JP2002316130A - 有機性固形廃棄物の処理方法及び装置 - Google Patents

有機性固形廃棄物の処理方法及び装置

Info

Publication number
JP2002316130A
JP2002316130A JP2001123953A JP2001123953A JP2002316130A JP 2002316130 A JP2002316130 A JP 2002316130A JP 2001123953 A JP2001123953 A JP 2001123953A JP 2001123953 A JP2001123953 A JP 2001123953A JP 2002316130 A JP2002316130 A JP 2002316130A
Authority
JP
Japan
Prior art keywords
treatment
solid
methane fermentation
liquid
solid waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001123953A
Other languages
English (en)
Inventor
Kenji Katsura
健治 桂
Susumu Hasegawa
進 長谷川
Akihiko Sumi
晃彦 隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP2001123953A priority Critical patent/JP2002316130A/ja
Publication of JP2002316130A publication Critical patent/JP2002316130A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】 【課題】 有機性固形廃棄物をメタン発酵してメタンガ
スとして回収するシステムにおいて、固形残滓発生量を
低減し、しかも経済的かつ高効率なメタンガス回収を実
現できる処理システムを提供する。 【解決手段】 (1)有機性固形廃棄物をメタン発酵処
理し、(2)発酵物を固液分離して処理液と固形物とに
分け、(3)固形物の少なくとも一部を好熱菌により生
物学的に可溶化する工程を含み、可溶化後の処理液は前
記メタン発酵処理工程(1)に付される有機性固形廃棄
物の処理方法及びそのための装置。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、生ごみ、食品廃棄
物、家畜糞尿等の有機性固形廃棄物を処理するシステム
に関し、さらに詳細には、かかる有機性固形廃棄物を発
酵してメタンガスとしてエネルギーを高い効率で回収
し、しかも環境に悪影響を及ぼし得る固形残滓の発生を
大幅に減じることができる、経済性に優れたシステムに
関するものである。
【0002】
【従来の技術】従来、如上の有機性固形廃棄物は、焼却
法やコンポスト法によって処理されている。しかし、焼
却法ではダイオキシン等の汚染物質を発生すること、そ
してコンポスト法においては生じたコンポストの安定し
た供給先が必要であるうえ、コンポスト中の塩分その
他、土壌に溶出し得る成分が農作物の生育に悪影響を及
ぼす場合があることなど、それぞれの問題点を有するも
のである。
【0003】そこで、これら従来法に代わる技術とし
て、嫌気性微生物による生物学的活性を利用したメタン
発酵処理技術の研究開発が進められている。この技術
は、メタン生成菌を主体とした嫌気性微生物による発酵
を利用し、有機性固形廃棄物を最終的にバイオガス(メ
タン約70容量%、二酸化炭素約30容量%)と処理水
及び少量の汚泥とに分解するものである。バイオガスは
およそ6,000kcal/m3程度の熱量を有するの
で、有用なエネルギー源として回収することができる。
しかし、有機性固形廃棄物をメタン発酵処理する場合、
固形物を可溶化させる段階がプロセス全体を律速するこ
とが知られている。そこで廃棄物を1mm〜数mm程度
の平均粒径にまで粉砕して固形物の粒径を予め小さくし
ておいた後に、メタン発酵を行なうプロセスが提案され
た(例えば、特開昭56−13091号公報、特開平1
1−319783号公報等)。しかしながら、やはりこ
の方法でもコンポストが生じる問題を解決しきれず、ま
たエネルギーの回収率も好ましいものでなかった。さら
にメタンガス回収率を向上させるために、高圧粉砕装置
を用いて廃棄物を微粉砕する方法も提案されている(特
許第3064272号公報)。この高圧微粉砕方式で
は、数百μmの平均粒径にまで廃棄物の微細化が達成さ
れるが、装置の設備費用、維持費用が高いため、一般的
に利用可能なものとは云い難い。また、メタン発酵処理
を行なってから、後処理として活性汚泥処理が実施され
るが、この際発生する余剰汚泥はやはりコンポスト処理
に付さざるを得ず、しかして、上述のコンポスト法に伴
う問題点が残されることとなっていた。
【0004】このような、コンポスト発生に伴う問題を
解決するために有機性固形物の可溶化を企図して、セル
ラーゼを添加して可溶化、分解を促進する方法が提案さ
れた(特開昭60−9879号公報)が、高価な試薬を
用いるので実用に供するのが困難であるだけでなく、可
溶化され得る有機性物質が限定されるため、廃棄物の種
類によっては高い効果が期待できない場合があった。ま
た、特開昭57−1319号公報においては、pH10
以上の強アルカリ性条件下、60〜90℃の高温にて固
形物を可溶化する方法が提案されたが、エネルギー消費
量が高いのみならず、アルカリ薬品、及びそれにより生
じる強塩基性廃液を中和して放流可能とするための薬剤
の費用と手間を必要とする問題点があった。さらに、
熱、超音波、溶菌酵素を利用した可溶化方法も提案され
ている(特開2000−5797号公報)が、やはりコ
スト面に問題があり実用的ではない。さらに、特許第2
647804号公報では、100〜400℃、100〜
220気圧という高温高圧下に可溶化を行なう方法が提
案されたが、エネルギー面でも、また高圧負荷を可能と
する設備及びその維持にも非常にコスト高になってしま
うものである。
【0005】一方、嫌気性消化法を利用して、有機性固
形物の可溶化を計る方法も提案されているが(特開昭5
7−42396号公報、特開昭60−137498号公
報等)、嫌気性条件の操作では、可溶化率及び反応時間
の大幅な改善を望むことはできなかった。
【0006】
【発明が解決しようとする課題】本発明は、このような
現状に鑑みてなされたものであり、その目的は、有機性
固形廃棄物をメタン発酵してメタンガスとして回収する
システムにおいて、メタン発酵処理後の固形残滓(未分
解の有機物、増殖した嫌気性微生物、及び活性汚泥の余
