JP2002316050A - Iron powder for decomposing organic chlorine compound and method for purifying soil, water and gas stained with the same compound - Google Patents

Iron powder for decomposing organic chlorine compound and method for purifying soil, water and gas stained with the same compound

Info

Publication number
JP2002316050A
JP2002316050A JP2001125576A JP2001125576A JP2002316050A JP 2002316050 A JP2002316050 A JP 2002316050A JP 2001125576 A JP2001125576 A JP 2001125576A JP 2001125576 A JP2001125576 A JP 2001125576A JP 2002316050 A JP2002316050 A JP 2002316050A
Authority
JP
Japan
Prior art keywords
mass
iron powder
soil
water
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001125576A
Other languages
Japanese (ja)
Other versions
JP4660958B2 (en
Inventor
Hiroki Nakamaru
裕樹 中丸
Tomoshige Ono
友重 尾野
Yoshihide Kato
嘉英 加藤
Kuniaki Ogura
邦明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001125576A priority Critical patent/JP4660958B2/en
Publication of JP2002316050A publication Critical patent/JP2002316050A/en
Application granted granted Critical
Publication of JP4660958B2 publication Critical patent/JP4660958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying soil, water such as underground water and gas at a low cost by raising reductive decomposition rate with iron of organic chlorine compounds in the soil, the water such as underground water and the gas stained with the organic chlorine compounds of decomposability and strong staining property such as cis-1,2-dichloroethylene and to provide iron powder suitable for the purifying method. SOLUTION: In the method for purifying the soil, the water and the gas stained with the organic chlorine compounds by bringing the organic chlorine compounds contained at least in one among the soil, the water and the gas with the iron powder to decompose the organic chlorine compounds, iron powder of high purity containing <0.1 mass% C, <0.25 mass% Si, <0.60 mass% Mn, <0.03 mass% P, <0.03 mass% S and <0.5 mass% O is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機塩素化合物分
解用鉄粉および該有機塩素化合物で汚染された土壌、
水、ガスの浄化方法に関し、より詳しくは、高純度の鉄
粉を用いて、汚染された土壌、水、ガス中のシス−1,
2−ジクロロエチレンなどの難分解性有機塩素化合物を
分解し、無害化する方法に関する。
TECHNICAL FIELD The present invention relates to iron powder for decomposing organochlorine compounds, soil contaminated with the organochlorine compounds,
Regarding water and gas purification methods, more specifically, cis-1,1 in contaminated soil, water and gas using high-purity iron powder.
The present invention relates to a method for decomposing and rendering harmless organic chlorine compounds such as 2-dichloroethylene.

【0002】[0002]

【従来の技術】近年、半導体工場、金属加工工場等にお
いて、脱脂溶剤として以前から多量に使用され、使用
後、排出され、投棄されてきたトリクロロエチレン(T
CE)等の有機塩素化合物等による土壌や地下水の汚染
が、大きな社会問題となっている。従来、これらの汚染
を処理する方法として、汚染地下水については、汚染地
下水を土壌外に抽出して無害化処埋する真空抽出法や揚
水曝気法等が知られている。また、汚染土壌について
は、汚染土壌を掘削し、加熱処理して無害化する熱脱着
法や熱分解法が知られている。また、土壌中または地下
水中の汚染物質を分解して無害化する方法として、微生
物を利用したバイオレメディエーション法による浄化法
が知られている。
2. Description of the Related Art In recent years, trichlorethylene (T), which has been used in large quantities as a degreasing solvent in semiconductor factories and metal processing factories, has been discharged and discarded after use, has been used.
Contamination of soil and groundwater by organochlorine compounds such as CE) has become a major social problem. Conventionally, as a method of treating these contaminants, for the contaminated groundwater, a vacuum extraction method, a pumping aeration method, and the like, in which the contaminated groundwater is extracted outside the soil and detoxified and buried, are known. As for the contaminated soil, a thermal desorption method and a thermal decomposition method of excavating the contaminated soil and heat-treating the soil to make it harmless are known. As a method of decomposing contaminants in soil or groundwater to make them harmless, a purification method by a bioremediation method using microorganisms is known.

【0003】しかしながら、汚染物質を含む土壌、地下
水や土壌ガスを地中より抽出・揚水した後、汚染物質を
除去したり、分解したりする真空抽出、揚水曝気等の方
法では、汚染物質の除去、分解のために、活性炭や分解
剤を使用するにあたり、地上に設備を設け、抽出・揚水
した後に、汚染物質に無害化処埋を施す等、高コストな
別途処理を必要としている。また、掘削土壌を高温で熱
分解する方法では、土壌を加熱処理する大がかりな設備
が必要であり、かつ、土壌粒子自体が熱により変質し、
例えば、構造物を支持する、生物を生息させるといった
土壌本来の機能が著しく損なわれるため、処理後の土壌
の再利用が難しい。バイオレメディエーション法では、
各々の土壌の持つ特性の違いから、すべての土壌に適応
できるものではなく、また、適応した場合でも、微生物
の作用によるため反応が遅く、長期の処理期間を必要と
し、実用性が乏しい。
[0003] However, after extracting and pumping soil, groundwater and soil gas containing pollutants from the ground, methods such as vacuum extraction, pumping aeration and the like for removing or decomposing pollutants are used to remove pollutants. In order to use activated carbon and decomposing agents for decomposition, high-cost separate treatment is required, such as installing equipment on the ground, extracting and pumping water, and then detoxifying the pollutants. In addition, the method of pyrolyzing excavated soil at a high temperature requires a large-scale facility for heat-treating the soil, and the soil particles themselves are transformed by heat,
For example, the original functions of the soil, such as supporting structures and inhabiting living organisms, are significantly impaired, so that it is difficult to reuse the soil after the treatment. In the bioremediation method,
Due to the difference in properties of each soil, it cannot be applied to all soils, and even when applied, the reaction is slow due to the action of microorganisms, requiring a long treatment period, and is not practical.

