JP2002313614A - Magnet material - Google Patents

Magnet material

Info

Publication number
JP2002313614A
JP2002313614A JP2001115114A JP2001115114A JP2002313614A JP 2002313614 A JP2002313614 A JP 2002313614A JP 2001115114 A JP2001115114 A JP 2001115114A JP 2001115114 A JP2001115114 A JP 2001115114A JP 2002313614 A JP2002313614 A JP 2002313614A
Authority
JP
Japan
Prior art keywords
magnet
magnet material
atomic
temperature
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001115114A
Other languages
Japanese (ja)
Inventor
Shinya Sakurada
新哉 桜田
Takeshi Ume
武 梅
Takatomo Hirai
隆大 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001115114A priority Critical patent/JP2002313614A/en
Publication of JP2002313614A publication Critical patent/JP2002313614A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide magnet material improved in thermal stability for the manufacture of a high-performance magnet that has a high saturation magnetization and large magnetic anisotropy. SOLUTION: This magnetic material is a compound represented by a formula, Rx Ny (Crz Siu M1-z-u )1-x-y (wherein, R contains at least one or more kinds of elements selected out of a first group composed of Y and rare earth elements, M contains one or more elements selected from a second group composed of Fe and Co, and (x), (y), (z), and (u) are so set as to satisfy the following formulas, 0.04<=x<=0.2, 0.001<=y<=0.2, 0.005<=z<=0.2, and 0.005<=u<=0.2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁石材料に関する。[0001] The present invention relates to a magnetic material.

【0002】[0002]

【従来の技術】従来より、高性能希土類永久磁石として
はSm−Co系磁石、Nd−Fe−B系磁石などが知ら
れており、現在量産化が進められている。これらの磁石
にはFeまたはCoが多量に含まれ、飽和磁化の増大に
寄与している。また、これらの磁石中の希土類元素は、
結晶場中における4f電子の挙動に由来する非常に大き
な磁気異方性をもたらす。これにより保磁力の増大が図
られ、高性能な磁石が実現されている。このような高性
能磁石は主としてスピーカー、モーター、計測器などの
電気機器に使用されている。
2. Description of the Related Art Conventionally, Sm-Co-based magnets, Nd-Fe-B-based magnets and the like have been known as high-performance rare earth permanent magnets, and their mass production is currently in progress. These magnets contain a large amount of Fe or Co, which contributes to an increase in saturation magnetization. Also, the rare earth elements in these magnets are
Very large magnetic anisotropy results from the behavior of 4f electrons in the crystal field. Thereby, the coercive force is increased, and a high-performance magnet is realized. Such high-performance magnets are mainly used for electric devices such as speakers, motors, and measuring instruments.

【0003】近年では、各種電気機器の小形化の要求が
高まり、それに応えるために前記永久磁石の最大磁気エ
ネルギー積(BHmax)を向上した、より高性能の永久
磁石が求められている。
[0003] In recent years, there has been an increasing demand for miniaturization of various electric appliances, and in order to meet the demand, a higher-performance permanent magnet having an improved maximum magnetic energy product (BH max ) of the permanent magnet has been required.

【0004】より高性能の永久磁石を得る為の素材とし
ては、やはり希土類元素とFe等の遷移金属元素との組
み合わせが有望視されており、1990年にSm−Fe
−N系材料がCoeyらによって発表され、注目を集め
ている。Sm−Fe−N系材料は、Nd−Fe−B系材
料に匹敵する高い飽和磁化と、Nd−Fe−B系材料を
を凌駕する大きな磁気異方性を有するため、高性能磁石
としての応用が期待されている。
As a material for obtaining a higher-performance permanent magnet, a combination of a rare earth element and a transition metal element such as Fe is also considered promising.
-N-based materials have been announced by Coey et al. Sm-Fe-N-based materials have high saturation magnetization comparable to Nd-Fe-B-based materials and large magnetic anisotropy that surpasses Nd-Fe-B-based materials. Is expected.

【0005】しかしながら、Sm−Fe−N系材料は約
550℃以上の加熱によって熱分解してしまうという欠
点を有するため焼結による緻密化ができず、現状ではボ
ンド磁石としての応用に限られている。
However, Sm-Fe-N-based materials have a disadvantage that they are thermally decomposed by heating at about 550 ° C. or higher, so that they cannot be densified by sintering, and are currently limited to applications as bond magnets. I have.

【0006】上述したSm−Fe−N系材料の熱分解を
抑制しようとする試みはCoeyらの発表の後いくつか
の研究グループによってなされている。例えば杉本らは
Sm 2Fe17におけるFeの一部を、Al,Si,T
i,V,Cr,Mn,Co,Ni,Ga,Zr,Nb,
Mo等の各種元素で置換して窒化処理を行った化合物
の、熱分解挙動を詳しく調べた。具体的には、これらの
化合物の温度を上昇させ、Sm2Fe17x相のX線回折
強度が減少し、SmN及びα−Feの回折強度が増大し
始める温度を熱分解温度と定義し、この熱分解温度の測
定を行っている。そして、Feの約10原子%をCrで
置換した化合物の場合には熱分解温度が約661℃とな
り、熱分解温度が上昇することを見出した(Proceeding
s of 12th International Workshop on RE Magnets and
Their Applications(1992) p218)。また、Feの一部
をSiで置換した場合はCrの場合には及ばないが熱分
解温度が約600℃となり、やはり熱分解温度が上昇す
ることを見出している。
The thermal decomposition of the Sm-Fe-N material described above
Some attempts to curb after Coey et al.'S announcement
Has been done by a research group. For example, Sugimoto et al.
Sm TwoFe17Al, Si, T
i, V, Cr, Mn, Co, Ni, Ga, Zr, Nb,
Compounds that have been subjected to nitridation by substitution with various elements such as Mo
The thermal decomposition behavior was investigated in detail. Specifically, these
The temperature of the compound is increased and SmTwoFe17NxPhase X-ray diffraction
The intensity decreases and the diffraction intensity of SmN and α-Fe increases.
The starting temperature is defined as the pyrolysis temperature, and this pyrolysis temperature is measured.
Has been established. And about 10 atomic% of Fe is Cr
In the case of the substituted compound, the thermal decomposition temperature is about 661 ° C.
And found that the pyrolysis temperature increased (Proceeding
s of 12th International Workshop on RE Magnets and
 Their Applications (1992) p218). Also, part of Fe
Is not as good as Cr when Si is replaced with Si,
The decomposition temperature becomes about 600 ° C, and the thermal decomposition temperature also rises
To find that.