剰汚泥)の発生量を極めて低減し、場合によってはゼロ
にまで抑えると共に優れたメタンガス回収効率を実現で
きる、経済的な処理システムを提供することにある。
【0007】
【課題を解決するための手段】上記目的を達成するため
の本願第一発明は、有機性固形廃棄物の処理方法におい
て、以下の工程すなわち、(1)有機性固形廃棄物をメ
タン発酵処理し、(2)発酵物を固液分離して処理液と
固形物とに分け、(3)固形物の少なくとも一部を好熱
菌により生物学的に可溶化する、工程を含み、可溶化後
の処理液は前記メタン発酵処理工程(1)に付されるこ
とを特徴とする。この方法によれば、メタン発酵処理後
に固液分離を行なって固形残滓(主に未分解の有機固形
物)を得、これが好熱菌を利用した生物学的可溶化に付
されることによって、生物難分解性の固形物を選択的に
可溶化することができる。この結果、効率的な可溶化が
でき、メタンガスの回収量の増大及び固形残滓の大幅な
減量が達成できる。
【0008】本願第二発明は、有機性固形廃棄物の処理
方法において、以下の工程すなわち、(1)有機性固形
廃棄物をメタン発酵処理し、(2)発酵物を固液分離し
て処理液と固形物とに分け、(3)得られた処理液を活
性汚泥処理し、(4)処理液を第二固液分離工程に付し
て、二次処理水と二次汚泥を得、(5)該固形物及び該
二次汚泥の少なくとも一部を、好熱菌により生物学的に
可溶化する、工程を含み、可溶化後の処理液は前記メタ
ン発酵処理工程(1)、またはメタン発酵処理工程
(1)及び活性汚泥処理工程(3)に付されることを特
徴とする。このようなシステムにすると、メタン発酵処
理及び固液分離後に得られる処理液に含まれる可溶性有
機物を活性汚泥処理に付すことにより分解すると共に、
増殖した活性汚泥を可溶化した後にメタン発酵処理に再
度付すので、有機物をメタンとして回収する効率をさら
に向上させることが可能となる。そして、可溶化液の一
部を活性汚泥処理工程(3)にも返送することで、メタ
ン発酵処理装置への過剰量の負荷を防止すると共に、可
溶化液の温度、pH等によってメタン発酵処理装置内の
メタン生成菌がダメージを受ける可能性を極力抑制しつ
つメタン発酵処理装置への返送を行ない、メタンガスの
回収量を高めることができる。
【0009】また、本願第三発明は、有機性固形廃棄物
の処理方法において、以下の工程すなわち、(1)有機
性固形廃棄物をメタン発酵処理し、(2)発酵物を固液
分離して処理液と固形物とに分け、(3)得られた処理
液を活性汚泥処理し、(4)処理液を第二固液分離に付
して、二次処理水と二次汚泥を得、(5)該固形物の少
なくとも一部を、好熱菌により生物学的に可溶化し、
(6)該二次汚泥の少なくとも一部を、前記可溶化
(5)と別々の可溶化装置を用いて第二可溶化し、工程
を含み、可溶化工程(5)及び(6)後の処理液は、前
記メタン発酵処理工程(1)、またはメタン発酵処理工
程(1)及び活性汚泥処理工程(3)に付されることを
特徴とする。この発明は、上記本願第二発明と実質的に
同様の効果が奏されることを意図するものであるが、メ
タン発酵処理後の固形物と、活性汚泥処理後に得られる
二次汚泥との性状の相違を考慮し、両者の可溶化を別々
に、それぞれに応じた条件下で行なう。従って、可溶化
の効率を向上させることが可能となり、メタンの回収効
率と、固形残滓の大幅削減とをより確実に実現すること
ができる。
【0010】これら本願第二及び第三発明で、前記固液
分離工程(2)、活性汚泥処理工程(3)及び第二固液
分離工程(4)が、膜分離活性汚泥処理の一工程によっ
て実施される(本願第四発明)と、工程が簡素化され、
迅速に同様の効果が達成される。
【0011】さらに、前記第二固液分離工程(4)にて
得られる二次汚泥の一部が、前記活性汚泥処理工程
(3)に付される(本願第五発明)ことで、活性汚泥処
理に必要な微生物を適宜補充することができ、活性汚泥
処理の効率化を図ることが可能となる。
【0012】また、本願第六発明では、有機性固形廃棄
物の処理方法において、以下の工程すなわち、(1)有
機性固形廃棄物をメタン発酵処理し、(2)得られた発
酵物を活性汚泥処理し、(3)処理液を固液分離して処
理液と固形物とに分け、(4)固形物の少なくとも一部
を好熱菌により生物学的に可溶化する、工程を含み、可
溶化後の処理液は前記メタン発酵処理工程(1)、また
はメタン発酵処理工程(1)及び活性汚泥処理工程
(2)に付されることを特徴とする。この発明では、メ
タン発酵処理後の発酵物中に含まれる固形物の分離性、
沈降性などが好ましくない場合があることに鑑み、さら
に前記本願第二または第三発明と同様メタン回収効率の
向上を意図して、固液分離工程に先んじて発酵物が活性
汚泥処理に付される。固液分離工程の前に活性汚泥処理
された処理液は、分離性、沈降性などが改善されている
ことが期待される。すると、本願第二及び第三発明にお
けるように、固液分離工程を二回実施する必要がなく、
一括して固液分離を行なうので、システムの簡素化が成
し遂げられる。かかる本願第六発明では、前記固液分離
工程(3)にて得られる固形物の一部が、前記活性汚泥
処理工程(2)に付される(本願第七発明)と、活性汚
泥処理工程の効率をより適正に維持することができる。
【0013】さらに本願第八発明は、有機性固形廃棄物
の処理方法において、以下の工程すなわち、(1)有機
性固形廃棄物をメタン発酵処理し、(2)発酵物を固液
分離して処理液と固形物とに分け、(3)得られた処理
液を膜分離活性汚泥処理して、二次処理水と二次汚泥を
得、(4)該固形物及び該二次汚泥の少なくとも一部
を、好熱菌により生物学的に可溶化する、工程を含み、
可溶化後の処理液は前記メタン発酵処理工程(1)、ま
たはメタン発酵処理工程(1)及び膜分離活性汚泥処理
工程(3)に付される。すると、上記本願第六及び第七
発明によって奏されると同様の効果が、簡素化されたシ
ステムによって得られる。
【0014】また、上記本願第一乃至第三および第五乃
至第八発明において、前記固液分離工程にて得られる処
理液が、第二メタン発酵処理工程に付されるようにする
と(本願第九発明)、メタン回収率が一層向上し、ま
た、その後に活性汚泥処理が実施される場合にあって
は、活性汚泥処理工程における有機物負荷量を低減する
ことができるので、活性汚泥処理装置を減容化および効
率化することができるので好ましい。
【0015】以上の本願発明において、前記固液分離工
程または膜分離活性汚泥処理工程にて得られる固形物/
汚泥の一部が、前記メタン発酵処理工程(1)に付され
る(本願第十発明)と、可溶化処理によって死滅するか
損傷を受ける可能性のあるメタン生成菌をメタン発酵槽
に適切に補充することができ、発酵効率の向上が実現さ
れる。
【0016】さらに前記メタン発酵処理工程(1)の前
