JP2003277589A - Semiconductor sealing epoxy resin molding material and its preparation process - Google Patents

Semiconductor sealing epoxy resin molding material and its preparation process

Info

Publication number
JP2003277589A
JP2003277589A JP2002088932A JP2002088932A JP2003277589A JP 2003277589 A JP2003277589 A JP 2003277589A JP 2002088932 A JP2002088932 A JP 2002088932A JP 2002088932 A JP2002088932 A JP 2002088932A JP 2003277589 A JP2003277589 A JP 2003277589A
Authority
JP
Japan
Prior art keywords
epoxy resin
particle size
molding material
average particle
resin molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002088932A
Other languages
Japanese (ja)
Inventor
Kenjiro Yamaguchi
憲ニ郎 山口
Hiroyuki Tanaka
宏之 田中
Hiroshige Nakagawa
裕茂 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002088932A priority Critical patent/JP2003277589A/en
Publication of JP2003277589A publication Critical patent/JP2003277589A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for preparing a semiconductor sealing epoxy resin molding material which shows a good flow property upon packaging a semiconductor and a high package reliability after packaging, even with a high filling factor of an inorganic filler, and a semiconductor sealing epoxy resin molding material. <P>SOLUTION: The semiconductor sealing epoxy resin molding material comprises at least an epoxy resin, a phenol resin, an inorganic filler, a curing accelerator and a coupling agent, wherein the inorganic filler content is ≥90 wt.%. In the preparation process, among the inorganic fillers, inorganic fillers having an average particle size D<SB>50</SB>of ≤0.5 μm are subjected to a shearing force in the presence of the coupling agent to yield ≤10% change of the average particle size. The inorganic fillers are pre-mixed with the rest of the components and heat kneaded. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえ無機充填材
の充填率が高くても、半導体の封止成形時の流動性が良
好で、封止成形後のパッケージ信頼性に優れた半導体封
止用エポキシ樹脂成形材料の製造方法および半導体封止
用エポキシ樹脂成形材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor encapsulation which is excellent in fluidity during semiconductor encapsulation molding and has excellent package reliability after encapsulation molding even if the filling rate of the inorganic filler is high. TECHNICAL FIELD The present invention relates to a method for producing an epoxy resin molding material for a semiconductor and an epoxy resin molding material for semiconductor encapsulation.

【0002】[0002]

【従来の技術】IC、LSI等の半導体素子の封止に
は、信頼性と生産性の観点から、トランスファ成形でき
るエポキシ樹脂成形材料が広く用いられている。半導体
封止用エポキシ樹脂成形材料は、エポキシ樹脂、フェノ
−ル樹脂、硬化促進剤、無機充填材、離型剤、難燃剤、
カップリング剤などから構成されるが、製法としては、
所定量秤量された成分原料をヘンシェルミキサーなどの
攪拌混合機を用いて予備混合した後に、単軸押出機、二
軸押出機、加熱ロール、連続ニーダなどの混練機を用い
て加熱混練する工程が採用されている。他方、電子機器
の小型軽量化、高機能化の動向に対応して、半導体装置
の小型化、薄型化、狭ピッチ化が益々加速する中、半導
体封止用エポキシ樹脂成形材料には、封止成形後の半導
体装置の信頼性に関連する半田耐熱性や耐湿性の向上が
強く求められている。このため、半導体装置内部の応力
や吸湿度を低減する目的で、半導体封止用エポキシ樹脂
成形材料の成分は無機充填材の比率が高い材料へと移行
している。しかし、単に成形材料中の無機充填材の含有
率を高くするだけでは、リードフレーム変形、金線変
形、ボイド発生など、流動性低下に伴う成形加工上の不
良が増大するばかりでなく、成形後の半導体パッケージ
においても、リードフレームや半導体チップと封止エポ
キシ樹脂との密着性が低下し、パッケージ信頼性が期待
した程には向上しない。
2. Description of the Related Art For sealing semiconductor elements such as IC and LSI, epoxy resin molding materials which can be transfer molded are widely used from the viewpoint of reliability and productivity. Epoxy resin molding materials for semiconductor encapsulation include epoxy resins, phenolic resins, curing accelerators, inorganic fillers, release agents, flame retardants,
It is composed of a coupling agent etc., but as a manufacturing method,
After pre-mixing a predetermined amount of the ingredients weighed using a stirring mixer such as a Henschel mixer, a step of heating and kneading using a kneader such as a single screw extruder, a twin screw extruder, a heating roll, a continuous kneader Has been adopted. On the other hand, in response to the trend toward smaller and lighter electronic devices with higher functionality, semiconductor devices are becoming smaller, thinner, and narrower in pitch. There is a strong demand for improvement in solder heat resistance and moisture resistance related to the reliability of a semiconductor device after molding. Therefore, for the purpose of reducing the stress and moisture absorption inside the semiconductor device, the components of the epoxy resin molding material for semiconductor encapsulation are shifting to materials having a high inorganic filler ratio. However, simply increasing the content of the inorganic filler in the molding material not only increases lead frame deformation, gold wire deformation, void generation, and other defects in molding due to fluidity deterioration, but also Also in the above semiconductor package, the adhesion between the lead frame or the semiconductor chip and the sealing epoxy resin is deteriorated, and the package reliability is not improved as expected.

【0003】これに対して、無機充填材の比率を向上さ
せながら封止成形後のパッケージ信頼性を向上させるた
めの無機充填材の処理方法については、角のある無機充
填材に丸みを帯びさせる方法(特開昭63−28210
9号公報)などが開示されているが、これらの方法では
まだ半導体封止用成形材料の流動性が充分なものではな
かった。
On the other hand, regarding the method of treating the inorganic filler for improving the package reliability after encapsulation molding while increasing the ratio of the inorganic filler, the cornered inorganic filler is rounded. Method (JP-A-63-28210)
No. 9) is disclosed, but these methods have not yet provided sufficient fluidity of the molding material for semiconductor encapsulation.

