JP2000273278A - Production of epoxy resin holding material for semiconductor sealing use - Google Patents

Production of epoxy resin holding material for semiconductor sealing use

Info

Publication number
JP2000273278A
JP2000273278A JP7846799A JP7846799A JP2000273278A JP 2000273278 A JP2000273278 A JP 2000273278A JP 7846799 A JP7846799 A JP 7846799A JP 7846799 A JP7846799 A JP 7846799A JP 2000273278 A JP2000273278 A JP 2000273278A
Authority
JP
Japan
Prior art keywords
epoxy resin
molding material
resin
weight
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7846799A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
宏之 田中
Masanori Hikita
正紀 疋田
Hiroshige Nakagawa
裕茂 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP7846799A priority Critical patent/JP2000273278A/en
Publication of JP2000273278A publication Critical patent/JP2000273278A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing the subject molding material with good flowability even with the high content of an inorganic filler therein, slight in void development in semiconductor seal molding therewith. SOLUTION: This method for producing an epoxy resin molding material for semiconductor sealing use comprises premixing the total compounding materials essentially including an epoxy resin solid at room temperature, a phenolic resin, a curing promoter, and an inorganic filler, and also including other component(s) followed by kneading the compounding materials under molten state; wherein it is characteristic that >=50 wt.% of the respective amounts of the epoxy resin and phenolic resin to be compounded represent powder <250 μm in particle size, the premixing is conducted within such a temperature range as not to soften nor melt them followed by conducting the melt kneading.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、たとえ無機充填材
の充填率が高くても、流動性が良好で、半導体の封止成
形時にボイド発生が少ないエポキシ樹脂成形材料の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an epoxy resin molding material which has good fluidity even when the filling rate of an inorganic filler is high, and causes less voids during semiconductor encapsulation molding.

【0002】[0002]

【従来の技術】IC、LSI等の半導体素子の封止に
は、信頼性と生産性の観点から、トランスファ成形でき
るエポキシ樹脂成形材料が広く用いられている。エポキ
シ樹脂成形材料は、エポキシ樹脂、フェノール樹脂、硬
化促進剤、シリカフィラー、離型剤、難燃剤、カップリ
ング剤などから構成され、通常、構成原料を所定量秤量
したものをヘンシェルミキサーなどの攪拌混合機を用い
て予備混合し、次いで単軸押出機、二軸押出機、加熱ロ
ール、連続ニーダなどの加熱混練機を用いて溶融混練す
ることによって、全成分を均一に混合・分散する製造方
法が採用されている。
2. Description of the Related Art For sealing semiconductor elements such as ICs and LSIs, epoxy resin molding materials that can be transfer molded are widely used from the viewpoint of reliability and productivity. Epoxy resin molding material is composed of epoxy resin, phenolic resin, curing accelerator, silica filler, release agent, flame retardant, coupling agent, etc. Usually, a predetermined amount of the constituent materials is weighed and stirred with a Henschel mixer or the like. A manufacturing method in which all components are uniformly mixed and dispersed by pre-mixing using a mixer and then melt-kneading using a heating kneader such as a single-screw extruder, a twin-screw extruder, a heating roll, or a continuous kneader. Has been adopted.

【0003】他方、電子機器の小型軽量化、高機能化の
動向に対応して、半導体パッケージの小型化、薄型化、
狭ピッチ化が益々加速する中、半導体封止用エポキシ樹
脂成形材料には、封止成形後の半導体パッケージの信頼
性に関連する半田耐熱性や耐湿性の向上が強く求められ
ている。このため、半導体パッケージ内部の応力や吸湿
度を低減する目的で、エポキシ樹脂成形材料の成分は無
機充填材の含有率が高い材料へと移行している。しか
し、この移行は封止成形時の流動性を低下させ、リード
フレーム変形、金線変形、ボイド発生など、成形加工上
の不良を増大させる結果を招いている。これに対して、
無機充填材の形状や粒径分布を最適化する試み、或い
は、エポキシ樹脂やフェノール樹脂などの樹脂成分の粘
度を封止成形される温度域において極めて小さくするこ
とによって、流動性を保ち、充填性を改良する試みが続
けられているが、これらの検討が続けられる一方で、ボ
イド低減の課題は解決が難しい問題として益々クローズ
アップされる情勢にある。
On the other hand, in response to the trend toward smaller and lighter electronic devices and higher functionality, semiconductor packages have become smaller and thinner.
As the pitch is increasingly narrowed, there is a strong demand for epoxy resin molding materials for semiconductor encapsulation to improve solder heat resistance and moisture resistance related to the reliability of the semiconductor package after encapsulation. Therefore, for the purpose of reducing the stress and moisture absorption inside the semiconductor package, the components of the epoxy resin molding material have shifted to materials having a high content of the inorganic filler. However, this transition lowers the fluidity during the encapsulation molding, resulting in an increase in molding defects such as lead frame deformation, gold wire deformation, and voids. On the contrary,
Attempts to optimize the shape and particle size distribution of the inorganic filler, or to minimize the viscosity of resin components such as epoxy resin and phenolic resin in the temperature range where sealing molding is performed, maintain fluidity and maintain filling properties. While attempts have been made to improve the above, while these studies have been continued, the problem of void reduction is in a situation where it is increasingly close-up as a problem that is difficult to solve.