【0007】しかしながら、これらFeの一部をSiや
Crで置換した場合でも、約10原子%以上置換した状
態では、分解温度の上昇が止まり、それ以上の効果は得
られない。よって、依然として約700℃以上の温度ま
で熱安定性を改善するには至っていなかった。このた
め、ホットプレスなどの手段で緻密化する際には、高い
成形圧が必要とされ、金型の消耗の観点から問題があっ
た。
[0007] However, even when a part of these Fe is replaced by Si or Cr, the decomposition temperature stops increasing when about 10 atomic% or more is replaced, and no further effect can be obtained. Therefore, the thermal stability has not yet been improved to a temperature of about 700 ° C. or higher. Therefore, when densification is performed by means such as hot pressing, a high molding pressure is required, and there is a problem from the viewpoint of mold consumption.

【0008】[0008]

【発明が解決しようとする課題】上述したように、飽和
磁化が高く、磁気異方性の大きい高性能磁石において
は、現在のところ、熱安定性が低く問題となっている。
As described above, high-performance magnets having high saturation magnetization and high magnetic anisotropy have a problem of low thermal stability at present.

【0009】本発明は、上記事情を考慮してなされたも
のであり、その目的とするところは、飽和磁化が高く、
磁気異方性の大きい高性能磁石において熱安定性を改善
した磁石材料を提供することである。
The present invention has been made in view of the above circumstances, and has as its object to achieve high saturation magnetization,
An object of the present invention is to provide a magnet material having improved thermal stability in a high-performance magnet having a large magnetic anisotropy.

【0010】[0010]

【課題を解決するための手段】そこで本発明では、Rx
y(CrzSiu1-z-u1-x-y(ただし、RはY及び
希土類元素よりなる第1群から選ばれる少なくとも1種
以上の元素を含み、MはFe及びCoよりなる第2群か
ら選ばれる少なくとも1種以上の元素を含み、0.04
≦x≦0.2、0.001≦y≦0.2、0.005≦
z≦0.2、0.005≦u≦0.2である)で表され
る化合物である事を特徴とする磁石材料を提供する。
Therefore, in the present invention, R x
N y (Cr z Si u M 1-zu ) 1-xy (where R contains at least one or more elements selected from the first group consisting of Y and rare earth elements, and M is the second consisting of Fe and Co) At least one element selected from the group,
≦ x ≦ 0.2, 0.001 ≦ y ≦ 0.2, 0.005 ≦
wherein z ≦ 0.2 and 0.005 ≦ u ≦ 0.2).

【0011】本発明の磁石材料は、Mのうち、20原子
%以下を、Ti、V、Mn、Ni、Cu、Zn、Zr、
Nb、Mo、Hf、Ta、W、Al、GaおよびGeよ
りなる第3群から選ばれる少なくとも1種の元素で置換
してもよい。
In the magnet material of the present invention, 20 atomic% or less of M is used for Ti, V, Mn, Ni, Cu, Zn, Zr,
It may be replaced with at least one element selected from the third group consisting of Nb, Mo, Hf, Ta, W, Al, Ga and Ge.

【0012】また本発明の磁石材料は、Nのうち、50
原子%以下を、H、BおよびCよりなる第4群から選ば
れる少なくとも1種の元素で置換してもよい。
[0012] The magnetic material of the present invention is characterized in that 50% of N
Atomic% or less may be replaced by at least one element selected from the fourth group consisting of H, B and C.

【0013】さらに本発明の磁石材料は、Th2Zn17
型結晶構造もしくはTh2Ni17型結晶構造を主相とし
てもよい。
Further, the magnetic material of the present invention is Th 2 Zn 17
A type crystal structure or a Th 2 Ni 17 type crystal structure may be used as a main phase.

【0014】[0014]

【発明の実施の形態】従来、Sm−Fe−N系材料のF
eを他の元素で置換した場合には、例えばCrで置換し
た場合、置換量を増加させていくと分解温度が上昇し、
10原子%程度置換した際に約661℃となった。しか
し、これ以上FeをCrで置換しても分解温度は上昇し
ない。また、Siで置換した場合は、分解温度は同様に
約600℃までしか上昇しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Conventionally, Fm of Sm-Fe-N based material
When e is replaced by another element, for example, when replaced by Cr, the decomposition temperature increases as the replacement amount increases,
The temperature reached about 661 ° C. when about 10 atomic% was replaced. However, even if Fe is further replaced by Cr, the decomposition temperature does not rise. In the case of substitution with Si, the decomposition temperature similarly rises only to about 600 ° C.