【0004】[0004]

【発明が解決しようとする課題】本発明は、たとえ無機
充填材の充填率が高くても、半導体の封止成形時の流動
性が良好で、封止成形後のパッケージ信頼性に優れた半
導体封止用エポキシ樹脂成形材料の製造方法および半導
体封止用エポキシ樹脂成形材料を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a semiconductor having excellent flowability during semiconductor encapsulation molding and excellent package reliability after encapsulation molding even if the filling rate of the inorganic filler is high. The present invention provides a method for producing an epoxy resin molding material for encapsulation and an epoxy resin molding material for semiconductor encapsulation.

【0005】[0005]

【課題を解決するための手段】本発明はこのような情勢
を鑑み研究を進めた結果、平均粒子径D50が0.5μm
以下である無機充填材にカップリング剤存在下で平均粒
子径の変化率が10%以下の範囲でずり剪断力を与え、
この無機充填材を使用することにより、良好な流動を持
ち、且つ成形後のパッケージ信頼性に優れた半導体封止
用エポキシ樹脂成形材料を得ることができることを新た
に見出した。即ち本発明は、エポキシ樹脂とフェノール
樹脂、無機充填材、硬化促進剤、カップリング剤を少な
くとも含む無機充填材含有量が90重量%以上の半導体
封止用エポキシ樹脂成形材料の製造方法において、無機
充填材の内、平均粒子径D50が0.5μm以下である無
機充填材にカップリング剤存在下で平均粒子径の変化率
が10%以下の範囲でずり剪断力を与え、その無機充填
材を残りの成分と予備混合した後、加熱混練することを
特徴とする半導体封止用エポキシ樹脂成形材料の製造方
法および半導体封止用エポキシ樹脂成形材料である。
The present invention has been studied in view of such circumstances, and as a result, the average particle diameter D 50 was 0.5 μm.
Shearing force is applied to the following inorganic fillers in the presence of a coupling agent in the range where the rate of change of average particle diameter is 10% or less,
It was newly found that by using this inorganic filler, it is possible to obtain an epoxy resin molding material for semiconductor encapsulation which has good flow and is excellent in package reliability after molding. That is, the present invention provides a method for producing an epoxy resin molding material for semiconductor encapsulation, which comprises an epoxy resin and a phenol resin, an inorganic filler, a curing accelerator, and a coupling agent, and the content of the inorganic filler is 90% by weight or more. Among the fillers, an inorganic filler having an average particle diameter D 50 of 0.5 μm or less is given shear shear force in the range of 10% or less in the change rate of the average particle diameter in the presence of a coupling agent, and the inorganic filler is obtained. Is a method for producing an epoxy resin molding material for semiconductor encapsulation, and an epoxy resin molding material for semiconductor encapsulation, which is characterized by premixing with the remaining components and then heat kneading.

【0006】[0006]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に使用される無機充填材は、溶融球状シリカ、結
晶シリカ、窒化珪素などが挙げられるが、これらを単独
で用いても、混合して用いても構わない。本発明では、
無機充填材の一部をカップリング剤存在下でずり剪断力
を与えて処理する。処理する無機充填材は、平均粒子径
50が0.5μm以下であることが不可欠である。平均
粒子径が0.5μm以下では粒子同士の凝集が進むた
め、ずり剪断力が凝集物の解砕に使用され、一次粒子の
粉砕による粒子径変化が生じにくい。一方、平均粒子径
が0.5μm以上では、粒子同士の凝集力が小さく、ず
り剪断力が一直接次粒子の粉砕に使用されるため、粒子
径変化が小さい処理が非常に難しい。上述したように、
本発明では処理する無機充填材の平均粒子径は0.5μ
m以下であることが必要となるが、平均粒子径0.1μ
m以下とすることがさらに好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
Examples of the inorganic filler used in the present invention include fused spherical silica, crystalline silica, and silicon nitride, but these may be used alone or in combination. In the present invention,
A part of the inorganic filler is treated by applying shear shear force in the presence of the coupling agent. It is essential that the inorganic filler to be treated has an average particle diameter D 50 of 0.5 μm or less. When the average particle size is 0.5 μm or less, the particles agglomerate with each other, and therefore shear shearing force is used for disintegrating the agglomerates, and the particle size change due to the crushing of the primary particles hardly occurs. On the other hand, when the average particle diameter is 0.5 μm or more, the cohesive force between the particles is small and the shear shearing force is directly used for pulverizing the primary particles, so that a treatment with a small change in particle diameter is very difficult. As mentioned above,
In the present invention, the average particle size of the inorganic filler to be treated is 0.5 μm.
It is necessary that the average particle size is 0.1 μm or less.
It is more preferable that the thickness is m or less.

【0007】本発明では処理する無機充填材の平均粒子
径の変化率は、Aを処理前の無機充填材の平均粒子径、
Bを処理後の無機充填材の平均粒子径とすると、(A−
B)/(A)×100(%)で表す。この平均粒子径の
変化率が10%以下の範囲でずり剪断力を与え処理す
る。
In the present invention, the rate of change of the average particle size of the inorganic filler to be treated is the average particle size A of the inorganic filler before treatment,
When B is the average particle diameter of the inorganic filler after treatment, (A-
B) / (A) × 100 (%). The shearing force is applied in the range where the change rate of the average particle size is 10% or less.

【0008】本発明では処理する無機充填材の粒度分布
は特に限定しないが、粒径が1μm以上になると一次粒
子の粉砕が進み、粒子径変化が生じてしまうため、小さ
い粒子が多いほど処理が容易であり、例示すると1μm
未満の粒子は95重量%以上であることが好ましい。
In the present invention, the particle size distribution of the inorganic filler to be treated is not particularly limited, but when the particle size is 1 μm or more, the pulverization of primary particles proceeds and the particle size change occurs. Easy, 1 μm for example
Less than 95% by weight of particles are preferred.