【0004】上記のような従来の土壌や地下水の汚染対
策の問題点を克服するべく、汚染原因の含ハロゲン有機
物質を鉄と反応させて、還元的に脱ハロゲン化し、無害
化する方法が種々提案されており、注目されつつある。
例えば、特表平5−501520号公報には、地下水の
流路に溝を掘り、粒状、切片状、繊維状等の形状の鉄を
充填し、汚染原因の含ハロゲン有機物質と接触させるこ
とで、還元的に脱ハロゲン化し、無害化する方法が記載
されている。ここで用いられる鉄は、特別に調整する必
要はなく、金属切断過程で生じる廃棄物や、鉄鋳造過程
で出てくるような純度の低い鉄粉である。また、特表平
6−506631号公報には、原理的には特表平5−5
01520号公報の方法と同様であるが、金属鉄に活性
炭を混合したものを用いる方法が記載されている。上記
はいずれも、地下水中の汚染物質を無害化する方法であ
る。
In order to overcome the above-mentioned problems of the conventional countermeasures against soil and groundwater pollution, there are various methods for reacting a halogen-containing organic substance as a cause of pollution with iron to reductively dehalogenate and detoxify the substance. It has been proposed and is attracting attention.
For example, Japanese Unexamined Patent Publication No. Hei 5-501520 discloses a method of digging a groove in a flow path of groundwater, filling it with iron in the form of granules, sections, fibers, etc., and bringing it into contact with a halogen-containing organic substance that causes pollution. And a method for reductive dehalogenation and detoxification. The iron used here does not need to be specially adjusted, and is waste generated in the metal cutting process and low-purity iron powder generated in the iron casting process. Japanese Patent Application Laid-Open No. 6-506631 discloses that, in principle, Japanese Patent Application Publication No.
No. 01520, but a method using a mixture of metallic iron and activated carbon is described. All of the above are methods of detoxifying pollutants in groundwater.

【0005】また、特開平11−235577号公報に
は、地下水面より上方の土壌や、掘削後の土壌に含まれ
る有機塩素化合物を、鉄粉による還元で無害化する方法
が提案されている。この方法においては、C含有量0.
1%以上、比表面積0.05m2/g以上で、50重量%
以上が150μmの篩目を通過する粒度の鉄粉を用いる
必要があり、海綿状の鉄鉱石還元鉄粉が推奨されてい
る。特開2000−5740号公報には、有機塩素化合
物で汚染された土壌や地下水に、Cu含有鉄粉を添加混
合することにより、有機塩素化合物を分解し、土壌や地
下水を速やかに浄化する方法が記載されている。
Further, Japanese Patent Application Laid-Open No. 11-235577 proposes a method of detoxifying an organic chlorine compound contained in soil above the groundwater surface or in excavated soil by reduction with iron powder. In this method, the C content is 0.1.
1% or more, specific surface area 0.05m 2 / g or more, 50% by weight
It is necessary to use iron powder having a particle size that passes through a 150 μm sieve, and spongy iron ore reduced iron powder is recommended. Japanese Patent Application Laid-Open No. 2000-5740 discloses a method for decomposing an organic chlorine compound and quickly purifying soil and groundwater by adding and mixing Cu-containing iron powder to soil or groundwater contaminated with the organic chlorine compound. Has been described.

【0006】[0006]

【発明が解決しようとする課題】前記のような汚染物質
である有機塩素化合物を鉄と反応させて、還元的に脱塩
素化して無害化する方法はいずれも、コスト的に優れて
おり、従来からの汚染土壌、汚染地下水対策と一線を画
するものである。しかしながら、前記の方法に使用され
る鉄は、必ずしもその目的、用途のために最適化された
ものではないために、例えば、シス−1,2−ジクロロ
エチレンのような難分解性有機塩素化合物を、必ずしも
十分な速度で分解できないという問題があった。また、
特開2000−5740号公報に記載された方法の場合
は、使用されるCu含有鉄粉のCu自体が有害元素であ
り、二次汚染を引き起こす危険性があり、環境、使用条
件が制限されることがあった。
Any of the above-mentioned methods of reacting an organic chlorine compound, which is a contaminant, with iron to reductively dechlorinate and detoxify it is excellent in cost. This is a departure from measures against contaminated soil and contaminated groundwater. However, since the iron used in the above method is not necessarily optimized for its purpose and application, for example, a hardly decomposable organic chlorine compound such as cis-1,2-dichloroethylene is used. There was a problem that the decomposition could not always be performed at a sufficient speed. Also,
In the case of the method described in JP-A-2000-5740, Cu itself of the Cu-containing iron powder used is a harmful element, and there is a risk of causing secondary contamination, and the environment and use conditions are limited. There was something.

【0007】鉄粉による有機塩素化合物の分解メカニズ
ムに関しては、数多くの研究がなされ、例えば、出発物
質をテトラクロロエチレン(PCE)とした場合には、
図1に示す反応経路で分解が進むものと、Campbell T.
J. などにより提案されている。それによると、まずP
CEのβ脱離による還元的分解に始まる経路(a)と、
PCEの水素化分解による還元的分解に始まる経路
(b)の競争の可能性があるが、実際には、経路(a)
が優先すると考えられている。なお、経路(b)に従っ
た場合には、図1に示されるように、中間にシス−1,
2−ジクロロエチレン、トランス−1,2−ジクロロエ
チレン、1,1−ジクロロエチレン等のジクロロエチレ
ン(DCE)が生成する。
Numerous studies have been made on the mechanism of decomposition of organochlorine compounds by iron powder. For example, when tetrachloroethylene (PCE) is used as a starting material,
Decomposition proceeds according to the reaction route shown in FIG.
Proposed by J. et al. According to it, first P
Pathway (a) beginning with reductive degradation by β-elimination of CE;
Although there is a possibility of competition of the route (b) starting from reductive cracking by PCE hydrocracking, in practice, the route (a)
Is believed to take precedence. When the route (b) is followed, as shown in FIG.
Dichloroethylene (DCE) such as 2-dichloroethylene, trans-1,2-dichloroethylene, and 1,1-dichloroethylene is produced.

【0008】ところで、DCEの鉄による分解速度は、
PCEやトリクロロエチレン(TCE)の鉄による分解
速度より遅いことが、例えば、Sivavec T.M.等により報
告されている。このため、仮に経路(b)に従った分解
が起こった場合には、未反応のDCEが少なくとも一時
的に蓄積、残留することになる。中でも、シス−1,2
−ジクロロエチレンはPCEやTCEに比べてより汚染
性が高く、かつ分解速度が極めて遅いので、これが土壌
や地下水に蓄積、残留すると、PCEの鉄による分解を
開始する前より、むしろ汚染具合が悪化する場合があ
る。しかし、実際には、前記したように、経路(a)が
優先するために、シス−1,2−ジクロロエチレンによ
る汚染がないので、PCEやTCEによる汚染対策に、
鉄を使用しても問題ないものと信じられてきた。
The decomposition rate of DCE by iron is as follows:
It is reported by, for example, Sivavec ™ that the rate of decomposition of PCE or trichlorethylene (TCE) by iron is slower. For this reason, if the decomposition according to the route (b) occurs, unreacted DCE at least temporarily accumulates and remains. Among them, cis-1,2
-Dichloroethylene is more polluting than PCE and TCE and has a much lower decomposition rate, so if it accumulates and remains in soil or groundwater, the pollution will worsen before the PCE begins to decompose by iron. There are cases. However, in practice, as described above, since route (a) takes precedence, there is no contamination with cis-1,2-dichloroethylene.
It has been believed that using iron is no problem.

