溶融シリカを用いるのが一般的で
ある。溶融シリカは、破砕状、球状のいずれでも使用可
能であるが、溶融シリカの配合量を高め、かつ成形材料
の溶融粘度の上昇を抑えるためには、球状のものを主に
用いる方が好ましい。更に球状シリカの配合量を多くす
るためには、球状シリカの粒度分布がより広くなるよう
に調整することが望ましい。無機質充填材の配合量とし
ては、全エポキシ樹脂組成物に対して、80〜95重量
%配合されることが好ましい。80重量%未満であれば
吸水率の増加に伴う半田クラックが発生する可能性があ
り、95重量%を越えると樹脂成分が少なくなりすぎ成
形時の流動性が悪くなる可能性がある。より好ましい範
囲は85〜93重量%である。
The inorganic filler used in the present invention includes, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride and the like. When increasing the amount of the inorganic filler, fused silica is generally used. Fused silica can be used in either a crushed or spherical form. However, in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical form. In order to further increase the blending amount of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider. The amount of the inorganic filler is preferably 80 to 95% by weight based on the entire epoxy resin composition. If it is less than 80% by weight, solder cracks may occur due to an increase in water absorption, and if it exceeds 95% by weight, the resin component may be too small and the fluidity during molding may be poor. A more preferred range is 85 to 93% by weight.

【0014】本発明のエポキシ樹脂組成物は、(A)〜
(D)成分の他、必要に応じて臭素化エポキシ樹脂、酸
化アンチモン、リン化合物等の難燃剤、酸化ビスマス水
和物等の無機イオン交換体、γ-グリシドキシプロピル
トリメトキシシラン等のカップリング剤、カーボンブラ
ック、ベンガラ等の着色剤、シリコーンオイル、シリコ
ーンゴム等の低応力化成分、天然ワックス、合成ワック
ス、高級脂肪酸及びその金属塩類もしくはパラフィン等
の離型剤、酸化防止剤等の各種添加剤を配合することが
できる。
The epoxy resin composition of the present invention comprises (A)
In addition to the component (D), if necessary, a flame retardant such as a brominated epoxy resin, antimony oxide, or a phosphorus compound; an inorganic ion exchanger such as bismuth oxide hydrate; or a cup such as γ-glycidoxypropyltrimethoxysilane. Various colorants such as ring agents, carbon black, red iron oxide, etc., low stress components such as silicone oil and silicone rubber, release agents such as natural wax, synthetic wax, higher fatty acids and their metal salts or paraffin, various antioxidants, etc. Additives can be included.

【0015】以上の成分を配合して成形材料化するに際
しては加熱、溶融、混練は熱ロールや加熱ニーダ等によ
り行うことが出来、冷却、粉砕も成形材料の製造に通常
用いられる装置を使用することが出来るが、エポキシ樹
脂とフェノール樹脂をより効果的に均一混合を行うには
エポキシ樹脂とフェノール樹脂をホモジナイザーの様な
分散と剪断をかけて予め均一混合を行っておくことが好
ましい。更に好ましくはエポキシ樹脂とフェノール樹脂
を溶融混合し、その溶融混合品にホモジナイザーの様な
分散と剪断をかけて予め均一混合を行っておくことが望
ましい。これによって本発明のエポキシ樹脂組成物の熱
分解GC/MSによる相対標準偏差を著しく減少させる
ことが可能となる。本発明のエポキシ樹脂組成物を用い
ると、無機質フィラーを高充填化して且つ低粘度のエポ
キシ樹脂あるいは硬化剤を使用した材料であっても、そ
の両成分が予めきわめて均一な組成物として配合されて
いることから、成型時の溶融、流動状態において硬化性
と流動性を両立させることが可能となり、成型時の未充
填等の不良を発生することなく良好な成型品を得ること
が可能と考えられる。本発明のエポキシ樹脂組成物を用
いて、半導体素子等の電子部品を封止し、半導体装置を
製造するには、トランスファーモールド、コンプレッシ
ョンモールド、インジェクションモールド等の成形方法
で成形硬化すればよい。
Heating, melting and kneading can be carried out by a hot roll, a heating kneader or the like when compounding the above components to form a molding material, and cooling and pulverization are carried out using a device usually used for the production of molding materials. However, in order to more effectively and uniformly mix the epoxy resin and the phenol resin, it is preferable that the epoxy resin and the phenol resin are uniformly mixed in advance by dispersing and shearing like a homogenizer. More preferably, the epoxy resin and the phenol resin are melt-mixed, and the melt-mixed product is desirably dispersed and sheared like a homogenizer to perform uniform mixing in advance. This makes it possible to significantly reduce the relative standard deviation of the epoxy resin composition of the present invention by pyrolysis GC / MS. By using the epoxy resin composition of the present invention, even if the material is highly filled with an inorganic filler and a material using a low-viscosity epoxy resin or a curing agent, both components are previously blended as a very uniform composition. Therefore, it is possible to achieve both curability and fluidity in the molten and flowing state during molding, and it is possible to obtain a good molded product without causing defects such as unfilling during molding. . In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, the molding may be performed by a molding method such as a transfer mold, a compression mold, and an injection mold.