【0009】本発明に使用されるずり剪断力を与える設
備は特に限定しないが、自動乳鉢、らいかい機、ボール
ミル、遠心ボールミル、振動ボールミル、遊星ボールミ
ル、ローラーミルなどが使用できる。これらの設備を用
いてカップリング剤存在下で処理を行う場合、無機充填
材同士、あるいは無機充填材と粉砕媒体が擦れ合うこと
によりずり剪断力が生じ、カップリング剤が無機充填材
の表面に擦り付けられることによって延展、定着する。
これにより、処理した無機充填材と樹脂の濡れ性が向上
し、エポキシ樹脂成形材料の流動性が向上する。
The equipment for applying the shearing force used in the present invention is not particularly limited, but an automatic mortar, raker, ball mill, centrifugal ball mill, vibrating ball mill, planetary ball mill, roller mill and the like can be used. When the treatment is carried out in the presence of a coupling agent using these facilities, shearing force is generated due to friction between the inorganic fillers or between the inorganic filler and the grinding medium, and the coupling agent rubs against the surface of the inorganic filler. By being spread, it spreads and becomes established.
This improves the wettability between the treated inorganic filler and the resin, and improves the fluidity of the epoxy resin molding material.

【0010】本発明では、上述したように無機充填材の
処理を平均粒子径の変化率が10%以下の範囲で行う。
これは粒子の寸法や形状の変化が小さい処理を意味して
いる。これに対して、特開昭63−282109号公報
が開示されているが、この発明はシリカ充填材を外部か
らの押圧力によって互いにこすり合わせ、角のある粒子
に丸みを帯びさせることを特徴としている。これは寸法
や形状の大きな変化を伴う処理であり、本発明とは異な
る。
In the present invention, as described above, the treatment of the inorganic filler is carried out in the range where the change rate of the average particle diameter is 10% or less.
This means a treatment in which the size and shape of the particles are small. On the other hand, Japanese Patent Application Laid-Open No. 63-282109 discloses that the present invention is characterized in that silica fillers are rubbed against each other by a pressing force from the outside so that the angled particles are rounded. There is. This is a process that involves a large change in size and shape, and is different from the present invention.

【0011】本発明で用いられる無機充填材の平均粒子
径は一般の方法で測定すればよいが、流体中に浮遊する
粒子に光を照射した時の散乱光の強さより求めるいわゆ
る光散乱法が使用できる。
The average particle size of the inorganic filler used in the present invention may be measured by a general method, but a so-called light scattering method is used, which is obtained from the intensity of scattered light when light is irradiated to particles floating in a fluid. Can be used.

【0012】本発明に使用されるエポキシ樹脂は、1分
子中に2個以上のエポキシ基を有し、常温で固形のもの
であれば、特に限定するものではないが、例えばビスフ
ェノ−ル型エポキシ樹脂、ビフェニル型エポキシ樹脂、
フェノ−ルノボラック型エポキシ樹脂、クレゾ−ルノボ
ラック型エポキシ樹脂、アルキル変性トリフェノ−ルメ
タン型エポキシ樹脂などが挙げられ、これらを単独で用
いても、混合して用いても構わない。
The epoxy resin used in the present invention is not particularly limited as long as it has two or more epoxy groups in one molecule and is solid at room temperature. For example, a bisphenol type epoxy resin. Resin, biphenyl type epoxy resin,
Examples thereof include a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, and an alkyl-modified triphenol methane type epoxy resin. These may be used alone or in combination.

【0013】本発明に使用される硬化剤としてはフェノ
−ル樹脂を用い、常温で固形のものであれば特に限定す
るものではないが、例えば、フェノ−ルノボラック樹
脂、クレゾ−ルノボラック樹脂、ジシクロペンタジエン
変性フェノ−ル樹脂、フェノ−ルアラルキル樹脂、ナフ
ト−ルアラルキル樹脂、テンペン変性フェノ−ル樹脂な
どが挙げられ、これらを単独で用いても、混合して用い
ても構わない。
As the curing agent used in the present invention, a phenol resin is used and is not particularly limited as long as it is solid at room temperature. For example, phenol novolac resin, cresol novolac resin and dicyclo Pentadiene-modified phenol resin, phenol aralkyl resin, naphtho-aralkyl resin, tempene-modified phenol resin and the like are mentioned, and these may be used alone or in combination.

【0014】本発明で使用される硬化促進剤は前記エポ
キシ樹脂とフェノ−ル樹脂を架橋する硬化反応の触媒と
なるもので、アミン系化合物、有機スルホン酸化合物、
イミダゾ−ル化合物などが挙げられ、これらを単独で用
いても、混合して用いても構わない。
The curing accelerator used in the present invention serves as a catalyst for a curing reaction that crosslinks the epoxy resin and the phenol resin, and includes an amine compound, an organic sulfonic acid compound,
Examples thereof include imidazole compounds, and these may be used alone or in combination.

【0015】本発明に使用されるカップリング剤は特に
限定されるものではないが、エポキシ基含有シランカッ
プリング剤、メルカプト基含有シランカップリング剤が
使用できる。また、これらを単独で用いても、混合して
用いても構わない。
The coupling agent used in the present invention is not particularly limited, but an epoxy group-containing silane coupling agent and a mercapto group-containing silane coupling agent can be used. Further, these may be used alone or in combination.