【0009】ところが、最近、工場等から排出されたT
CE等が、土壌中の微生物の関与により、脱塩素、分解
され、より汚染性が強く、分解しにくいDCEに変態し
て、土壌に蓄積、残留することが指摘されている。そし
て、難分解性のシス−1,2−ジクロロエチレンが蓄
積、残留している土壌、地下水に対して、有機塩素化合
物分解用として従来提案されている低純度の鉄粉を使用
しても、シス−1,2−ジクロロエチレンの分解が困難
なばかりか、新たな汚染物質の蓄積、残留という深厚な
問題を引き起こすことが明らかになり、DCE、特に難
分解性のシス−1,2−ジクロロエチレンの除去、分解
が新たな汚染問題となっている。
However, recently, T
It has been pointed out that CE and the like are dechlorinated and decomposed due to the involvement of microorganisms in the soil, transformed into more contaminating and hardly decomposed DCE, and accumulated and remained in the soil. Then, even if low-purity iron powder conventionally proposed for decomposing organochlorine compounds is used for soil and groundwater in which hardly decomposable cis-1,2-dichloroethylene is accumulated and remains, the It has been found that not only is it difficult to decompose -1,2-dichloroethylene, but also causes deep problems such as accumulation and persistence of new pollutants, and removal of DCE, especially cis-1,2-dichloroethylene, which is hardly decomposable. Decomposition is a new pollution problem.

【0010】したがって、本発明は、特にシス−1,2
−ジクロロエチレン等の難分解性で、汚染性が強い有機
塩素化合物で汚染された土壌、地下水等の水、ガス中の
有機塩素化合物の鉄粉による還元的分解の速度を速め、
該土壌、地下水等の水、ガスを低コストで浄化する方
法、および該浄化方法における還元的分解に好適な鉄粉
を提供することが目的である。
Accordingly, the present invention is particularly directed to cis-1,2
-Increases the rate of reductive decomposition of organochlorine compounds in soil, water such as groundwater, and gas, which are hardly decomposable and highly contaminated by organic chlorine compounds such as dichloroethylene, by iron powder,
It is an object of the present invention to provide a method for purifying water and gas such as soil and groundwater at low cost and an iron powder suitable for reductive decomposition in the purification method.

【0011】[0011]

【課題を解決するための手段】本発明は、鉄粉中のC、
Si、Mn、P、SおよびOが、下記範囲にあることを
特徴とする有機塩素化合物分解用鉄粉である。 C :0.1質量%未満、 Si:0.25質量%未満、 Mn:0.60質量%未満、 P :0.03質量%未満、 S :0.03質量%未満、 O :0.5質量%未満。
Means for Solving the Problems The present invention provides a method for producing C,
An iron powder for decomposing organochlorine compounds, wherein Si, Mn, P, S and O are in the following range. C: less than 0.1% by mass, Si: less than 0.25% by mass, Mn: less than 0.60% by mass, P: less than 0.03% by mass, S: less than 0.03% by mass, O: 0.5 Less than mass%.

【0012】また、本発明は、土壌、水およびガス中の
少なくとも一つに含有される有機塩素化合物と鉄粉を接
触させて、該有機塩素化合物を分解して、該有機塩素化
合物で汚染された土壌、水およびガスを浄化する方法に
おいて、鉄粉中のC、Si、Mn、P、SおよびOの含
有量が、下記範囲にある鉄粉を用いることを特徴とする
汚染された土壌、水およびガスの浄化方法である。 C :0.1質量%未満、 Si:0.25質量%未満、 Mn:0.60質量%未満、 P :0.03質量%未満、 S :0.03質量%未満、 O :0.5質量%未満。
[0012] The present invention also provides an organic chlorine compound contained in at least one of soil, water and gas, which is brought into contact with iron powder to decompose the organic chlorine compound and contaminate it with the organic chlorine compound. Soil, a method of purifying water and gas, wherein the content of C, Si, Mn, P, S and O in the iron powder is contaminated soil characterized by using iron powder in the following range: It is a method of purifying water and gas. C: less than 0.1% by mass, Si: less than 0.25% by mass, Mn: less than 0.60% by mass, P: less than 0.03% by mass, S: less than 0.03% by mass, O: 0.5 Less than mass%.

【0013】本発明は、前記有機塩素化合物が炭化水
素、特に脂肪族炭化水素の水素原子を塩素原子で置換し
たものに有効であり、具体的には、ジクロロメタン、ク
ロロホルム、四塩化炭素、1,1−ジクロロエタン、メ
チルクロロホルム、1,1,2−トリクロロエタン、
1,1,1,2−テトラクロロエタン、1,1,2,2
−テトラクロロエタン、1,1−ジクロロエチレン、シ
ス−1,2−ジクロロエチレン、トランス−1,2−ジ
クロロエチレン、トリクロロエチレン(TCE)、テト
ラクロロエチレン(PCE)、1,3−ジクロロプロパ
ンおよび1,3−ジクロロプロペンからなる群から選ば
れる少なくとも一種の有機塩素化合物により有効であ
り、シス−1,2−ジクロロエチレンに特に有効であ
る。
The present invention is effective for the above-mentioned organic chlorine compounds obtained by substituting hydrogen atoms of hydrocarbons, particularly aliphatic hydrocarbons with chlorine atoms, and specifically, dichloromethane, chloroform, carbon tetrachloride, 1-dichloroethane, methyl chloroform, 1,1,2-trichloroethane,
1,1,1,2-tetrachloroethane, 1,1,2,2
From tetrachloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene (TCE), tetrachloroethylene (PCE), 1,3-dichloropropane and 1,3-dichloropropene It is effective with at least one organic chlorine compound selected from the group consisting of cis-1,2-dichloroethylene.