に、有機性固形廃棄物が破砕される工程をさらに含む
(本願第十一発明)と、メタン発酵及び可溶化工程にお
ける反応がより円滑に進行して、さらに効率と高めるこ
とができる。
【0017】なお、以上の本願発明で、前記可溶化工程
が、60〜70℃にて好気的に加熱処理することによっ
て行なわれる(本願第十二発明)ことが、コストパフォ
ーマンスと微生物による可溶化反応の進行に鑑みて好ま
しい。
【0018】また、如上の発明において、 前記メタン
発酵工程に先駆けて有機性固形廃棄物を水分調整する工
程をさらに含み(本願第十三発明)、ここで適宜に水分
を添加して被処理物の水分量を適正化することが好まし
い。すると、発酵されるべき有機物とメタン発酵菌との
接触会合の増大が許容されて、メタン発酵の効率を高め
ることができ、また連結経路等において固形物が詰まっ
たりして輸送に不具合が生じる可能性を回避することも
できる。なお、水分調整は、水のみならず、下水処理
場、屎尿処理場などの下水処理プロセス、または食品工
場、化学工場などから排出される有機性廃水で、固形物
含有量の低いものを用いることによっても、さらには以
上説明した有機性固形廃棄物の処理方法により最終的に
生じ、系外に排出される処理水、および同方法で固液分
離装置から得られる上清を用いても成し遂げられる。
【0019】さらに本発明によって、有機性固形廃棄物
の処理装置であって、メタン発酵装置、固液分離装置、
可溶化装置及びそれらを連結する経路を含み、本願第一
発明を実施するための装置(本願第十四発明)が提供さ
れる。
【0020】
【発明の実施の形態】以下に、本発明の有機性固形廃棄
物の処理方法における実施の形態を図1〜15に示すフ
ローに基づき説明する。
【0021】すなわち、図1に示す第一の実施態様にか
かる有機性固形廃棄物の処理方法では、先ず厨芥、残飯
などの生ごみ、食品廃棄物、家畜糞尿等の有機性固形廃
棄物Aを、例えば固定床法、浮遊床法等を実施するため
の、従来より知られているメタン発酵処理装置1に導入
する。メタン発酵処理装置1としては、例えば50〜6
0℃が活性を示す至適温度である高温メタン生成菌(特
許第2708087号公報参照)、または35〜38℃
が活性を示す至適温度である中温メタン生成菌等が入れ
られた嫌気槽が、好適に使用される。また、メタン生成
菌の供給源として、有機性廃水に馴養された嫌気性汚泥
などを用いてもよい。有機物負荷は、高温メタン生成菌
を用いる場合には5〜50kg・BOD/m3・日、好
ましくは10〜30kg・BOD/m3・日)、中温メ
タン生成菌を用いる場合には1〜20g・BOD/m3
・日)、好ましくは6〜15kg・BOD/m3・日と
するとよい。また装置内のpHは6〜8、好ましくは
6.5〜7.5に調整するとよい。このように嫌気的消
化反応を行なうことによって、主にメタン及び二酸化炭
素が発生し、このメタンを主成分とするガスは、ガス貯
留槽2に送通され、最終的にガスエンジン、ボイラー、
燃料電池等に利用される。なお、水素と酸素とを電気化
学的に反応させて発電が行なわれる燃料電池用には、メ
タンガスを改質器に通して水素を発生させ、これを燃料
電池の水素源として利用すればよい。
【0022】次に、発酵物を固液分離装置3に付し、固
形物xと、処理水aとに分ける。この固液分離装置3と
しては、従来より知られている、沈澱槽、遠心分離器、
膜分離器、浮上濃縮装置等の固液分離装置を広く利用で
きる。これらのうち、設備及び維持費が安価ですみ、且
つ操作にも殆ど手間を必要としないことから沈澱槽を用
いることが好ましい。
【0023】処理水aは必要に応じて適切な処理が施さ
れた上で放流することができるが、固形物xは可溶化装
置4に導入し、好気的好熱性微生物(好気性好熱菌)に
より固形物の可溶化が成し遂げられる条件下に可溶化処
理を行ない、好熱菌による分解反応と、熱による物理化
学的な分解反応とによって可溶化する。可溶化の条件
は、ヒーター、スチーム発生装置などの加熱手段を用い
て50〜90℃、好ましくは60〜70℃、最も好まし
くは約65℃にて、常圧下に、好ましくは中性から弱ア
ルカリ性付近のpHにおいて加熱処理される。この処理
において、コンプレッサ等よる通気を、好ましくは0.
01〜0.4vvmで行なうとよい。また、可溶化処理
は常圧下で攪拌しながら行なうことが好ましい。これら
可溶化処理における条件は、その処理対象である有機性
固形廃棄物の種類及び濃度及び当該固形廃棄物を分解し
うる微生物の可溶化至適温度等に依存して変動可能であ
り、微生物反応と物理化学的分解反応の双方が良好に進
行するように設定される。なお、可溶化を促進するため
に、バチルス・ステアロサーモフィラス等の好熱菌体
(例えば、SPT2−1;平成8年1月18日付にて、
茨城県つくば市東町1丁目1番3号に所在の通商産業省
工業技術院生命工学工業技術研究所に寄託され受託番号
FERM−15395が付与された)や、プロテアー
ゼ、リパーゼ、グリコシダーゼ等の酵素を単独または組
み合わせて配合してもよく、さらにオゾン分解、電気分
解、熱アルカリ分解等を併用してもよい。
【0024】次いで、可溶化物はメタン発酵処理装置1
に返送される。このように有機性固形廃棄物の処理を循
環系で行なうことで、メタンの回収効率を高めると共
に、固形残滓の発生量を格段に削減することができる。
従って、コンポスト供給先にかかる従来の問題も解決さ
れ、コンポストが生じたとしてもその加熱乾燥処理等も
容易になる。しかも好熱菌による処理を経ているため、
コンポスト馴養に要する時間を短縮することができ、ま
た液肥としても雑菌等の混入が少なく好都合である。
【0025】なお、メタン生成菌は生育条件によっては
増殖速度が遅く、この態様では可溶化処理後に高温とな
った処理液が通入されるので中温メタン生成菌を利用す
る場合に活性が損なわれることが危惧される。従って、
固液分離装置3より得られる固形物の一部x’を、メタ
ン発酵処理装置1に返送して、上記のようなメタン生成
菌を補充するようにすると、より良好なメタン回収効率
が得られる。
【0026】図2に示す本発明の別の態様において、有
機性固形廃棄物Aは、破砕装置5により、所定の粒径す
なわち、10mm以下、より好ましくは1〜5mm、最
も好ましくは1〜2mmになるまで破砕される。この粒
径が大きすぎるとメタン発酵が円滑に進行し難くなるこ
とがあり、また小さくするには特段の手段や時間を要す
るために日常的な実施が困難になり得る。破砕装置5と
しては、カッターミルなどを使用するとよい。
【0027】さらに、図3に示す本発明のさらなる実施
態様において、図2に示す態様で採用した破砕装置5に
よる工程に先駆けて、有機性固形廃棄物Aは前処理装置
6での処理に付され、金属、ビニール、プラスチック片
等、有機性固形廃棄物Aに含まれ、メタン発酵、可溶