【0016】本発明で得られる半導体封止用エポキシ樹
脂成形材料はこれまで説明した必須成分のほかに、必要
に応じて、カ−ボンブラックなどの着色剤、カルバナワ
ックスなどの離型剤、シリコ−ンオイルなどの低応力
剤、三酸化アンチモンなどの難燃剤などを配合すること
ができる。
The epoxy resin molding material for semiconductor encapsulation obtained by the present invention contains, in addition to the essential components described above, a coloring agent such as carbon black and a release agent such as carnauba wax, if necessary. A low stress agent such as silicone oil and a flame retardant such as antimony trioxide may be added.

【0017】次に製造方法について説明する。本発明で
は、これらの成分を予備混合した後、加熱混練すること
を特徴としている。本発明に使用される予備混合機は特
に限定しないが、ヘンシェルミキサー、トレロミキサ
ー、波形状の二軸が回転するニーダーなどが使用でき
る。また、樹脂成分が溶融或いは軟化しない温度域で予
備混合が行えるよう冷却機構を具備したものが好まし
い。本発明に使用される加熱混練機は特に限定しない
が、コニーダーを含めた単軸押出機、二軸押出機、加熱
ロール、連続ニーダ、バンバリーミキサーなどが使用で
きる。
Next, the manufacturing method will be described. The present invention is characterized in that these components are premixed and then heated and kneaded. The premixer used in the present invention is not particularly limited, but a Henschel mixer, a tolero mixer, a kneader having two corrugated shafts rotating, and the like can be used. Further, it is preferable to provide a cooling mechanism so that the premixing can be performed in a temperature range where the resin components are not melted or softened. The heating and kneading machine used in the present invention is not particularly limited, and a single screw extruder including a kneader, a twin screw extruder, a heating roll, a continuous kneader, a Banbury mixer, etc. can be used.

【0018】[0018]

【実施例】以下に実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に限定されるも
のではない。 (実施例1)エポキシ樹脂[3,3’,5,5’−テト
ラメチルビフェノールジグリシジルエーテル樹脂、融点
103℃、エポキシ当量195] 2.7重量部、フェ
ノール樹脂[ノボラック型フェノール樹脂、150℃に
おける溶融粘度0.3Pa.s、水酸基当量175]
2.8重量部、臭素化ビスフェノールA型エポキシ樹脂
1.0重量部、トリフェニルホスフィン 0.2重量
部、γ−グリシドキシプロピルトリメトキシシラン
0.5重量部、カーボンブラック 0.3重量部、カル
ナバワックス 0.5重量部、三酸化アンチモン 1.
0重量部、球状溶融シリカ粉末1(平均粒子径:23μ
m、最大粒子径:75μm) 80重量部、球状溶融シ
リカ粉末2(平均粒子径:0.42μm、最大粒子径:
1.1μm、粒子径1μm未満成分:99重量%) 1
1重量部から構成される調合物を基本配合品Aとした。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. Example 1 2.7 parts by weight of epoxy resin [3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether resin, melting point 103 ° C., epoxy equivalent 195], phenol resin [novolak type phenol resin, 150 ° C.] Melt viscosity at 0.3 Pa. s, hydroxyl equivalent 175]
2.8 parts by weight, brominated bisphenol A type epoxy resin 1.0 part by weight, triphenylphosphine 0.2 part by weight, γ-glycidoxypropyltrimethoxysilane
0.5 parts by weight, carbon black 0.3 parts by weight, carnauba wax 0.5 parts by weight, antimony trioxide 1.
0 parts by weight, spherical fused silica powder 1 (average particle size: 23μ
m, maximum particle diameter: 75 μm) 80 parts by weight, spherical fused silica powder 2 (average particle diameter: 0.42 μm, maximum particle diameter:
1.1 μm, particle size less than 1 μm Component: 99% by weight) 1
A formulation composed of 1 part by weight was designated as basic formulation A.

【0019】基本配合品Aの中から、γ−グリシドキシ
プロピルトリメトキシシラン、溶融球状シリカ粉末2を
自動乳鉢(容量4リットル、回転数:乳棒60rpm、
乳鉢6rpm)で10分間処理を行った。このときの原
料である溶融球状シリカ粉末2と自動乳鉢で処理した溶
融球状シリカ粉末2の平均粒子径を光散乱法で測定し、
この平均粒子径及び平均粒子径の変化率を表1に示し
た。これを基本配合品Aの残りの成分と一緒にヘンシェ
ルミキサー(容量15リットル、回転数1000rp
m、10℃冷却)で5分間予備混合したものを同方向噛
み合い二軸押出混練機(スクリュ径D=30mm、押出
機軸長さ=1m、ニーディングディスク長=6D、スク
リュ回転数300rpm、吐出量20kg/h)で加熱
混練した。吐出物を厚さ2mmのシートにした後、冷却
し、粉砕してエポキシ樹脂成形材料を得た。得られた材
料の流動性とパッケージ信頼性を次に示す方法に従って
評価した。結果を表1に示した。
From the basic compound A, γ-glycidoxypropyltrimethoxysilane and fused spherical silica powder 2 were added to an automatic mortar (capacity 4 liters, rotation speed: pestle 60 rpm,
The treatment was performed in a mortar (6 rpm) for 10 minutes. At this time, the average particle diameters of the raw material fused spherical silica powder 2 and the fused spherical silica powder 2 treated with an automatic mortar were measured by a light scattering method,
The average particle size and the rate of change of the average particle size are shown in Table 1. Combine this with the rest of the ingredients in Basic Blend A (Henschel Mixer (capacity 15 liters, rpm 1000 rpm
m, 10 ° C.) premixed for 5 minutes, meshed in the same direction, twin-screw extrusion kneader (screw diameter D = 30 mm, extruder shaft length = 1 m, kneading disc length = 6 D, screw rotation speed 300 rpm, discharge rate The mixture was heated and kneaded at 20 kg / h). The discharged product was formed into a sheet having a thickness of 2 mm, cooled and pulverized to obtain an epoxy resin molding material. The fluidity and package reliability of the obtained material were evaluated according to the following methods. The results are shown in Table 1.