【0015】熱安定性を支配する要因は複雑であるが、
結晶構造が同一である場合、熱安定性は、(1)各原子
間の距離および(2)3d電子数に敏感であることが考
えられる。
The factors governing thermal stability are complex,
When the crystal structures are the same, it is considered that the thermal stability is sensitive to (1) the distance between each atom and (2) the number of 3d electrons.

【0016】上記の条件により熱安定性を改善する為
に、様々な材料について検討を行った結果、Sm−Fe
−N系材料のFeをCrで置換した場合には平均3d電
子数が変化して結晶の熱安定性が高められ、Siで置換
した場合には結晶の単位胞を小さくする効果が著しく、
これにより熱安定性が高められることがわかった。そし
て、このような熱安定性の改善の機構の違いが判明した
ことにより、本発明では、Sm−Fe−N系材料のFe
を、CrとSiの両方で置換することにより、最適な磁
石材料を得られることを見出した。
In order to improve the thermal stability under the above conditions, various materials were examined.
When Fe of the -N-based material is replaced by Cr, the average number of 3d electrons changes to increase the thermal stability of the crystal, and when replaced by Si, the effect of reducing the unit cell of the crystal is remarkable,
It has been found that this improves the thermal stability. And, since the difference in the mechanism of such thermal stability improvement was found, in the present invention, the Sm—Fe—N-based material Fe
Was replaced with both Cr and Si, an optimum magnet material was obtained.

【0017】したがって、本発明においては、磁石材料
として、 Rxy(CrzSiu1-z -u1-x-y(ただ
し、RはY及び希土類元素よりなる第1群から選ばれる
少なくとも1種以上の元素を含み、MはFe及びCoよ
りなる第2群から選ばれる少なくとも1種以上の元素を
含み、0.04≦x≦0.2、0.001≦y≦0.
2、0.005≦z≦0.2、0.005≦u≦0.2
である)で表される化合物を含む。
Therefore, in the present invention, the magnet material
As RxNy(CrzSiuM1-z -u)1-xy(However
R is selected from the first group consisting of Y and rare earth elements
M contains at least one element, M is Fe and Co
At least one element selected from the second group
0.04 ≦ x ≦ 0.2, 0.001 ≦ y ≦ 0.
2, 0.005 ≦ z ≦ 0.2, 0.005 ≦ u ≦ 0.2
Is included).

【0018】つまり、Sm−Fe−N系材料のFeをC
rとSiの両方で置換した場合に最適な性質が得られる
のである。Sm−Fe−N系材料のFeをCrで置換し
た場合やSiで置換した場合には、夫々、ある一定の温
度までしか上昇しなかった分解温度が、CrとSiの両
方で置換することにより、従来のものより高い分解温度
が得られる。
That is, Fe of the Sm—Fe—N based material is converted to C
Optimum properties are obtained when substitution is made with both r and Si. When the Fe of the Sm-Fe-N-based material is replaced with Cr or replaced with Si, the decomposition temperature, which has only increased to a certain temperature, is reduced by replacing both with Cr and Si. And a higher decomposition temperature than the conventional one is obtained.