【0004】無機充填材の含有率が高いエポキシ樹脂成
形材料のボイドは、溶融混練過程で成形材料の混練度を
上げ、材料の樹脂成分間の相溶や無機充填材の分散を促
進すれば低減できることは周知であるが、溶融混練過程
で混練度を上げることは、その過程で加えられる熱履歴
によって成形材料の硬化反応を進めることになり、結果
として、成形材料の流動性を損なってしまう。このた
め、配合成分の内、予備混合の段階で硬化反応が進まな
い原料を組み合わせ、これらの原料が溶融或いは軟化す
るより高い温度で溶融混合した後に溶融混練を行う方法
(例えば、特開昭56−149454号公報、特開平4
−59863号公報、特開平3−195764号公
報)、或いは、混練機の選択や混練条件を最適化するこ
とによって、混練機内での硬化反応の進行を最小限に抑
え、異なる樹脂成分間の相溶と無機充填材の分散を促進
する方法(例えば、特開平9−52228号公報)など
が開示されている。
[0004] Voids of an epoxy resin molding material having a high content of an inorganic filler can be reduced by increasing the degree of kneading of the molding material during the melt-kneading process and promoting compatibility between the resin components of the material and dispersion of the inorganic filler. It is well known that increasing the degree of kneading during the melt-kneading process promotes the curing reaction of the molding material due to the heat history applied in the process, resulting in impairing the fluidity of the molding material. For this reason, a method is used in which, among the blended components, raw materials that do not undergo a curing reaction in the premixing stage are combined, and melt-kneaded after melting and mixing at a temperature higher than the temperature at which these raw materials are melted or softened (for example, Japanese Patent Application Laid-Open No. 149454, JP-A-Hei 4
Alternatively, by selecting a kneader and optimizing kneading conditions, the progress of the curing reaction in the kneader can be minimized, and the phase between different resin components can be reduced. A method of promoting dissolution and dispersion of the inorganic filler (for example, Japanese Patent Application Laid-Open No. 9-52228) is disclosed.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、たと
え無機充填材の含有率が高くても、流動性が良好で、ボ
イド発生が極めて少ない半導体封止用エポキシ成形材料
の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an epoxy molding material for semiconductor encapsulation which has good fluidity and has very few voids, even if the content of the inorganic filler is high. Is to do.

【0006】[0006]

【課題を解決するための手段】本発明はこのような情勢
を鑑み研究を進めた結果、樹脂成分間の相溶を促進する
だけでもボイドが大きく低減することを新たに見出し、
さらに無機充填材の含有率が大きいエポキシ樹脂成形材
料に対して、硬化反応を進行させることなしにボイドを
低減する具体的な方法を見出した。すなわち本発明は、
室温で固形であるエポキシ樹脂、フェノール樹脂、硬化
促進剤及び無機充填材を少なくとも含む原料を予備混合
した後に溶融混練する半導体封止用エポキシ樹脂成形材
料の製造方法において、使用するエポキシ樹脂及びフェ
ノール樹脂のそれぞれの配合量の50重量%以上を粒径
250μm未満の粉末とし、これらが溶融または軟化し
ない温度域で予備混合し、次いで溶融混練することを特
徴とする半導体封止用エポキシ成形材料の製造方法であ
る。
The present invention has been studied in view of such circumstances, and as a result, it has been newly found that voids are greatly reduced only by promoting compatibility between resin components.
Furthermore, the present inventors have found a specific method for reducing voids in an epoxy resin molding material having a large content of an inorganic filler without advancing a curing reaction. That is, the present invention
Epoxy resin and phenolic resin used in a method for producing an epoxy resin molding material for semiconductor encapsulation which is preliminarily mixed with a raw material containing at least an epoxy resin, a phenolic resin, a curing accelerator and an inorganic filler which are solid at room temperature and then melt-kneaded Producing an epoxy molding material for semiconductor encapsulation, characterized in that 50% by weight or more of the respective compounding amounts are powdered with a particle size of less than 250 μm, which are premixed in a temperature range in which they do not melt or soften, and then melt-kneaded. Is the way.