【0014】[0014]

【発明の実施の形態】以下、本発明の有機塩素化合物分
解用鉄粉について、詳細に説明する。本発明に使用され
る鉄粉は、有機塩素化合物分解用として従来提案されて
いる鉄粉に比べ、高純度で、純鉄粉に近い純度であるこ
とに特徴がある。本発明の高純度鉄粉は、圧縮性、成形
性に優れ、品質のばらつきが少ないので、従来、自動車
を主体とする粉末冶金、カイロ、溶接棒、脱酸素剤等の
一段と高い性能、高性能の長期安定性などを要求される
高級用途、製品に使用可能なものであり、有機塩素化合
物の分解剤としての使用は知られていない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the iron powder for decomposing organochlorine compounds of the present invention will be described in detail. The iron powder used in the present invention is characterized in that it has higher purity and a purity close to pure iron powder as compared with iron powder conventionally proposed for decomposing organic chlorine compounds. Since the high-purity iron powder of the present invention has excellent compressibility and moldability, and has little variation in quality, conventionally, powder metallurgy mainly for automobiles, warmers, welding rods, oxygen absorbers, etc., have higher performance and higher performance. It can be used for high-grade applications and products that require long-term stability and the like, and its use as a decomposer for organic chlorine compounds is not known.

【0015】それは、高純度鉄粉を、難分解性の有機塩
素化合物で汚染された土壌、地下水に添加しても、添加
直後には該化合物の分解が進まないことに一因があるも
のと推測される。
One reason is that even when high-purity iron powder is added to soil or groundwater contaminated with a hardly decomposable organic chlorine compound, decomposition of the compound does not proceed immediately after the addition. Guessed.

【0016】しかるに、本発明者は、高純度鉄粉を、汚
染された該土壌、該地下水に添加後、一定期間(鉄粉の
使用条件により異なるが、後述する発明例1では約3
日)が経過すると、難分解性の有機塩素化合物の分解が
開始されることを見出し、本発明に到達したのである。
その理由は明らかではないが、本発明者は、まず、高純
度の鉄粉の活性溶解が起こり、引き続き、鉄粉表面に腐
食生成物が形成され、これが難分解性の有機塩素化合物
の分解を開始し、促進するものと推定している。
However, after adding high-purity iron powder to the contaminated soil and the groundwater, the inventor of the present invention has a certain period of time.
After the elapse of day), it was found that the decomposition of the hardly decomposable organic chlorine compound was started, and the present invention was reached.
Although the reason is not clear, the inventor first found that active dissolution of high-purity iron powder occurred, followed by the formation of corrosion products on the iron powder surface, which decomposed the hardly decomposable organic chlorine compound. Presumed to start and promote.

【0017】本発明の高純度鉄粉は、鉄以外の成分の
C、Si、Mn、P、SおよびOの含有量が、下記範囲
にあるものである。 C :0.1質量%未満、 Si:0.25質量%未満、 Mn:0.60質量%未満、 P :0.03質量%未満、 S :0.03質量%未満、 O :0.5質量%未満。
The high-purity iron powder of the present invention has a content of C, Si, Mn, P, S and O other than iron in the following range. C: less than 0.1% by mass, Si: less than 0.25% by mass, Mn: less than 0.60% by mass, P: less than 0.03% by mass, S: less than 0.03% by mass, O: 0.5 Less than mass%.

【0018】好ましいのは、鉄以外の成分のC、Si、
Mn、P、SおよびOの含有量が、下記範囲にあるもの
である。 C :0.02質量%未満、 Si:0.15質量%未満、 Mn:0.40質量%未満、 P :0.02質量%未満、 S :0.020質量%未満、 O :0.20質量%未満。
Preferred are components other than iron, such as C, Si,
The contents of Mn, P, S and O are in the following ranges. C: less than 0.02 mass%, Si: less than 0.15 mass%, Mn: less than 0.40 mass%, P: less than 0.02 mass%, S: less than 0.020 mass%, O: 0.20 Less than mass%.

【0019】より好ましいのは、鉄以外の成分のC、S
i、Mn、P、SおよびOの含有量が、下記範囲にある
ものである。 C :0.01質量%未満、 Si:0.02質量%未満、 Mn:0.10質量%未満、 P :0.015質量%未満、 S :0.01質量%未満、 O :0.18質量%未満。
More preferably, C and S components other than iron are used.
The content of i, Mn, P, S and O is in the following range. C: less than 0.01% by mass, Si: less than 0.02% by mass, Mn: less than 0.10% by mass, P: less than 0.015% by mass, S: less than 0.01% by mass, O: 0.18% Less than mass%.

【0020】本発明の高純度鉄粉の純度が上記範囲を逸
脱すると、一定期間経過後にも、有機塩素化合物の分解
が開始されないので、上記範囲の高純度鉄粉の使用が極
めて重要である。本発明の高純度鉄粉の粒度、粒度分布
は、特に限定されないが、鉄粉を添加する土壌や地下水
の状態に応じて適宜決定することができる。土壌に添加
する場合には、例えば、60質量%以上が、106μm
の篩目を通過する程度の粒度のものが好ましい。また、
地下水に添加して、一定の透水係数を確保する必要があ
る場合には、例えば、80質量%以上が、250μmの
篩目を通過しない程度の粒度のものが好ましい。
When the purity of the high-purity iron powder of the present invention deviates from the above range, the decomposition of the organochlorine compound does not start even after a certain period of time, so that the use of the high-purity iron powder in the above range is extremely important. The particle size and particle size distribution of the high-purity iron powder of the present invention are not particularly limited, but can be appropriately determined according to the condition of soil or groundwater to which the iron powder is added. When added to soil, for example, 60% by mass or more
It is preferable that the particles have a particle size enough to pass through a sieve. Also,
When it is necessary to ensure a certain permeability coefficient by adding to groundwater, for example, a particle having a particle size such that 80% by mass or more does not pass through a 250 μm sieve is preferable.

【0021】本発明の高純度鉄粉は、例えば、ミルスケ
ールや鉄鉱石をコークスで粗還元して得た還元鉄粉を粉
砕して粒度を調整し、さらに、これを水素気流中で仕上
還元して、所定の純度に調整して製造する方法や、水ア
トマイズ法で製造された鉄粉を水素気流中で仕上還元し
て製造する方法によるものが好ましい。酸化物還元法、
水アトマイズ法、カルボニル法などで製造された鉄粉
で、上記純度に調整したものも使用できる。また、鉄屑
粉等を酸洗したり、水素気流中で還元して、上記純度に
調整したものも使用できる。本発明の高純度鉄粉は、土
壌等との混合の容易性等の点で、形状がほぼ球形である
のが好ましいが、球形に拘らない。なお、本発明の高純
度鉄粉として、市販の粉末冶金用純鉄粉を表面処理する
ことなく、使用することができる。
The high-purity iron powder of the present invention is obtained, for example, by milling reduced iron powder obtained by roughly reducing mill scale or iron ore with coke to adjust the particle size, and further subjecting the reduced iron powder to finish reduction in a stream of hydrogen. It is preferable to use a method of producing the powder by adjusting the purity to a predetermined purity, or a method of producing and reducing the iron powder produced by the water atomization method in a hydrogen stream. Oxide reduction method,
Iron powder produced by a water atomization method, a carbonyl method, or the like, which has been adjusted to the above purity, can also be used. In addition, iron dust or the like that has been adjusted to the above purity by pickling or reducing it in a hydrogen stream can also be used. The high-purity iron powder of the present invention preferably has a substantially spherical shape in view of ease of mixing with soil or the like, but is not limited to a spherical shape. As the high-purity iron powder of the present invention, commercially available pure iron powder for powder metallurgy can be used without surface treatment.