【0019】以下、本発明の磁石材料Rxy(Crz
u1-z-u1-x-y(ただし、RはY及び希土類元素よ
りなる第1群から選ばれる少なくとも1種以上の元素を
含み、MはFe及びCoよりなる第2群から選ばれる少
なくとも1種以上の元素を含み、0.04≦x≦0.
2、0.001≦y≦0.2、0.005≦z≦0.
2、0.005≦u≦0.2である)を構成する各成分
について詳細に説明する。 (1)R RはY及び希土類元素よりなる第1群から選ばれる少な
くとも1種以上の元素を含む。これらの元素はいずれ
も、磁石材料に大きな磁気異方性をもたらし、高い保磁
力を付与する。Rは磁石材料中のM、Cr、Siの合計
に対して、約4〜20原子%の範囲で配合されることが
好ましい。Rの配合比が約4原子%未満であると、多量
のα−Feが析出して大きな保磁力が得られず、一方約
20原子%を越えると、飽和磁化の低下が著しく、好ま
しくない。より好ましいRの配合比は、約8〜12原子
%であり、さらに好ましくは約9〜11原子%である。
Rとしては、Sm、Nd、Prを用いることが好まし
く、特にSmは好ましく用いられる。そして、Rのう
ち、約50原子%以上、好ましくは約70原子%以上を
Smとすることにより、磁石材料の性能、とりわけ保磁
力を高めるのに有効である。 (2)N Nは主として、結晶中の主相のインタースティシャル位
置(侵入位置)に存在し、Nを含まない場合と比較し
て、結晶格子を拡大させたり、電子構造を変化させたり
することにより、キュリー温度、磁気異方性、飽和磁化
を向上させる働きを有する。Nの配合比は、磁石材料中
のM、Cr、Siの合計に対して、約0.1〜20原子
%とすることが好ましい。Nの配合比を約0.1原子%
未満とすると、Nを配合した効果を十分に得ることが出
来ず、一方、約20原子%を超えると、飽和磁化の低下
を招き、好ましくない。より好ましいNの配合比は、約
10〜15原子%である。また、Nのうち、約50原子
%以下を、H、B、Cよりなる第4群から選ばれる少な
くとも1種の元素で置換しても、同様の効果を得ること
ができる。H、B、Cによる置換が約50原子%を超え
ると、磁気異方性の低下が著しくなる為好ましくない。 (3)M Mは、Fe及びCoよりなる第2群から選ばれる少なく
とも1種以上の元素を含む。これは、主として磁石材料
の磁化を担うものである。Mを多量に配合することによ
り磁石材料の飽和磁化を高めることができるが、過剰に
配合すると、α−Feの析出により保持力を低下させる
おそれがある。また、Mのうち、約20原子%以下を、
Ti、V、Mn、Ni、Cu、Zn、Zr、Nb、M
o、Hf、Ta、W、Al、GaおよびGeよりなる第
3群から選ばれる少なくとも1種の元素で置換した場合
も同様の効果を得ることができ、これらで置換すること
によりα−Feの析出を抑制する、粒界相を形成して保
持力を高める、等の効果もある。しかし、Mをこれらの
元素により、約20原子%を超えて置換すると、飽和磁
化の低下が著しい為、好ましくない。 (4)Cr,Si CrおよびSiは本発明の磁石材料の熱安定性を改善
し、熱分解温度を上昇させるために有効な元素である。
これらの元素は、主として主相中のMが占めるサイトを
置換する。そして、Crは結晶内のd電子の数を変化さ
せることにより結晶の熱安定性を高める。また、Siは
結晶格子の大きさを小さくすることにより結晶の熱安定
性を高める。
Hereinafter, the magnet material R x N y (Cr z S) of the present invention will be described.
i u M 1-zu ) 1-xy (where R includes at least one element selected from the first group consisting of Y and rare earth elements, and M represents at least one selected from the second group consisting of Fe and Co) It contains one or more elements, and 0.04 ≦ x ≦ 0.
2, 0.001 ≦ y ≦ 0.2, 0.005 ≦ z ≦ 0.
2, 0.005 ≦ u ≦ 0.2) will be described in detail. (1) RR contains at least one or more elements selected from the first group consisting of Y and rare earth elements. All of these elements bring a large magnetic anisotropy to the magnet material and impart a high coercive force. R is preferably blended in a range of about 4 to 20 atomic% based on the total of M, Cr and Si in the magnet material. If the compounding ratio of R is less than about 4 atomic%, a large amount of α-Fe precipitates and a large coercive force cannot be obtained, while if it exceeds about 20 atomic%, the saturation magnetization is remarkably reduced, which is not preferable. A more preferable compounding ratio of R is about 8 to 12 atomic%, and further preferably about 9 to 11 atomic%.
As R, it is preferable to use Sm, Nd, and Pr, and particularly, Sm is preferably used. By setting Sm to about 50 atomic% or more, preferably about 70 atomic% or more of R, it is effective to enhance the performance of the magnet material, especially the coercive force. (2) N N mainly exists at the interstitial position (intrusion position) of the main phase in the crystal, and enlarges the crystal lattice and changes the electronic structure as compared with the case where N is not included. This has the function of improving the Curie temperature, magnetic anisotropy, and saturation magnetization. The compounding ratio of N is preferably about 0.1 to 20 atomic% with respect to the total of M, Cr and Si in the magnet material. About 0.1 atomic% of N
If the amount is less than the above, the effect of adding N cannot be sufficiently obtained. On the other hand, if the amount exceeds about 20 atomic%, the saturation magnetization decreases, which is not preferable. A more preferable N compounding ratio is about 10 to 15 atomic%. The same effect can be obtained by substituting about 50 atomic% or less of N with at least one element selected from the fourth group consisting of H, B, and C. If the substitution by H, B, or C exceeds about 50 atomic%, the magnetic anisotropy is significantly reduced, which is not preferable. (3) MM contains at least one element selected from the second group consisting of Fe and Co. This is mainly responsible for the magnetization of the magnet material. The saturation magnetization of the magnet material can be increased by adding a large amount of M, but if it is added excessively, the coercive force may be reduced due to the precipitation of α-Fe. In addition, about 20 atom% or less of M
Ti, V, Mn, Ni, Cu, Zn, Zr, Nb, M
A similar effect can be obtained when substituted with at least one element selected from the third group consisting of o, Hf, Ta, W, Al, Ga, and Ge. There are also effects such as suppression of precipitation and formation of a grain boundary phase to increase coercive force. However, it is not preferable to replace M by more than about 20 atomic% with these elements, since the saturation magnetization is significantly reduced. (4) Cr, Si Cr and Si are effective elements for improving the thermal stability of the magnet material of the present invention and increasing the thermal decomposition temperature.
These elements mainly replace the sites occupied by M in the main phase. Cr improves the thermal stability of the crystal by changing the number of d electrons in the crystal. Further, Si enhances the thermal stability of the crystal by reducing the size of the crystal lattice.

【0020】Crの配合比を、M、Cr、Siの合計の
うちの、約0.5原子%未満にすると、Crを配合した
効果を十分に得ることが出来ない。一方Crの配合比
を、M、Cr、Siの合計のうちの、約20原子%より
大きくすると、飽和磁化の低下を招く。より好ましいC
rの配合比は、M、Cr、Siの合計のうちの、約5〜
15原子%である。
If the compounding ratio of Cr is less than about 0.5 atomic% of the total of M, Cr and Si, the effect of compounding Cr cannot be sufficiently obtained. On the other hand, if the mixing ratio of Cr is larger than about 20 atomic% of the total of M, Cr, and Si, the saturation magnetization decreases. More preferred C
The compounding ratio of r is about 5 to 5 of the total of M, Cr, and Si.
15 atomic%.

【0021】また、Siの配合比を、M、Cr、Siの
合計のうちの、約0.5原子%未満にすると、Siを配
合した効果を十分に得ることが出来ない。一方Siの配
合比を、M、Cr、Siの合計のうちの、約20原子%
より大きくすると、飽和磁化の低下を招く。より好まし
いSiの配合比は、M、Cr、Siの合計のうちの、約
5〜15原子%である。
If the mixing ratio of Si is less than about 0.5 atomic% of the total of M, Cr and Si, the effect of mixing Si cannot be sufficiently obtained. On the other hand, the compounding ratio of Si is set to about 20 atomic% of the total of M, Cr, and Si.
If it is larger, the saturation magnetization decreases. A more preferable mixing ratio of Si is about 5 to 15 atomic% of the total of M, Cr, and Si.