化、活性汚泥処理等の生物学的な処理工程により分解さ
れえないだけでなく、これらの処理に支障をもたらす可
能性もある物質が極力システム内に混入しないようにす
るための選別処理が行なわれる。ここで云う前処理装置
5としては、かかる物質を排除することができるもので
あれば特に限定されることなく、例えば、磁選装置、破
袋装置、篩等を挙げることができる。
【0028】図4に示す本発明の他の実施態様におい
て、図1に示すと同様の構成を有する実施態様の後段
で、活性汚泥処理が実施される。すなわち、固液分離装
置3で得られた一次処理水aは、活性汚泥処理装置7に
導入され、微生物を利用した活性汚泥処理に付される。
活性汚泥処理装置7において、分解能を有する微生物の
至適pHにて処理を実施することが最も好ましいが、一
般的には、処理後の廃液の問題等に鑑み、中性付近で反
応が行なわれる。この際の処理温度は、微生物により有
機化合物を二酸化炭素及び水へと消化分解することがで
きる限り特に限定されず、当該微生物による活性発現の
至適温度下で行なうことが好ましい。また、有機物の負
荷濃度は、例えば0.1〜0.8kg・BOD/懸濁固
形物kg・日、好ましくは0.2〜0.4kg・BOD
/懸濁固形物kg・日とするとよい。
【0029】活性汚泥処理後の処理液は、第二固液分離
装置8に付され、二次汚泥yは可溶化装置4と活性汚泥
処理装置7とに返送され、二次処理水bは放流される。
可溶化装置4及び活性汚泥処理装置7への返送量は、各
槽内の活性微生物の存在量を制御するように、適宜その
割合を決定することが好ましい。なお、第二固液分離装
置8としては、固液分離装置3について例示した装置か
ら、被処理液の性状、許容量等を考慮して選択したもの
を使用すればよい。
【0030】二次汚泥yは可溶化装置4での処理後に、
やはりメタン発酵処理装置1へと返送されるので、この
結果、有機物をメタンとしての回収する効率をさらに高
めることができる。なお、二次汚泥の一部y’を活性汚
泥処理装置7に返送して、有機物負荷濃度の適正化を図
ることが好ましい。
【0031】次に図5に、本発明のさらに別の実施態様
のフローを示す。この実施態様では、図4に示した実施
態様と同様、メタン発酵後に生じる固形物xは可溶化装
置4に導入されるが、活性汚泥処理後に生じる余剰汚泥
である二次汚泥yは、さらに設けられた第二可溶化装置
9に導入され、ここで可溶化処理が行なわれる。固形物
xと二次汚泥yとは、含有微生物などの組成や性状が相
異する場合もあるので、同じ可溶化装置よりも、それぞ
れ別個の可溶化装置にて適合する条件下に処理を行なう
方が可溶化効率が高くなり、加熱のためのコストもむし
ろ低減できる場合がある。可溶化装置9における処理条
件は、可溶化装置4の場合と基本的に同様に設定すれば
よいが、滞留時間、処理温度、pH等を適宜変更し、可
溶化装置9中の好熱菌が最も活性を呈することができる
条件で実施することが好ましい。可溶化装置9での処理
を経た可溶化物もやはり、メタン発酵装置1に導入さ
れ、循環処理に付されることで、メタンガス回収効率が
高められる。なお、可溶化を促進するために、バチルス
・ステアロサーモフィラス等の好熱菌体(例えば、上記
SPT2−1)や、プロテアーゼ、リパーゼ、グリコシ
ダーゼ等の酵素を単独または組み合わせて配合してもよ
く、さらにオゾン分解、電気分解、熱アルカリ分解等を
併用してもよいことは、可溶化装置4におけると同様で
ある。また、一部の固形物x’はメタン発酵処理装置1
に、一部の二次汚泥y’は活性汚泥処理装置7に返送さ
れてそれぞれの生物学的処理における微生物量の適正化
が図られる。このようにして、可溶化の効率を向上させ
て、メタンの回収効率の向上と共に、固形残滓の大幅削
減がより確実に実現され得る。
【0032】図6に示す本発明のさらなる実施態様で
は、図5に示すと同様のフローにおいて、第二可溶化装
置9より生じる可溶化液の一部が、活性汚泥処理装置7
にも返送される。すると、メタン発酵処理装置1への過
剰量の負荷を防止できるうえ、可溶化液の温度、pH等
によってメタン発酵処理装置1内のメタン生成菌がダメ
ージを受ける可能性を抑制し、メタン発酵処理が最適に
進行する条件をもたらすことができるので、メタンガス
の回収量がさらに高められる。
【0033】図7に示す本発明のさらに別の実施態様で
は、図1に示す態様にかかるメタン発酵処理装置1の後
段に、活性汚泥処理装置7が設けられ、発酵物がそのま
ま活性汚泥処理に付される。メタン発酵処理後の発酵物
には、様々な粘性物質や微細固形物等が含まれていて、
固液分離工程での分離性、沈降性などが不良となる場合
がある。かかる発酵物をすべて活性汚泥処理装置7に導
入して処理することにより、処理液の分離性、沈降性な
どが改善されていることが期待され、その後固液分離工
程を実施することでシステムの簡素化も成し遂げられ
る。
【0034】図8には、図7に示すと同様のフローにお
いて、可溶化装置4より生じる可溶化液の一部が、活性
汚泥処理装置7にも返送される態様を示す。この場合も
図6の態様に関して説明したと同様、メタン発酵処理装
置1への過剰量の負荷を防止すると共に、メタン生成菌
がダメージを受ける可能性を抑制しつつ、メタン発酵処
理が最適に進行する条件をもたらして、メタンガスの回
収量を高めることができる。
【0035】図9に示す本発明のさらなる実施態様で
は、図4に示す態様における、固液分離装置3、活性汚
泥処理装置7及び第二固液分離装置8における処理が、
膜分離活性汚泥処理装置10によって一括して実施され
るものである。この態様によれば、図4に示したと同様
の作用効果を奏しつつも、システムの簡素化を実現する
ことができる。ここで膜分離活性汚泥処理装置10は、
曝気装置を具備し、かつ膜分離装置が配設されたもので
あればよく、また処理の条件は、上記活性汚泥処理装置
7における条件に準ずる。膜分離装置には、例えば、孔
径0.1〜2.5μm、好ましくは0.3〜0.5μmを
有する膜が使用されるとよく、そして1以上の膜モジュ
ール構造から形成されているものが好適である。なお、
かかる膜分離装置には、好ましくは、水圧、空気圧等に
よる加圧や、擦掃、振動あるいは薬品注入等による洗浄
手段が内包または併設され、膜を通過しない物質が膜表
面へ接着することをできる限り回避する構造とされると
よい。
【0036】図9に示した態様では、二次汚泥yの全量
が可溶化装置4に導入されるが、図5〜8に示すものと
同様、二次汚泥yの一部を膜分離活性汚泥処理装置10
に返送して、膜分離活性汚泥処理装置10の槽内に存在
する微生物量の適正化を図ってもよい。
【0037】図10に示す本発明のさらなる実施態様で
は、図9に示す態様における、膜分離活性汚泥処理装置
10の前に固液分離装置3が設けられ、ここで予め固形
