JP3952470B2 - Fluid dryer - Google Patents

Fluid dryer Download PDF

Info

Publication number
JP3952470B2
JP3952470B2 JP2003202786A JP2003202786A JP3952470B2 JP 3952470 B2 JP3952470 B2 JP 3952470B2 JP 2003202786 A JP2003202786 A JP 2003202786A JP 2003202786 A JP2003202786 A JP 2003202786A JP 3952470 B2 JP3952470 B2 JP 3952470B2
Authority
JP
Japan
Prior art keywords
dried
dust
far
air
dust collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003202786A
Other languages
Japanese (ja)
Other versions
JP2005048964A (en
Inventor
常雄 金子
正幸 土門
智 池田
良雄 吉岡
清 森田
文貴 須貝
覚 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANEKONOKI CO., LTD.
Original Assignee
KANEKONOKI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANEKONOKI CO., LTD. filed Critical KANEKONOKI CO., LTD.
Priority to JP2003202786A priority Critical patent/JP3952470B2/en
Publication of JP2005048964A publication Critical patent/JP2005048964A/en
Application granted granted Critical
Publication of JP3952470B2 publication Critical patent/JP3952470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水平方向に終始端に渡って凹溝構成で、底面が小孔開口した気体噴出面からなる被乾燥物を通風しながら搬送する乾燥物搬送体に被乾燥物を連続的に投入し、その被乾燥物に遠赤外線を照射しながら被乾燥物に通風し、被乾燥物が通風を受け浮上、沈降を繰り返しながら乾燥物搬送体の終端で表層の被乾燥物が順次横溢する流動乾燥装置に関する。
【0002】
【従来の技術】
従来、平面状をなした流動盤を乾燥機本体内に敷設して上部に流動室を、下部に送風室を構成すると共に流動盤の表面には乾燥風が噴気する噴気孔を多数開口させ、流動盤上に供給された乾燥物を噴気孔から一斉に噴気する乾燥風で一定厚さの流動層を形成させながら排出側へ移行する間に乾燥を終了させる流動乾燥機は既に公知である。
【0003】
また、乾燥室内の空気を減圧状態に保持しながら乾燥機室内に多量の遠赤外線を放射し、この乾燥室内の空気を大量に循環させながら乾燥室内に配設された通気性のある搬送装置上の籾を層状に分散状態で搬送し、循環空気流を籾層の下方から上方に貫通させて籾と循環空気流とを十分に接触させて籾を乾燥させる方法は特開平11―172997号公報に記載されている。
【0004】
さらに特開2002―22362号では、乾燥室内部の水平方向に設けられた穀粒保持体の穀粒支持面を多数の小孔を開口した気体噴出面で形成し、気体噴出面の一方に堰部材を、他方の上流から穀粒を供給して穀粒層を形成し、この穀粒層の上方に遠赤外線ヒータを配置して穀粒に遠赤外線を放射しながら、穀粒保持体の支持面の小孔を開口した気体噴出面から気体を貫入して撹拌、流動化させながら気体噴出面の堰部材の高さによって穀粒の厚さを調節しながら穀粒を乾燥する構成も既に公知である。
【0005】
【発明が解決しようとする課題】
底面が小孔開口した気体噴出面上の被乾燥物を下方から上方に向けて乾燥風を通風し搬送しながら乾燥する流動乾燥機では、乾燥風が被乾燥物に十分に接触するために被乾燥物から大量の微粒子を含む塵埃が乾燥風に乗り、機外に放出されている。
【0006】
現在多くの流動乾燥装置においては、被乾燥物から乾燥風に乗って排出される微粒子はそのまま機外に排出されるか、乾燥風と同等の風量を処理できる能力をもった集塵装置によって微粒子を回収しており、集塵装置の設置面積、稼動動力、稼動時の騒音、設備のコスト、集塵装置のメンテナンス等が問題となっている。
【0007】
また、乾燥風を循環して被乾燥物に通風している流動乾燥装置においては、被乾燥物に含まれる微粒子を含む塵埃が循環風に乗って乾燥機内を周回するのを防止する装置が備わっていないため、機内に微粒子を含む塵埃が付着して通風通路を妨げたり、遠赤外線放射構成に微粒子を含む塵埃が付着して火災の発生の可能性が考えられる。
【0008】