【0022】本発明の磁石材料は各元素の配合比や製造
プロセスによって、Th2Zn17相、Th2Ni17相、T
bCu7相、ThMn12相、R3Fe29相(RはY又は希
土類元素)などを主相とすることができるが、Th2
17相もしくはTh2Ni17相を主相とする場合、特に
高い磁石特性が得られる。ここで、主相とは磁石材料を
構成する各結晶相および非晶質相のうちで最大の体積占
有率を有する相を意味するものである。また、本発明の
磁石材料は酸化物などの不可避的不純物を含有すること
を許容する。
The magnetic material of the present invention can be made of Th 2 Zn 17 phase, Th 2 Ni 17 phase, T 2
BCU 7 phase, ThMn 12 phase, R 3 Fe 29 phase (R is Y or a rare earth element) may be, eg a main phase, Th 2 Z
When the n 17 phase or the Th 2 Ni 17 phase is the main phase, particularly high magnet properties can be obtained. Here, the main phase means the phase having the largest volume occupancy among the crystalline phases and the amorphous phases constituting the magnet material. Further, the magnet material of the present invention allows inclusion of unavoidable impurities such as oxides.

【0023】次に、本発明に係わる磁石材料の製造方法
の例について説明する。
Next, an example of a method for manufacturing a magnet material according to the present invention will be described.

【0024】まず所定量のR、Cr、Si、M元素を含
む合金粉末を作製する。合金粉末はアーク溶解や高周波
溶解後に鋳造するなどして得られた合金インゴットを粉
砕して得ることが出来、また液体急冷法で合金薄帯を作
製した後に粉砕して合金粉末を調整することもできる。
また、合金粉末の別の調製方法としてメカニカルアロイ
ング法やメカニカルグラインディング法、ガスアトマイ
ズ法、還元拡散法、などを採用しても良い。
First, an alloy powder containing predetermined amounts of R, Cr, Si, and M elements is prepared. The alloy powder can be obtained by pulverizing the alloy ingot obtained by casting after arc melting or high frequency melting, and it is also possible to prepare the alloy ribbon by the liquid quenching method and then pulverize it to adjust the alloy powder. it can.
Further, as another method of preparing the alloy powder, a mechanical alloying method, a mechanical grinding method, a gas atomizing method, a reduction diffusion method, or the like may be adopted.

【0025】このようにして得られた合金粉末または粉
砕前の合金に対して必要に応じて熱処理を施して均質化
してもよい。また、合金粉末の調整法や熱処理の条件に
よって主相の種類や体積占有率を制御することも可能で
ある。
The alloy powder thus obtained or the alloy before pulverization may be subjected to a heat treatment, if necessary, to homogenize it. It is also possible to control the type and volume occupancy of the main phase by adjusting the alloy powder and heat treatment conditions.

【0026】次に、この合金粉末に対してNを含有させ
て、磁石材料を完成する。この方法としては、約0.1
〜100気圧の窒素ガス雰囲気中で約0.1〜100時
間、約300〜900℃の温度下で熱処理することが望
ましい。この熱処理の雰囲気は、窒素ガスに代えてアン
モニア等の窒素化合物ガスを用いても良い。窒素ガスあ
るいは窒素化合物ガスと水素ガスとを混合して用いるこ
とで窒化反応を制御することも可能である。アンモニア
等の窒素化合物ガスを用いたり、水素ガスを混合したり
することによりNの一部をHで置換することが可能とな
る。Nの一部をC,Bで置換する場合には、窒素含有処
理の前の合金粉末にC,Bを含有させても良いし、炭素
化合物ガスなどを用いて含有させることも可能である。
Next, N is added to the alloy powder to complete a magnet material. As this method, about 0.1
It is desirable to perform the heat treatment at a temperature of about 300 to 900 ° C. for about 0.1 to 100 hours in a nitrogen gas atmosphere of about 100 atm. As the atmosphere for this heat treatment, a nitrogen compound gas such as ammonia may be used instead of the nitrogen gas. The nitridation reaction can be controlled by using a mixture of a nitrogen gas or a nitrogen compound gas and a hydrogen gas. It is possible to partially replace N with H by using a nitrogen compound gas such as ammonia or by mixing hydrogen gas. When a part of N is replaced with C and B, C and B may be contained in the alloy powder before the nitrogen-containing treatment, or it may be contained using a carbon compound gas or the like.

【0027】本発明の磁石材料から磁石体を製造する場
合、所定量のR、N、Cr、Si、Mを含有する磁石材
料をホットプレス、熱間静水圧プレス、放電プラズマ焼
結などにより高密度の成形体として一体化することによ
り製造できる。本発明の磁石材料は上述したように高い
熱安定性を有するため、より高温での成形が可能とな
り、従来と比較して、低い成形圧で緻密な成形体を得る
ことが可能となる。
When a magnet body is manufactured from the magnet material of the present invention, a magnet material containing a predetermined amount of R, N, Cr, Si, M is hot pressed, hot isostatically pressed, discharge plasma sintered or the like. It can be manufactured by being integrated as a compact having a high density. Since the magnetic material of the present invention has high thermal stability as described above, molding at a higher temperature is possible, and it becomes possible to obtain a dense molded body with a lower molding pressure as compared with the related art.