【0020】<評価方法> 流動性:EMMI−I−66に準拠したスパイラルフロ
ー測定用金型を取り付けたトランスファ成形機を用い
て、前記半導体封止用エポキシ樹脂成形材料のスパイラ
ルフロー値を測定した。トランスファ成形条件は金型温
度175℃、注入圧力70kg/cm2、保圧硬化時間
120秒とした。
<Evaluation Method> Fluidity: The spiral flow value of the epoxy resin molding material for semiconductor encapsulation was measured using a transfer molding machine equipped with a mold for spiral flow measurement conforming to EMMI-I-66. . The transfer molding conditions were a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a holding pressure curing time of 120 seconds.

【0021】パッケージ信頼性:前記半導体封止用エポ
キシ樹脂成形材料を用いて、8個の80pQFPパッケ
ージ(ボディサイズ14mmX20mm、厚さ1.5m
m、半導体チップサイズ9mm×9mm)を封止成形
(トランファ成形機条件:175℃、70kg/c
2、120秒)し、180℃で8時間ポストキュアし
た後、封止したパッケージを温度85℃、相対湿度85
%、168時間の環境で処理し、処理直後にIRリフロ
ー(240℃、10秒)処理を行い、IRリフロー処理
後のパッケージクラックの有無を目視で観察した。その
後、封止樹脂と半導体チップ並びにリードフレームの界
面剥離の有無を超音波探傷機で観察し、界面剥離の数に
より密着性を評価した。
Package reliability: Eight 80 pQFP packages (body size 14 mm × 20 mm, thickness 1.5 m) using the epoxy resin molding material for semiconductor encapsulation
m, semiconductor chip size 9 mm x 9 mm) is sealed and molded (Transfer molding machine conditions: 175 ° C, 70 kg / c)
m 2 for 120 seconds) and post-cure at 180 ° C. for 8 hours, and then seal the package at a temperature of 85 ° C. and a relative humidity of 85.
%, 168 hours, IR reflow (240 ° C., 10 seconds) was performed immediately after the treatment, and the presence or absence of package cracks after the IR reflow treatment was visually observed. Then, the presence or absence of interfacial peeling between the sealing resin, the semiconductor chip, and the lead frame was observed with an ultrasonic flaw detector, and the adhesion was evaluated by the number of interfacial peelings.