【0007】[0007]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に使用されるエポキシ樹脂は、1分子中に2個以
上のエポキシ基を有し、常温で固形のものであれば、特
に限定するものではないが、例えば、ビスフェノール型
エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノール
ノボラック型エポキシ樹脂、クレゾールノボラック型エ
ポキシ樹脂、アルキル変性トリフェノールメタン型エポ
キシ樹脂などが挙げられ、これらを単独で用いても、混
合して用いても構わない。但し、結晶性エポキシ樹脂を
用いる場合には、融点が50℃〜150℃の範囲のもの
を総エポキシ樹脂の70重量%以上使う必要がある。こ
の理由は、融点に関して、もし50℃未満のものを使う
と、予備混合の際に発生する摩擦熱によって樹脂温度が
上昇して溶融が始まるために、極端に作業性が悪くな
り、生産性が劣る結果を招くためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The epoxy resin used in the present invention is not particularly limited as long as it has two or more epoxy groups in one molecule and is a solid at room temperature. For example, bisphenol type epoxy resin, biphenyl type Epoxy resins, phenol novolak-type epoxy resins, cresol novolak-type epoxy resins, alkyl-modified triphenolmethane-type epoxy resins, and the like can be used, and these may be used alone or in combination. However, when using a crystalline epoxy resin, it is necessary to use a resin having a melting point in the range of 50 ° C. to 150 ° C. in an amount of 70% by weight or more of the total epoxy resin. The reason for this is that if the melting point is lower than 50 ° C., the resin temperature rises due to frictional heat generated at the time of pre-mixing and melting starts, resulting in extremely poor workability and productivity. This is because of inferior results.

【0008】一方、融点が150℃を越えるものでは、
混練機内でエポキシ樹脂を溶融させるために非常に高い
温度が必要になるが、これは予備混合したエポキシ樹脂
組成物を混練機で溶融混練する際、硬化反応の進行を抑
えることが難しくなることを意味し、封止成形時の流動
性を良好に維持できなくなるためである。結晶性エポキ
シ樹脂の使用量が総エポキシ樹脂の70重量%以上とす
る点に関しては、もし、70重量%未満の場合は、製造
された成形材料の粘度の低下が十分でなく、流動性が低
下してしまうことが多いためである。融点はガラスキャ
ピラリー中の樹脂の融解温度を外観から判定する通常の
測定方法や示差走査熱量計を使う測定方法で簡単に知る
ことができる。
On the other hand, if the melting point exceeds 150 ° C.,
A very high temperature is required to melt the epoxy resin in the kneading machine.However, when melting and kneading the pre-mixed epoxy resin composition in the kneading machine, it is difficult to suppress the progress of the curing reaction. In other words, it is because the fluidity during sealing molding cannot be maintained satisfactorily. Regarding the use amount of the crystalline epoxy resin to be 70% by weight or more of the total epoxy resin, if the amount is less than 70% by weight, the viscosity of the produced molding material is not sufficiently reduced and the fluidity is reduced. This is because it often happens. The melting point can be easily known by an ordinary measuring method for judging the melting temperature of the resin in the glass capillary from the appearance or a measuring method using a differential scanning calorimeter.

【0009】本発明に使用されるフェノール樹脂は、常
温で固形のものであれば特に限定するものではないが、
例えば、フェノールノボラック樹脂、クレゾールノボラ
ック樹脂、ジシクロペンタジエン変性フェノール樹脂、
フェノールアラルキル樹脂、ナフトールアラルキル樹
脂、テルペン変性フェノール樹脂などが挙げられ、これ
らを単独で用いても、混合して用いても構わない。
The phenolic resin used in the present invention is not particularly limited as long as it is solid at room temperature.
For example, phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin,
Examples thereof include phenol aralkyl resins, naphthol aralkyl resins, and terpene-modified phenol resins, and these may be used alone or as a mixture.

【0010】本発明では、予備混合する際のエポキシ樹
脂とフェノール樹脂の粒径は共に小さいほど好ましい
が、少なくとも250μm未満の粉末の含有量がエポキ
シ樹脂とフェノール樹脂のそれぞれの配合量に対して5
0重量%以上を占めることが必要である。これは、粉体
粒子が大きいと、予備混合過程でエポキシ樹脂とフェノ
ール樹脂が十分に混合されたとしても、混練機内で両者
の相溶に時間を要し、その間に硬化反応が進行してしま
うためである。配合する樹脂の粒径分布の決定には、超
音波、音波、回転振動、空気流などを駆動源とした篩を
用いて重量分布を測定する乾式篩分法が用いられる。こ
の際、粉体が凝集性を有している場合には、ホワイトカ
ーボンなど、少量の除電剤を被測定粉体に混入して測定
を行う方法がよい。また、界面活性剤を少量添加した貧
溶媒に被測定粉体を分散させ、粉体の体積粒径分布をレ
ーザー光散乱法で測定し、粉体の真密度の値を用いて重
量粒径分布に換算する方法でもよい。
In the present invention, it is preferable that the particle diameters of the epoxy resin and the phenolic resin in the pre-mixing are both smaller, but the content of the powder having a particle size of at least less than 250 μm is 5 to the respective compounding amounts of the epoxy resin and the phenolic resin.
It is necessary to account for 0% by weight or more. This is because when the powder particles are large, even if the epoxy resin and the phenol resin are sufficiently mixed in the pre-mixing process, it takes time for the two to be compatible in the kneader, and the curing reaction proceeds during the time. That's why. In order to determine the particle size distribution of the resin to be blended, a dry sieving method is used in which the weight distribution is measured using a sieve driven by ultrasonic waves, sound waves, rotational vibration, air flow, or the like. At this time, when the powder has cohesiveness, a method of performing measurement by mixing a small amount of a neutralizing agent such as white carbon into the powder to be measured is preferable. In addition, the powder to be measured is dispersed in a poor solvent containing a small amount of a surfactant, and the volume particle size distribution of the powder is measured by a laser light scattering method. The method of converting into may be used.