【0028】また本発明の磁石材料は、ボンド磁石とし
て利用することも可能である。バインダーとしては従来
どおりエポキシ系あるいはナイロン系などの樹脂を用い
てもよいが、低融点金属または低融点合金をバインダー
としてメタルボンド磁石を製造することも可能である。
この場合においても、本発明の磁石材料は高い熱安定性
を有するため使用できるバインダーの種類が増え、より
低価格で高性能なボンド磁石を提供できる利点がある。
The magnetic material of the present invention can be used as a bonded magnet. As the binder, a resin such as an epoxy-based resin or a nylon-based resin may be used as before, but it is also possible to manufacture a metal-bonded magnet using a low-melting-point metal or a low-melting-point alloy as a binder.
Also in this case, since the magnetic material of the present invention has high thermal stability, the kinds of binders that can be used are increased, and there is an advantage that a high-performance bonded magnet can be provided at lower cost.

【0029】以下に本発明の実施形態を詳細に説明する
が、本発明はこれらの実施形態に限定されるものではな
い。 (第1〜第8の実施形態)まず、各原料を(表1)に示
す組成比で調合し、Ar雰囲気中で高周波溶解して母合
金インゴットを作製する。つづいてこの母合金インゴッ
トをAr雰囲気中、約1000℃で約3日間熱処理した
後、乳鉢を用いて約45μm以下に粉砕する。ひきつづ
きこの合金粉末を約1気圧の窒素ガス雰囲気中、(表
1)に示す各温度(窒化処理温度)で約4時間熱処理を
施して、夫々第1〜第8の実施形態の磁石材料とする。 (比較例1〜3)各原料の組成比と、窒化処理温度を
(表1)のようにする他は、第1〜第8の実施形態と同
様にして、磁石材料を形成する。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments. (First to Eighth Embodiments) First, the respective raw materials are prepared at the composition ratios shown in (Table 1), and are melted by high frequency in an Ar atmosphere to produce a mother alloy ingot. Subsequently, the mother alloy ingot is heat-treated at about 1000 ° C. for about 3 days in an Ar atmosphere, and then pulverized to about 45 μm or less using a mortar. Subsequently, this alloy powder is subjected to a heat treatment at a temperature (nitriding temperature) shown in (Table 1) for about 4 hours in a nitrogen gas atmosphere of about 1 atm to obtain magnet materials of the first to eighth embodiments, respectively. . (Comparative Examples 1 to 3) A magnet material is formed in the same manner as in the first to eighth embodiments, except that the composition ratio of each raw material and the nitriding temperature are as shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】各実施形態、各比較例の磁石材料を生成す
る生成相をCuKαを線源とするX線によるX線回折で
調べたところ、第1〜第8の実施形態の磁石材料は全て
主相がTh2Zn17相であることが確認された。第1の
実施形態の磁石材料のX線回折の結果を図1に示す。図
1より、回折ピークは、α−Feからのわずかなピーク
の他は全て、Th2Zn17型構造で指数付けられ、ほぼ
Th2Zn17相の単相であることが分かる。
When the generated phase for producing the magnet material of each embodiment and each comparative example was examined by X-ray diffraction using X-rays using CuKα as a radiation source, all of the magnet materials of the first to eighth embodiments were mainly used. It was confirmed that the phase was a Th 2 Zn 17 phase. FIG. 1 shows the result of X-ray diffraction of the magnet material of the first embodiment. From FIG. 1, it can be seen that all the diffraction peaks are indexed by a Th 2 Zn 17 type structure except for a slight peak from α-Fe, and are almost a single phase of the Th 2 Zn 17 phase.

【0032】また、各実施形態、各比較例の磁石材料の
熱分解温度を確認する為に、DSC測定を行った。測定
条件は、約20℃/minとし、熱分解温度の測定は熱
分解のピーク値において行った。(表1)に各実施形
態、各比較例の熱分解のピーク値(DSCピーク温度)
を示す。また、測定結果の一例として、第1の実施形態
のDSC測定結果を図2に示す。図2より、第1の実施
形態の磁石材料の場合、約820℃に化合物の熱分解を
示す大きなピークが観測されることが分かる。なお、こ
のDSC測定における反応開始温度は、約750℃であ
り、従来技術で述べた杉本らの熱分解温度の定義は、反
応開始温度に近いと考えられる。
Further, in order to confirm the thermal decomposition temperature of the magnetic material of each embodiment and each comparative example, DSC measurement was performed. The measurement conditions were about 20 ° C./min, and the measurement of the thermal decomposition temperature was performed at the peak value of the thermal decomposition. (Table 1) shows the peak value of thermal decomposition (DSC peak temperature) of each embodiment and each comparative example.
Is shown. FIG. 2 shows a DSC measurement result of the first embodiment as an example of the measurement result. FIG. 2 shows that in the case of the magnet material of the first embodiment, a large peak indicating thermal decomposition of the compound is observed at about 820 ° C. The reaction start temperature in this DSC measurement is about 750 ° C., and the definition of the thermal decomposition temperature described by Sugimoto et al. In the prior art is considered to be close to the reaction start temperature.

【0033】比較例においては、SiとCrのどちらも
入れない比較例1の磁石材料の熱分解温度が一番低く、
Cr、Siを夫々単独で入れた比較例2、3は、熱分解
温度が高くなるものの、本発明の各実施形態には及ばな
い。
In the comparative example, the thermal decomposition temperature of the magnet material of Comparative Example 1 in which neither Si nor Cr was added was the lowest,
In Comparative Examples 2 and 3, in which Cr and Si were independently added, although the thermal decomposition temperature was high, they did not reach each embodiment of the present invention.