【0022】(実施例2)基本配合品Aの中から、γ−
グリシドキシプロピルトリメトキシシラン、溶融球状シ
リカ粉末2をボールミル(容量4リットル、回転数65
rpm、メディア径10mm)で10分間処理を行っ
た。このときの原料である溶融球状シリカ粉末2とボー
ルミルで処理した溶融球状シリカ粉末2の平均粒子径を
光散乱法で測定し、この平均粒子径及び平均粒子径の変
化率を表1に示した。これを基本配合品Aの残りの成分
と一緒にヘンシェルミキサーで予備混合し、他は実施例
1と同じ要領でエポキシ樹脂成形材料を得た。得られた
材料の流動性とパッケージ信頼性の評価を行い、結果を
表1に示した。
(Example 2) From the basic compound A, γ-
Glycidoxypropyltrimethoxysilane, fused spherical silica powder 2 in a ball mill (volume 4 liters, rotation speed 65
Processing was carried out for 10 minutes at rpm and a medium diameter of 10 mm). At this time, the average particle size of the fused spherical silica powder 2 as the raw material and the fused spherical silica powder 2 treated by the ball mill were measured by a light scattering method, and the average particle size and the rate of change of the average particle size are shown in Table 1. . This was premixed with the remaining components of the basic compound A in a Henschel mixer, and an epoxy resin molding material was obtained in the same manner as in Example 1 except for the above. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0023】(実施例3)基本配合品Aにおいて、溶融
球状シリカ粉末1を83重量部、溶融球状シリカ粉末2
を8重量部とし、γ−グリシドキシプロピルトリメトキ
シシラン、溶融球状シリカ粉末2を自動乳鉢(容量4リ
ットル、回転数:乳棒60rpm、乳鉢6rpm)で1
0分間処理を行った。このときの原料である溶融球状シ
リカ粉末2と自動乳鉢で処理した溶融球状シリカ粉末2
の平均粒子径を光散乱法で測定し、この平均粒子径及び
平均粒子径の変化率を表1に示した。これを基本配合品
Aの残りの成分と一緒にヘンシェルミキサーで予備混合
し、他は実施例1と同じ要領でエポキシ樹脂成形材料を
得た。得られた材料の流動性とパッケージ信頼性の評価
を行い、結果を表1に示した。
Example 3 In the basic compound A, 83 parts by weight of fused spherical silica powder 1 and 2 fused spherical silica powder 2 were used.
To 8 parts by weight, and γ-glycidoxypropyltrimethoxysilane and fused spherical silica powder 2 were placed in an automatic mortar (capacity 4 liters, rotation speed: pestle 60 rpm, mortar 6 rpm) 1
The treatment was carried out for 0 minutes. Fused spherical silica powder 2 which is the raw material at this time and fused spherical silica powder 2 processed in an automatic mortar
The average particle diameter of was measured by a light scattering method, and the average particle diameter and the change rate of the average particle diameter are shown in Table 1. This was premixed with the remaining components of the basic compound A in a Henschel mixer, and an epoxy resin molding material was obtained in the same manner as in Example 1 except for the above. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0024】(実施例4)基本配合品Aにおいて、溶融
球状シリカ粉末2を溶融球状シリカ3(平均粒子径0.
08μm、最大粒子径0.2μm、粒子径1μm未満成
分:100重量%)に置き換え、この溶融球状シリカ
3、γ−グリシドキシプロピルトリメトキシシランを自
動乳鉢(容量4リットル、回転数:乳棒100rpm、
乳鉢15rpm)で20分間処理を行った。このときの
原料である溶融球状シリカ粉末3と自動乳鉢で処理した
溶融球状シリカ粉末3の平均粒子径を光散乱法で測定
し、この平均粒子径及び平均粒子径の変化率を表1に示
した。これを基本配合品Aの残りの成分と一緒にヘンシ
ェルミキサーで予備混合し、他は実施例1と同じ要領で
エポキシ樹脂成形材料を得た。得られた材料の流動性と
パッケージ信頼性の評価を行い、結果を表1に示した。
(Example 4) In the basic compound A, the fused spherical silica powder 2 was fused with the fused spherical silica 3 (average particle size of 0.
08 μm, maximum particle size 0.2 μm, particle size less than 1 μm (component: 100% by weight), and the fused spherical silica 3 and γ-glycidoxypropyltrimethoxysilane were used in an automatic mortar (volume 4 liters, rotation speed: pestle 100 rpm). ,
The treatment was performed in a mortar (15 rpm) for 20 minutes. At this time, the average particle size of the fused spherical silica powder 3 as the raw material and the fused spherical silica powder 3 treated with an automatic mortar were measured by a light scattering method, and the average particle size and the rate of change of the average particle size are shown in Table 1. It was This was premixed with the remaining components of the basic compound A in a Henschel mixer, and an epoxy resin molding material was obtained in the same manner as in Example 1 except for the above. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0025】(実施例5)基本配合品Aにおいて、溶融
球状シリカ粉末2を溶融球状シリカ4(平均粒子径0.
45μm、最大粒子径1.8μm、粒子径1μm未満成
分:91重量%)に置き換え、この溶融球状シリカ4、
γ−グリシドキシプロピルトリメトキシシランを自動乳
鉢(容量4リットル、回転数:乳棒60rpm、乳鉢6
rpm)で10分間処理を行った。このときの原料であ
る溶融球状シリカ粉末4と自動乳鉢で処理した溶融球状
シリカ粉末4の平均粒子径を光散乱法で測定し、この平
均粒子径及び平均粒子径の変化率を表1に示した。これ
を基本配合品Aの残りの成分と一緒にヘンシェルミキサ
ーで予備混合し、他は実施例1と同じ要領でエポキシ樹
脂成形材料を得た。得られた材料の流動性とパッケージ
信頼性の評価を行い、結果を表1に示した。
(Example 5) In the basic compound A, the fused spherical silica powder 2 was fused with the fused spherical silica 4 (average particle size of 0.
45 μm, maximum particle size 1.8 μm, particle size less than 1 μm component: 91% by weight)
Automatic mortar of γ-glycidoxypropyltrimethoxysilane (volume 4 liters, rotation speed: pestle 60 rpm, mortar 6
(rpm) for 10 minutes. At this time, the average particle size of the fused spherical silica powder 4 as the raw material and the fused spherical silica powder 4 treated with an automatic mortar were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. It was This was premixed with the remaining components of the basic compound A in a Henschel mixer, and an epoxy resin molding material was obtained in the same manner as in Example 1 except for the above. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0026】(比較例1)基本配合品Aの中から、γ−
グリシドキシプロピルトリメトキシシラン、溶融球状シ
リカ粉末2を自動乳鉢(容量4リットル、回転数:乳棒
100rpm、乳鉢:15rpm)で120分間処理を
行った。このときの原料である溶融球状シリカ粉末2と
自動乳鉢で処理した溶融球状シリカ粉末2の平均粒子径
を光散乱法で測定し、この平均粒子径及び平均粒子径の
変化率を表1に示した。これを基本配合品Aの残りの成
分と一緒にヘンシェルミキサーで予備混合し、他は実施
例1と同じ要領でエポキシ樹脂成形材料を得た。得られ
た材料の流動性とパッケージ信頼性の評価を行い、結果
を表1に示した。
(Comparative Example 1) From the basic compound A, γ-
Glycidoxypropyltrimethoxysilane and fused spherical silica powder 2 were treated in an automatic mortar (capacity: 4 liters, rotation speed: pestle 100 rpm, mortar: 15 rpm) for 120 minutes. The average particle diameters of the fused spherical silica powder 2 as the raw material and the fused spherical silica powder 2 treated with an automatic mortar at this time were measured by a light scattering method, and the average particle diameter and the rate of change of the average particle diameter are shown in Table 1. It was This was premixed with the remaining components of the basic compound A in a Henschel mixer, and an epoxy resin molding material was obtained in the same manner as in Example 1 except for the above. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0027】(比較例2)基本配合品Aの中から、γ−
グリシドキシプロピルトリメトキシシラン、溶融球状シ
リカ粉末2をボールミル(容量4リットル、回転数80
rpm、メディア径15mm)で120分間処理を行っ
た。このときの原料である溶融球状シリカ粉末2とボー
ルミルで処理した溶融球状シリカ粉末2の平均粒子径を
光散乱法で測定し、この平均粒子径及び平均粒子径の変
化率を表1に示した。これを基本配合品Aの残りの成分
と一緒にヘンシェルミキサーで予備混合し、他は実施例
1と同じ要領でエポキシ樹脂成形材料を得た。得られた
材料の流動性とパッケージ信頼性の評価を行い、結果を
表1に示した。
(Comparative Example 2) From the basic compound A, γ-
Glycidoxypropyltrimethoxysilane, fused spherical silica powder 2 in a ball mill (volume 4 liters, rotation speed 80
Processing was performed for 120 minutes at rpm and media diameter of 15 mm). At this time, the average particle size of the fused spherical silica powder 2 as the raw material and the fused spherical silica powder 2 treated by the ball mill were measured by a light scattering method, and the average particle size and the rate of change of the average particle size are shown in Table 1. . This was premixed with the remaining components of the basic compound A in a Henschel mixer, and an epoxy resin molding material was obtained in the same manner as in Example 1 except for the above. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0028】(比較例3)基本配合品Aにおいて、溶融
球状シリカ粉末2を溶融球状シリカ5(平均粒子径0.
65μm、最大粒子径1.3μm、粒子径1μm未満成
分:97重量%)に置き換え、この溶融球状シリカ5、
γ−グリシドキシプロピルトリメトキシシランを自動乳
鉢(容量4リットル、回転数:乳棒60rpm、乳鉢:
6rpm)で10分間処理を行った。このときの原料で
ある溶融球状シリカ粉末5と自動乳鉢で処理した溶融球
状シリカ粉末5の平均粒子径を光散乱法で測定し、この
平均粒子径及び平均粒子径の変化率を表1に示した。こ
れを基本配合品Aの残りの成分と一緒にヘンシェルミキ
サーで予備混合し、他は実施例1と同じ要領でエポキシ
樹脂成形材料を得た。得られた材料の流動性とパッケー
ジ信頼性の評価を行い、結果を表1に示した。
(Comparative Example 3) In the basic compound A, fused spherical silica powder 2 was fused with fused spherical silica 5 (average particle size of 0.
65 μm, maximum particle size 1.3 μm, particle size less than 1 μm Component: 97% by weight)
Automatic mortar of γ-glycidoxypropyltrimethoxysilane (volume 4 liters, rotation speed: pestle 60 rpm, mortar:
The treatment was performed at 6 rpm for 10 minutes. At this time, the average particle size of the fused spherical silica powder 5 as a raw material and the fused spherical silica powder 5 treated with an automatic mortar were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. It was This was premixed with the remaining components of the basic compound A in a Henschel mixer, and an epoxy resin molding material was obtained in the same manner as in Example 1 except for the above. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0029】(比較例4)基本配合品Aの全ての成分を
ヘンシェルミキサー(容量15リットル、回転数100
0rpm、10℃冷却)で5分間予備混合したものを同
方向噛み合い二軸押出混練機(スクリュ径D=30m
m、押出機軸長さ=1m、ニーディングディスク長=6
D、スクリュ回転数300rpm、吐出量20kg/
h)で加熱混練する通常の製法でエポキシ樹脂成形材料
を得た。得られたエポキシ樹脂成形材料の流動性とパッ
ケージ信頼性の評価を行い、結果を表1に示した。
(Comparative Example 4) A Henschel mixer (capacity 15 liters, rotation speed 100
Pre-mixed for 5 minutes at 0 rpm and 10 ° C., meshed in the same direction and twin-screw extrusion kneader (screw diameter D = 30 m)
m, extruder shaft length = 1 m, kneading disc length = 6
D, screw rotation speed 300 rpm, discharge amount 20 kg /
An epoxy resin molding material was obtained by the usual production method of heating and kneading in h). The fluidity and package reliability of the obtained epoxy resin molding material were evaluated, and the results are shown in Table 1.