【0011】本発明に使用される無機充填材は、溶融シ
リカ粉末、結晶シリカ粉末、アルミナ、窒化珪素などが
挙げられ、これらを単独で用いても、混合して用いても
構わない。また、無機充填材は予めシランカップリング
剤で表面処理されているものを用いてもよい。溶融シリ
カ粉末を使用する場合には、形状は球状のものを用い、
シリカの含有率は成形加工性と信頼性のバランスを考慮
して、全組成物中の60〜94重量%にすることが好ま
しいが、さらに好ましくは85〜94重量%である。こ
の理由は、従来の製造方法では多量のシリカと混合され
た樹脂成分を十分に相溶させるには溶融混練過程で極め
て大きな剪断エネルギーが必要であったが、その結果と
して、混練機内では硬化反応が進行し、成形材料の流動
性を損なっていたが、本発明では、樹脂成分を原料段階
で微粒化することによって、予備混合段階で既に相当な
均一混合状態に到達してしまうため、溶融混練過程では
樹脂成分の相溶に必要な剪断エネルギーが小さくなる特
徴がある。このため、シリカの含有率が85〜94重量
%以上でも成形材料の流動性が良好に保たれる。
The inorganic filler used in the present invention includes fused silica powder, crystalline silica powder, alumina, silicon nitride and the like. These may be used alone or in combination. In addition, the inorganic filler that has been previously surface-treated with a silane coupling agent may be used. When using fused silica powder, use a spherical shape,
The content of silica is preferably 60 to 94% by weight in the whole composition, and more preferably 85 to 94% by weight in consideration of the balance between moldability and reliability. The reason for this is that in the conventional manufacturing method, an extremely large shear energy was required in the melt-kneading process in order to sufficiently compatibilize the resin component mixed with a large amount of silica. Has progressed and the fluidity of the molding material has been impaired, but in the present invention, the resin component is atomized in the raw material stage, so that a considerable uniform mixing state is already attained in the pre-mixing stage. In the process, the shear energy required for the compatibility of the resin components is reduced. For this reason, even if the silica content is 85 to 94% by weight or more, the fluidity of the molding material can be kept good.

【0012】本発明で使用される硬化促進剤は前記エポ
キシ樹脂とフェノール樹脂を架橋する硬化反応の触媒と
なるもので、アミン系化合物、有機スルホン酸化合物、
イミダゾール化合物などが挙げられ、これらを単独で用
いても、混合して用いても構わない。本発明で得られる
半導体封止用エポキシ樹脂成形材料はこれまで説明した
必須成分のほかに、必要に応じて、γ−グリシドキシプ
ロピルトリメトキシシランなどの充填材に用いる表面処
理剤、カーボンブラックなどの着色剤、カルナバワック
スなどの離型剤、シリコーンオイルなどの低応力剤、三
酸化アンチモンなどの難燃剤などを配合することができ
る。
The curing accelerator used in the present invention serves as a catalyst for a curing reaction for crosslinking the epoxy resin and the phenol resin, and includes an amine compound, an organic sulfonic acid compound,
Examples thereof include imidazole compounds, and these may be used alone or in combination. The epoxy resin molding material for semiconductor encapsulation obtained in the present invention is, in addition to the essential components described above, if necessary, a surface treatment agent used for a filler such as γ-glycidoxypropyltrimethoxysilane, carbon black , A release agent such as carnauba wax, a low stress agent such as silicone oil, a flame retardant such as antimony trioxide, and the like.

