JP2002306143A - Method for sterilizing granular material, and floating, migrating and sterilizing apparatus usable therefor - Google Patents

Method for sterilizing granular material, and floating, migrating and sterilizing apparatus usable therefor

Info

Publication number
JP2002306143A
JP2002306143A JP2001145643A JP2001145643A JP2002306143A JP 2002306143 A JP2002306143 A JP 2002306143A JP 2001145643 A JP2001145643 A JP 2001145643A JP 2001145643 A JP2001145643 A JP 2001145643A JP 2002306143 A JP2002306143 A JP 2002306143A
Authority
JP
Japan
Prior art keywords
granular material
electron beam
floating
granules
sterilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001145643A
Other languages
Japanese (ja)
Inventor
Yoshio Tsuchiyama
嘉雄 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TECHNO MAN KK
NIPPON TECHNO MANAGEMENT KK
Original Assignee
NIPPON TECHNO MAN KK
NIPPON TECHNO MANAGEMENT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TECHNO MAN KK, NIPPON TECHNO MANAGEMENT KK filed Critical NIPPON TECHNO MAN KK
Priority to JP2001145643A priority Critical patent/JP2002306143A/en
Publication of JP2002306143A publication Critical patent/JP2002306143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for sterilizing granular material such as grain by thoroughly irradiating the whole surface of each of the granular material with electronic beam with low energy, and further to provide an apparatus to be used in the method. SOLUTION: This method for sterilizing the granular material 3 is characterized in that the surface of the floating and migrating granular material 3 is irradiated with the electronic beam F with the low energy. The floating, migrating and sterilizing apparatus has a feeding device 1 for dropping and feeding the granular material 3 in an irradiation chamber 2, an ascending current- generating device 4 for sending a gas from the lower part of the irradiation chamber 2, and an electron beam-accelerating tool 9 for radiating the electron beam F with the low energy from the side surface of the irradiation chamber 2, installed in the middle position between both of the devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、食品の原材料と
して使用される香辛料、穀物等の顆粒状物の殺菌方法及
びそれに用いる浮遊泳動殺菌装置に関するもので、具体
的には浮遊泳動している顆粒状物の表面に低エネルギー
の電子線を均一に万遍なく照射して、該顆粒状物の表面
及び表皮裏側等ごく表層部分に存在している微生物を殺
菌する方法並びにそれに用いる浮遊泳動殺菌装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sterilizing granules such as spices and grains used as a raw material of food and a floating electrophoresis sterilizing apparatus used therefor. Method for uniformly irradiating the surface of a granular material with a low-energy electron beam to sterilize microorganisms existing on the surface of the granular material and the very surface layer such as the backside of the epidermis, and a floating electrophoresis sterilizer used therefor About.

【0002】[0002]

【従来の技術】 従来、一般に行われている電子線照射
による顆粒状物の殺菌方法の例としては、コンベアで移
送される薄層状の顆粒状物に対してその上部から低エネ
ルギーのソフトエレクトロンを照射するものがある。し
かしこの場合、仮に該顆粒状物が完全な一層状態に置か
れていたとしても、低エネルギーの照射電子はその直進
性と弱透過性(非貫通性)の故に顆粒状物の上部表層部
分にしか照射効果が及ばないため、該顆粒状物の陰にな
った裏側表層部分の殺菌が不十分となる危険性が大きい
と言う欠点があった。
2. Description of the Related Art As an example of a conventional method of sterilizing granules by electron beam irradiation, low-energy soft electrons are applied to a thin-layer granule transferred by a conveyor from above. Some are irradiated. However, in this case, even if the granular material is completely in a single layer state, the low-energy radiated electrons are not transmitted to the upper surface layer of the granular material due to its straightness and weak permeability (non-penetrability). However, there is a drawback that there is a high risk of insufficient sterilization of the back surface layer portion, which is shaded by the granules, since the irradiation effect is only exerted.

【0003】又、従来技術の他の例として、顆粒状物を
落下させながら側方から電子線照射を行う方法がある
が、この方法では該顆粒状物の落下速度が早いためにご
く瞬間的な照射しか行えず、殺菌するに十分な時間を得
ることが難しい上に、顆粒状物が電子線の照射方向に重
なっていたり、又、回転していない場合には、電子線の
直進性のために個々の顆粒状物の全表面に万遍なく電子
線を照射することが出来ない等の欠点があった。
As another example of the prior art, there is a method of irradiating an electron beam from the side while dropping a granular material. In this method, since the falling speed of the granular material is high, it is very instantaneous. It is difficult to obtain sufficient time for sterilization.In addition, if the granules overlap in the irradiation direction of the electron beam or are not rotating, the straightness of the electron beam For this reason, there has been a defect that the entire surface of each granular material cannot be uniformly irradiated with an electron beam.

【0004】[0004]

【発明が解決しようとする課題】 そこで本発明が解決
しようとする課題を一言でいえば、穀物等顆粒状物に対
して透過力の弱い低エネルギーの電子線を、該顆粒状物
の全表面に、いかにして均一に万遍なく照射するかと言
うことである。この課題を解決することが出来れば、該
顆粒状物の表層部分のみを全体的、効果的に殺菌するこ
とが可能となり高い殺菌効率が得られると同時に、該顆
粒状物が有する固有の香りや風味を損なうことのない非
加熱性・非薬剤性の殺菌方法を実現することが出来る。
The problem to be solved by the present invention is, in a nutshell, a low-energy electron beam having low permeability to granules such as cereals. This is how to irradiate the surface uniformly. If this problem can be solved, only the surface layer portion of the granular material can be entirely and effectively sterilized, and high sterilization efficiency can be obtained. A non-heatable, non-chemical sterilization method that does not impair the flavor can be realized.

【0005】[0005]

【課題を解決するための手段】 そこで本発明者は、上
記の課題を解決するために種々検討を行った結果、顆粒
状物は上昇気流の中で流動化しやすいこと、弱めの上昇
気流の中では浮遊泳動しながら低速度で落下すること、
強めの上昇気流の中では激しく回転しながらランダムで
活発な浮遊泳動循環運動を行うことなどの現象に着目し
て、本発明に至ったのである。
Means for Solving the Problems The present inventor has conducted various studies to solve the above-mentioned problems. As a result, it has been found that the granular material is likely to be fluidized in the updraft, Let's fall at a low speed while floating electrophoresis,
The present invention has been achieved by paying attention to phenomena such as random and active circulating electrophoresis while violently rotating in a strong ascending airflow.

【0006】第1の本発明は、浮遊泳動している顆粒状
物の表面に低エネルギーの電子線を照射することを特徴
とする顆粒状物の殺菌方法である。第2の本発明は、顆
粒状物を照射室内に落下供給する供給装置と、照射室の
下方から気体を送り込む上昇気流発生装置と、該両装置
の中間位置に設けられ照射室の側面から低エネルギーの
電子線を照射する電子線加速器とを具備した浮遊泳動殺
菌装置である。
A first aspect of the present invention is a method for sterilizing granules, which comprises irradiating a surface of the granules undergoing the electrophoresis with a low-energy electron beam. According to a second aspect of the present invention, there is provided a supply device that drops and supplies a granular material into an irradiation chamber, an ascending airflow generator that feeds gas from below the irradiation chamber, A floating electrophoresis sterilizer comprising an electron beam accelerator for irradiating an energy electron beam.

【0007】上記の方法及び構成によれば、顆粒状物を
浮遊泳動(あたかも液体の沸騰のような状態となつて顆
粒状物が激しく回転混合・泳動する)させることによっ
て、無数の顆粒状物の表面全体に均一に万遍なく電子線
を照射することが出来る。
[0007] According to the above method and structure, the granules are subjected to floating electrophoresis (as if the granules vigorously rotate and mix and migrate as if they were in a state like boiling of a liquid), thereby providing an infinite number of granules. The electron beam can be uniformly and evenly applied to the entire surface of the substrate.

【0008】更に、照射室内の上昇気流の強さ(流速)
を適切に制御することにより、無数の顆粒状物の浮遊泳
動落下速度をコントロールしたり、照射室内で浮遊泳動
循環運動を行なわせて一時的に顆粒状物を滞留させる
等、照射時間の長さ、即ち個々の顆粒状物に対する照射
エネルギー量を調整することが出来るので、1台の電子
線加速器を用いて様々な種類の顆粒状物に最適な殺菌運
転条件を設定することが出来る。この時に要求される照
射電子線のエネルギーは対象顆粒状物の種類によって異
なるが、一般には20keV〜280keVの加速電圧
による低レベルのものであり、又、その物質透過深度は
20〜150μm程度のごく表層部分であって、これは
味覚を損なわずに表面殺菌を行なうのに都合のよい深度
である。
Further, the strength (flow velocity) of the updraft in the irradiation chamber
The length of irradiation time, such as controlling the falling velocity of countless granules by the appropriate control of the number of granules, or temporarily suspending the granules by performing the circulating movement of the granules in the irradiation chamber That is, since the irradiation energy amount for each granular material can be adjusted, the optimum sterilizing operation conditions for various types of granular materials can be set using one electron beam accelerator. The energy of the irradiation electron beam required at this time depends on the type of the target granular material, but is generally at a low level due to an acceleration voltage of 20 keV to 280 keV, and the material penetration depth is as small as about 20 to 150 μm. The superficial portion, which is a convenient depth for performing surface sterilization without losing taste.

【0009】[0009]

【発明の実施の形態】図1は、本発明に係わる浮遊泳動
殺菌装置の1実施例を示す一部断面図である。この浮遊
泳動殺菌装置は、無数の顆粒状物3を照射室2内に定量
的に落下供給させる供給装置1を備えている。矢印Cは
その落下方向を示す。この供給装置1は、例えば、スク
リューコンベヤー、ベルト式又は電磁式のコンベヤー等
が使用される。矢印Aの方向から投入された顆粒状物3
は供給装置1内を矢印Bの方向に定量的に搬送されて矢
印Cで示すように照射室2内に規定の供給速度で落下供
給される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a partial cross-sectional view showing an embodiment of a buoyant electrophoresis sterilizer according to the present invention. This buoyant electrophoresis sterilizer is provided with a supply device 1 for quantitatively dropping and supplying countless granules 3 into the irradiation chamber 2. Arrow C indicates the falling direction. As the supply device 1, for example, a screw conveyor, a belt type or an electromagnetic type conveyor is used. Granules 3 introduced from the direction of arrow A
Is quantitatively conveyed in the supply device 1 in the direction of arrow B, and is dropped and supplied into the irradiation chamber 2 at a specified supply speed as indicated by arrow C.

【0010】一方、照射室2の下部には気体を送り込む
上昇気流発生装置4が設けられている。この上昇気流発
生装置4は、気体送込み口5、調圧室6、フィルター
7、及び金網又は多孔板等から成る整流器8により構成
されている。整流器8としては、素焼、キャンバス等の
多孔性の材料も効果的に使用される。このように構成さ
れた上昇気流発生装置4の気体送込み口5から、矢印D
にて示すように空気、窒素などの気体を所定の圧力で送
り込むと、気体は調圧室6内でいったん流速が低下して
圧力が一様に調整された後フィルター7によって清浄化
され、整流器8を経由して照射室2内に流入し、矢印E
にて示すような均一流速の上昇気流Eとなる。尚、照射
室2内の気体は、最終的には矢印Gで示すように排気口
12を経て外部へと排出される。
On the other hand, an updraft generator 4 for feeding gas is provided below the irradiation chamber 2. The updraft generator 4 includes a gas inlet 5, a pressure regulating chamber 6, a filter 7, and a rectifier 8 composed of a wire mesh or a perforated plate. As the rectifier 8, a porous material such as unglazed or canvas is also effectively used. From the gas inlet 5 of the updraft generator 4 configured as described above, an arrow D
When a gas such as air or nitrogen is sent at a predetermined pressure as shown by a symbol, the gas is reduced in flow rate once in the pressure regulating chamber 6 so that the pressure is uniformly adjusted, and then the gas is purified by the filter 7. 8, flow into the irradiation chamber 2 via an arrow E
The rising airflow E has a uniform flow velocity as shown by. The gas in the irradiation chamber 2 is finally discharged to the outside via the exhaust port 12 as shown by the arrow G.

【0011】次に、供給装置1と上昇気流発生装置4の
中間位置には電子線加速器9が照射室2の側面に設けら
れていて、該電子線加速器9の照射窓10から電子線F
が照射室2内の無数の顆粒状物3に対して照射されるよ
うに構成される。この電子線Fは、低エネルギーである
ため個々の顆粒状物3を貫通することはなく、その表面
及び表皮の裏側等ごく表層部分に存在している微生物を
効果的に殺菌することが出来る。
Next, an electron beam accelerator 9 is provided on the side of the irradiation chamber 2 at an intermediate position between the supply device 1 and the updraft generator 4, and the electron beam F is irradiated from the irradiation window 10 of the electron beam accelerator 9.
Is irradiated to countless granular materials 3 in the irradiation chamber 2. Since the electron beam F has a low energy, it does not penetrate the individual granular material 3 and can effectively sterilize microorganisms existing on the surface and the very surface layer such as the backside of the epidermis.

【0012】更に、電子線加速器9の照射窓10に対向
した位置には板状のビームキャッチャー11が設けられ
ており、照射室2内で浮遊泳動している顆粒状物3に吸
収されずに飛来した電子線Fを受容・吸収する機能を果
たす。しかしこの場合、照射室2内の照射方向の幅寸法
Lを、電子線Fの照射室2内の気体中での飛程距離と同
程度に設定すれば、ビームキャッチャー11を設ける必
要はない。
Further, a plate-shaped beam catcher 11 is provided at a position facing the irradiation window 10 of the electron beam accelerator 9, and is not absorbed by the granular material 3 floating and migrated in the irradiation chamber 2. It functions to receive and absorb the flying electron beam F. However, in this case, if the width L in the irradiation direction in the irradiation chamber 2 is set to be substantially the same as the range of the electron beam F in the gas in the irradiation chamber 2, the beam catcher 11 does not need to be provided.

【0013】さて、以上詳述したような構成に基づく浮
遊泳動殺菌装置において、上昇気流Eを発生させた照射
室2内に供給装置1から顆粒状物3を落下供給させる
と、無数の顆粒状物3は上昇気流Eの抵抗を受けてその
落下速度が低下すると共に、不規則な回転運動を伴った
浮遊泳動を行ないながら落下して行くことが分かった。
この時の顆粒状物3の落下速度は、主として該顆粒状物
3の平均的な直径、表面積や密度、及び気体の平均的な
上昇流速や粘度などに左右されるが、特に上昇気流Eの
平均流速を制御することによって顆粒状物3の浮遊泳動
落下速度をコントロールして電子線Fの照射時間を調整
することが出来る。
[0013] In the floating electrophoresis sterilizer based on the structure described in detail above, when the granules 3 are dropped and supplied from the supply device 1 into the irradiation chamber 2 in which the updraft E is generated, countless granules are generated. It was found that the object 3 received the resistance of the upward airflow E, and its falling speed was reduced, and at the same time, the object 3 was falling while performing floating electrophoresis with irregular rotation.
The falling speed of the granular material 3 at this time depends mainly on the average diameter, surface area and density of the granular material 3 and the average rising flow velocity and viscosity of the gas. The irradiation time of the electron beam F can be adjusted by controlling the average flow velocity to control the falling velocity of the particulate matter 3 in suspension migration.

【0014】上記のようにして浮遊泳動落下速度を適切
にコントロールされた無数の顆粒状物3は、電子線加速
器9から電子線Fを照射されることにより、その全ての
表面に均一に万遍なく、必要な照射エネルギーを与えら
れて殺菌された後、整流器8の上面に落下する。この場
合、浮遊泳動中の顆粒状物3が電子線Fの照射方向に重
なるチャンスもかなりあるが、該顆粒状物3の供給量や
上昇気流Eの流速等を適切に制御することによって、個
々の該顆粒状物3の全表面に均一に万遍なく照射する条
件を容易に見出すことが出来る。
The innumerable granules 3 whose floating migration falling speed is appropriately controlled as described above are uniformly irradiated on all surfaces thereof by being irradiated with the electron beam F from the electron beam accelerator 9. Instead, it is sterilized with the required irradiation energy, and then falls onto the upper surface of the rectifier 8. In this case, there is a considerable chance that the granules 3 during the floating electrophoresis overlap in the irradiation direction of the electron beam F. However, by appropriately controlling the supply amount of the granules 3 and the flow velocity of the updraft E, the individual The conditions for uniformly irradiating the entire surface of the granular material 3 can be easily found.

【0015】このようにして整流器8の上面に落下した
顆粒状物3は、該整流器8が取出し口13の方向に3°
〜7°程度の僅かな傾斜を有するように設けられている
ために、整流器8の表面から送り出される上昇気流Eに
よって流動化されながら、そのエアスライド効果によっ
て、取出し口13へと自動的に転動移動して矢印Hで示
すように外部へと排出される。
The granular material 3 that has fallen on the upper surface of the rectifier 8 in this manner is moved by 3 ° in the direction of the outlet 13 by the rectifier 8.
Since it is provided so as to have a slight inclination of about 7 °, while being fluidized by the updraft E sent from the surface of the rectifier 8, it is automatically turned to the outlet 13 by the air slide effect. It moves and is discharged to the outside as shown by arrow H.

【0016】しかるに、顆粒状物3の種類や付着微生物
の数によっては、浮遊泳動落下方式を使用しても顆粒状
物3に対して照射エネルギーが十分に与えられない場合
が生ずることがある。そのような時には、図2に示すよ
うに上昇気流Eの流速を顆粒状物3の流動化開始速度以
上に大きく設定することにより、無数の該顆粒状物3に
対して浮遊泳動循環運動を行なわせることが出来る。具
体的にはこの場合、照射室2内の上昇気流Eの流速が比
較的に早いので、その流速分布14は照射室2の側壁と
の摩擦の影響が強調され、一般的には放物線状となり中
央部の流速が最も早くなる。従って、無数の顆粒状物3
は矢印Jで示す方向に浮遊泳動循環運動を行なうことに
なる。このように浮遊泳動循環運動を継続している一時
的に滞留状態の無数の顆粒状物3に対して、電子線加速
器9から電子線Fを照射することにより、照射時間を任
意に長く調整して該顆粒状物3に対する照射エネルギー
を必要レベルにまで増加させることが出来る。しかる
に、上昇気流Eの流速を該顆粒状物3の浮遊泳動循環運
動に適した早さ以上に大きく設定すると、該顆粒状物3
は乱流となった気流と共に排気口12から照射室2の外
部へ排出されてしまうので注意しなければならない。
However, depending on the type of the granular material 3 and the number of adhered microorganisms, there may be a case where irradiation energy is not sufficiently given to the granular material 3 even when the floating electrophoresis drop method is used. In such a case, as shown in FIG. 2, by setting the flow velocity of the ascending airflow E to be higher than the fluidization start velocity of the granular material 3, the buoyant electrophoresis circulating motion is performed on the innumerable granular material 3. I can make it. Specifically, in this case, since the flow velocity of the rising airflow E in the irradiation chamber 2 is relatively fast, the flow velocity distribution 14 emphasizes the effect of friction with the side wall of the irradiation chamber 2 and is generally parabolic. The flow velocity at the center is the fastest. Therefore, countless granules 3
Performs the circulating motion of the floating electrophoresis in the direction indicated by the arrow J. By irradiating the electron beam F from the electron beam accelerator 9 to the countless granular materials 3 in the temporary stagnant state, which continue the floating electrophoresis circulating motion, the irradiation time can be arbitrarily lengthened. Thus, the irradiation energy for the granular material 3 can be increased to a required level. However, if the flow rate of the updraft E is set to be larger than the speed suitable for the circulating movement of the granular material 3, the granular material 3
It should be noted that the gas is discharged from the exhaust port 12 to the outside of the irradiation chamber 2 together with the turbulent airflow.

【0017】このような浮遊泳動循環下での電子線照射
を行なうには、適正量の顆粒状物3を照射室2内に供給
した後いったん供給装置1の運転を停止して、上昇気流
Eの流速を該顆粒状物3の流動化開始速度以上に設定
し、顆粒状物3に対して浮遊泳動循環運動を行なわせな
がら電子線Fを照射する。そして所定の照射時間が経過
したら上昇気流Eの流速を低下させて顆粒状物3を浮遊
泳動落下させ、取出し口13から外部に取り出した後、
更に同様の操作を繰り返す。このようなバッチ連続運転
を行なうことによって、定格の低い安価な電子線加速器
9を使用する場合においても殺菌効率の高い処理を実現
することが出来る。又、上記に類似したバッチ連続運転
を行なう時には、顆粒状物3の供給は必ずしも照射室2
の上方部から行なう必要はない。
In order to carry out the electron beam irradiation under the circulation of the floating electrophoresis, after supplying an appropriate amount of the granular material 3 into the irradiation chamber 2, the operation of the supply device 1 is temporarily stopped, and the ascending air flow E Is set to be equal to or higher than the fluidization start speed of the granular material 3, and the granular material 3 is irradiated with the electron beam F while performing the circulating motion of the floating material. Then, after a predetermined irradiation time has elapsed, the flow rate of the ascending airflow E is reduced to cause the granules 3 to fall by floating electrophoresis, and after being taken out from the outlet 13 to the outside,
Further, the same operation is repeated. By performing such a batch continuous operation, even when an inexpensive electron beam accelerator 9 with a low rating is used, a process with high sterilization efficiency can be realized. Further, when performing a batch continuous operation similar to the above, the supply of the granular material 3 is not necessarily performed in the irradiation chamber 2.
It does not need to be done from above.

【0018】[0018]

【発明の効果】本発明は、上記の通りの方法及び構成に
なっているので、次のような効果を奏する。
Since the present invention has the above-described method and configuration, the following effects can be obtained.

【0019】本発明の方法によれば、顆粒状物を確実に
浮遊泳動させながら、殺菌のために必要な最低限度のエ
ネルギーを有する電子線を均一に万遍なく顆粒状物の全
表面に照射することによって、顆粒状物固有の香りや風
味を損なうことなく、顆粒状物の表層部分に付着した微
生物を非加熱・非薬剤の状態下で高効率で殺菌すること
が出来る。
According to the method of the present invention, the entire surface of the granules is uniformly and uniformly irradiated with an electron beam having the minimum energy required for sterilization while the granules are reliably floated and electrophoresed. By doing so, microorganisms adhering to the surface layer of the granular material can be sterilized with high efficiency under non-heated and non-drug conditions without impairing the aroma and flavor inherent to the granular material.

【0020】本発明の装置によれば、無数の顆粒状物に
下方から上昇気流を当てて、不規則な回転混合・泳動を
伴う浮遊泳動落下を行なわせることによって、無数の顆
粒状物の全表面に均一に万遍なく電子線を照射すること
が出来る。しかも上昇気流の流速を制御することによっ
て、顆粒状物に対する電子線の照射時間の長さを適切に
調整することが出来るので、1台の電子線加速器を用い
て様々な種類の顆粒状物に対する最適な殺菌運転条件を
設定することが出来る。
According to the apparatus of the present invention, the innumerable granular materials are subjected to floating electrophoresis falling with irregular rotational mixing / electrophoresis by applying an ascending air current from below to the entire countless granular materials. The surface can be evenly and uniformly irradiated with electron beams. In addition, by controlling the flow velocity of the ascending airflow, the length of time for irradiating the granular material with the electron beam can be appropriately adjusted. Therefore, a single electron beam accelerator can be used for various types of granular materials. Optimal sterilization operation conditions can be set.

【0021】更に、本発明の装置によれば、上昇気流の
流速を顆粒状物の流動化開始速度以上に設定して、顆粒
状物に対して浮遊泳動循環運動を行なわせることによっ
て、照射時間を任意に設定出来るようなバッチ連続運転
が可能である。そのために、定格の低い小形の安価な電
子線加速器を使用した高効率の殺菌処理が可能である。
この事実は、一般に非常に高価とされる電子線加速器を
用いて加工食品の顆粒状物の殺菌処理を行なう場合に、
大きな経済的メリットを与えるものである。
Further, according to the apparatus of the present invention, the irradiation time is set by setting the flow rate of the updraft to be equal to or higher than the fluidization start velocity of the granules and causing the granules to carry out the floating electrophoresis circulation. Batch operation is possible in which can be set arbitrarily. Therefore, a high-efficiency sterilization process using a small and inexpensive electron beam accelerator with a low rating is possible.
This fact is, when using a very expensive electron beam accelerator to sterilize processed food granules,
It offers significant economic benefits.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る浮遊泳動殺菌装置の一実施例を
示す一部断面図である。
FIG. 1 is a partial cross-sectional view showing one embodiment of a device for sterilizing a hydrophoresis device according to the present invention.

【図2】 図1中の顆粒状物の浮遊泳動循環状態を示す
断面図である。
FIG. 2 is a cross-sectional view showing the state of circulating suspension of the granular material in FIG.

【符号の説明】[Explanation of symbols]

1 供給装置 2 照射室 3 顆粒状物 4 上昇気流発生装置 8 整流器 9 電子線加速器 10 照射窓 DESCRIPTION OF SYMBOLS 1 Supply apparatus 2 Irradiation room 3 Granular material 4 Updraft generator 8 Rectifier 9 Electron beam accelerator 10 Irradiation window

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 浮遊泳動している顆粒状物の表面に低エ
ネルギーの電子線を照射することを特徴とする顆粒状物
の殺菌方法。
1. A method for disinfecting granules, which comprises irradiating the surface of the granules undergoing electrophoresis with a low-energy electron beam.
【請求項2】 照射室内の顆粒状物に下方から上昇気流
を当てて、該顆粒状物を浮遊泳動落下又は浮遊泳動循環
させながら低エネルギーの電子線を照射する請求項1記
載の方法。
2. The method according to claim 1, wherein the granular material in the irradiation chamber is exposed to an ascending air current from below, and the granular material is irradiated with a low-energy electron beam while falling or circulating by floating electrophoresis.
【請求項3】 顆粒状物を照射室内に落下供給する供給
装置と、照射室の下方から気体を送り込む上昇気流発生
装置と、該両装置の中間位置に設けられ照射室の側面か
ら低エネルギーの電子線を照射する電子線加速器とを具
備した浮遊泳動殺菌装置。
3. A supply device for dropping and supplying the granular material into the irradiation chamber, an ascending airflow generating device for feeding gas from below the irradiation chamber, and a low-energy air-supplying device provided at an intermediate position between the two devices, A suspension electrophoresis sterilizer including an electron beam accelerator for irradiating an electron beam.
JP2001145643A 2001-04-07 2001-04-07 Method for sterilizing granular material, and floating, migrating and sterilizing apparatus usable therefor Pending JP2002306143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145643A JP2002306143A (en) 2001-04-07 2001-04-07 Method for sterilizing granular material, and floating, migrating and sterilizing apparatus usable therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145643A JP2002306143A (en) 2001-04-07 2001-04-07 Method for sterilizing granular material, and floating, migrating and sterilizing apparatus usable therefor

Publications (1)

Publication Number Publication Date
JP2002306143A true JP2002306143A (en) 2002-10-22

Family

ID=18991419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145643A Pending JP2002306143A (en) 2001-04-07 2001-04-07 Method for sterilizing granular material, and floating, migrating and sterilizing apparatus usable therefor

Country Status (1)

Country Link
JP (1) JP2002306143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082919A (en) * 2006-09-28 2008-04-10 Japan Ae Power Systems Corp Electron beam irradiation device
JP2011045303A (en) * 2009-08-27 2011-03-10 Hitachi Kyowa Engineering Co Ltd Insecticidal-ovicidal apparatus for grains

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082919A (en) * 2006-09-28 2008-04-10 Japan Ae Power Systems Corp Electron beam irradiation device
JP2011045303A (en) * 2009-08-27 2011-03-10 Hitachi Kyowa Engineering Co Ltd Insecticidal-ovicidal apparatus for grains

Similar Documents

Publication Publication Date Title
RU2166712C2 (en) Method and device for prevention of agglomeration of viscous particles at their drying
MX9303211A (en) PROCESS TO PRODUCE CHEMICALLY ACTIVATED CARBON.
JP2002306143A (en) Method for sterilizing granular material, and floating, migrating and sterilizing apparatus usable therefor
EP3918921A1 (en) Sterilization device and sterilization method
JP2020078308A (en) Method for pasteurizing and/or sterilizing particulate goods
US3834927A (en) Fluidized bed coating method
MX2007007612A (en) Fluidizing base, method for the production thereof and associated fluidizing device.
JP2002045159A (en) Electron beam sterilization device
US3623233A (en) Method and apparatus for drying damp pulverant materials by adsorption
JP2001321136A (en) Device and method for sterilizing grain
JP2000254486A (en) Device and method for electron beam irradiation and material to be treated
KR102024691B1 (en) Apparatus and method for treating fabric
JP2005081313A (en) Production method for monolith type catalyst, and drying apparatus used for the same
JP2000102370A (en) Method for continuous sterilization of food material and continuous rotating device to be used therefor
GB2100575A (en) Methods of treating fruit and/or vegetables
JP3952470B2 (en) Fluid dryer
EP2222415A2 (en) Coating an object
JPH11192078A (en) Sterilization of vegetable food by low energy electron beam
JPH03236590A (en) Microwave heating type grain drying machine
JP2001321139A (en) Device and method for sterilizing grain
JP2003279699A (en) Electron beam irradiation processing device
JP2001321137A (en) Device and method for sterilizing grain
JP2001321138A (en) Device and method for sterilizing grain
JP3804042B2 (en) Electron beam irradiation device
JP2001318200A (en) Electron beam irradiator