物xが分離されて可溶化装置4に導入されるものであ
る。有機性固形廃棄物Aの種類によっては、メタン発酵
処理後に処理液全体を膜分離活性汚泥処理装置10へ直
接導入すると、膜の目詰まりが激しく良好な処理効率が
得られない等の場合があり、そのような場合には予め沈
澱槽、遠心分離器等による固液分離を行なうとよい。本
実施態様においても、固形物xの一部をメタン発酵装置
1に返送して、メタン発酵処理がより円滑に進行にする
ようにしてもよい。
【0038】図11に示す本発明のさらなる実施態様で
は、図10に示すと同様の態様にて、固液分離装置3か
ら得られる固形物xと、膜分離活性汚泥処理装置10か
ら得られる二次汚泥yとがそれぞれ、可溶化装置4及び
第二可溶化装置9という、別々の装置における可溶化処
理に付される。図5における態様に関して記載したと同
様、含有微生物などの組成や性状が相異する場合がある
固形物xと二次汚泥yを、別個の可溶化装置にてそれぞ
れに適合する条件下に処理を行なうことで、可溶化効率
の向上、加熱のためのコスト低減が期待される。この場
合も、固形物xの一部と二次汚泥yの一部をそれぞれメ
タン発酵装置1及び膜分離活性汚泥処理装置10に返送
して、各微生物負荷量を調整することが好ましい。
【0039】以上説明した本発明の実施態様で、系外に
放流される処理水aまたは二次処理水bを、生物学的脱
窒処理に付すと、最終的に系外に放流、排出される処理
水中の窒素化合物濃度を低減することができる。すなわ
ち、処理水aまたは二次処理水bを脱窒処理装置に導入
し、次工程の硝化処理装置から返送される硝化処理液中
のNO2-及び/またはNO3-を脱窒処理するために、こ
れら処理水a,b中の有機物が利用される。処理水a,
b中に有機物があまり含まれていない場合には、メタノ
ール等の水素供与剤を添加して、反応を促進するとよ
い。脱窒処理を経た処理液は硝化処理装置に導入され、
ここで硝化菌の作用によりNH4 +分がNO 2-及び/また
はNO3-に変換される。硝化処理装置にはポリプロピレ
ン、ポリエチレン等のプラスチック担体等を入れて、硝
化菌を高密度に保持すると、硝化効率がより良好とな
る。そして、硝化処理液の一部を脱窒処理装置に返送
し、循環処理することによって、上述のとおり、NO2-
及び/またはNO3-がN2 に変換される。なお、可溶化
装置4,9から排出されるガスを排ガス供給路を通じて
硝化処理装置に通入し、同上の脱窒及び硝化処理が施さ
れると、システムから生じるアンモニア臭等の悪臭を防
止すると共に大気汚染の可能性を減じ、窒素化合物の流
出を防止することができるので有利であるうえ、可溶化
装置から排出されるガスの熱を硝化処理装置において有
効利用できるのでさらに好都合である。
【0040】図12に示すのは、図6に示すと同様の実
施態様において、活性汚泥処理装置7に、食品工場、化
学工場などから排出される有機性廃水で、固形物含有量
の低い有機性廃水C、好ましくは固液分離操作後に得ら
れる上清が導入されるものである。このような有機性廃
水(固液分離上清)は、可溶性有機物を多量に含み、そ
のまま河川や湖沼に放流すれば富栄養化などに伴う環境
破壊の原因になってしまう。従って、このような有機性
廃水も併せて活性汚泥処理に付し、処理液の固液分離後
に得られる固形物は、第二可溶化装置9で可溶化処理し
た後、再度メタン発酵処理に付すようにすれば、メタン
ガスに変換されてエネルギーとして再利用することがで
きるようになるので好都合である。また、第二可溶化装
置9から生じる処理液の一部を活性汚泥処理装置7に返
送することにより、メタン発酵処理装置1への過剰量の
負荷を防止すると共に、第二可溶化装置9から生じる処
理液の温度、pH等によってメタン発酵処理装置1内の
メタン生成菌がダメージを受けることを防止できる。
【0041】図13に示す本発明のさらなる実施態様で
は、やはり図6に示すと同様の実施態様において、固液
分離装置3から得られる上清を第二メタン発酵処理装置
1’での処理に付した後、活性汚泥処理工程が実施され
る。第二メタン発酵処理装置1’としては、SS濃度に
応じて浮遊床法、固定床法、グラニュール法等を採用す
るとよい。こうして再度メタン発酵処理を行なうことに
より、活性汚泥処理工程における有機物負荷量を低減す
ることができるので、活性汚泥処理装置7を減容化およ
び効率化すると共に、メタン回収率が一層向上する。こ
のため、二次処理水bの有機物含有量も低くなるという
利点もある。処理液の固液分離後に得られる固形物yは
第二可溶化装置9で可溶化処理した後、再度メタン発酵
処理装置1または第二メタン発酵処理装置1’に付すよ
うにすれば、メタンガスに変換されてエネルギーとして
再利用することができるようになる。また、第二可溶化
装置9から生じる処理液の一部を活性汚泥装置7に返送
することにより、メタン発酵処理装置1又は1’の過剰
量の負荷を防止すると共に、第二可溶化装置9から生じ
る処理液の温度、pH等によってメタン発酵処理装置1
又は1’内のメタン生成菌がダメージを受けることを防
止できる。
【0042】図14に示す本発明のさらなる実施態様で
は、図12および図13に示す態様を組み合わせて、す
なわち、固液分離装置3から得られる上清を、SS濃度
に応じて浮遊床法、固定床法、グラニュール法等が採用
される第二メタン発酵装置1’での処理に付すと共に、
有機性廃水Cが当該第二メタン発酵装置1’に導入され
る。従って、 有機性廃水Cを処理することができると
共に、活性汚泥処理装置6を減容化しつつメタンガスの
回収効率が高められる。
【0043】図15に示す実施態様では、図6に示すと
同様の態様において、前記メタン発酵処理工程に先駆け
て、水分調整装置11で有機性固形廃棄物の水分調整が
行われる。かかる水分調整とは、メタン発酵処理装置1
への被処理物のTS(全固形分)濃度が6〜15%(w
/v)、好ましくは8〜12%(w/v)となるよう
に、被処理物の水分量を適正化することを称する。こう
して、適度な固形物濃度で攪拌混合すれば、発酵される
べき有機物とメタン発酵菌との接触会合の増大が許容さ
れるので、メタン発酵の効率を高めることができ、連結
経路等において固形物が詰まったりする不都合を回避す
ることもできる。なお、上記TS濃度が低すぎるとメタ
ン発酵処理装置1の発酵槽の容積を大きくせざるを得
ず、またTS濃度を高くしすぎると、ポンプ等を利用し
て輸送する際に不具合が生じやすく、またメタン発酵処
理装置1での撹拌が困難になってしまう。水分調整装置
11としては、通常の貯留槽を利用すればよい。また、
前記TS濃度は、液体を105℃で2時間加熱乾燥した
後に残る全固形物量を測定し、乾燥前の液体容量に対す
る百分率として求められるものとする。
【0044】ここで、水分調整用液体Dとしては、水を