【0013】本発明に使用される予備混合機としては、
回転軸に複数の羽根が取り付けられたヘンシェルミキサ
ー、中心軸に掻き取り羽根が取り付けられているととも
にサイドにはディスパーが取り付けられたトレロミキサ
ー、中心軸が回転しながら惑星運動をするプラネタリー
ミキサー、波形状の二軸が回転するニーダーなど、主に
攪拌作用が強い混合機の他に、コロイドミル、ポット式
や連続式のボールミル、ライカイ、ロールミル、密閉多
段ずり剪断押出機など、主に剪断作用が強い混合機が使
用できるが、攪拌作用が強い混合機と剪断作用が大きい
混合機を併用するのが好ましく、ヘンシェルミキサーと
ボールミルを併用する方法、ヘンシェルミキサーと密閉
多段ずり剪断押出機を併用する方法が特に好適である。
また、樹脂成分が溶融或いは軟化しない温度域で混合操
作が行えるよう冷却機構を具備したものが好ましい。本
発明に使用される溶融混練は特に限定しないが、コニー
ダーを含めた単軸押出機、二軸押出機、加熱ロール、連
続ニーダ、バンバリーミキサーなどが使用できる。
The premixer used in the present invention includes:
A Henschel mixer with multiple blades attached to the rotating shaft, a torrero mixer with scrapers attached to the central shaft and dispersers attached to the side, a planetary mixer with planetary motion while the central shaft rotates, In addition to mixers with strong agitation, such as kneaders with two rotating shafts, mainly shearing, such as colloid mills, pot-type or continuous ball mills, raikai, roll mills, and closed multi-stage shearing extruders. Although a strong mixer can be used, it is preferable to use a mixer having a strong stirring action and a mixer having a large shearing action. The method is particularly preferred.
Further, it is preferable to provide a cooling mechanism so that the mixing operation can be performed in a temperature range where the resin component does not melt or soften. The melt-kneading used in the present invention is not particularly limited, but a single-screw extruder including a co-kneader, a twin-screw extruder, a heating roll, a continuous kneader, a Banbury mixer and the like can be used.

【0014】[0014]

【実施例】以下に実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に限定されるも
のではない。 実施例1 エポキシ樹脂[3,3’,5,5’−テトラメチルビフ
ェノールジグリシジルエーテル樹脂、融点103℃、エ
ポキシ当量195、篩分法による重量基準のメディアン
径230μm] 4.2重量部、フェノール樹脂[15
0℃における溶融粘度0.3Pa.s、水酸基当量17
5、篩分法による重量基準のメディアン径150μm]
4.3重量部、臭素化ビスフェノールA型エポキシ樹
脂 1.0重量部、トリフェニルホスフィン 0.2重
量部、球状溶融シリカ粉末 88.0重量部、γ−グリ
シドキシプロピルトリメトキシシラン 0.5重量部、
カーボンブラック 0.3重量部、カルナバワックス
0.5重量部、三酸化アンチモン 1.0重量部から構
成される調合物を基本配合品Aとし、これを室温状態に
設定したヘンシェルミキサー(容量15リットル、回転
数1000rpm)で2分間予備混合したものを同方向
噛み合い二軸押出混練機(スクリュ径D=30mm、押
出機軸長さ=1m、ニーディングディスク長 = 6D、
スクリュ回転数300rpm、吐出量20kg/h)で
加熱混練した。吐出物を厚さ2mmのシートにした後、
冷却し、粉砕してエポキシ樹脂成形材料を得た。得られ
た材料の流動性とボイド数を次に示す方法に従って評価
した。結果を表1に示した。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples. Example 1 Epoxy resin [3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether resin, melting point 103 ° C., epoxy equivalent 195, median diameter 230 μm based on weight by sieving method] 4.2 parts by weight, phenol Resin [15
Melt viscosity at 0 ° C. 0.3 Pa. s, hydroxyl equivalent 17
5, weight-based median diameter 150 μm by sieving method]
4.3 parts by weight, 1.0 part by weight of brominated bisphenol A type epoxy resin, 0.2 parts by weight of triphenylphosphine, 88.0 parts by weight of spherical fused silica powder, 0.5 parts of γ-glycidoxypropyltrimethoxysilane 0.5 Parts by weight,
0.3 parts by weight of carbon black, carnauba wax
A mixture consisting of 0.5 parts by weight and 1.0 part by weight of antimony trioxide was used as a basic compound A, which was premixed with a Henschel mixer (capacity: 15 liters, rotation speed: 1,000 rpm) set at room temperature for 2 minutes. In the same direction, a twin screw extruder (screw diameter D = 30 mm, extruder shaft length = 1 m, kneading disc length = 6D,
The mixture was heated and kneaded at a screw rotation speed of 300 rpm and a discharge rate of 20 kg / h). After making the ejected material a 2 mm thick sheet,
It was cooled and pulverized to obtain an epoxy resin molding material. The fluidity and the number of voids of the obtained material were evaluated according to the following methods. The results are shown in Table 1.