【0016】[0016]

【実施例】以下に、実施例を挙げて本発明を具体的に説
明するが、本発明はこれらの実施例により何ら限定され
るものではない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0017】(実施例1)3、3’,5,5’−テトラ
メチルビフェノール型エポキシ樹脂(融点103℃、以
下エポキシ樹脂と示す)4.0重量部、フェノールア
ラルキル樹脂硬化剤(軟化点65℃、以下硬化剤と示
す)3.5重量部を115℃に加熱して次の方法で溶融
混合を行った。エポキシ樹脂及びフェノール樹脂が溶融
したところでクレアミックス(エムテクニック(株)
製、CLM−0.8S)を用いて15000rpm、1
分間高速撹拌、剪断を行った。撹拌終了後冷却、粉砕を
行い目的の樹脂組成物を得た(以下樹脂Aと表す)。次
に以下で示す割合で配合し80℃の加熱ロールで5分間
混合したあと、冷却して粉砕し、エポキシ樹脂成形材料
を得た。得られた形成材料の特性を表3に示す。
Example 1 4.0 parts by weight of 3,3 ', 5,5'-tetramethylbiphenol type epoxy resin (melting point: 103 ° C., hereinafter referred to as epoxy resin), phenol aralkyl resin curing agent (softening point: 65) (C, hereinafter referred to as a curing agent) 3.5 parts by weight was heated to 115 ° C. and melt-mixed by the following method. When the epoxy resin and the phenol resin melt, CLEARMIX (M Technic Co., Ltd.)
15000 rpm using CLM-0.8S)
High-speed stirring and shearing were performed for minutes. After completion of the stirring, the mixture was cooled and pulverized to obtain a target resin composition (hereinafter, referred to as resin A). Next, they were blended in the following proportions, mixed with a heating roll at 80 ° C. for 5 minutes, cooled and pulverized to obtain an epoxy resin molding material. Table 3 shows the properties of the obtained forming materials.

【0018】 溶融球状シリカ(平均粒径20μm) 91.0重量部 樹脂A 7.7重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという) 0.2重量部 カーボンブラック 0.2重量部 カルナバワックス 0.4重量部 シリコーンオイル 0.2重量部 γ−グリシドキシプロピルトリメトキシシラン 0.3重量部Fused spherical silica (average particle size: 20 μm) 91.0 parts by weight Resin A 7.7 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.2 parts by weight Carbon black 0.2 parts by weight Carnauba wax 0.4 parts by weight Silicone oil 0.2 parts by weight γ-glycidoxypropyltrimethoxysilane 0.3 parts by weight

【0019】<評価方法> ・エポキシ樹脂とフェノール樹脂の分散評価:1mgの
樹脂組成物の粒状試料を採取して、590℃×10秒の
熱分解条件によって、熱分解GC/MS(熱分解装置:
フロンティア・ラボ製PY−202D型縦型加熱炉型熱
分解装置、GC:ヒューレットパッカード製HP−68
90型ガスクロマトグラフ、MS:ヒューレットパッカ
ード製HP−5973型質量検出器)測定を行った(n
=10)。マススペクトルより帰属したエポキシ樹脂由
来のピーク面積とフェノール樹脂由来のピーク面積の比
を求め、相対標準偏差を求めてバラツキの指標とした。
相対標準偏差が大きいほどバラツキが大きい。 ・スパイラルフロー:EMMI−1−66に準じたスパ
イラルフロー測定用の金型を用いて、金型温度175
℃、注入圧力7MPa、硬化時間2分で測定した。単位
はcm。 ・ゲルタイム:175℃の熱盤上でエポキシ樹脂組成物
を溶融しゲル化するまでの時間を測定した。単位は秒。 バコール硬度:金型温度175℃、注入圧力7MPa、
硬化時間2分で成形し、型開き10秒後の成型品の表面
硬度をバコール硬度計#935により測定。 ・キュラストメーターのトルク値:キュラストメーター
V型((株)オリエンテック・製)を用い、35φのダ
イス、振幅角1度、成形温度175℃で測定した。90
秒後のトルク値を測定し、硬化性を評価した。単位はN
m。 曲げ強度:260℃での曲げ強さをJIS K 691
1に準じて測定した。単位はN/mm2
<Evaluation method> Dispersion evaluation of epoxy resin and phenol resin: A 1 mg granular sample of the resin composition was collected, and subjected to pyrolysis GC / MS (pyrolysis apparatus) under pyrolysis conditions of 590 ° C. × 10 seconds. :
PY-202D vertical heating furnace type pyrolysis apparatus manufactured by Frontier Lab, GC: HP-68 manufactured by Hewlett-Packard
90 type gas chromatograph, MS: HP-5973 type mass detector manufactured by Hewlett-Packard) Measurement was performed (n
= 10). The ratio of the peak area derived from the epoxy resin and the peak area derived from the phenol resin, which were assigned from the mass spectrum, was determined, and the relative standard deviation was determined as an index of the variation.
The greater the relative standard deviation, the greater the variation. Spiral flow: using a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175
C., an injection pressure of 7 MPa, and a curing time of 2 minutes. The unit is cm. Gel time: The time from melting the epoxy resin composition to gelation on a hot plate at 175 ° C. was measured. The unit is seconds. Bacol hardness: mold temperature 175 ° C, injection pressure 7MPa,
The molded product was molded with a curing time of 2 minutes, and the surface hardness of the molded product 10 seconds after opening the mold was measured with a Bacol hardness tester # 935. -Torque value of a curast meter: Measured using a curast meter V type (manufactured by Orientec Co., Ltd.) at a 35φ die, an amplitude angle of 1 degree, and a molding temperature of 175 ° C. 90
The torque value after seconds was measured, and the curability was evaluated. The unit is N
m. Bending strength: JIS K 691 bending strength at 260 ° C
It measured according to 1. The unit is N / mm 2 .