【0034】各実施形態においては、CrとSiの両方
が入っていることから、熱分解温度が高く、熱安定性の
良い磁石材料となっている。また、CrやSiの配合比
を変化させた場合等でも、本発明の範囲内であれば、同
様な効果を得られることがわかる。さらに、これらの実
施形態中にない物質、原料の配合比であっても、本発明
の範囲内であれば、同様な効果を得ることが出来る。 (第9〜第11の実施形態)第6〜第8の実施形態の磁
石材料を用いて、温度を約770℃、圧力を約220M
Paとしてホットプレスを行い、磁石体を作成し、それ
ぞれ第9〜第11の実施形態とした。この作成条件は、
従来は温度を約550℃、圧力を約1000MPaとし
ていた事から、従来に比較して高温、低圧であると言え
る。
In each embodiment, since both Cr and Si are contained, the magnet material has a high thermal decomposition temperature and good thermal stability. Further, it can be seen that the same effect can be obtained even when the mixing ratio of Cr or Si is changed within the range of the present invention. Furthermore, similar effects can be obtained even if the compounding ratio of the substance and the raw material is not in these embodiments, as long as it is within the scope of the present invention. (Ninth to eleventh embodiments) Using the magnet materials of the sixth to eighth embodiments, the temperature is about 770 ° C and the pressure is about 220M.
Hot pressing was performed as Pa to produce magnet bodies, which were set as the ninth to eleventh embodiments, respectively. This creation condition is
Conventionally, the temperature was set to about 550 ° C. and the pressure was set to about 1000 MPa. Therefore, it can be said that the temperature is higher and the pressure is lower than before.

【0035】これらの磁石の密度(磁石密度)は、(表
2)に示すように約7.5〜7.9g/cm3となっ
た。また、これらの磁石の保磁力、残留磁化、最大エネ
ルギー積を測定したところ、いずれの磁石も(表2)に
示すように、保磁力が約600〜900kA/m、残留
磁化が約0.7〜0.9T、最大エネルギー積が約80
〜100kJ/m3と優れた磁気特性を持つことが確認
された。
The density (magnet density) of these magnets was about 7.5 to 7.9 g / cm 3 as shown in Table 2. When the coercive force, residual magnetization, and maximum energy product of these magnets were measured, as shown in Table 2, each magnet had a coercive force of about 600 to 900 kA / m and a residual magnetization of about 0.7 kA / m. ~ 0.9T, maximum energy product is about 80
It was confirmed to have excellent magnetic properties of 100 kJ / m 3 .

【0036】[0036]

【表2】 [Table 2]

【0037】よって、本発明の磁石材料を用いて磁石体
を形成することにより、優れた磁気特性を得ることが出
来、熱安定性が高いことから低い成形圧力で緻密な成形
体を製造できるという効果が得られる。
Therefore, by forming a magnet body using the magnet material of the present invention, it is possible to obtain excellent magnetic properties, and it is possible to produce a dense compact at a low molding pressure because of its high thermal stability. The effect is obtained.

【0038】[0038]

【発明の効果】以上詳述したように、本発明によれば、
飽和磁化が高く、磁気異方性の大きい高性能磁石の熱安
定性を改善し、金型の消耗の少ない、低い成形圧力で緻
密な成形体を製造できる磁石材料を提供することが出来
る。
As described in detail above, according to the present invention,
It is possible to provide a magnet material which improves the thermal stability of a high-performance magnet having a high saturation magnetization and a large magnetic anisotropy, and capable of producing a dense compact at a low molding pressure with little consumption of a mold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係る磁石材料のX
線回折パターンを示す図である。
FIG. 1 is a cross-sectional view of a magnetic material according to a first embodiment of the present invention;
It is a figure which shows a line diffraction pattern.

【図2】 本発明の第1の実施形態に係る磁石材料のD
SC測定結果を示す図である。
FIG. 2 is a graph showing D of the magnet material according to the first embodiment of the present invention.
It is a figure showing an SC measurement result.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平井 隆大 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 4K018 AA12 AA27 AB03 AC03 BA06 BA18 BC01 BD01 DA33 EA02 EA13 FA44 KA45 5E040 AA06 BD01 CA01 HB15 NN01 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Takahiro Hirai 1 Toshiba R & D Center, Komukai Toshiba, Kawasaki-shi, Kanagawa F-term (reference) 4K018 AA12 AA27 AB03 AC03 BA06 BA18 BC01 BD01 DA33 EA02 EA13 FA44 KA45 5E040 AA06 BD01 CA01 HB15 NN01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Rxy(CrzSiu1-z-u1-x-y(た
だし、RはY及び希土類元素よりなる第1群から選ばれ
る少なくとも1種以上の元素を含み、MはFe及びCo
よりなる第2群から選ばれる少なくとも1種以上の元素
を含み、0.04≦x≦0.2、0.001≦y≦0.
2、0.005≦z≦0.2、0.005≦u≦0.2
である)で表される化合物である事を特徴とする磁石材
料。
1. R x N y (Cr z Si u M 1-zu ) 1-xy (where R contains at least one element selected from the first group consisting of Y and rare earth elements, and M is Fe and Co
At least one element selected from the second group consisting of 0.04 ≦ x ≦ 0.2, 0.001 ≦ y ≦ 0.
2, 0.005 ≦ z ≦ 0.2, 0.005 ≦ u ≦ 0.2
The magnetic material is a compound represented by the formula:
【請求項2】 前記Mのうち、20原子%以下を、T
i、V、Mn、Ni、Cu、Zn、Zr、Nb、Mo、
Hf、Ta、W、Al、GaおよびGeよりなる第3群
から選ばれる少なくとも1種の元素で置換することを特
徴とする請求項1記載の磁石材料。
2. The method according to claim 1, wherein 20% by atom or less of M is
i, V, Mn, Ni, Cu, Zn, Zr, Nb, Mo,
2. The magnet material according to claim 1, wherein said magnet material is substituted with at least one element selected from the third group consisting of Hf, Ta, W, Al, Ga and Ge.
【請求項3】 前記Nのうち、50原子%以下を、H、
BおよびCよりなる第4群から選ばれる少なくとも1種
の元素で置換することを特徴とする請求項1記載の磁石
材料。
3. A method according to claim 1, wherein 50% by atom or less of said N is H,
2. The magnet material according to claim 1, wherein said magnet material is substituted with at least one element selected from the fourth group consisting of B and C.
【請求項4】 Th2Zn17型結晶構造もしくはTh2
17型結晶構造を主相とすることを特徴とする請求項1
乃至3記載の磁石材料。
4. A Th 2 Zn 17 type crystal structure or Th 2 N
claim, characterized in that the i 17 type crystal structure as a main phase 1
4. The magnet material according to any one of claims 1 to 3.
JP2001115114A 2001-04-13 2001-04-13 Magnet material Pending JP2002313614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115114A JP2002313614A (en) 2001-04-13 2001-04-13 Magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115114A JP2002313614A (en) 2001-04-13 2001-04-13 Magnet material