用いてもよいが、食品工場、化学工場などから排出され
る有機性廃水で、固形物含有量の低いもの(例えば固液
分離後の上清)、図1〜15で例示したような本発明の
有機性固形廃棄物の処理方法により最終的に生じ、系外
に排出される処理水、および同方法で固液分離装置から
得られる上清を適宜に組み合わせて用いても成し遂げら
れ、これらを適切な有機物負荷量で導入することによ
り、メタンガス回収量をより高めることができる。
【0045】さらに本発明で企図されるのは、図1〜1
5に示すような有機性固形廃棄物の処理装置であり、メ
タン発酵装置1、固液分離装置3及び可溶化装置4をこ
の順で含み、それらを連結する経路が配設されている。
このような処理装置に、さらに破砕装置5、前処理装置
6、曝気処理装置(活性汚泥処理装置)7、第二固液分
離装置8、第二可溶化装置9、水分調整装置11及びそ
れらを連結する経路を含むもの、あるいは膜分離活性汚
泥処理装置10、生物学的脱窒処理装置、可溶化装置4
より排出されるガスを生物学的脱窒処理装置に通入する
ための排ガス供給路などを含むものが例示されるが、こ
れらに限定されることはなく、以上説明した本発明の有
機性固形廃棄物の処理方法を実施するための処理装置と
して適宜改変、付加したものも包含される。
【0046】各処理装置及び経路は、従来より知られて
いる、耐熱性、耐腐食性等を具備する素材によって、目
的に応じた形状に成形されたものを利用すればよい。
【0047】
【実施例】以下に本発明の実施例を説明するが、本発明
の範囲はもとより、これら実施例によって限定的に解釈
されるべきものではない。
【0048】[実施例1]有機性固形廃棄物として、お
から、うどん、パンをそれぞれ1:1:1重量部配合し
たものを、高速ブレンダーにて3分間処理し、平均粒径
2mm程度に破砕後、原水槽に投入し、水道水を加えて
全固形分(TS)濃度が約10%(w/v)となるよう
に調整した。原水槽から1L/日の速度にて、20L容
量のメタン発酵処理槽へ原水を供給し、37℃で水力学
的滞留時間を20日に設定してメタン発酵処理を行なっ
た。次いで発酵物は、10L容量の沈澱槽で固液分離し
て、得られた固形物は1.6L/日にて可溶化槽に導入
し、70℃、水理学的滞留時間1日での可溶化処理に付
した。可溶化液は、その全量をメタン発酵処理槽に返送
し、従って、メタン発酵処理槽及び沈澱槽への通液容量
は合計2.6L/日となった。一方沈澱槽からの上澄
は、1L/日にて得られた。
【0049】このようにして循環系での処理を2ヶ月間
行なった結果、メタン発酵処理槽にて生じるメタンガス
の量と、上澄中に混入する懸濁性固形物の量とを定量し
た。
【0050】懸濁固形物の定量は以下のような遠心分離
法によって実施した。すなわち、試料を3,000rp
m、10分間遠心分離器にかけ、得られる沈殿物を純水
で洗浄し、再度同上の条件で遠心分離を行なった。この
洗浄、遠心分離の操作を3度繰り返して最終的に回収し
た固形物を105℃にて2時間加熱乾燥し、水分を完全
に蒸発させた。その後、乾燥後の固形物を秤量して、懸
濁固形物重量を求めた。
【0051】[比較例1]実施例1と同様の方法におい
て、可溶化槽での処理を実施することなく、1L/日の
供給速度で原水をメタン発酵処理槽、次いで同様の速度
で沈澱槽に導入し、上澄(0.8L/日)と沈殿物
(0.2L/日)とに分けた。メタン発酵処理槽から得
られるメタンガスの量と、沈殿物及び上澄中の懸濁固形
物量を、実施例1におけると同様に定量した。
【0052】以上の結果を以下の表1に示す。
【0053】
【表1】
【0054】表1より、本発明の方法によって、従来法
に比較してメタンガスの回収効率を高めると共に、固形
残滓の発生量を格段に抑制できることが明らかになっ
た。
【0055】
【発明の効果】本発明によれば、有機性固形廃棄物の処
理において、メタンガス回収率を格段に向上させると共
に固形残滓の発生量を大幅に低減し、場合によってはゼ
ロにまで抑えることもできる、経済性に優れた方法及び
装置が提供され、地球環境の保全に役立つことができ
る。
【図面の簡単な説明】
【図1】本発明の有機性固形廃棄物の処理方法の一実施
態様の概略構成図である。
【図2】本発明の有機性固形廃棄物の処理方法の他の実
施態様の概略構成図である。
【図3】本発明の有機性固形廃棄物の処理方法のさらに
別の実施態様の概略構成図である。
【図4】本発明の有機性固形廃棄物の処理方法のさらに
別の実施態様の概略構成図である。
【図5】本発明の有機性固形廃棄物の処理方法のさらに
別の実施態様の概略構成図である。
【図6】本発明の有機性固形廃棄物の処理方法のさらに
別の実施態様の概略構成図である。
【図7】本発明の有機性固形廃棄物の処理方法のさらに
別の実施態様の概略構成図である。
【図8】本発明の有機性固形廃棄物の処理方法のさらに
別の実施態様の概略構成図である。
【図9】本発明の有機性固形廃棄物の処理方法のさらに
別の実施態様の概略構成図である。
【図10】本発明の有機性固形廃棄物の処理方法のさら
に別の実施態様の概略構成図である。
【図11】本発明の有機性固形廃棄物の処理方法のさら
に別の実施態様の概略構成図である。
【図12】本発明の有機性固形廃棄物の処理方法のさら
に別の実施態様の概略構成図である。
【図13】本発明の有機性固形廃棄物の処理方法のさら
に別の実施態様の概略構成図である。
【図14】本発明の有機性固形廃棄物の処理方法のさら
に別の実施態様の概略構成図である。
【図15】本発明の有機性固形廃棄物の処理方法のさら
に別の実施態様の概略構成図である。
【符号の説明】
1,1’…メタン発酵処理装置 2,2’…ガス貯留槽 3…固液分離装置 4…可溶化装置 5…破砕装置 6…前処理装置 7…活性汚泥処理装置 8…第二固液分離装置 9…第二可溶化装置 10…膜分離活性汚泥処理装置 11…水分調整装置 a…処理水 b…二次処理水 x…固形物 y…二次汚泥 A…有機性固形廃棄物 C…有機性廃水
フロントページの続き Fターム(参考) 4D004 AA02 AA03 AC05 BA03 BA04 CA04 CA08 CA13 CA18 CA35 CB04 CB13 CB32 CC07 4D006 GA07 KA01 KB24 KC01 KC14 MA22 PA01 PB08 PB24 PC62 4D028 BC17 BD17 BE08 4D059 AA01 AA07 BA12 BA21 BA22 BF13 BK11 BK12 BK17 CA07 CA12 CA22 CC01

Claims (15)

    【特許請求の範囲】
  1. 【請求項1】 有機性固形廃棄物の処理方法において、
    以下の工程すなわち、(1)有機性固形廃棄物をメタン