【0022】本発明の高純度鉄粉を、有機塩素化合物を
含有する土壌、地下水等の水、ガス等に含有される有機
塩素化合物と接触させる方法は、特に制限されず、従来
提案されている方法を状況に応じて選択すればよい。有
機塩素化合物の濃度が高い場所、例えば、有機塩素化合
物が漏洩し、激しく汚染されている土壌、地下水などの
水、ガス等や、有機塩素化合物が蓄積、滞留している土
壌、地下水などの水、ガス等を選択するのが効率的であ
る。
The method of bringing the high-purity iron powder of the present invention into contact with an organic chlorine compound contained in water, gas or the like containing soil or groundwater containing the organic chlorine compound is not particularly limited, and has been conventionally proposed. The method may be selected according to the situation. Locations where the concentration of organochlorine compounds is high, for example, water or gas, such as soil or groundwater, which are leaking and contaminated with organochlorine compounds, or water such as soil or groundwater in which organochlorine compounds are accumulated or retained. , Gas and the like are efficient.

【0023】具体的には、下記の(a)〜(e)を例示
できる。 (a)有機塩素化合物で汚染された地下水の水脈中に、
高純度鉄粉を戴置する方法、(b)有機塩素化合物で汚
染された地下水をくみ上げ、高純度鉄粉に接触させる方
法、(c)有機塩素化合物で汚染された土壌中に、高純
度鉄粉を添加する方法、(d)有機塩素化合物で汚染さ
れた土壌を掘削し、掘削された土壌と高純度鉄粉を混合
する方法。(e)有機塩素化合物で汚染された土壌およ
び/または地下水から吸引して得られたガスと高純度鉄
粉とを接触させる方法。
Specifically, the following (a) to (e) can be exemplified. (A) In groundwater veins contaminated with organochlorine compounds,
A method of depositing high-purity iron powder, (b) a method of pumping groundwater contaminated with organochlorine compounds and bringing it into contact with high-purity iron powder, and (c) a method of depositing high-purity iron in soil contaminated with organochlorine compounds. (D) excavating soil contaminated with an organochlorine compound, and mixing the excavated soil with high-purity iron powder. (E) A method of contacting a gas obtained by suction from soil and / or groundwater contaminated with an organochlorine compound with high-purity iron powder.

【0024】本発明の高純度鉄粉が適用される環境は、
土壌の場合には、含水率が5質量%以上であるのが好ま
しく、雰囲気は好気性、嫌気性のいずれでも差支えな
い。土壌のpHは1〜10であればよい。地下水の場合
にも、溶存酸素の濃度に係わらず広い範囲で適用でき
る。
The environment to which the high-purity iron powder of the present invention is applied is as follows:
In the case of soil, the water content is preferably 5% by mass or more, and the atmosphere may be either aerobic or anaerobic. The pH of the soil may be 1 to 10. Even in the case of groundwater, it can be applied in a wide range regardless of the concentration of dissolved oxygen.

【0025】有機塩素化合物は、高純度鉄粉により還元
されて、図1に示す経路(a)、(b)を経て、非塩素
化合物のような汚染性がない化合物とハロゲン化水素等
に変わる。そのため、浄化された土壌、水およびガス
は、再利用したり、放置したり、廃棄することができ
る。
The organic chlorine compound is reduced by high-purity iron powder, and is converted into a non-polluting compound such as a non-chlorine compound and hydrogen halide through the routes (a) and (b) shown in FIG. . Therefore, the purified soil, water and gas can be reused, left alone, or discarded.

【0026】[0026]

【実施例】以下に実施例を示して本発明を具体的に説明
するが、本発明はこれらに限定されるものではない。 (発明例1〜4、比較例1〜2) [1]鉄粉の調製方法1〜3の調製 調製方法1: ミルスケールをコークスで粗還元して海
綿鉄粉を製造し、粉砕し、その後、水素気流中(露点3
0°)850℃で1時間の仕上還元を行い、表1に示す
微量成分の含有量の高純度鉄粉を得た。この際、焼結し
た鉄粉を再粉砕して、篩分級により、所定の粒度(60
質量%が75μmの篩目を通過)に調整した。(発明例
1、4)
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. (Inventive Examples 1-4, Comparative Examples 1-2) [1] Preparation of Iron Powder Preparation Methods 1-3 Preparation Method 1: A sponge iron powder is produced by roughly reducing a mill scale with coke, and then pulverized. , In a stream of hydrogen (dew point 3
0 °) Finish reduction at 850 ° C. for 1 hour to obtain high-purity iron powder having a trace component content shown in Table 1. At this time, the sintered iron powder is pulverized again and sieved to a predetermined particle size (60%).
(% By mass passed through a 75 μm sieve). (Invention Examples 1 and 4)

【0027】調製方法2: 所定の成分に調整した17
00℃の溶鋼から、水アトマイズ法により、アトマイズ
生粉を製造し、その後、水素気流中(露点30°)85
0℃で1時間の仕上還元を行い、表1に示す微量成分の
含有量の高純度鉄粉を得た。この際、焼結した鉄粉を再
粉砕して、篩分級により、所定の粒度(50質量%が7
5μmの篩目を通過)に調整した。(発明例2、3)
Preparation method 2: adjusted to predetermined components 17
Atomized raw powder is produced from a molten steel at 00 ° C. by a water atomizing method, and then produced in a hydrogen stream (dew point 30 °) 85.
Finish reduction was performed at 0 ° C. for 1 hour to obtain a high-purity iron powder having a trace component content shown in Table 1. At this time, the sintered iron powder is crushed again, and a predetermined particle size (50% by mass is 7
5 μm). (Invention Examples 2 and 3)