【0020】(実施例2〜4、比較例1〜4)表1の配
合(配合割合は重量部とする)に従い、実施例1と同様
にしてエポキシ樹脂組成物を得て、実施例1と同様にし
て評価した。結果を表1に示す。 ・樹脂B(ビスフェノールA型エポキシ樹脂(式(1)
のn=0体の含有量96%、融点45℃)以下樹脂Bと
示す)4.9重量部、フェノールノボラック樹脂硬化剤
(軟化点55℃)2.9重量部を115℃に加熱して次
の方法で溶融混合を行った。エポキシ樹脂及びフェノー
ル樹脂が溶融したところでクレアミックス(エムテクニ
ック(株)製、CLM−0.8S)を用いて15000
rpm、1分間高速撹拌、剪断を行った。撹拌終了後冷
却、粉砕を行い目的の樹脂組成物を得た。 ・樹脂C;樹脂Aと同じ配合でフラスコにて回転羽根を
用いて、125℃で10分間、130rpmで溶融混合撹
拌を行った物。 ・樹脂D;樹脂Bと同じ配合でフラスコにて回転羽根を
用いて、125℃で10分間、130rpmで溶融混合撹
拌を行った物。
(Examples 2 to 4 and Comparative Examples 1 to 4) An epoxy resin composition was obtained in the same manner as in Example 1 in accordance with the blending in Table 1 (the blending ratio is by weight). It evaluated similarly. Table 1 shows the results. -Resin B (bisphenol A type epoxy resin (Formula (1)
(N = 0 body content: 96%, melting point: 45 ° C.) (hereinafter referred to as resin B) 4.9 parts by weight, and 2.9 parts by weight of a phenol novolak resin curing agent (softening point: 55 ° C.) to 115 ° C. Melt mixing was performed by the following method. When the epoxy resin and the phenol resin are melted, 15000 using CLEARMIX (manufactured by M-Technic Co., Ltd., CLM-0.8S).
rpm, high-speed stirring and shearing were performed for 1 minute. After completion of the stirring, the mixture was cooled and pulverized to obtain a target resin composition. -Resin C: A product obtained by melt-mixing and stirring at 130 rpm for 10 minutes at 125 ° C using a rotary blade in a flask with the same composition as resin A. -Resin D: A product obtained by melt-mixing and stirring at 130 rpm for 10 minutes at 125 ° C using a rotary blade in a flask with the same composition as resin B.

【0021】[0021]