Publications (1)

Publication Number Publication Date
JP2002313614A true JP2002313614A (en) 2002-10-25

Family

ID=18966069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115114A Pending JP2002313614A (en) 2001-04-13 2001-04-13 Magnet material

Country Status (1)

Country Link
JP (1) JP2002313614A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531359A (en) * 2010-03-29 2013-08-01 グリレム アドバンスド マテリアルズ カンパニー リミティッド Equipment made of rare earth permanent magnet powder, bonded magnet and bonded magnet
CN104134505A (en) * 2014-07-14 2014-11-05 成都八九九科技有限公司 Rare earth permanent magnetic material Sm2(CoFeCuZr)17 and preparation method thereof
WO2016151619A1 (en) * 2015-03-23 2016-09-29 株式会社 東芝 Magnet material, permanent magnet, motor, and generator
EP3220396A1 (en) 2016-03-18 2017-09-20 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
WO2019043999A1 (en) 2017-08-30 2019-03-07 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
JP2021048202A (en) * 2019-09-17 2021-03-25 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531359A (en) * 2010-03-29 2013-08-01 グリレム アドバンスド マテリアルズ カンパニー リミティッド Equipment made of rare earth permanent magnet powder, bonded magnet and bonded magnet
CN104134505A (en) * 2014-07-14 2014-11-05 成都八九九科技有限公司 Rare earth permanent magnetic material Sm2(CoFeCuZr)17 and preparation method thereof
EP3276639A4 (en) * 2015-03-23 2018-11-07 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, motor, and generator
KR20170023163A (en) 2015-03-23 2017-03-02 가부시끼가이샤 도시바 Magnet material, permanent magnet, motor, and generator
CN106605275A (en) * 2015-03-23 2017-04-26 株式会社东芝 Magnet material, permanent magnet, motor, and generator
JPWO2016151619A1 (en) * 2015-03-23 2017-07-27 株式会社東芝 Magnet materials, permanent magnets, motors, and generators
WO2016151619A1 (en) * 2015-03-23 2016-09-29 株式会社 東芝 Magnet material, permanent magnet, motor, and generator
EP3220396A1 (en) 2016-03-18 2017-09-20 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
CN107204223A (en) * 2016-03-18 2017-09-26 株式会社东芝 Permanent magnet, electric rotating machine and vehicle
JP2017171949A (en) * 2016-03-18 2017-09-28 株式会社東芝 Permanent magnetic, rotation electrical machinery and vehicle
WO2019043999A1 (en) 2017-08-30 2019-03-07 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
US11289249B2 (en) 2017-08-30 2022-03-29 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
JP2021048202A (en) * 2019-09-17 2021-03-25 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle
JP7234082B2 (en) 2019-09-17 2023-03-07 株式会社東芝 Magnetic materials, permanent magnets, rotating electric machines, and vehicles
US11677279B2 (en) 2019-09-17 2023-06-13 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, rotary electrical machine, and vehicle

Similar Documents

Publication Publication Date Title
JP5259351B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP2001189206A (en) Permanent magnet
JP4314244B2 (en) Magnetic material powder manufacturing method and bonded magnet manufacturing method
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2000114017A (en) Permanent magnet and material thereof
US6406559B2 (en) Magnetic material and manufacturing method thereof, and bonded magnet using the same
EP2947664B1 (en) Magnetic material and method for producing magnetic material
JP3455557B2 (en) Magnetic material
JP4170468B2 (en) permanent magnet
JP2002313614A (en) Magnet material
JP3135665B2 (en) Magnetic materials and bonded magnets
JP3222482B2 (en) Manufacturing method of permanent magnet
JPS62136551A (en) Permanent magnet material
JP2002294413A (en) Magnet material and manufacturing method therefor
JP3247508B2 (en) permanent magnet
JP3768553B2 (en) Hard magnetic material and permanent magnet
JPH0461042B2 (en)
JPH10172817A (en) Permanent magnet material, bond magnet and motor
JPS609104A (en) Permanent magnet
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH11340020A (en) Magnet material, its manufacture, and bonded magnet using the same
JP3386552B2 (en) Magnetic material
JP3779338B2 (en) Method for producing magnetic material powder and method for producing bonded magnet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050930