    発酵処理し、(2)発酵物を固液分離して処理液と固形
    物とに分け、(3)固形物の少なくとも一部を好熱菌に
    より生物学的に可溶化する、工程を含み、可溶化後の処
    理液は前記メタン発酵処理工程(1)に付される有機性
    固形廃棄物の処理方法。
  2. 【請求項2】 有機性固形廃棄物の処理方法において、
    以下の工程すなわち、(1)有機性固形廃棄物をメタン
    発酵処理し、(2)発酵物を固液分離して処理液と固形
    物とに分け、(3)得られた処理液を活性汚泥処理し、
    (4)処理液を第二固液分離工程に付して、二次処理水
    と二次汚泥を得、(5)該固形物及び該二次汚泥の少な
    くとも一部を、好熱菌により生物学的に可溶化する、工
    程を含み、可溶化後の処理液は前記メタン発酵処理工程
    (1)、またはメタン発酵処理工程(1)及び活性汚泥
    処理工程(3)に付される有機性固形廃棄物の処理方
    法。
  3. 【請求項3】 有機性固形廃棄物の処理方法において、
    以下の工程すなわち、(1)有機性固形廃棄物をメタン
    発酵処理し、(2)発酵物を固液分離して処理液と固形
    物とに分け、(3)得られた処理液を活性汚泥処理し、
    (4)処理液を第二固液分離に付して、二次処理水と二
    次汚泥を得、(5)該固形物の少なくとも一部を、好熱
    菌により生物学的に可溶化し、(6)該二次汚泥の少な
    くとも一部を、前記可溶化(5)と別々の可溶化装置を
    用いて第二可溶化し、工程を含み、可溶化工程(5)及
    び(6)後の処理液は、前記メタン発酵処理工程
    (1)、またはメタン発酵処理工程(1)及び活性汚泥
    処理工程(3)に付される有機性固形廃棄物の処理方
    法。
  4. 【請求項4】 前記固液分離工程(2)、活性汚泥処理
    工程(3)及び第二固液分離工程(4)が、膜分離活性
    汚泥処理の一工程によって実施される請求項2または3
    記載の処理方法。
  5. 【請求項5】 前記第二固液分離工程(4)にて得られ
    る二次汚泥の一部が、前記活性汚泥処理工程(3)に付
    される請求項2または3記載の処理方法。
  6. 【請求項6】 有機性固形廃棄物の処理方法において、
    以下の工程すなわち、(1)有機性固形廃棄物をメタン
    発酵処理し、(2)得られた発酵物を活性汚泥処理し、
    (3)処理液を固液分離して処理液と固形物とに分け、
    (4)固形物の少なくとも一部を好熱菌により生物学的
    に可溶化する、工程を含み、可溶化後の処理液は前記メ
    タン発酵処理工程(1)、またはメタン発酵処理工程
    (1)及び活性汚泥処理工程(2)に付される有機性固
    形廃棄物の処理方法。
  7. 【請求項7】 前記固液分離工程(3)にて得られる固
    形物の一部が、前記活性汚泥処理工程(2)に付される
    請求項6記載の処理方法。
  8. 【請求項8】 有機性固形廃棄物の処理方法において、
    以下の工程すなわち、(1)有機性固形廃棄物をメタン
    発酵処理し、(2)発酵物を固液分離して処理液と固形
    物とに分け、(3)得られた処理液を膜分離活性汚泥処
    理して、二次処理水と二次汚泥を得、(4)該固形物及
    び該二次汚泥の少なくとも一部を、好熱菌により生物学
    的に可溶化する、工程を含み、可溶化後の処理液は前記
    メタン発酵処理工程(1)、またはメタン発酵処理工程
    (1)及び膜分離活性汚泥処理工程(3)に付される有
    機性固形廃棄物の処理方法。
  9. 【請求項9】 前記固液分離工程にて得られる処理液
    が、第二メタン発酵処理工程に付される請求項1乃至3
    または5乃至8のいずれかに記載の処理方法。
  10. 【請求項10】 前記固液分離工程または膜分離活性汚
    泥処理工程にて得られる固形物/汚泥の一部が、前記メ
    タン発酵処理工程(1)に付される請求項1乃至9のい
    ずれかに記載の処理方法。
  11. 【請求項11】 前記メタン発酵処理工程(1)の前
    に、有機性固形廃棄物が破砕される工程をさらに含む請
    求項1乃至10のいずれかに記載の処理方法。
  12. 【請求項12】 前記可溶化工程が、60〜70℃にて
    好気的に加熱処理することによって行なわれる請求項1
    乃至11のいずれかに記載の有機性固形廃棄物の処理方
    法。
  13. 【請求項13】 予め前処理が施された有機性固形廃棄
    物が処理される、請求項1乃至12のいずれかに記載の
    有機性固形廃棄物の処理方法。
  14. 【請求項14】 前記メタン発酵工程に先駆けて有機性
    固形廃棄物を水分調整する工程をさらに含む請求項1乃
    至13のいずれかに記載の有機性固形廃棄物の処理方
    法。
  15. 【請求項15】 有機性固形廃棄物の処理装置であっ
    て、メタン発酵装置、固液分離装置、可溶化装置及びそ
    れらを連結する経路を含み、請求項1記載の有機性固形
    廃棄物の処理方法を実施するための装置。
JP2001123953A 2001-04-23 2001-04-23 有機性固形廃棄物の処理方法及び装置 Pending JP2002316130A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123953A JP2002316130A (ja) 2001-04-23 2001-04-23 有機性固形廃棄物の処理方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001123953A JP2002316130A (ja) 2001-04-23 2001-04-23 有機性固形廃棄物の処理方法及び装置

Publications (1)

Publication Number Publication Date
JP2002316130A true JP2002316130A (ja) 2002-10-29

Family

ID=18973428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123953A Pending JP2002316130A (ja) 2001-04-23 2001-04-23 有機性固形廃棄物の処理方法及び装置

Country Status (1)

Country Link
JP (1) JP2002316130A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125203A (ja) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd 有機性廃水の処理装置