【0028】調製方法3: 高純度鉄粉2の調製におい
て、仕上還元を省略する以外は、該調製方法と同様な方
法で表1に示す微量成分の含有量の鉄粉を得た。粒度は
50質量%が75μmの篩目を通過する程度である。
(比較例1、2)
Preparation method 3: In the preparation of high-purity iron powder 2, except that the finish reduction was omitted, an iron powder having the content of trace components shown in Table 1 was obtained in the same manner as the preparation method. The particle size is such that 50% by weight passes through a 75 μm sieve.
(Comparative Examples 1 and 2)

【0029】表1に各鉄粉の微量成分の含有量を示し
た。鉄粉の微量成分の含有量は下記により測定した。 C :JIS G1211、 Si:JIS G1258、 Mn:JIS G1257、 P :JIS G1258、 S :JIS G1215、 O :JIS Z2613。
Table 1 shows the content of trace components in each iron powder. The content of trace components in iron powder was measured as follows. C: JIS G1211, Si: JIS G1258, Mn: JIS G1257, P: JIS G1258, S: JIS G1215, O: JIS Z2613.

【0030】[2]土壌中のシス−1,2−ジクロロエ
チレンの分解試験 あらかじめ40℃のオーブンで2日間乾燥させて、絶乾
状態にした平均粒径176μmの砂質土壌を、鉄粉と混
合し、総質量40g、鉄粉混合率1質量%の試料を調製
した。この試料を、容量100mLのガラスバイアル瓶
に入れて、フッ素樹脂製ライナー付きブチルゴム栓をア
ルミキャップで締めつけて、封入した。
[2] Decomposition test of cis-1,2-dichloroethylene in soil A sandy soil having an average particle size of 176 μm, which was previously dried in an oven at 40 ° C. for 2 days and dried to an absolute dry state, was mixed with iron powder. Then, a sample having a total mass of 40 g and a mixing ratio of iron powder of 1 mass% was prepared. This sample was placed in a glass vial having a capacity of 100 mL, and a butyl rubber stopper with a fluororesin liner was closed with an aluminum cap and sealed.

【0031】シス−1,2−ジクロロエチレン(関東化
学株式会社製;試薬特級)を蒸留水に溶解し、濃度0.
1モルの水溶液を調製した。これをマイクロシリンジを
用いて、前記試料を封入したバイアル瓶に4.5mL添
加し、試料の含水率を10質量%に調整した。試料中の
シス−1,2−ジクロロエチレン濃度は43.6mg/
40gである。得られた試料を25℃の恒温室中に入
れ、所定時間おきに、ヘッドスペース部のガスを、ガス
タイトシリンジで50μLずつ採取し、GC/FID装
置でシス−1,2−ジクロロエチレンの濃度を分析し、
濃度変化を図2に示した。
Cis-1,2-dichloroethylene (manufactured by Kanto Kagaku Co., Ltd .; reagent special grade) was dissolved in distilled water to give a concentration of 0.1.
A 1 molar aqueous solution was prepared. Using a microsyringe, 4.5 mL of this was added to the vial containing the sample, and the water content of the sample was adjusted to 10% by mass. The cis-1,2-dichloroethylene concentration in the sample was 43.6 mg /
40 g. The obtained sample was placed in a constant temperature chamber at 25 ° C., and a gas in the head space was collected at predetermined intervals by 50 μL using a gas tight syringe, and the concentration of cis-1,2-dichloroethylene was determined using a GC / FID device. Analyze,
FIG. 2 shows the change in density.

【0032】[3]地下水中のシス−1,2−ジクロロ
エチレンの分解試験 脱イオン水にCaCO3 (関東化学株式会社製:試薬特
級)を溶解し、濃度0.4ミリモルの水溶液を調製し、
これを模擬地下水とした。模擬地下水を、容量50mL
のガラスバイアル瓶の口許まで入れて、グローブボック
ス内で窒素ガスを吹き込み、完全に脱気してから、鉄粉
5gを添加し、フッ素樹脂製ライナー付きブチルゴム栓
をアルミキャップで締めつけて、ヘッドスペースがない
状態で封入した。なお、この時の総液量はあらかじめ、
各瓶について調査済である。
[3] Decomposition test of cis-1,2-dichloroethylene in groundwater CaCO 3 (manufactured by Kanto Chemical Co., Ltd .: reagent grade) was dissolved in deionized water to prepare an aqueous solution having a concentration of 0.4 mmol.
This was used as simulated groundwater. Simulated groundwater with a capacity of 50 mL
Into a glass vial, blow nitrogen gas in the glove box, completely remove the gas, add 5 g of iron powder, tighten a butyl rubber stopper with a fluororesin liner with an aluminum cap, and remove the head space. It was sealed without any. The total liquid volume at this time is
Each bottle has been investigated.

【0033】つぎに、水質分析用シス−1,2−ジクロ
ロエチレン標準原液(1mg/mL−メタノール;関東
化学株式会社製)を、マイクロシリンジで適量ずつ該瓶
に添加して、シス−1,2−ジクロロエチレン濃度を5
mg/Lに調整した。得られた試料を23℃の恒温室
で、回転式振盪器を用いて、60rpmで振盪し、1
日、2日、4日、8日後にサンプリングした。
Next, cis-1,2-dichloroethylene standard stock solution for water quality analysis (1 mg / mL-methanol; manufactured by Kanto Chemical Co., Ltd.) was added to the bottle by a suitable amount using a microsyringe. A dichloroethylene concentration of 5
mg / L. The obtained sample was shaken at 60 rpm using a rotary shaker in a constant temperature room at 23 ° C.
Sampling was performed after 2, 4, 8 days.

【0034】別途、GC/MS分析用の容量25mLの
バイアス瓶に、脱イオン水を用いて調整した300g/
L塩化ナトリウム水溶液9.8mLを入れて用意する。
一定期間振盪した該試料をマイクロシリンジを用いて2
00μL 採取し、該塩化ナトリウム水溶液に添加して、
総液量を10mLとし、直ちにフッ素樹脂製ライナー付
きセプタムにて封入した。得られた試料を、JIS K
0125の用水・排水中の揮発性有機化合物試験法に準
拠して、ヘッドスペースGC/MS法によって、シス−
1,2−ジクロロエチレンの濃度を分析した。
Separately, in a bias bottle having a capacity of 25 mL for GC / MS analysis, 300 g /
Prepare by adding 9.8 mL of L sodium chloride aqueous solution.
The sample, which had been shaken for a certain period of time, was
00 μL was collected and added to the aqueous sodium chloride solution,
The total volume was adjusted to 10 mL, and immediately sealed with a septum with a fluororesin liner. The obtained sample was subjected to JIS K
In accordance with the method for testing volatile organic compounds in water and wastewater of No. 0125, cis-
The concentration of 1,2-dichloroethylene was analyzed.