【0015】<評価方法> 流動性:EMMI−I−66に準拠したスパイラルフロ
ー測定用金型を取り付けたトランスファ成形機を用い
て、前記半導体封止用エポキシ樹脂成形材料のスパイラ
ルフロー値を測定した。トランスファ成形条件は金型温
度175℃、注入圧力70kg/cm2、保圧硬化時間
120秒とした。 ボイド数:160pQFP(ボディサイズ28mm X
28mm、パッケージ厚さ3.6mm、ICチップサイ
ズ15mm X 15mm)の半導体パッケージを封止成
形し、半導体パッケージ内に残存する長軸径0.1mm
以上のボイド個数を超音波探傷機で観察し、1パッケー
ジ当たりのボイド数を計数した。半導体パッケージのト
ランスファ封止成形条件は、金型温度175℃、注入時
間15秒、保圧時間120秒、材料予熱温度80℃とし
た。
<Evaluation Method> Fluidity: The spiral flow value of the epoxy resin molding material for semiconductor encapsulation was measured using a transfer molding machine equipped with a spiral flow measurement mold in accordance with EMMI-I-66. . The transfer molding conditions were a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a dwell time of 120 seconds. Number of voids: 160pQFP (Body size 28mm X
A semiconductor package having a length of 28 mm, a package thickness of 3.6 mm, and an IC chip size of 15 mm X 15 mm) is sealed and molded, and the major axis diameter remaining in the semiconductor package is 0.1 mm.
The number of voids described above was observed with an ultrasonic flaw detector, and the number of voids per package was counted. The transfer sealing molding conditions for the semiconductor package were a mold temperature of 175 ° C., an injection time of 15 seconds, a dwell time of 120 seconds, and a material preheating temperature of 80 ° C.

【0016】実施例2 ヘンシェルミキサーの回転数を500rpmとし、実施
例1と同じ基本配合品Aを2分間予備混合したものを同
方向噛み合い二軸押出混練機で加熱混練した。得られた
エポキシ樹脂成形材料の流動性とボイド数の評価結果を
表1に示した。 実施例3 実施例2と同様に、基本配合品Aをヘンシェルミキサー
で予備混合した後、連続式ボールミル(スクリュ回転数
500rpm、ボール径10mm、吐出量20kg/
h)でさらに予備混合を行い、同方向噛み合い二軸押出
混練機で加熱混練した。得られたエポキシ樹脂成形材料
の流動性とボイド数の評価結果を表1に示した。
Example 2 The same basic compound A as in Example 1 was preliminarily mixed for 2 minutes at a rotation speed of a Henschel mixer of 500 rpm, and the mixture was heated and kneaded by a twin-screw extruder in the same direction. Table 1 shows the evaluation results of the fluidity and the number of voids of the obtained epoxy resin molding material. Example 3 In the same manner as in Example 2, the basic compound A was preliminarily mixed with a Henschel mixer, and then continuously ball-milled (screw rotation speed 500 rpm, ball diameter 10 mm, discharge amount 20 kg /
In h), premixing was further performed, and the mixture was heated and kneaded with a twin-screw extruder in the same direction. Table 1 shows the evaluation results of the fluidity and the number of voids of the obtained epoxy resin molding material.

【0017】実施例4 実施例2と同様に、基本配合品Aをヘンシェルミキサー
で予備混合した後、密閉多段ずり剪断押出機(回転ブレ
ード直径80mm、ブレード枚数4組、ブレード回転数
300rpm、吐出量20kg/h)でさらに予備混合
を行い、同方向噛み合い二軸押出混練機で加熱混練し
た。得られたエポキシ樹脂成形材料の流動性とボイド数
の評価結果を表1に示した。
Example 4 In the same manner as in Example 2, the basic compound A was preliminarily mixed with a Henschel mixer, and then a closed multi-stage shearing extruder (rotating blade diameter 80 mm, number of blades 4 sets, blade rotation speed 300 rpm, discharge rate) The mixture was further premixed at 20 kg / h) and heated and kneaded with a co-meshing twin screw extruder. Table 1 shows the evaluation results of the fluidity and the number of voids of the obtained epoxy resin molding material.

【0018】比較例1〜4 基本配合品Aの内、エポキシ樹脂とフェノール樹脂だけ
を、重量基準メディアン径がそれぞれ330μm及び2
80μmのものに置換した配合品Bを実施例1〜実施例
4と同じ方法で予備混合し、混練を行った。得られたエ
ポキシ樹脂成形材料の流動性とボイド数の評価結果を表
1に示した。
Comparative Examples 1 to 4 Of the basic compound A, only the epoxy resin and the phenol resin were used.
Compound B, which had been replaced with 80 μm, was preliminarily mixed and kneaded in the same manner as in Examples 1 to 4. Table 1 shows the evaluation results of the fluidity and the number of voids of the obtained epoxy resin molding material.

【0019】実施例5〜8、比較例5〜8 エポキシ樹脂[3,3’,5,5’−テトラメチルビフ
ェノールジグリシジルエーテル樹脂、融点103℃、エ
ポキシ当量195、篩分法による重量基準のメディアン
径230μm] 7.9重量部、フェノール樹脂[15
0℃における溶融粘度0.3Pa.s、水酸基当量17
5、篩分法による重量基準のメディアン径150μm]
8.0重量部、臭素化ビスフェノールA型エポキシ樹
脂 1.5重量部、トリフェニルホスフィン 0.4重
量部、球状溶融シリカ粉末 80.0重量部、γ−グリ
シドキシプロピルトリメトキシシラン 0.4重量部、
カーボンブラック 0.3重量部、カルナバワックス
0.5重量部、三酸化アンチモン 1.0重量部から構
成されるシリカ粉末の含有量が少ない調合物を基本配合
品Cとし、基本配合品Cの内、エポキシ樹脂とフェノー
ル樹脂だけを、重量基準メディアン径がそれぞれ330
μm及び280μmのものに置換した配合品Dととも
に、それぞれ実施例1〜4並びに比較例1〜4と同様に
予備混合と加熱混練を行った。得られたエポキシ樹脂成
形材料の流動性とボイド数の評価結果を表2に示した。
Examples 5-8, Comparative Examples 5-8 Epoxy resin [3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether resin, melting point 103 ° C, epoxy equivalent 195, weight-based by sieving method Median diameter 230 μm] 7.9 parts by weight, phenol resin [15
Melt viscosity at 0 ° C. 0.3 Pa. s, hydroxyl equivalent 17
5, weight-based median diameter 150 μm by sieving method]
8.0 parts by weight, 1.5 parts by weight of brominated bisphenol A type epoxy resin, 0.4 parts by weight of triphenylphosphine, 80.0 parts by weight of spherical fused silica powder, 0.4 gamma-glycidoxypropyltrimethoxysilane 0.4 Parts by weight,
0.3 parts by weight of carbon black, carnauba wax
A composition having a low content of silica powder composed of 0.5 parts by weight and 1.0 part by weight of antimony trioxide was defined as a basic compound C. Of the basic compound C, only the epoxy resin and the phenol resin were weighed. The reference median diameter is 330 each
Preliminary mixing and heat kneading were performed in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 4 together with the compound D substituted for those having μm and 280 μm. Table 2 shows the evaluation results of the fluidity and the number of voids of the obtained epoxy resin molding material.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】これまで説明したように、本発明によれ
ば、たとえ無機充填材の充填率が高くても、硬化反応を
進行させることなしに樹脂成分が均一に混合された半導
体封止用エポキシ成形材料が得られ、その結果として、
半導体パッケージの封止成形において、流動性が良好
で、ボイドが少ない成形加工性に優れた半導体封止用エ
ポキシ成形材料を安定的に製造することができる。
As described above, according to the present invention, even if the filling rate of the inorganic filler is high, the resin component is uniformly mixed without causing the curing reaction to proceed. An epoxy molding compound is obtained, and as a result,
In the encapsulation molding of a semiconductor package, it is possible to stably produce an epoxy molding material for semiconductor encapsulation which has good flowability, has few voids, and is excellent in moldability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/31 Fターム(参考) 4F201 AA37 AA39 AB03 AB11 AB16 AB17 AC04 AH37 AM32 AR12 AR15 BA01 BC01 BC12 BC37 BK11 BK13 BK15 4J002 CC03X CC05X CC07X CD00W CD03W CD05W CD06W CD07W DE146 DJ006 DJ016 EN007 EU117 EV237 FA086 FD016 FD090 FD130 FD157 FD160 GJ02 GQ05 4M109 AA01 BA01 CA21 EA02 EA03 EB03 EB04 EB06 EB07 EB08 EB09 EB12 EB13 EB19 EC20──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/31 F-term (Reference) 4F201 AA37 AA39 AB03 AB11 AB16 AB17 AC04 AH37 AM32 AR12 AR15 BA01 BC01 BC12 BC37 BK11 BK13 BK15 4J002 CC03X CC05X CC07X CD00W CD03W CD05W CD06W CD07W DE146 DJ006 DJ016 EN007 EU117 EV237 FA086 FD016 FD090 FD130 FD157 FD160 GJ02 GQ05 4M109 AA01 BA01 CA21 EA02 EA03 EB03 EB04 EB12 EB07 EB07 EB07 EB07 EB07 EB08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 室温で固形であるエポキシ樹脂、フェノ
ール樹脂、硬化促進剤及び無機充填材を少なくとも含む
原料を予備混合した後に溶融混練する半導体封止用エポ
キシ樹脂成形材料の製造方法において、使用するエポキ
シ樹脂及びフェノール樹脂のそれぞれの配合量の50重
量%以上を粒径250μm未満の粉末とし、これらが溶
融または軟化しない温度域で予備混合し、次いで溶融混
練することを特徴とする半導体封止用エポキシ成形材料
の製造方法。
1. A method for producing an epoxy resin molding material for semiconductor encapsulation in which a raw material containing at least an epoxy resin, a phenol resin, a curing accelerator and an inorganic filler which is solid at room temperature is preliminarily mixed and kneaded. 50% by weight or more of the respective blending amounts of the epoxy resin and the phenol resin are powder having a particle size of less than 250 μm, and they are premixed in a temperature range where they do not melt or soften, and then melt-kneaded. Manufacturing method of epoxy molding material.
【請求項2】 エポキシ樹脂は融点が50〜150℃で
ある結晶性エポキシ樹脂で、総エポキシ樹脂中に70重
量%以上含有し、かつ、無機充填材は溶融球状シリカ粉
末で、全原料の85重量%以上含有する請求項1記載の
半導体封止用エポキシ樹脂成形材料の製造方法。
2. The epoxy resin is a crystalline epoxy resin having a melting point of 50 to 150 ° C., containing 70% by weight or more in the total epoxy resin, and the inorganic filler is a fused spherical silica powder. The method for producing an epoxy resin molding material for semiconductor encapsulation according to claim 1, wherein the amount of the resin composition is at least 10 wt%.
JP7846799A 1999-03-23 1999-03-23 Production of epoxy resin holding material for semiconductor sealing use Pending JP2000273278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7846799A JP2000273278A (en) 1999-03-23 1999-03-23 Production of epoxy resin holding material for semiconductor sealing use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7846799A JP2000273278A (en) 1999-03-23 1999-03-23 Production of epoxy resin holding material for semiconductor sealing use

Publications (1)

Publication Number Publication Date
JP2000273278A true JP2000273278A (en) 2000-10-03

Family

ID=13662837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7846799A Pending JP2000273278A (en) 1999-03-23 1999-03-23 Production of epoxy resin holding material for semiconductor sealing use

Country Status (1)

Country Link
JP (1) JP2000273278A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327043A (en) * 2001-05-02 2002-11-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
SG119150A1 (en) * 2001-05-02 2006-02-28 Sumitomo Bakelite Co Process for production of epoxy resin composition for semiconductor encapsulation epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2009274336A (en) * 2008-05-15 2009-11-26 Nitto Denko Corp Manufacturing method of resin composition for encapsulating semiconductor element
JP2012251157A (en) * 2012-08-03 2012-12-20 Nitto Denko Corp Semiconductor element sealing resin composition and semiconductor sealing body using the same
JP2013006406A (en) * 2011-05-20 2013-01-10 Nitto Denko Corp Resin kneaded material and sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327043A (en) * 2001-05-02 2002-11-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
SG119150A1 (en) * 2001-05-02 2006-02-28 Sumitomo Bakelite Co Process for production of epoxy resin composition for semiconductor encapsulation epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2009274336A (en) * 2008-05-15 2009-11-26 Nitto Denko Corp Manufacturing method of resin composition for encapsulating semiconductor element
JP2013006406A (en) * 2011-05-20 2013-01-10 Nitto Denko Corp Resin kneaded material and sheet
JP2012251157A (en) * 2012-08-03 2012-12-20 Nitto Denko Corp Semiconductor element sealing resin composition and semiconductor sealing body using the same

Similar Documents

Publication Publication Date Title
JP3856425B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JPH10176100A (en) Epoxy resin composition
KR19980019140A (en) EPOXY RESIN COMPOSITION AND SEMICONDUCTOR DEVICE ENCAPSULATED THEREWITH
JP3929245B2 (en) Manufacturing method of epoxy resin molding material for semiconductor encapsulation
JP4618056B2 (en) Epoxy resin composition for semiconductor encapsulation and method for producing the same
JP2000273278A (en) Production of epoxy resin holding material for semiconductor sealing use
JP2001342325A (en) Epoxy resin composition for photosemiconductor sealing and optical semiconductor device
JP2001342326A (en) Method of manufacturing epoxy resin composition for photosemiconductor sealing
JP3568653B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2001302805A (en) Method for producing epoxy resin molding material for sealing semiconductor
JP4295869B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2003277589A (en) Semiconductor sealing epoxy resin molding material and its preparation process
JP3910093B2 (en) Method for producing modified inorganic filler
JPH10204257A (en) Epoxy resin composition and semiconductor device
JPH11116775A (en) Epoxy resin composition for semiconductor sealing and production thereof
JP2000129139A (en) Production of granular semiconductor sealing material and granular semiconductor sealing material
JP2003286394A (en) Epoxy resin molding material for sealing semiconductor and its production process
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JP3973139B2 (en) Epoxy resin composition and semiconductor device
JP3048922B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2003160713A (en) Epoxy resin composition and semiconductor device
JPH03140322A (en) Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device
JP2003268202A (en) Epoxy resin-molding material for sealing of semiconductor and semiconductor apparatus
JP4505888B2 (en) Epoxy resin composition and semiconductor device
JP2002220475A (en) Production method for molding material of epoxy resin, and semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A02 Decision of refusal

Effective date: 20040721

Free format text: JAPANESE INTERMEDIATE CODE: A02