JP2006272138A (ja) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd 有機性廃棄物の処理方法
JP2007330881A (ja) * 2006-06-14 2007-12-27 Sumitomo Heavy Industries Environment Co Ltd メタン発酵システム
KR101273445B1 (ko) * 2011-06-16 2013-06-11 주식회사 한화건설 축전식 탈염기술을 이용한 에너지저감형 물 재생 기술
KR101384782B1 (ko) * 2012-08-01 2014-04-21 창원대학교 산학협력단 에너지 자립형 슬러지 무배출 오수처리 장치
CN105414155A (zh) * 2015-12-28 2016-03-23 北京中石大能源技术服务有限公司 一种石油工业废弃物的无害化处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246224A (ja) * 1999-03-01 2000-09-12 Kurita Water Ind Ltd 有機性廃棄物の処理方法
JP2000301198A (ja) * 1999-04-15 2000-10-31 Mitsubishi Kakoki Kaisha Ltd 汚泥減容化処理方法
JP2000317498A (ja) * 1999-05-11 2000-11-21 Unitika Ltd 嫌気性消化汚泥の処理方法及び嫌気性消化汚泥の嫌気性消化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246224A (ja) * 1999-03-01 2000-09-12 Kurita Water Ind Ltd 有機性廃棄物の処理方法
JP2000301198A (ja) * 1999-04-15 2000-10-31 Mitsubishi Kakoki Kaisha Ltd 汚泥減容化処理方法
JP2000317498A (ja) * 1999-05-11 2000-11-21 Unitika Ltd 嫌気性消化汚泥の処理方法及び嫌気性消化汚泥の嫌気性消化方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125203A (ja) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd 有機性廃水の処理装置
JP4542764B2 (ja) * 2003-10-22 2010-09-15 住友重機械エンバイロメント株式会社 有機性廃水の処理装置
JP2006272138A (ja) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd 有機性廃棄物の処理方法
JP4729718B2 (ja) * 2005-03-29 2011-07-20 富士電機株式会社 有機性廃棄物の処理方法
JP2007330881A (ja) * 2006-06-14 2007-12-27 Sumitomo Heavy Industries Environment Co Ltd メタン発酵システム
KR101273445B1 (ko) * 2011-06-16 2013-06-11 주식회사 한화건설 축전식 탈염기술을 이용한 에너지저감형 물 재생 기술
KR101384782B1 (ko) * 2012-08-01 2014-04-21 창원대학교 산학협력단 에너지 자립형 슬러지 무배출 오수처리 장치
CN105414155A (zh) * 2015-12-28 2016-03-23 北京中石大能源技术服务有限公司 一种石油工业废弃物的无害化处理方法及装置

Similar Documents

Publication Publication Date Title
KR101793236B1 (ko) 유기성폐기물 자원화 처리시스템
JP5711192B2 (ja) 有機性廃棄物の嫌気性処理方法及び装置
AU2010336346B2 (en) Improved digestion of biosolids in wastewater
EP0220647A1 (en) Sludge restructuring and conversion method
KR101565503B1 (ko) 가축분뇨 액비화 방법
KR20070021335A (ko) 남은음식물 및 축산폐수를 혼합처리하기 위한 혐기-호기복합고도처리공법.
JP5121111B2 (ja) 有機性廃棄物の嫌気性処理方法及び装置
JP2003019491A (ja) 油脂の嫌気性処理方法
JP3698419B2 (ja) 有機性汚泥の減量化方法及び装置
JP4907123B2 (ja) 有機性廃棄物の処理方法及び処理システム
JP2004237246A (ja) メタン発酵処理装置及びメタン発酵処理方法
JP2004082017A (ja) 有機性廃棄物のメタン発酵方法および装置
JP4864339B2 (ja) 有機性廃棄物の処理装置及び処理方法
KR100778543B1 (ko) 유기성 축산분뇨의 자원화방법 및 그 장치
Sang et al. Sludge reduction and pollutants removal in anaerobic-anoxic-oxic reactor with 2450 MHz electromagnetic wave loading on returned sludge: Performance and mechanism
JP2002316130A (ja) 有機性固形廃棄物の処理方法及び装置
JP2006255538A (ja) 食品廃棄物の処理方法およびその装置
JP3450719B2 (ja) 有機性廃水の生物学的処理方法及び装置
JP2003103292A (ja) 生物由来性の廃水及び廃棄物の合併処理方法
JP4844951B2 (ja) 生ごみと紙ごみの処理方法およびその装置
KR200417043Y1 (ko) 고온호기소화조와 중온혐기소화조 및 전기분해조를 이용한활성슬러지의 감량화장치
JPH0739895A (ja) 有機性固形分を含む排液の処理方法および装置
JP3745978B2 (ja) 食品系及び木質系廃棄物の混合再資源化方法及び装置
JP2002273391A (ja) 有機性固形廃棄物の処理方法及び装置
JP4025733B2 (ja) メタン発酵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629