【0035】上記土壌試験の結果の1例を示す図2の横
軸は、シス−1,2−ジクロロエチレンと鉄粉との反応
時間、縦軸は、初期濃度に対する時間経過後の濃度の比
を取って、無次元化した値の対数である。図2から、仕
上還元していない鉄粉を用いた比較例1では、シス−
1,2−ジクロロエチレンの濃度が全く減少していない
のに対し、本発明の高純度鉄粉を用いた発明例1の場合
には、約3日経過後に、シス−1,2−ジクロロエチレ
ンの濃度が急激に減少し始めることが分かる。また、図
2の本発明例1の直線部から、擬一次の反応速度定数を
求めることができる。その結果は表1に示した。発明例
2、3についても同様の傾向が認められたので、直線部
から擬一次の反応速度定数を求めた。
The horizontal axis of FIG. 2 showing one example of the results of the above soil test is the reaction time of cis-1,2-dichloroethylene with iron powder, and the vertical axis is the ratio of the concentration after the passage of time to the initial concentration. It is the logarithm of the dimensionless value. From FIG. 2, in Comparative Example 1 using iron powder not subjected to finish reduction, cis-
While the concentration of 1,2-dichloroethylene did not decrease at all, in the case of Invention Example 1 using the high-purity iron powder of the present invention, the concentration of cis-1,2-dichloroethylene was increased after about 3 days. It starts to decrease rapidly. In addition, a pseudo-first-order reaction rate constant can be obtained from the linear portion of Example 1 of the present invention in FIG. The results are shown in Table 1. Since a similar tendency was observed in Invention Examples 2 and 3, a pseudo-first-order reaction rate constant was determined from the linear portion.

【0036】模擬地下水を用いた発明例4と比較例2の
対比から、ほぼ同様の現象、傾向が模擬地下水の場合に
も認められた。同様に直線部から擬一次の反応速度定数
を求めた。
From the comparison between Inventive Example 4 using the simulated groundwater and Comparative Example 2, almost the same phenomenon and tendency were observed in the simulated groundwater. Similarly, a pseudo-first-order reaction rate constant was determined from the linear portion.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明の高純度鉄粉を用いた場合には、
難分解性の有機塩素化合物の分解速度が速いので、汚染
された有機塩素化合物を含有する土壌、地下水等の水、
ガスの無害化、特に難分解性の有機塩素化合物が蓄積、
残留する土壌、地下水等の水、ガスの浄化に好適であ
る。しかも、本発明の高純度鉄粉は入手が容易であり、
従来の無害化方法がそのまま適用することができるの
で、極めて実用性が高い。
When the high-purity iron powder of the present invention is used,
Since the decomposition rate of the hardly decomposable organochlorine compound is high, the soil containing the contaminated organochlorine compound, water such as groundwater,
Detoxification of gas, especially accumulation of persistent organic chlorine compounds,
It is suitable for purifying water and gas such as residual soil and groundwater. Moreover, the high-purity iron powder of the present invention is easily available,
Since the conventional detoxification method can be applied as it is, it is extremely practical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 テトラクロロエチレンの分解経路を示す説明
図である。(EnVironmental Toxicology and Chemistry
Vol.16, No.4, p.625-630から転記。)
FIG. 1 is an explanatory diagram showing a decomposition route of tetrachloroethylene. (EnVironmental Toxicology and Chemistry
Transcribed from Vol.16, No.4, p.625-630. )

【図2】 シス−1,2−ジクロロエチレンの分解試験
の結果の分解速度を示すグラフである。
FIG. 2 is a graph showing a decomposition rate as a result of a decomposition test of cis-1,2-dichloroethylene.

【符号の説明】[Explanation of symbols]

(a)・・・PCEのβ脱離による還元的分解に始まる
経路 (b)・・・PCEの水素化分解による還元的分解に始
まる経路 (c)・・・アルキンからアルケンへの還元経路 (d)・・・アルキンからアルカンへの還元経路
(A) ... a route that starts reductive decomposition by β-elimination of PCE (b) ... a route that starts reductive decomposition by hydrogenolysis of PCE (c) ... a reduction route from alkyne to alkene ( d) Reduction route from alkyne to alkane

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/58 B01D 53/36 G 4G069 1/70 B01J 23/74 301A (72)発明者 加藤 嘉英 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 小倉 邦明 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社東京本社内 Fターム(参考) 2E191 BA15 BC01 BD11 4D004 AA41 AB06 CA50 CC11 DA03 DA10 4D038 AA02 AA08 AB14 AB90 4D048 AA11 AB03 BA05Y BA06Y BA28Y BA36X BA44Y BA46Y BB01 4D050 AA12 AB19 BA02 4G069 AA02 AA08 BA08A BB02 BC62A BC66A BC66B BD05A BD07A BD08A CA01 CA05 CA10 CA19 DA05 EA01Y FA01 FB44 FC08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/58 B01D 53/36 G 4G069 1/70 B01J 23/74 301A (72) Inventor Yoshihide Kato Chiba 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Engineering Co., Ltd. (72) Inventor Kuniaki Ogura 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo F-term (reference) 2E191 BA15 BC01 BD11 4D004 AA41 AB06 CA50 CC11 DA03 DA10 4D038 AA02 AA08 AB14 AB90 4D048 AA11 AB03 BA05Y BA06Y BA28Y BA36X BA44Y BA46Y BB01 4D050 AA12 AB19 BA02 4G069 AA02 AA08 BA08A BB02 BC62CABCA01 BD08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄粉中のC、Si、Mn、P、SおよびO
が、下記範囲にあることを特徴とする有機塩素化合物分
解用鉄粉。 C :0.1質量%未満、 Si:0.25質量%未満、 Mn:0.60質量%未満、 P :0.03質量%未満、 S :0.03質量%未満、 O :0.5質量%未満。
1. C, Si, Mn, P, S and O in iron powder
Is in the following range: iron powder for decomposing organochlorine compounds. C: less than 0.1% by mass, Si: less than 0.25% by mass, Mn: less than 0.60% by mass, P: less than 0.03% by mass, S: less than 0.03% by mass, O: 0.5 Less than mass%.
【請求項2】土壌、水およびガス中の少なくとも一つに
含有される有機塩素化合物と鉄粉を接触させて、該有機
塩素化合物を分解して、該有機塩素化合物で汚染された
土壌、水およびガスを浄化する方法において、鉄粉中の
C、Si、Mn、P、SおよびOの含有量が、下記範囲
にある鉄粉を用いることを特徴とする汚染された土壌、
水およびガスの浄化方法。 C :0.1質量%未満、 Si:0.25質量%未満、 Mn:0.60質量%未満、 P :0.03質量%未満、 S :0.03質量%未満、 O :0.5質量%未満。
2. An organic chlorine compound contained in at least one of soil, water, and gas is brought into contact with iron powder to decompose the organic chlorine compound and contaminate the soil and water contaminated with the organic chlorine compound. And a method for purifying gas, wherein the content of C, Si, Mn, P, S and O in the iron powder is contaminated soil characterized by using an iron powder in the following range:
Water and gas purification methods. C: less than 0.1% by mass, Si: less than 0.25% by mass, Mn: less than 0.60% by mass, P: less than 0.03% by mass, S: less than 0.03% by mass, O: 0.5 Less than mass%.
【請求項3】前記有機塩素化合物がシス−1,2−ジク
ロロエチレンであることを特徴とする請求項2に記載の
汚染された土壌、水およびガスの浄化方法。
3. The method for purifying contaminated soil, water and gas according to claim 2, wherein said organochlorine compound is cis-1,2-dichloroethylene.
JP2001125576A 2001-04-24 2001-04-24 Purification of soil, water and gas contaminated with organochlorine compounds Expired - Fee Related JP4660958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001125576A JP4660958B2 (en) 2001-04-24 2001-04-24 Purification of soil, water and gas contaminated with organochlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001125576A JP4660958B2 (en) 2001-04-24 2001-04-24 Purification of soil, water and gas contaminated with organochlorine compounds