【化1】 Embedded image

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】本発明は、従来以上に無機充填材の高充
填化を実現することによって耐半田クラック性の向上を
図り、且つ流動性に優れたエポキシ樹脂組成物である。
また、このエポキシ樹脂組成物によって半導体素子を封
止してなる信頼性の高い半導体装置を提供するのもので
ある。
According to the present invention, there is provided an epoxy resin composition which achieves higher solder cracking resistance by realizing higher filling of the inorganic filler than before, and has excellent fluidity.
It is another object of the present invention to provide a highly reliable semiconductor device in which a semiconductor element is sealed with the epoxy resin composition.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CC042 CC052 CD041 CD051 CD061 CD071 CE002 DE147 DF017 DJ007 DJ017 EJ036 FD017 FD142 FD146 GQ05 4J036 AC02 AC05 AD07 AD08 AD10 AE07 AF06 AF08 AF15 DB05 DC05 DC06 DC40 DC46 DD07 FA03 FA04 FA05 FB06 FB08 GA04 GA06 JA07 4M109 AA01 BA01 BA03 CA21 CA22 EA02 EB03 EB04 EB06 EB07 EB08 EB09 EB13 EB18 EB19 EC03 EC05 EC20  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4J002 CC042 CC052 CD041 CD051 CD061 CD071 CE002 DE147 DF017 DJ007 DJ017 EJ036 FD017 FD142 FD146 GQ05 4J036 AC02 AC05 AD07 AD08 AD10 AE07 AF06 AF08 AF15 DB05 DC05 DC06 DC40 DC46 DD07 FA GA04 GA06 JA07 4M109 AA01 BA01 BA03 CA21 CA22 EA02 EB03 EB04 EB06 EB07 EB08 EB09 EB13 EB18 EB19 EC03 EC05 EC20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂、(C)硬化促進剤、(D)無機質充填材を必須成
分とするエポキシ樹脂組成物において、熱分解GC/M
Sによるエポキシ樹脂由来のピーク面積とフェノール樹
脂由来のピーク面積との比の相対標準偏差が10以下で
あることを特徴とするエポキシ樹脂組成物。
An epoxy resin composition comprising (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, and (D) an inorganic filler as essential components.
An epoxy resin composition, wherein the relative standard deviation of the ratio of the peak area derived from the epoxy resin to the peak area derived from the phenol resin by S is 10 or less.
【請求項2】 請求項1記載のエポキシ樹脂組成物を用
いて半導体素子を封止してなる半導体装置。
2. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition according to claim 1.
JP2001134772A 2001-05-02 2001-05-02 Epoxy resin composition and semiconductor device Pending JP2002327043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134772A JP2002327043A (en) 2001-05-02 2001-05-02 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134772A JP2002327043A (en) 2001-05-02 2001-05-02 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002327043A true JP2002327043A (en) 2002-11-15

Family

ID=18982385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134772A Pending JP2002327043A (en) 2001-05-02 2001-05-02 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2002327043A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152363A (en) * 1991-12-02 1993-06-18 Hitachi Ltd Manufacture of sealing epoxy resin composition and resin-sealed semiconductor device sealed therewith
JP2000273278A (en) * 1999-03-23 2000-10-03 Sumitomo Bakelite Co Ltd Production of epoxy resin holding material for semiconductor sealing use
WO2000077851A1 (en) * 1999-06-15 2000-12-21 Sumitomo Bakelite Company Limited Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152363A (en) * 1991-12-02 1993-06-18 Hitachi Ltd Manufacture of sealing epoxy resin composition and resin-sealed semiconductor device sealed therewith
JP2000273278A (en) * 1999-03-23 2000-10-03 Sumitomo Bakelite Co Ltd Production of epoxy resin holding material for semiconductor sealing use
WO2000077851A1 (en) * 1999-06-15 2000-12-21 Sumitomo Bakelite Company Limited Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device

Similar Documents

Publication Publication Date Title
JPH0496928A (en) Epoxy resin composition and semiconductor device
JP2012082281A (en) Liquid epoxy resin composition and semiconductor device
JP4869721B2 (en) Epoxy resin composition for semiconductor encapsulation, method for producing the same, and semiconductor device obtained using the same
JP3867956B2 (en) Epoxy resin composition and semiconductor device
JP2002327043A (en) Epoxy resin composition and semiconductor device
KR19980070781A (en) Epoxy resin composition and semiconductor device
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JPH11147937A (en) Epoxy resin composition and semiconductor device
JP2690795B2 (en) Epoxy resin composition
JP2595854B2 (en) Epoxy resin composition and cured product thereof
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2002080694A (en) Epoxy resin composition and semiconductor device
JPH08134330A (en) Epoxy resin composition for sealing tab and tab device
JP2003040981A (en) Epoxy resin composition and semiconductor device
JPH0625385A (en) Epoxy resin composition and semiconductor device
JPH06239976A (en) Epoxy resin composition and sealed semiconductor device
JP4379972B2 (en) Epoxy resin composition and semiconductor device
JPH0841292A (en) Production of epoxy resin composition and epoxy resin composition for sealing semiconductor
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition
JP3627736B2 (en) Epoxy resin composition and semiconductor device using the same
JP3874566B2 (en) Epoxy resin composition for sealing and semiconductor sealing device
JPH0952940A (en) Epoxy resin composition and semiconductor device
JP2001335621A (en) Epoxy resin composition and semiconductor device
JP2000119487A (en) Epoxy resin composition for semiconductor sealing and semiconductor equipment using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130