【0030】(比較例5)基本配合品Aの中から、γ−
グリシドキシプロピルトリメトキシシラン、溶融球状シ
リカ粉末2をヘンシェルミキサーで予め10分間混合を
行い、これを基本配合品Aの残りの成分と一緒にヘンシ
ェルミキサーで予備混合し、他は実施例1と同じ要領で
エポキシ樹脂成形材料を得た。得られた材料の流動性と
パッケージ信頼性の評価を行い、結果を表1に示した。
(Comparative Example 5) Of the basic compound A, γ-
Glycidoxypropyltrimethoxysilane and fused spherical silica powder 2 were premixed for 10 minutes in a Henschel mixer and this was premixed in the Henschel mixer with the rest of the basic formulation A, otherwise as in Example 1. An epoxy resin molding material was obtained in the same manner. The fluidity and package reliability of the obtained material were evaluated, and the results are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】これまで説明したように、本発明によれ
ば、たとえ無機充填材の充填率が高くても、半導体の封
止成形時の流動性が良好で、封止成形後のパッケージ信
頼性に優れた半導体封止用エポキシ樹脂成形材料を安定
的に製造することができる.
As described above, according to the present invention, even if the filling rate of the inorganic filler is high, the fluidity during semiconductor encapsulation molding is good, and the package reliability after encapsulation molding is high. A stable epoxy resin molding material for semiconductor encapsulation can be stably manufactured.