Publications (2)

Publication Number Publication Date
JP2002316050A true JP2002316050A (en) 2002-10-29
JP4660958B2 JP4660958B2 (en) 2011-03-30

Family

ID=18974777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001125576A Expired - Fee Related JP4660958B2 (en) 2001-04-24 2001-04-24 Purification of soil, water and gas contaminated with organochlorine compounds

Country Status (1)

Country Link
JP (1) JP4660958B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910516B2 (en) 2005-03-25 2011-03-22 Dowa Eco-Systems Co., Ltd. Decomposer of organic halogenated compounds
CN102166577A (en) * 2010-12-07 2011-08-31 清华大学 Method for destroying chloric persistent organic waste through iron and quartz sand high-energy ball milling
WO2012099094A1 (en) 2011-01-17 2012-07-26 Dowaエコシステム株式会社 Method for producing iron powder for processing organic halogen compounds, and method for purifying contaminated soil or groundwater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506631A (en) * 1991-04-25 1994-07-28 ユニバーシティ オブ ウォータールー How to clean contaminated soil
JPH08269501A (en) * 1995-03-30 1996-10-15 Kobe Steel Ltd High frequency dust core, iron powder therefor and manufacture of the same
JPH10513103A (en) * 1994-12-23 1998-12-15 リサーチ コーポレイション テクノロジーズ インコーポレイテッド Dechlorination of TCE using paradised iron
JP2001079352A (en) * 1999-07-09 2001-03-27 Toda Kogyo Corp Treatment of exhaust gas containing dioxin and combined catalyst for controlling dioxin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506631A (en) * 1991-04-25 1994-07-28 ユニバーシティ オブ ウォータールー How to clean contaminated soil
JPH10513103A (en) * 1994-12-23 1998-12-15 リサーチ コーポレイション テクノロジーズ インコーポレイテッド Dechlorination of TCE using paradised iron
JPH08269501A (en) * 1995-03-30 1996-10-15 Kobe Steel Ltd High frequency dust core, iron powder therefor and manufacture of the same
JP2001079352A (en) * 1999-07-09 2001-03-27 Toda Kogyo Corp Treatment of exhaust gas containing dioxin and combined catalyst for controlling dioxin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910516B2 (en) 2005-03-25 2011-03-22 Dowa Eco-Systems Co., Ltd. Decomposer of organic halogenated compounds
US8034156B2 (en) 2005-03-25 2011-10-11 Dowa Eco-System Co., Ltd. Method for producing decomposer of organic halogenated compounds
CN102166577A (en) * 2010-12-07 2011-08-31 清华大学 Method for destroying chloric persistent organic waste through iron and quartz sand high-energy ball milling
WO2012099094A1 (en) 2011-01-17 2012-07-26 Dowaエコシステム株式会社 Method for producing iron powder for processing organic halogen compounds, and method for purifying contaminated soil or groundwater
US9567521B2 (en) 2011-01-17 2017-02-14 Dowa Eco System Co., Ltd. Method of producing iron powder for treating halogenated organic compound and method of cleaning contaminated soil or groundwater

Also Published As

Publication number Publication date
JP4660958B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
EP1166904B1 (en) Method for detoxification treatment of soil
US20030083195A1 (en) Iron powder for remediation and method for remediating soil, water, or gas
CA2362002C (en) Remediation method of media and iron powder for dehalogenation of hydrogenated hydrocarbons
JP3862394B2 (en) Detoxification method of soil
JP2000005740A (en) Cleaning method of soil and underground water contaminated with organic chlorine compound
JP4660958B2 (en) Purification of soil, water and gas contaminated with organochlorine compounds
KR100228993B1 (en) Method for the remediation of polluted soils
JP2005139328A (en) Remover of organochlorine compound and method for removing organochlorine compound
JP2002167602A (en) Iron powder, its production method and method for cleaning, contaminated soil, water and gas
JP2002020806A (en) Method for producing iron powder for removing contamination
JP2004058051A (en) Iron composite particle powder for cleaning soil and underground water containing aromatic halogen compound, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method of cleaning soil and underground water containing aromatic halogen compound
JP4833505B2 (en) Iron powder for purification
JP2005131569A (en) Soil cleaning agent and soil cleaning method
JP2002166171A (en) Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless
KR100582474B1 (en) Iron-Based cleaning powder
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP4786936B2 (en) Organohalogen compound treatment material
JP4482678B2 (en) Detoxification method of soil
JP4904309B2 (en) Organic halogen compound treatment material and organic halogen compound treatment method
JP2005111311A (en) Soil cleaning agent and soil cleaning method
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2004160458A (en) Method of purifying ground water contaminated with chlorinated organic compound
JP4557126B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method
JP2005111312A (en) Soil cleaning agent and soil cleaning method
JP2010131542A (en) Cleaning method of organic halide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4660958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees