JP2005081313A - Production method for monolith type catalyst, and drying apparatus used for the same - Google Patents

Production method for monolith type catalyst, and drying apparatus used for the same Download PDF

Info

Publication number
JP2005081313A
JP2005081313A JP2003319145A JP2003319145A JP2005081313A JP 2005081313 A JP2005081313 A JP 2005081313A JP 2003319145 A JP2003319145 A JP 2003319145A JP 2003319145 A JP2003319145 A JP 2003319145A JP 2005081313 A JP2005081313 A JP 2005081313A
Authority
JP
Japan
Prior art keywords
carrier
hot air
drying
treatment
catalyst slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319145A
Other languages
Japanese (ja)
Inventor
Keisuke Tsunetoo
敬輔 恒遠
Taiji Gocho
泰二 牛腸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003319145A priority Critical patent/JP2005081313A/en
Publication of JP2005081313A publication Critical patent/JP2005081313A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To positively make coating amount different in a radial direction, while suppressing dispersion of coating amounts of catalyst slurry of individual carriers of a monolith type catalyst. <P>SOLUTION: Natural moisture absorbed in a carrier 1 from the atmosphere is removed in advance by applying forced drying treatment by using a hot air supplying device 4, then the carrier is subjected to humidifying treatment as a pretreatment before coating the catalyst slurry. The carrier 1 subjected to the drying treatment in advance has smaller dispersion of the coating amounts of the catalyst slurry of the individual carriers 1 compared to those not subjected to the drying treatment, at the same time, the coating amount increases. By installing a shielding plate 42 with a ventilation hole 43 formed thereon between the carrier 1 and the hot air supplying device 4, drying degree of the carrier 1 in the radial direction is positively made different, and the coating amount of the catalyst slurry is correspondingly varied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、モノリスタイプの触媒(以下、触媒とする)の製造方法とそれに用いる装置に関し、特に自動車などの排気ガス浄化システムに用いられる触媒を製造するにあたり、吸湿性を有するモノリスタイプの担体(以下、担体とする)に加湿処理を施した後、例えばアルミナやセリアを主成分とし白金やパラジウム等を混合した触媒スラリをコーティングするのに好適な製造方法とそれに用いる乾燥装置に関するものである。   The present invention relates to a method for producing a monolith type catalyst (hereinafter referred to as catalyst) and an apparatus used therefor, and in particular, in producing a catalyst for use in an exhaust gas purification system of an automobile or the like, a monolith type carrier having a hygroscopic property ( The present invention relates to a manufacturing method suitable for coating a catalyst slurry in which, for example, alumina or ceria as a main component and platinum or palladium is mixed, and a drying apparatus used therefor.

担体に触媒スラリをコーティングするのに好適な製造方法として、特許文献1に記載のものが提案されている。特許文献1に記載の製造方法では、多数のセルを有するハニカム状のセラミック製の担体に粘性の高い触媒スラリをコーティングするのに先立って加湿処理を施している。担体に加湿処理を施すことによって触媒スラリに含まれる媒体(例えば水分)がセル壁面に吸収されることを防止し、触媒スラリの粘性上昇による目詰まりを発生させることなくセルに触媒スラリをコーティングすることが可能となる。なお、上記の特許文献1に記載の排気ガス浄化用触媒の製造法以外にも、同種のものが例えば特開平1−307455号公報に記載されている。
特許第2616157号公報
As a production method suitable for coating a catalyst slurry on a carrier, the one described in Patent Document 1 has been proposed. In the manufacturing method described in Patent Document 1, humidification is performed prior to coating a highly viscous catalyst slurry on a honeycomb-shaped ceramic carrier having a large number of cells. By humidifying the carrier, the medium (for example, moisture) contained in the catalyst slurry is prevented from being absorbed by the cell wall surface, and the cell is coated with the catalyst slurry without causing clogging due to an increase in the viscosity of the catalyst slurry. It becomes possible. In addition to the method for producing the exhaust gas purifying catalyst described in Patent Document 1, the same type is described in, for example, JP-A-1-307455.
Japanese Patent No. 2616157

しかしながら特許文献1に開示されている触媒の製造方法によると、個々の担体に触媒スラリのコーティング量のばらつきが発生する可能性がある。例えばセラミックなどの吸湿性を有する担体では、触媒スラリがコーティングされる前の保管もしくは流通過程においてダンボール箱やビニールカバーなどで覆われていても、保管時間や気象条件の変化(特に湿度の変化)により、個々の担体の自然吸湿量すなわち大気中から吸湿する水分量にばらつきが発生することがある。そして、担体に触媒スラリをコーティングする際にその水分量のばらつきの影響を受け、触媒スラリのコーティング量にばらつきが発生し、コーティング品質の向上および均一化に限界がある。   However, according to the catalyst production method disclosed in Patent Document 1, there is a possibility that variations in the coating amount of the catalyst slurry may occur on individual carriers. For example, in the case of a hygroscopic carrier such as ceramic, even if it is covered with a cardboard box or a vinyl cover in the storage or distribution process before the catalyst slurry is coated, changes in storage time and weather conditions (especially changes in humidity) Therefore, variation may occur in the natural moisture absorption amount of each carrier, that is, the amount of moisture absorbed from the atmosphere. Then, when the catalyst slurry is coated on the support, it is affected by variations in the amount of moisture, resulting in variations in the coating amount of the catalyst slurry, and there is a limit to improving and homogenizing the coating quality.

また、触媒スラリのコーティング前の担体が吸湿している水分量が過大であると、触媒スラリのコーティング量が相対的に少なくなり、所定の排気ガス浄化性能が得られなくなる可能性があり実用的でない。   In addition, if the amount of moisture absorbed by the carrier before coating with the catalyst slurry is excessive, the amount of catalyst slurry coating is relatively small, and the specified exhaust gas purification performance may not be obtained. Not.

本発明はこのような課題に着目してなされたものであり、担体に触媒スラリをコーティングする前に大気中から吸湿した水分を除去するべく強制乾燥させることによって、個々の担体が吸湿した水分量のばらつきを小さくし、結果として触媒スラリのコーティング量のばらつきを小さくするようにした触媒の製造方法を提供しようとするものである。   The present invention has been made paying attention to such problems, and the amount of moisture absorbed by each carrier by forcibly drying to remove moisture absorbed from the atmosphere before coating the catalyst slurry on the carrier. Thus, the present invention is intended to provide a method for producing a catalyst in which the variation in the coating amount of the catalyst slurry is reduced.

請求項1に記載の発明は、吸湿性を有する担体に加湿処理を施した後に触媒スラリをコーティングする触媒の製造方法において、担体の加湿処理に先立って強制的に乾燥処理を施すことを特徴としている。   The invention according to claim 1 is characterized in that, in a method for producing a catalyst in which a catalyst slurry is coated after the moisture-absorbing carrier is humidified, the drying treatment is forcibly performed prior to the humidification treatment of the carrier. Yes.

ここでいう乾燥処理とは、加湿処理前の担体自体が吸湿している水分を除去することを目的として行うもので、例えば請求項2以下に示すように担体のセルに熱風を通過させることにより行うものとする。   The drying treatment here is performed for the purpose of removing moisture absorbed by the carrier itself before the humidification treatment, and for example, by passing hot air through the cell of the carrier as shown in claim 2 and below. Assumed to be performed.

また、請求項1にいう担体とは、触媒スラリのコーティング前にそれ自体が吸湿性を有しているものを想定しており、触媒スラリが一旦コーティングされているものは含まない。   Further, the carrier according to claim 1 assumes that the catalyst itself has hygroscopicity before the coating of the catalyst slurry, and does not include those once coated with the catalyst slurry.

請求項7に記載の発明は、それ自体で吸湿性を有しているモノリスタイプの担体もしくは予め触媒スラリがコーティングされているモノリスタイプの担体に加湿処理を施した後に触媒スラリをコーティングしてモノリスタイプの触媒を製造するにあたり、担体の加湿処理に先立って強制的に乾燥処理を施すための乾燥装置であって、乾燥対象となる担体は、筒状のものであり且つ軸心方向に貫通する多数のセルを有するハニカム状のものとして形成されていて、その担体の熱風吹き込み側となる一端開口面と熱風供給手段の熱風吹き出し口とを対向させるとともに、両者の間に熱風の通過を制限する遮蔽部材を設置して、上記担体の径方向における乾燥度合いを積極的に異ならせるようにしたことを特徴としている。   According to the seventh aspect of the present invention, a monolith type carrier that has its own hygroscopic property or a monolith type carrier that has been previously coated with a catalyst slurry is subjected to humidification treatment and then coated with the catalyst slurry. When producing a catalyst of the type, a drying apparatus for forcibly performing a drying process prior to the humidification process of the support, and the support to be dried is cylindrical and penetrates in the axial direction. It is formed as a honeycomb having a large number of cells, and one end opening surface on the hot air blowing side of the carrier is opposed to the hot air blowing port of the hot air supply means, and the passage of hot air is restricted between them. It is characterized in that a shielding member is provided so as to positively vary the degree of drying in the radial direction of the carrier.

遮断部材の形状は、必要とする乾燥度合いに応じているものであればどのような形状のものでもよく、例えば円筒状の担体の半径方向中心部を積極的に乾燥させる場合には遮断部材に丸穴を空けた板材を用いるものとする。   The shape of the blocking member may be any shape as long as it depends on the required degree of drying. For example, when the central portion in the radial direction of the cylindrical carrier is actively dried, A plate material with a round hole is used.

したがって、請求項1に記載の発明では、担体の加湿処理前に強制的に乾燥処理を施して大気中から吸湿した水分を乾燥させることにより、加湿処理直前の個々の担体が有する水分量や加湿処理後の水分量ひいては個々の担体における触媒スラリのコーティング量のばらつきを小さくすることができる。つまり、加湿処理前の担体が有する水分を除去することによって、加湿処理を施した後の担体の水分量が略均一となり、結果的に触媒スラリのコーティング量のばらつきが小さくなる。   Therefore, in the first aspect of the present invention, the moisture content of each carrier immediately before the humidification treatment or the humidification is obtained by forcibly performing the drying treatment before the humidification treatment of the carrier to dry the moisture absorbed from the atmosphere. It is possible to reduce the variation in the amount of water after treatment and thus the coating amount of the catalyst slurry on each carrier. That is, by removing the water content of the carrier before the humidification treatment, the moisture content of the carrier after the humidification treatment becomes substantially uniform, and as a result, the variation in the coating amount of the catalyst slurry is reduced.

また、請求項7に記載の発明では、担体の乾燥処理において遮蔽部材を担体の熱風吹き込み口と熱風供給手段の間に遮蔽部材を設置することによって、担体の径方向における乾燥度合いを積極的に異ならせることができる。   In the invention according to claim 7, in the drying process of the carrier, the shielding member is installed between the hot air blowing port of the carrier and the hot air supply means, thereby positively controlling the degree of drying in the radial direction of the carrier. Can be different.

請求項1に記載の発明によれば、加湿処理前に担体を強制的に乾燥させることによって、自然吸湿による水分量のばらつきの影響を回避して、個々の担体において触媒スラリのコーティング量のばらつきを小さくできることから、個々の触媒の触媒スラリコーティング品質が安定化するとともに、所定の排気ガス浄化性能を有する触媒を得ることができる。   According to the first aspect of the present invention, the carrier is forcibly dried before the humidification treatment, thereby avoiding the influence of variation in the amount of moisture due to natural moisture absorption, and variation in the coating amount of the catalyst slurry in each carrier. Since the catalyst slurry coating quality of each catalyst is stabilized, a catalyst having a predetermined exhaust gas purification performance can be obtained.

請求項7に記載の発明によれば、担体の径方向における乾燥度合いを遮蔽部材にて積極的に異ならせることによって、径方向にて乾燥度合いの異なる担体を安定して製造することができる。   According to the seventh aspect of the present invention, the carrier having a different degree of drying in the radial direction can be stably manufactured by actively changing the degree of drying in the radial direction of the carrier by the shielding member.

図1,2は本発明の好ましい実施の形態を示したものであり、図1は触媒スラリをコーティングする前の担体の構造を、図2は乾燥処理工程、加湿処理工程および触媒スラリのコーティング工程を含めた触媒の製造工程の概略をそれぞれ示している。   1 and 2 show a preferred embodiment of the present invention. FIG. 1 shows a structure of a carrier before coating with a catalyst slurry, and FIG. 2 shows a drying treatment process, a humidification treatment process, and a catalyst slurry coating process. The outline of the manufacturing process of the catalyst including is shown, respectively.

図1の(A),(B)に示すように、対象となる担体1は例えばセラミックで形成された円筒状のものであり、後工程にて触媒スラリをコーティングすることになる多数の孔すなわち多数のセル2が互いに隣接しながら軸心方向に貫通形成されていて、全体としてハニカム状のものとして形成されている。この担体1はセラミック製のものであるが故にそれ自体で吸湿性を有していて、その直径Dは例えば110mm程度に、高さHは97mm程度にそれぞれ設定されている。そして、この担体1は後述するように強制的な乾燥処理および加湿処理を施した上で触媒スラリのコーティング処理に供されることになる。   As shown in FIGS. 1A and 1B, the target carrier 1 is, for example, a cylindrical body made of ceramic, and has a large number of holes that will be coated with a catalyst slurry in a later step, that is, A number of cells 2 are formed so as to penetrate in the axial direction while being adjacent to each other, and are formed in a honeycomb shape as a whole. Since the carrier 1 is made of ceramic, it itself has hygroscopicity, and its diameter D is set to about 110 mm, for example, and the height H is set to about 97 mm. And this support | carrier 1 is used for the coating process of a catalyst slurry, after performing a forced drying process and a humidification process so that it may mention later.

図2の(A)は担体1の乾燥処理工程について示したものである。この乾燥処理工程では、次工程である加湿処理工程に供される前の担体1に熱風による強制乾燥処理を施すことを目的としている。   FIG. 2A shows the drying process of the carrier 1. The purpose of this drying treatment step is to subject the carrier 1 before being subjected to the humidification treatment step, which is the next step, to forced drying treatment with hot air.

この乾燥処理工程には、乾燥対象となる担体1を支持する担体支持トレイ3と、熱風を発生させて担体1側に供給する手段として熱風供給装置4が用意されている。担体支持トレイ3は水平な回転式のものであり、回転中心である回転軸5をはさんで180度位相が異なる位置に一対の担体1を載置するようになっている。この担体支持トレイ3のうち実際に担体1が載置される部分は、その担体1を安定して支持しつつ且つ後述するように熱風供給装置4から供給される熱風の通過を許容し得るように所定の大きさの穴があいているか、もしくはメッシュ状のものとなっている。そして、担体支持トレイ3上の各担体1と対向するように担体支持トレイ3の上下二箇所には熱風供給装置4が配置される。   In this drying process, a carrier support tray 3 that supports the carrier 1 to be dried and a hot air supply device 4 are prepared as means for generating hot air and supplying it to the carrier 1 side. The carrier support tray 3 is of a horizontal rotary type, and a pair of carriers 1 are placed at positions that are 180 degrees out of phase with the rotation shaft 5 serving as the center of rotation. The portion of the carrier support tray 3 where the carrier 1 is actually placed can support the carrier 1 stably and allow passage of hot air supplied from the hot air supply device 4 as will be described later. There is a hole of a predetermined size or a mesh shape. And the hot air supply apparatus 4 is arrange | positioned at two places up and down of the carrier support tray 3 so that each carrier 1 on the carrier support tray 3 may be opposed.

各熱風供給装置4は、ダクト6内に熱源であるヒータ7と送風ファン8を収容したものであり、ヒータ7から発生する熱は送風ファン8により吹き出し口9から例えば125℃程度の熱風として担体1に向けて吹き出される(吹き出し方向を図2の(A)に矢印aで示す)。   Each hot air supply device 4 accommodates a heater 7 as a heat source and a blower fan 8 in a duct 6, and the heat generated from the heater 7 is supported by the blower fan 8 as hot air of about 125 ° C., for example, from the outlet 9. 1 is blown out (the blowing direction is indicated by an arrow a in FIG. 2A).

本実施の形態では、担体支持トレイ3上の一方の担体1(図2の(A)の右側のもの)については位置Bにてその一端開口面である下面10aから熱風を吹き込む一方、他方の担体1(図2の(A)の左側のもの)については位置Aにてその一端開口面である上面10bから熱風を吹き込むこととしており、各担体1のうち熱風吹き込み側となる一端開口面としての下面10aまたは上面10bとダクト6の吹き出し口9とは所定距離隔てて対向させてある。こうして各担体1の下面10aまたは上面10bから熱風を吹き込むことにより、後工程にて触媒スラリがコーティングされることになるセル2を中心として各担体1を強制乾燥させる。   In the present embodiment, one of the carriers 1 on the carrier support tray 3 (the one on the right side of FIG. 2A) is blown with hot air from the lower surface 10a, which is one end opening surface, at position B, while With respect to the carrier 1 (the one on the left side of FIG. 2A), hot air is blown from the upper surface 10b which is one end opening surface at the position A, and as one end opening surface which becomes the hot air blowing side of each carrier 1 The lower surface 10a or the upper surface 10b is opposed to the outlet 9 of the duct 6 with a predetermined distance therebetween. Thus, by blowing hot air from the lower surface 10a or the upper surface 10b of each carrier 1, each carrier 1 is forcibly dried around the cell 2 to be coated with the catalyst slurry in the subsequent step.

また、図2の(A)の状態で位置A,Bにある二つの担体1の強制乾燥を並行して行い、所定の乾燥時間経過後に回転軸5を回転中心として矢印b方向に担体支持トレイ3を180°度回転させて、各熱風供給装置4に対する担体1の位置を入れ換えた上で再度乾燥処理を並行して行う。このように担体支持トレイ3の回転移動を繰り返すことによって、各担体1に対する熱風吹き込み方向を交互に切り換えることができ、各担体1の軸心方向での乾燥度合いを均一化することが可能となる。以上のように回転式の担体支持トレイ3と上下一対の熱風供給装置4とにより、熱風の通過方向をセルの長手方向で交互に変更する手段が形成されている。   2A and 2B, the two carriers 1 at positions A and B are forcibly dried in parallel, and after a predetermined drying time has passed, the carrier support tray in the direction of arrow b with the rotary shaft 5 as the center of rotation. 3 is rotated 180 degrees, and the position of the carrier 1 with respect to each hot-air supply device 4 is changed, and then the drying process is performed again in parallel. By repeating the rotational movement of the carrier support tray 3 in this way, the hot air blowing direction to each carrier 1 can be switched alternately, and the degree of drying in the axial direction of each carrier 1 can be made uniform. . As described above, the rotary carrier support tray 3 and the pair of upper and lower hot air supply devices 4 form means for alternately changing the direction in which hot air passes in the longitudinal direction of the cells.

なお、各担体1と熱風供給装置4の吹き出し口9とを対向させた状態で熱風吹き込み方向を交互に変えることができる構造でさえあれば、担体1の支持形態は図2の(A)に示したもの限定されない。また、乾燥手段として本実施の形態ではヒータ7および送風ファン8を用いているが、例えばマイクロ波を用いた乾燥方法であっても同様の機能が発揮される。   Note that the support form of the carrier 1 is as shown in FIG. 2A as long as the structure can alternately change the hot air blowing direction with each carrier 1 and the blowing port 9 of the hot air supply device 4 facing each other. It is not limited to what is shown. Further, in the present embodiment, the heater 7 and the blower fan 8 are used as drying means, but the same function is exhibited even with a drying method using microwaves, for example.

図2の(B)は担体1の加湿処理工程について示したものである。担体支持トレイ21の上に先の乾燥処理を終えた担体1を載置するとともに、その担体1の上方に加湿ヘッド22を設置し、その加湿ヘッド22によって例えば純水を担体1に噴霧して加湿した後、担体支持トレイ21の下方に設置される吸引装置23の負圧吸引力によって強制的に矢印c方向へ吸水し、セル2に残存する余分な水分を除去する。なお、担体支持トレイ21としては、同図(A)のものと同様に担体1を安定して支持しつつも、少なくとも担体載置領域では吸引装置23による吸引力の流通が阻害されないように穴があいたものもしくはメッシュ状のものとなっている。また、吸引装置23は吸引ダクト24内に吸引ファン25を収容したものである。   FIG. 2B shows the humidification process of the carrier 1. The carrier 1 that has been subjected to the previous drying process is placed on the carrier support tray 21, and a humidifying head 22 is installed above the carrier 1, and pure water is sprayed onto the carrier 1 by the humidifying head 22. After the humidification, water is forcibly absorbed in the direction of the arrow c by the negative pressure suction force of the suction device 23 installed below the carrier support tray 21 to remove excess water remaining in the cell 2. The carrier support tray 21 has a hole so that the carrier 1 is stably supported as in the case of FIG. 5A, but at least in the carrier placement region, the flow of the suction force by the suction device 23 is not hindered. It has a crack or a mesh. The suction device 23 has a suction fan 25 accommodated in a suction duct 24.

図2の(C)は担体1への触媒スラリのコーティング処理工程について示したものである。担体支持トレイ31上に先の加湿処理を終えた担体1を載置するとともに、その担体1の上にコーティング用ホッパ32を載せ、コーティング用ホッパ32から担体1に触媒スラリ33を流し込み、触媒スラリ33が自重によって流下することによって担体1のセル2の壁面にコーティングする。そして、担体支持トレイ31の下方には吸引ダクト34内に吸引ファン35を収容してなる吸引装置36を設置しておき、セル3の壁面にコーティングされずに担体1の下方に自重で流下する余分の触媒スラリ33をその吸引装置35側に回収する。それと同時に吸引装置35の吸引力によって矢印e方向に強制吸引し、セル2に余分にコーティングされた触媒スラリ33を除去する。   FIG. 2C shows the coating process of the catalyst slurry on the carrier 1. The carrier 1 that has been subjected to the previous humidification process is placed on the carrier support tray 31, and a coating hopper 32 is placed on the carrier 1, and a catalyst slurry 33 is poured from the coating hopper 32 into the carrier 1, The wall 33 of the cell 1 of the carrier 1 is coated by flowing down due to its own weight. A suction device 36 containing a suction fan 35 is installed in the suction duct 34 below the carrier support tray 31 and flows down under the carrier 1 without being coated on the wall surface of the cell 3. Excess catalyst slurry 33 is recovered on the suction device 35 side. At the same time, forcible suction is performed in the direction of arrow e by the suction force of the suction device 35, and the catalyst slurry 33 that is excessively coated on the cell 2 is removed.

ここで、上記のように予め強制的に乾燥処理を施すことを前提とした製法に用いられる担体の評価の一環として乾燥実験を行った。   Here, a drying experiment was conducted as part of the evaluation of the carrier used in the production method based on the premise that the drying treatment was forcibly performed in advance as described above.

実験に使用する担体の供試体としては、乾燥処理前の供試体に含まれる水分量であるところの自然吸湿量が比較的少なく供試体1個当たりの自然吸湿量が4gのもの(以下、供試体1個当たりの吸湿量を表す単位として4g/個のようにg/個と示す)をサンプルA、同じく乾燥処理前の供試体に含まれる自然吸湿量が比較的多く供試体1個当たりの自然吸湿量が42gのもの(42g/個)をサンプルBとしてそれぞれ用意し、図2の(A)の乾燥処理工程の熱風供給装置4を用いて乾燥処理を施した。   As the test specimen of the carrier used in the experiment, the natural moisture absorption, which is the amount of water contained in the specimen before the drying treatment, is relatively small, and the natural moisture absorption per specimen is 4 g (hereinafter referred to as the specimen). The unit representing the amount of moisture absorption per specimen is expressed as g / piece, such as 4 g / piece), and the natural moisture absorption contained in the specimen before drying treatment is relatively large. Samples having natural moisture absorption of 42 g (42 g / piece) were prepared as samples B and subjected to a drying process using the hot air supply device 4 in the drying process of FIG.

乾燥処理条件としては、サンプルA,Bの一端開口面である下面10aもしくは上面10bと熱風供給装置4の吹き出し口9とのなす距離を数十mmとし、図2の(A)に基づいて先に説明したように熱風供給方向を5秒毎に変更しながら、約125℃の熱風を各サンプルA,Bに吹き込んで強制乾燥させた。そして、サンプルA,Bのうち熱風吹き込み側と反対の熱風吹き出し側となる他端開口面から約30mm離れた位置で出口温度を熱伝対にて測温し、サンプルA,Bの乾燥時間と吸湿量との関係、および同乾燥時間と出口温度との間にどのような変化があるのか調べた。その測定データを表1,2に、同測定データに基づくグラフを図3,4にそれぞれ示す。   As the drying processing conditions, the distance between the lower surface 10a or the upper surface 10b, which is one end opening surface of the samples A and B, and the blowout port 9 of the hot air supply device 4 is set to several tens mm, and based on FIG. As described above, while the hot air supply direction was changed every 5 seconds, hot air of about 125 ° C. was blown into the samples A and B for forced drying. And in the sample A and B, the outlet temperature is measured by a thermocouple at a position about 30 mm away from the other end opening surface on the hot air blowing side opposite to the hot air blowing side, and the drying time of the samples A and B The relationship between the amount of moisture absorption and the change between the drying time and the outlet temperature were examined. The measurement data are shown in Tables 1 and 2, and the graphs based on the measurement data are shown in FIGS.

Figure 2005081313
Figure 2005081313

Figure 2005081313
Figure 2005081313

結果として表1および図3から明らかなように、サンプルA,Bともに熱風吹き込みによる乾燥処理を開始してから約3分で吸湿量が2g/個以下に減少して乾燥状態となった。また、表2および図4から明らかなように、サンプルA,Bともに熱風吹き込みによる乾燥処理を開始してから約2分で出口温度が約112〜114℃となって吹き込み側の温度である125℃に漸近し、安定した乾燥状態となった。   As a result, as apparent from Table 1 and FIG. 3, in both samples A and B, the moisture absorption decreased to 2 g / piece or less after about 3 minutes from the start of the drying process by blowing hot air, and the sample A and B became dry. Further, as apparent from Table 2 and FIG. 4, both the samples A and B had the outlet temperature of about 112 to 114 ° C. in about 2 minutes after the start of the drying process by blowing hot air, which is the temperature on the blowing side. Asymptotically approaching to 0 ° C., it became a stable dry state.

次に担体に実際に触媒スラリをコーティングすることを前提として、その触媒スラリのコーティング処理に先立つ加湿処理前の担体に含まれる自然吸湿量と、加湿処理後の担体の総吸湿量(総水分量)および触媒スラリのコーティング量のほか、加湿処理前に乾燥処理を施した場合に後工程での触媒スラリのコーティング量との間に何らかの相関があるかどうか、それぞれ測定してみた。   Next, assuming that the catalyst is actually coated with the catalyst slurry, the natural moisture absorption amount contained in the carrier before the humidification treatment prior to the catalyst slurry coating treatment and the total moisture absorption amount of the carrier after the humidification treatment (total moisture amount) ) And the coating amount of the catalyst slurry, and whether or not there is any correlation between the coating amount of the catalyst slurry in the subsequent step when the drying treatment was performed before the humidification treatment, was measured.

より具体的には、担体の供試体として、乾燥処理前の供試体に含まれる自然吸湿量が比較的少なく供試体1個当たりの自然吸湿量が4g/個のものをサンプルA1,A2、同じく乾燥処理前の供試体に含まれる自然吸湿量が中程度で供試体1個当たりの自然吸湿量が20g/個のものをサンプルB1,B2、さらに乾燥処理前の供試体に含まれる自然吸湿量が比較的多く供試体1個当たりの自然吸湿量が33〜36g/個のものをサンプルC1,C2としてそれぞれ用意した。   More specifically, samples A1 and A2 having a natural moisture absorption amount of 4 g / piece as a specimen of the carrier, which is relatively small in the natural moisture absorption amount contained in the specimen before the drying treatment, are the same. Samples B1 and B2 have a natural moisture absorption amount of 20g / piece per sample, and the natural moisture absorption amount contained in the sample before the drying treatment. And samples having a natural moisture absorption amount of 33 to 36 g / piece per sample were prepared as Samples C1 and C2, respectively.

これらのうちサンプルA2,B2,C2については加湿処理前に先の場合と同様に強制的に乾燥処理を施した。乾燥処理条件としては、サンプルA2,B2,C2の一端開口面である下面10aもしくは上面10bと図2の(A)の熱風供給装置4の吹き出し口9とのなす距離を数十mmとし、同図に基づいて先に説明したように熱風供給方向を5秒毎に変更しながら、約125℃の熱風を各サンプルA2,B2,C2に吹き込んで乾燥処理を施した。なお、乾燥時間は先の表1,2および図3,4での結果に基づいて3分間とした。   Among these, samples A2, B2, and C2 were forcibly dried before the humidification process as in the previous case. As the drying process conditions, the distance between the lower surface 10a or the upper surface 10b, which is one end opening surface of the samples A2, B2, and C2, and the outlet 9 of the hot air supply device 4 in FIG. As described above with reference to the drawing, while the hot air supply direction was changed every 5 seconds, hot air of about 125 ° C. was blown into the samples A2, B2, and C2 to perform drying treatment. The drying time was 3 minutes based on the results shown in Tables 1 and 2 and FIGS.

そして、サンプルA2,B2,C2については乾燥処理前の自然吸湿量と、その強制乾燥処理後であって加湿処理前の吸湿量をそれぞれ測定し、サンプルA1,B1,C1については乾燥処理を施さない故に加湿処理前の自然吸湿量のみを測定した。その測定データを表3,4に、同測定データに基づくグラフを図5,6にそれぞれ示す。   For samples A2, B2, and C2, the natural moisture absorption amount before the drying treatment and the moisture absorption amount after the forced drying treatment and before the humidification treatment are measured, and the samples A1, B1, and C1 are subjected to the drying treatment. Therefore, only the natural moisture absorption before the humidification treatment was measured. The measurement data are shown in Tables 3 and 4, and the graphs based on the measurement data are shown in FIGS.

Figure 2005081313
Figure 2005081313

Figure 2005081313
Figure 2005081313

表4および図6から明らかなように、乾燥処理を施したサンプルA2,B2,C2については乾燥処理前の吸湿量が4〜33g/個とばらついているものの、乾燥処理を施した後の加湿処理前の吸湿量は2〜7g/個であり、そのばらつきは乾燥処理前よりも大幅に小さくなっていることがわかる。   As apparent from Table 4 and FIG. 6, the samples A2, B2, and C2 subjected to the drying treatment vary in moisture absorption amount from 4 to 33 g / piece before the drying treatment, but are humidified after the drying treatment. It can be seen that the moisture absorption before the treatment is 2 to 7 g / piece, and the variation is significantly smaller than that before the drying treatment.

なお、表3および図5から明らかなように、加湿処理前に乾燥処理を施していないサンプルA1,B1,C1については、当然ではあるが加湿処理前の担体吸湿量に変化はない。   As is apparent from Table 3 and FIG. 5, the samples A1, B1, and C1 that have not been subjected to the drying process before the humidification process have no change in the moisture absorption amount of the carrier before the humidification process.

次いで、各サンプルA1,B1,C1およびA2,B2,C2に加湿処理を施し、加湿処理後の各サンプルA1,B1,C1およびA2,B2,C2に含まれる総水分量を測定した。ここでは加湿処理として各サンプルA1,B1,C1およびA2,B2,C2を純水に2秒間浸漬し、加湿処理後に各サンプルに付着する余分な水分を除去するために図2の(B)と同様の吸引装置12にて10秒間吸引した。   Subsequently, each sample A1, B1, C1 and A2, B2, C2 was humidified, and the total water content contained in each sample A1, B1, C1, and A2, B2, C2 after the humidification treatment was measured. Here, as the humidification treatment, each sample A1, B1, C1 and A2, B2, C2 is immersed in pure water for 2 seconds, and in order to remove excess water adhering to each sample after the humidification treatment, (B) in FIG. The same suction device 12 was used for suction for 10 seconds.

ここで、上記の総水分量は、各サンプルA1,B1,C1およびA2,B2,C2の加湿処理前の吸湿量と加湿処理により吸湿した加湿量の総和にほかならず、したがって測定した総水分量から加湿処理前の吸湿量を差し引けば加湿処理により吸湿した加湿量を算出できる。そして、各サンプルA1,B1,C1およびA2,B2,C2についての加湿処理前の吸湿量と、加湿処理による加湿量および加湿処置後の総水分量のデータを表5,6に、同データに基づくグラフを図7,8に示す。   Here, the above-mentioned total water content is nothing but the sum of the moisture absorption amount before humidification treatment of each sample A1, B1, C1 and A2, B2, C2 and the humidification amount absorbed by the humidification treatment, and therefore the total moisture content measured. By subtracting the amount of moisture absorption prior to the humidification treatment, the amount of humidification absorbed by the humidification treatment can be calculated. And the moisture absorption amount before humidification processing about each sample A1, B1, C1 and A2, B2, and C2, the humidification amount by humidification treatment, and the data of the total moisture after humidification treatment are shown in Tables 5 and 6 in the same data. The graph based is shown in FIGS.

Figure 2005081313
Figure 2005081313

Figure 2005081313
Figure 2005081313

表5および図7から明らかなように、加湿処理前に乾燥処理を施さなかったサンプルA1,B1,C1での加湿処理による加湿量は177〜202g/個であり、最大値と最小値の差は25g/個でそのばらつきが大きいものの、加湿処理前の自然吸湿量と加湿処理により増加した加湿量とを合わせた総水分量は206〜213g/個であり、最大値と最小値の差は7g/個となってそのばらつきが小さくなった。   As apparent from Table 5 and FIG. 7, the humidification amount by the humidification treatment in the samples A1, B1, and C1 that were not subjected to the drying treatment before the humidification treatment was 177 to 202 g / piece, and the difference between the maximum value and the minimum value Is 25 g / piece, and the variation is large, but the total moisture amount of the natural moisture absorption amount before humidification treatment and the humidification amount increased by the humidification treatment is 206 to 213 g / piece, and the difference between the maximum value and the minimum value is The variation was reduced to 7 g / piece.

一方、表6および図7から明らかなように、加湿処理前に強制的に乾燥処理を施したサンプルA2,B2,C2の加湿処理での加湿量は203〜214g/個であり、最大値と最小値の差は11g/個でそのばらつきが一段と小さいものとなる。そして、加湿処理前の吸湿量と加湿処理により増加した加湿量とを合わせた総水分量は210〜216g/個であり、最大値と最小値の差は6g/個となってそのばらつきが一段と小さいものとなる。以上のことから、乾燥処理を施したサンプルA2,B2,C2と乾燥処理を施していないサンプルA1,B1,C1との総水分量の差も平均値で約2g/個であり、加湿処理の前処理として乾燥処理を施さなくても加湿処理後の担体の総水分量に関する限りは殆ど影響しないことがわかる。   On the other hand, as apparent from Table 6 and FIG. 7, the humidification amount in the humidification treatment of samples A2, B2, and C2 that were forcibly dried before the humidification treatment was 203 to 214 g / piece, The difference between the minimum values is 11 g / piece, and the variation is even smaller. And the total moisture amount that combines the moisture absorption amount before the humidification treatment and the humidification amount increased by the humidification treatment is 210 to 216 g / piece, and the difference between the maximum value and the minimum value is 6 g / piece, and the variation is further increased. It will be small. From the above, the difference in total water content between the samples A2, B2, and C2 that have been subjected to the drying treatment and the samples A1, B1, and C1 that have not been subjected to the drying treatment is about 2 g / piece on average, It can be seen that there is almost no effect as far as the total moisture content of the carrier after the humidification treatment is concerned even if the drying treatment is not performed as a pretreatment.

続いて、加湿処理を施した上記の各サンプルA1,B1,C1およびA2,B2,C2について触媒スラリを図1の(C)と同様の手法でコーティングした。そして、コーティング処理後の触媒スラリのコーティング量を測定した。その測定データを表7,8に、同データに基づくグラフを図9,10にそれぞれ示す。   Subsequently, catalyst slurries were coated on the samples A1, B1, C1 and A2, B2, C2 subjected to the humidification process in the same manner as in FIG. And the coating amount of the catalyst slurry after a coating process was measured. The measurement data are shown in Tables 7 and 8, and the graphs based on the data are shown in FIGS.

Figure 2005081313
Figure 2005081313

Figure 2005081313
Figure 2005081313

表7および図9から明らかなように、加湿処理前に乾燥処理を施さないサンプルA1,B1,C1については、触媒スラリのコーティング量は34〜40g/個であり、最大値と最小値の差は6g/個となってそのばらつきが大きくなる傾向にある。   As is clear from Table 7 and FIG. 9, for samples A1, B1, and C1 that were not subjected to the drying treatment before the humidification treatment, the coating amount of the catalyst slurry was 34 to 40 g / piece, and the difference between the maximum value and the minimum value. Tends to increase by 6 g / piece.

一方、表8および図10から明らかなように、加湿処理前に乾燥処理を施したサンプルA2,B2,C2については、触媒スラリのコーティング量は59〜60g/個であり、最大値と最小値の差も1g/個となってそのばらつきが大幅に小さくなる。その上、サンプルA2,B2,C2の触媒スラリのコーティング量は、サンプルA1,B1,C1のコーティング量よりも平均値で約1.6倍に増加していることがわかる。   On the other hand, as apparent from Table 8 and FIG. 10, for samples A2, B2, and C2 subjected to the drying treatment before the humidification treatment, the coating amount of the catalyst slurry is 59 to 60 g / piece, and the maximum value and the minimum value. The difference is 1 g / piece, and the variation is greatly reduced. In addition, it can be seen that the coating amount of the catalyst slurry of Samples A2, B2, and C2 is about 1.6 times larger on average than the coating amount of Samples A1, B1, and C1.

図11は上記の表3〜8のデータをもとに加湿処理前の乾燥処理の有無別に加湿処理前の吸湿量と触媒スラリのコーティング量との関係を示したものであり、加湿処理前に乾燥処理を施した場合には、同乾燥処理を施さない場合に比べて触媒スラリのコーティング量が大幅に増加していることがわかる。   FIG. 11 shows the relationship between the moisture absorption amount before the humidification treatment and the coating amount of the catalyst slurry according to the presence or absence of the drying treatment before the humidification treatment based on the data in Tables 3 to 8 above. It can be seen that when the drying treatment is performed, the coating amount of the catalyst slurry is greatly increased as compared with the case where the drying treatment is not performed.

すなわち、図11のほか表7,8から明らかなように、乾燥処理を施さずに加湿処理を行った場合には、加湿処理前の担体の吸湿量が少ないと触媒スラリのコーティング量が多くなり、加湿処理前の吸湿量が多いと触媒スラリのコーティング量が少なくなる傾向があることがわかる。   That is, as apparent from Tables 7 and 8 in addition to FIG. 11, when the humidification process is performed without performing the drying process, the coating amount of the catalyst slurry increases when the moisture absorption amount of the carrier before the humidification process is small. It can be seen that when the moisture absorption amount before the humidification treatment is large, the coating amount of the catalyst slurry tends to decrease.

その一方、本実施の形態のように加湿処理前に乾燥処理を施した場合には、乾燥処理前の自然吸湿量の多少にかかわらず、触媒スラリのコーティング量がほぼ一定になることがわかる。   On the other hand, when the drying process is performed before the humidification process as in the present embodiment, it can be seen that the coating amount of the catalyst slurry is almost constant regardless of the natural moisture absorption amount before the drying process.

この現象は、加湿処理を短時間で行った場合に発生しやすく、加湿処理前の吸湿量と加湿処理による加湿量との総和である総水分量がほぼ同等であっても(例えば表5のように206〜213g/個)、最終的な触媒スラリのコーティング量に大きな差となって表れることに基づく(図7〜10参照)。   This phenomenon is likely to occur when the humidification process is performed in a short time, and even if the total moisture amount, which is the sum of the moisture absorption amount before the humidification treatment and the humidification amount by the humidification treatment, is substantially equal (for example, in Table 5). 206 to 213 g / piece), which is based on the fact that the coating amount of the final catalyst slurry becomes a large difference (see FIGS. 7 to 10).

すなわち、担体が大気から吸湿した水分(自然吸湿水分)は触媒層を形成する粒子全体に広く分散しており、主として触媒層の細孔が起こす毛細管現象による吸水力を阻害するのに対して、加湿工程にて加湿された水分は、触媒層を形成する粒子の比較的表面上に浅く分布していて、担体本来の吸水力を阻害しにくいためと推定される。この結果、加湿処理後の触媒スラリのコーティング処理の際に、担体の吸水力が触媒スラリ中の水分を奪い、この時に水分を奪われた触媒スラリは流動性が小さくなって、担体のセル表面に固定化しやすくなるものと考えられる。したがって、本実施の形態のように加湿処理前に担体に予め強制的に乾燥処理を施すと、担体自体の吸水力阻害要因が解消されて、一段とスラリコーティング量が増加するものと推定される。   In other words, the moisture absorbed by the carrier from the atmosphere (natural moisture absorption) is widely dispersed throughout the particles forming the catalyst layer, while inhibiting the water absorption force mainly due to the capillary action caused by the pores of the catalyst layer, It is presumed that the moisture humidified in the humidification step is distributed shallowly on the surface of the particles forming the catalyst layer, and it is difficult to inhibit the original water absorption capacity of the carrier. As a result, during the coating process of the catalyst slurry after the humidification process, the water absorption capacity of the carrier deprives the moisture in the catalyst slurry, and the catalyst slurry deprived of the moisture at this time becomes less fluid, and the cell surface of the carrier It is thought that it becomes easy to fix to. Therefore, it is presumed that when the carrier is forcibly dried in advance before the humidification treatment as in the present embodiment, the water absorption inhibition factor of the carrier itself is eliminated, and the amount of slurry coating is further increased.

よって、本実施の形態の製造方法によれば、従来の製造方法と比べて触媒スラリのコーティング量が大幅に増加し、触媒の排気浄化性能の向上に寄与できることになる。   Therefore, according to the manufacturing method of the present embodiment, the coating amount of the catalyst slurry is greatly increased as compared with the conventional manufacturing method, which can contribute to the improvement of the exhaust purification performance of the catalyst.

図12は本発明の第2の実施の形態として図2の(A)の乾燥処理工程に適用される乾燥装置の別の例を示している。   FIG. 12 shows another example of a drying apparatus applied to the drying process of FIG. 2A as the second embodiment of the present invention.

図12に示すように、熱風供給装置4の吹き出し口9と担体支持トレイ41上に載置した担体1との間に離間距離fとして例えば数mm〜数十mmの間隔を確保するとともに、吹き出し口9の直前位置に担体1の一端開口面である下面10aの周辺部を覆うようにして遮蔽部材としてリング状の遮蔽板42を設置してある。なお、遮断板42は約125℃程度の熱風を受けても変形および変質しない剛性のある材料で形成される。   As shown in FIG. 12, an interval of, for example, several mm to several tens mm is secured as a separation distance f between the outlet 9 of the hot air supply device 4 and the carrier 1 placed on the carrier support tray 41. A ring-shaped shielding plate 42 is installed as a shielding member so as to cover the peripheral portion of the lower surface 10a which is one end opening surface of the carrier 1 immediately before the opening 9. The blocking plate 42 is formed of a rigid material that does not deform or change even when hot air of about 125 ° C. is received.

遮蔽板42は矩形状のものであって、その中心部には担体1の一端開口面である下面10aの開口面積に対して例えば1/4程度となる面積の円形の通風穴43が設けられている。遮蔽板42を担体1の下面10aと吹き出し口9の間に同心状となるように介装することによって、熱風供給手段である熱風供給装置4から担体1に矢印g方向へ熱風を吹き込んで強制的に乾燥処理する際に、熱風吹き込み側となる担体1の下面10aのうちその周縁部での熱風の通流が遮られる。これは、担体1のうちその周縁部のセルよりも中心部のセルの方が熱風吹き込みによる乾燥が促進されることを意味し、結果的には担体1の半径方向中央部が周縁部よりも積極的に強制乾燥されることになる。   The shielding plate 42 has a rectangular shape, and a circular ventilation hole 43 having an area which is, for example, about ¼ of the opening area of the lower surface 10a which is one end opening surface of the carrier 1 is provided at the center thereof. ing. By inserting the shielding plate 42 so as to be concentric between the lower surface 10a of the carrier 1 and the outlet 9, hot air is blown into the carrier 1 in the direction of the arrow g from the hot air supply device 4 as hot air supply means and forced. When the drying process is performed, the flow of hot air at the peripheral edge of the lower surface 10a of the carrier 1 on the hot air blowing side is blocked. This means that the center cell of the carrier 1 is more easily dried by blowing hot air than the peripheral cell, and as a result, the radial center of the carrier 1 is more than the peripheral part. It will be forced to dry actively.

つまり、担体1の半径方向での乾燥度合いを予め積極的に異ならせ、担体1のうち半径方向中央部の乾度合いを周縁部のそれよりも予め高めておくことにより、次工程にて触媒スラリをコーティングする際にその半径方向中央部でのコーティング量を周縁部よりも積極的に増加させることができ、実用上好ましい担体の形態となる。その結果として、当該製法によって製造された触媒を例えば排気ガス浄化システムに適用した場合に、機能上重要な排気ガス通路の断面中央部での浄化性能を一段と高めることができるようになる。   That is, the degree of drying in the radial direction of the carrier 1 is preferentially changed in advance, and the degree of dryness in the central part in the radial direction of the carrier 1 is set higher than that in the peripheral part in advance, so that the catalyst slurry in the next step. In the coating, the coating amount at the central portion in the radial direction can be positively increased as compared with the peripheral portion. As a result, when the catalyst manufactured by the manufacturing method is applied to, for example, an exhaust gas purification system, the purification performance at the central portion of the cross section of the exhaust gas passage that is functionally important can be further enhanced.

なお、この種の触媒の製造方法において、担体に触媒スラリを一旦コーティングした後に、乾燥処理、焼成処理および加湿処理の各工程を経て再度触媒スラリをコーティングする場合があるが、一旦触媒スラリがコーティングされている担体に対して加湿処理を施す前に上記の乾燥装置を用いて乾燥処理を施すことももちろん可能である。   In this type of catalyst manufacturing method, after the catalyst slurry is once coated on the carrier, the catalyst slurry may be coated again through the drying process, the firing process and the humidification process. Of course, it is possible to perform a drying process using the above-described drying apparatus before the humidifying process is performed on the carrier.

ここで、発明の効果の欄に記載した以外の本実施の形態における主要な効果を、その発生原因とともに記載すれば下記の通りである。   Here, the main effects in the present embodiment other than those described in the column “Effects of the Invention” will be described as follows together with the cause of the occurrence.

(1)担体1の半径方向での乾燥度合いを積極的に異ならせて周辺部より中心部の乾燥度合いを大きくすることによって、触媒スラリ33のコーティング量をもその周辺部と中心部とで異ならせることができ、結果的に一つの担体1に必要な総コーティング量を少なくして、材料歩留まりの向上と製造コストの低減が図れる。   (1) By actively varying the drying degree in the radial direction of the carrier 1 to increase the drying degree of the central part from the peripheral part, the coating amount of the catalyst slurry 33 is also different between the peripheral part and the central part. As a result, the total coating amount required for one carrier 1 can be reduced to improve the material yield and reduce the manufacturing cost.

(2)担体1の熱風吹き込み口側となる一端開口面と熱風供給装置の吹き出し口9を対向させて乾燥処理を施すことにより、セル2に熱風をスムーズに通過させることが可能となり、例えば乾燥炉内等において熱風吹き出し方向を考慮せずに乾燥処理を施す場合よりも半径方向における乾燥度合いのむらの発生を防止できる。   (2) By subjecting the one end opening surface on the hot air blowing port side of the carrier 1 and the blowing port 9 of the hot air supply device to face each other, the hot air can be smoothly passed through the cell 2, for example, drying The occurrence of unevenness in the degree of drying in the radial direction can be prevented as compared with the case where the drying process is performed without considering the hot air blowing direction in the furnace or the like.

(3)担体1におけるセル2の長手方向で熱風通過方向を交互に変更することによって、特定の一方向からセル2の長手方向に熱風を通過させる場合よりも長手方向における乾燥度合いのむらの発生を防止できる。   (3) By alternately changing the hot air passage direction in the longitudinal direction of the cell 2 in the carrier 1, the occurrence of unevenness in the degree of drying in the longitudinal direction is generated more than in the case where hot air is passed from one specific direction to the longitudinal direction of the cell 2. Can be prevented.

(4)担体1に乾燥処理を施す際、遮蔽板42を併用して担体1の乾燥度合いを積極的に制限することで例えば半径方向において周辺部よりも中心部の乾燥度合いを大きくし、中心部の触媒スラリのコーティング量を増加させることができる。   (4) When the carrier 1 is subjected to a drying process, the drying degree of the carrier 1 is positively limited by using the shielding plate 42 in combination, for example, in the radial direction, the degree of drying in the central portion is larger than that in the peripheral portion, The coating amount of the catalyst slurry can be increased.

(5)図2に示したように、回転式の担体支持トレイ3の上に180°位相をずらせて二つの担体を載置するととに、担体支持トレイ3をはさんでその上下二箇所に各担体1と対向するように熱風供給手段としての熱風供給装置4を配置して、二つの担体1の乾燥処理を並行して行いながら担体支持トレイ3を矢印B方向に回転させその熱風吹き込み方法を切り換えるようにしたことにより、例えば触媒の量産工程での強制乾燥処理を効率良く行えるようになって生産性が向上する。   (5) As shown in FIG. 2, when two carriers are placed on the rotating carrier support tray 3 with a phase difference of 180 °, the carrier support tray 3 is sandwiched between two places above and below it. A hot air supply device 4 serving as a hot air supply means is arranged so as to face each carrier 1, and the carrier support tray 3 is rotated in the direction of arrow B while the drying treatment of the two carriers 1 is performed in parallel. Thus, for example, the forced drying process in the mass production process of the catalyst can be performed efficiently, and the productivity is improved.

本発明の好ましい実施の形態として担体の概略構造を示し、(A)は担体の平面図、(B)は同じく担体の正面図である。FIG. 1 shows a schematic structure of a carrier as a preferred embodiment of the present invention, in which (A) is a plan view of the carrier and (B) is a front view of the carrier. 本発明の好ましい実施の形態として担体の乾燥処理工程、加湿処理工程および触媒スラリのコーティング処理工程を含む触媒の製造方法の概略説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory diagram of a catalyst production method including a carrier drying treatment step, a humidification treatment step, and a catalyst slurry coating treatment step as a preferred embodiment of the present invention. 加湿処理前に行う乾燥処理において、担体の吸湿量と乾燥時間の関係を示す説明図である。It is explanatory drawing which shows the relationship between the moisture absorption amount of a support | carrier, and drying time in the drying process performed before a humidification process. 加湿処理前に行う乾燥処理において、担体出口での熱風温度と乾燥時間の関係を示す説明図である。It is explanatory drawing which shows the relationship between the hot air temperature in a support | carrier exit, and drying time in the drying process performed before a humidification process. 加湿処理前に強制乾燥処理を施さない各担体(サンプルA1,B1,C1)の自然吸湿量(=加湿処理前の吸湿量)を示した説明図である。It is explanatory drawing which showed the natural moisture absorption amount (= moisture absorption amount before a humidification process) of each support | carrier (sample A1, B1, C1) which does not perform a forced drying process before a humidification process. 加湿処理前に乾燥処理を施した各担体(サンプルA2,B2,C2)の自然吸湿量(乾燥処理前の吸湿量)と加湿処理前(乾燥処理後)の吸湿量を示した説明図である。It is explanatory drawing which showed the natural moisture absorption amount (moisture absorption amount before a drying process) and the moisture absorption amount before a humidification process (after a drying process) of each support | carrier (sample A2, B2, C2) which performed the drying process before a humidification process. . 加湿処理前に乾燥処理を施さない各担体の加湿処理前の吸湿量と加湿処理による加湿量を示した説明図である。It is explanatory drawing which showed the moisture absorption amount before the humidification process of each support | carrier which does not perform a drying process before a humidification process, and the humidification amount by a humidification process. 加湿処理前に乾燥処理を施した各担体の加湿処理前の吸湿量と加湿処理による加湿量を示した説明図である。It is explanatory drawing which showed the moisture absorption amount before the humidification process of each support | carrier which performed the drying process before the humidification process, and the humidification amount by a humidification process. 加湿処理前に乾燥処理を施さない各担体の触媒スラリのコーティング量を示した説明図である。It is explanatory drawing which showed the coating amount of the catalyst slurry of each support | carrier which does not perform a drying process before a humidification process. 加湿処理前に乾燥処理を施した各担体の触媒スラリのコーティング量を示した説明図である。It is explanatory drawing which showed the coating amount of the catalyst slurry of each support | carrier which performed the drying process before the humidification process. 加湿処理前の乾燥処理の有無別に加湿処理前の吸湿量と触媒スラリのコーティング量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the moisture absorption amount before a humidification process, and the coating amount of a catalyst slurry according to the presence or absence of the drying process before a humidification process. 本発明の第2の実施の形態として乾燥処理工程(乾燥装置)の別の例を示す概略説明図で、(A)はその正面説明図、(B)は同じくその平面説明図である。It is a schematic explanatory drawing which shows another example of a drying process (drying apparatus) as 2nd Embodiment of this invention, (A) is the front explanatory drawing, (B) is the plane explanatory drawing similarly.

符号の説明Explanation of symbols

1…担体
2…セル
3…担体支持トレイ
4…熱風供給装置(熱風供給手段)
9…吹き出し口
10a…下面(一端開口面)
10b…上面(一端開口面)
33…触媒スラリ
41…担体支持トレイ
42…遮蔽板(遮蔽部材)
43…通風穴
DESCRIPTION OF SYMBOLS 1 ... Carrier 2 ... Cell 3 ... Carrier support tray 4 ... Hot air supply device (hot air supply means)
9 ... Blowout port 10a ... Lower surface (one-end opening surface)
10b ... Upper surface (one-end opening surface)
33 ... Catalyst slurry 41 ... Carrier support tray 42 ... Shield plate (shield member)
43 ... Ventilation hole

Claims (8)

吸湿性を有するモノリスタイプの担体に加湿処理を施した後に触媒スラリをコーティングするモノリスタイプの触媒の製造方法において、担体の加湿処理に先立って強制的に乾燥処理を施すことを特徴とするモノリスタイプの触媒の製造方法。   In a monolith type catalyst manufacturing method in which a catalyst slurry is coated after a moisture treatment is applied to a monolith type carrier having hygroscopicity, the monolith type is forcibly subjected to a drying treatment prior to the humidification treatment of the carrier. A method for producing the catalyst. 上記担体はセラミックで形成された筒状のものであって且つ軸心方向に貫通する多数のセルを有するハニカム状のものとして形成されていて、担体の径方向での乾燥度合いが異なるように乾燥処理を施すことを特徴とする請求項1に記載のモノリスタイプの触媒の製造方法。   The carrier is a cylindrical one made of ceramic and formed as a honeycomb having a large number of cells penetrating in the axial direction, and is dried so that the degree of drying in the radial direction of the carrier is different. The method for producing a monolith type catalyst according to claim 1, wherein the treatment is performed. 上記担体の径方向において、周辺部よりも中心部の方が乾燥度合いが大きくなるように乾燥処理を施すことを特徴とする請求項2に記載のモノリスタイプの触媒の製造方法。   The method for producing a monolith type catalyst according to claim 2, wherein the drying process is performed so that the degree of drying is greater in the central part than in the peripheral part in the radial direction of the carrier. 上記担体のセルに熱風を通過させて乾燥処理を施すことを特徴とする請求項2または3に記載のモノリスタイプの触媒の製造方法。   4. The method for producing a monolith type catalyst according to claim 2, wherein a drying process is performed by passing hot air through the cell of the carrier. 上記担体のセルに熱風を通過させて乾燥処理を施す際に、熱風の通過方向をセルの長手方向で交互に変更することによって処理することを特徴とする請求項4に記載のモノリスタイプの触媒の製造方法。   5. The monolith type catalyst according to claim 4, wherein, when the hot air is passed through the cell of the carrier to perform the drying treatment, the monolith type catalyst is treated by alternately changing a passing direction of the hot air in a longitudinal direction of the cell. Manufacturing method. 上記担体のセルに熱風を通過させて乾燥処理を施す際に、担体の熱風吹き込み側となる一端開口面の周辺部を遮蔽部材にて覆って、熱風が通過する面積を制限することによって上記担体の径方向における乾燥度合いを積極的に異ならせることを特徴とする請求項3〜5のいずれかに記載のモノリスタイプの触媒の製造方法。   When performing a drying process by passing hot air through the cell of the carrier, the periphery of one end opening surface on the hot air blowing side of the carrier is covered with a shielding member, and the area through which the hot air passes is limited. The method for producing a monolith type catalyst according to any one of claims 3 to 5, wherein the degree of drying in the radial direction of the catalyst is positively varied. それ自体で吸湿性を有しているモノリスタイプの担体もしくは予め触媒スラリがコーティングされているモノリスタイプの担体に加湿処理を施した後に触媒スラリをコーティングしてモノリスタイプの触媒を製造するにあたり、担体の加湿処理に先立って強制的に乾燥処理を施すための乾燥装置であって、
乾燥対象となる担体は、筒状のものであり且つ軸心方向に貫通する多数のセルを有するハニカム状のものとして形成されていて、
その担体の熱風吹き込み側となる一端開口面と熱風供給手段の熱風吹き出し口とを対向させるとともに、両者の間に熱風の通過を制限する遮蔽部材を設置して、上記担体の径方向における乾燥度合いを積極的に異ならせるようにしたことを特徴とする乾燥装置。
When producing a monolithic type catalyst by coating the catalyst slurry after humidifying the monolithic type carrier having its own hygroscopic property or the monolith type carrier previously coated with the catalyst slurry. A drying device for forcibly performing a drying process prior to the humidifying process of
The carrier to be dried is cylindrical and formed as a honeycomb having a large number of cells penetrating in the axial direction,
The degree of dryness in the radial direction of the carrier by placing one end opening surface on the hot air blowing side of the carrier and the hot air blowing port of the hot air supply means facing each other and installing a shielding member for restricting the passage of hot air between them A drying device characterized by positively differing between the two.
熱風の通過方向をセルの長手方向で交互に変更する手段を備えていることを特徴とする請求項7に記載の乾燥装置。
8. The drying apparatus according to claim 7, further comprising means for alternately changing the passing direction of the hot air in the longitudinal direction of the cell.
JP2003319145A 2003-09-11 2003-09-11 Production method for monolith type catalyst, and drying apparatus used for the same Pending JP2005081313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319145A JP2005081313A (en) 2003-09-11 2003-09-11 Production method for monolith type catalyst, and drying apparatus used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319145A JP2005081313A (en) 2003-09-11 2003-09-11 Production method for monolith type catalyst, and drying apparatus used for the same

Publications (1)

Publication Number Publication Date
JP2005081313A true JP2005081313A (en) 2005-03-31

Family

ID=34418168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319145A Pending JP2005081313A (en) 2003-09-11 2003-09-11 Production method for monolith type catalyst, and drying apparatus used for the same

Country Status (1)

Country Link
JP (1) JP2005081313A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289964A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Apparatus and method for manufacturing catalyst for cleaning exhaust gas
WO2013089005A1 (en) * 2011-12-12 2013-06-20 住友化学株式会社 Method and device for manufacturing formed green honeycomb body, and method for manufacturing fired honeycomb body
JP2014208334A (en) * 2013-03-29 2014-11-06 日本碍子株式会社 Method of manufacturing separation membrane
JP5829787B2 (en) * 2006-12-25 2015-12-09 日本碍子株式会社 Manufacturing method of separation membrane
WO2018151276A1 (en) * 2017-02-17 2018-08-23 学校法人早稲田大学 Catalyst-adhered body production method and catalyst adhesion device
JP2018161886A (en) * 2017-03-24 2018-10-18 日本碍子株式会社 Method for drying columnar honeycomb molded body, and method for producing columnar honeycomb structure
JP2020128051A (en) * 2019-02-08 2020-08-27 日本碍子株式会社 Manufacturing method of honeycomb structure
WO2023007310A1 (en) * 2021-07-28 2023-02-02 Ayegh Khodro Toos Co A device for uniform drying of coated monolith using monotonous hot air distribution

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829787B2 (en) * 2006-12-25 2015-12-09 日本碍子株式会社 Manufacturing method of separation membrane
JP2008289964A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Apparatus and method for manufacturing catalyst for cleaning exhaust gas
WO2013089005A1 (en) * 2011-12-12 2013-06-20 住友化学株式会社 Method and device for manufacturing formed green honeycomb body, and method for manufacturing fired honeycomb body
JP2014208334A (en) * 2013-03-29 2014-11-06 日本碍子株式会社 Method of manufacturing separation membrane
WO2018151276A1 (en) * 2017-02-17 2018-08-23 学校法人早稲田大学 Catalyst-adhered body production method and catalyst adhesion device
JPWO2018151276A1 (en) * 2017-02-17 2019-12-12 学校法人早稲田大学 Catalyst adhering body manufacturing method and catalyst adhering apparatus
JP7149524B2 (en) 2017-02-17 2022-10-07 学校法人早稲田大学 Catalyst-adhered body manufacturing method and catalyst-adhering device
JP2018161886A (en) * 2017-03-24 2018-10-18 日本碍子株式会社 Method for drying columnar honeycomb molded body, and method for producing columnar honeycomb structure
JP7016267B2 (en) 2017-03-24 2022-02-04 日本碍子株式会社 Method of drying columnar honeycomb molded body and method of manufacturing columnar honeycomb structure
JP2020128051A (en) * 2019-02-08 2020-08-27 日本碍子株式会社 Manufacturing method of honeycomb structure
JP7199988B2 (en) 2019-02-08 2023-01-06 日本碍子株式会社 Honeycomb structure manufacturing method
WO2023007310A1 (en) * 2021-07-28 2023-02-02 Ayegh Khodro Toos Co A device for uniform drying of coated monolith using monotonous hot air distribution

Similar Documents

Publication Publication Date Title
JP4906414B2 (en) Dehumidification method and dehumidifier
JP2005081313A (en) Production method for monolith type catalyst, and drying apparatus used for the same
JP2659652B2 (en) Dry dehumidifier
JP4438959B2 (en) Dehumidifying device and dehumidifying method
JP2001038137A (en) Production of clean air and supplying system
US5188645A (en) Method and apparatus for dew point adjustment using dry dehumidifier
JPS6350047B2 (en)
JP2010063963A (en) Dehumidification element and dehumidifying apparatus using the same
JP2971217B2 (en) Element for total heat exchanger and method for producing the same
JP4852325B2 (en) Slurry drying method and drying apparatus
JP3874187B2 (en) Dehumidifying element and dehumidifying device
KR20050084735A (en) The dehumidification device using desiccant
KR100642520B1 (en) High Efficiency Adsorption Air Dryer with First Guide Vane of Porosity Impinging Plate
JP2008093504A (en) Adsorption decomposition element, its manufacturing method, and air-conditioner using it
FI89306C (en) FOERFARANDE OCH APPARAT FOER TORKNING AV ETT PARTIKELMATERIAL SAOSOM BARK
JP2018021720A (en) Hot blast circulation type heating device and process of manufacture of separation film structure using the hot blast circulation type heating device
JPH03188918A (en) Gas adsorption method
JPH09108325A (en) Deodorization device with adsorbent
CN113056331A (en) Exhaust gas purification device and method for manufacturing same
JP2003305372A (en) Catalyst manufacturing method and humidification quantity adjusting apparatus using the same
JP4674009B2 (en) Gas exchange device
JPH05207807A (en) Drying of coated and granulated seed
JPH08217525A (en) Method for forming and drying ceramic green sheet and device therefor
JP2004084971A (en) Filter and clean room using this filter
RU2303219C1 (en) Drying machine with the vibrating fluidized layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609