フロントページの続き Fターム(参考) 4F070 AA46 AC22 AC23 AD04 AD06 AE01 FA03 FA14 FB06 FC03 FC06 4J002 CC032 CD051 CD061 CD071 CE002 DJ006 DJ016 EN027 EU117 EV237 FB136 FB156 FD016 FD090 FD142 FD157 GQ05 5F061 AA01 BA01 CA21 DE04 Continued front page    F-term (reference) 4F070 AA46 AC22 AC23 AD04 AD06                       AE01 FA03 FA14 FB06 FC03                       FC06                 4J002 CC032 CD051 CD061 CD071                       CE002 DJ006 DJ016 EN027                       EU117 EV237 FB136 FB156                       FD016 FD090 FD142 FD157                       GQ05                 5F061 AA01 BA01 CA21 DE04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂とフェノール樹脂、無機充
填材、硬化促進剤、カップリング剤を少なくとも含む無
機充填材含有量が90重量%以上の半導体封止用エポキ
シ樹脂成形材料の製造方法において、無機充填材の内、
平均粒子径D 50が0.5μm以下である無機充填材にカ
ップリング剤存在下で平均粒子径の変化率が10%以下
の範囲でずり剪断力を与え、その無機充填材を残りの無
機充填材及びその他の成分と予備混合した後、加熱混練
することを特徴とする半導体封止用エポキシ樹脂成形材
料の製造方法。
1. An epoxy resin, a phenol resin, and an inorganic charge.
Contains at least filler, curing accelerator, and coupling agent
Epoxy for semiconductor encapsulation with a machine filler content of 90% by weight or more
In the method for producing a resin molding material, among the inorganic fillers,
Average particle size D 50Inorganic fillers with a particle size of 0.5 μm or less
Change rate of average particle size is 10% or less in the presence of a pulling agent
Shear shear force in the range of
After premixing with machine filler and other ingredients, heat kneading
Epoxy resin molding material for semiconductor encapsulation characterized by
Manufacturing method.
【請求項2】 エポキシ樹脂とフェノール樹脂、無機充
填材、硬化促進剤、カップリング剤を少なくとも含む無
機充填材含有量が90重量%以上の半導体封止用エポキ
シ樹脂成形材料の製造方法において、無機充填材の内、
平均粒子径D 50が0.5μm以下である無機充填材にカ
ップリング剤存在下で平均粒子径の変化率が10%以下
の範囲でずり剪断力を与え、その無機充填材0.1〜1
0重量%と残りの無機充填材及びその他の成分を予備混
合した後、加熱混練することを特徴とする半導体封止用
エポキシ樹脂成形材料の製造方法。
2. Epoxy resin and phenol resin, inorganic charge
Contains at least filler, curing accelerator, and coupling agent
Epoxy for semiconductor encapsulation with a machine filler content of 90% by weight or more
In the method for producing a resin molding material, among the inorganic fillers,
Average particle size D 50Inorganic fillers with a particle size of 0.5 μm or less
Change rate of average particle size is 10% or less in the presence of a pulling agent
Shearing force is applied in the range of 0.1 to 1 and the inorganic filler is 0.1 to 1.
Premix 0% by weight with the rest of the inorganic filler and other ingredients
For semiconductor encapsulation, characterized by heating and kneading after combining
Manufacturing method of epoxy resin molding material.
【請求項3】 請求項1又は2記載の製造方法で得られ
た半導体封止用エポキシ樹脂成形材料。
3. An epoxy resin molding material for semiconductor encapsulation, which is obtained by the manufacturing method according to claim 1.
JP2002088932A 2002-03-27 2002-03-27 Semiconductor sealing epoxy resin molding material and its preparation process Pending JP2003277589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088932A JP2003277589A (en) 2002-03-27 2002-03-27 Semiconductor sealing epoxy resin molding material and its preparation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088932A JP2003277589A (en) 2002-03-27 2002-03-27 Semiconductor sealing epoxy resin molding material and its preparation process

Publications (1)

Publication Number Publication Date
JP2003277589A true JP2003277589A (en) 2003-10-02

Family

ID=29234655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088932A Pending JP2003277589A (en) 2002-03-27 2002-03-27 Semiconductor sealing epoxy resin molding material and its preparation process

Country Status (1)

Country Link
JP (1) JP2003277589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058261A1 (en) * 2005-11-21 2007-05-24 Hitachi Chemical Co., Ltd. Sealing epoxy resin forming material and electronic component device
JP2011094005A (en) * 2009-10-29 2011-05-12 Shin Kobe Electric Mach Co Ltd Method for producing epoxy resin composition, method for manufacturing prepreg and method for manufacturing laminated board and wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058261A1 (en) * 2005-11-21 2007-05-24 Hitachi Chemical Co., Ltd. Sealing epoxy resin forming material and electronic component device
JP2011094005A (en) * 2009-10-29 2011-05-12 Shin Kobe Electric Mach Co Ltd Method for producing epoxy resin composition, method for manufacturing prepreg and method for manufacturing laminated board and wiring board

Similar Documents

Publication Publication Date Title
JP3856425B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP3929245B2 (en) Manufacturing method of epoxy resin molding material for semiconductor encapsulation
JP2007067164A (en) Semiconductor sealing epoxy resin composite and its manufacturing method
JP2003277589A (en) Semiconductor sealing epoxy resin molding material and its preparation process
JP3910093B2 (en) Method for producing modified inorganic filler
JP3846825B2 (en) Method for producing epoxy resin composition for encapsulating granular semiconductor
JP2000273278A (en) Production of epoxy resin holding material for semiconductor sealing use
JP2003286394A (en) Epoxy resin molding material for sealing semiconductor and its production process
JP2001302805A (en) Method for producing epoxy resin molding material for sealing semiconductor
JP2000129139A (en) Production of granular semiconductor sealing material and granular semiconductor sealing material
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JPH0716946B2 (en) Method for producing epoxy resin molding material
JP2003268207A (en) Epoxy resin molding material for sealing of semiconductor and semiconductor device
JP3973139B2 (en) Epoxy resin composition and semiconductor device
JP2003268202A (en) Epoxy resin-molding material for sealing of semiconductor and semiconductor apparatus
JP3132403B2 (en) Manufacturing method of granular semiconductor sealing material
JP2003213095A (en) Epoxy resin composition and semiconductor device
JP2001189407A (en) Manufacturing method for surface-treated inorganic filler, epoxy resin composition for sealing semiconductor, and semiconductor device
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2003268201A (en) Epoxy resin molding material for sealing of semiconductor and semiconductor apparatus
JP4505888B2 (en) Epoxy resin composition and semiconductor device
JP4133653B2 (en) Method for producing surface-treated inorganic filler and surface treatment method for inorganic filler
JP4374645B2 (en) Manufacturing method of epoxy resin molding material for semiconductor encapsulation
JP2001081284A (en) Preparation of semiconductor sealing epoxy resin composition and semiconductor sealing epoxy resin composition obtained thereby, and semiconductor device sealed therewith
JP3132404B2 (en) Manufacturing method of granular semiconductor sealing material