そこで、本発明は被乾燥物の下方から上方に通気し、また遠赤外線を被乾燥物に照射することで被乾燥物を流動状態として均一にしかも早く乾燥させると同時に、乾燥機内の被乾燥物から飛散する微粒子を含む塵埃を容易に回収して塵埃の大気中への放出防止、乾燥機内の塵埃の滞留防止、乾燥機内の塵埃の付着の防止のできる被乾燥物の連続処理可能なコンパクトで一体型の低価格な流動乾燥装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は請求項1ないし請求項10に係わる流動乾燥装置を提案するものである。
【0010】
即ち、請求項1に係わる流動乾燥装置は、水平方向に終始端に渡って凹溝構成で、底面が小孔開口した気体噴出面からなる被乾燥物を通風しながら搬送する乾燥物搬送体と、乾燥物搬送体の始端には乾燥物搬送体上に被乾燥物を連続的に投入する供給装置と、乾燥物搬送体の上部には被乾燥物に遠赤外線を照射する遠赤外線放射構成を備え、通風装置で乾燥物搬送体の気体噴出面から被乾燥物に通風させ、被乾燥物が通風を受け浮上、沈降を繰り返しながら乾燥物搬送体の終端で表層の被乾燥物が横溢口から順次横溢する流動乾燥装置であって、乾燥物搬送体の長手方向に渡って風路で接続された塵埃収集室を隣接して設けたことを特徴とするものである。
【0011】
請求項2に係わる流動乾燥装置は、請求項1記載の流動乾燥装置において、水平方向に終始端に渡って凹溝構成で、底面が小孔開口した気体噴出面からなる被乾燥物を通風しながら搬送する乾燥物搬送体と、乾燥物搬送体の始端には乾燥物搬送体上に被乾燥物を連続的に投入する供給装置と、乾燥物搬送体の上部には被乾燥物に遠赤外線を照射する遠赤外線放射構成を備え、通風装置で乾燥物搬送体の気体噴出面から被乾燥物に通風させ、被乾燥物が通風を受け浮上、沈降を繰り返しながら乾燥物搬送体の終端で表層の被乾燥物が横溢口から順次横溢する流動乾燥装置であって、乾燥物搬送体の長手方向に渡って風路で接続された塵埃収集室を隣接して設け、塵埃収集室で集塵後の排風を乾燥物搬送体の気体噴出面から再度被乾燥物に通風することを特徴とするものである。
【0012】
請求項3に係わる流動乾燥装置は、請求項1及び請求項2のいずれか記載の流動乾燥装置において、塵埃収集室には乾燥物搬送体と平行して塵埃収集路を設けたことを特徴とするものである。
【0013】
請求項4に係わる流動乾燥装置は、請求項1ないし請求項3のいずれか記載の流動乾燥装置において、塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路は、天面が凹形状であることを特徴とするものである。
【0014】
請求項5に係わる流動乾燥装置は、請求項1ないし請求項4のいずれか記載の流動乾燥装置において、乾燥物搬送体の長手方向に渡って接続された塵埃収集室に至る風路は、乾燥物搬送体の上部から塵埃収集路に渡り周面が円弧形状であることを特徴とするものである。
【0015】
請求項6に係わる流動乾燥装置は、請求項1ないし請求項5のいずれか記載の流動乾燥装置において、塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路には、塵埃を塵埃収集路の一端方向に搬送する搬送手段と、搬送手段によって一端に集められた塵埃を空気搬送させる送風手段と、送風手段で空気搬送された塵埃を収集する粉塵収集器とをそれぞれ接続したことを特徴とするものである。
【0016】
請求項7に係わる流動乾燥装置は、請求項1ないし請求項6のいずれか記載の流動乾燥装置において、塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路の一端方向に搬送する搬送手段の終端と、搬送手段によって一端に集められた塵埃を空気搬送させる送風手段と、送風手段で空気搬送された塵埃を収集する粉塵収集器までを断熱構成としたことを特徴とするものである。
【0017】
請求項8に係わる流動乾燥装置は、請求項1ないし請求項7のいずれか記載の流動乾燥装置において、乾燥物搬送体と、遠赤外線放射構成と、通風装置と乾燥物搬送体の終端で表層の被乾燥物が順次横溢する横溢口と、塵埃収集室と、塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路の一端方向に搬送する搬送手段の終端と、搬送手段によって一端に集められた塵埃を空気搬送させる送風手段と、送風手段で空気搬送された塵埃を収集する粉塵収集器までを断熱構成としたことを特徴とするものである。
【0018】
請求項9に係わる流動乾燥装置は、請求項1ないし請求項8のいずれか記載の流動乾燥装置において、遠赤外線放射構成は、遠赤外線放射体内でのバーナ燃焼による遠赤外線の放射であって、燃焼ガスは遠赤外線放射後に機外に排出、または遠赤外線放射後に塵埃収集室内に排出、または遠赤外線放射後に塵埃収集室内を経て機外に排出のいずれかを選択できるように構成したことを特徴とするものである。
【0019】
請求項10に係わる流動乾燥装置は、請求項1ないし請求項9のいずれか記載の流動乾燥装置において、乾燥物搬送体と遠赤外線放射構成との間の空間の静圧を0から−50Paとしたことを特徴とするものである。
【0020】
【発明の実施の形態】
図1には本発明の実施の形態に係わる流動乾燥装置の概略縦断図、図2には本発明の実施の形態に係わる流動乾燥装置の概略斜視図、図3には本発明の実施の形態に係わる流動乾燥装置の概略縦断正面図、図4には本発明の第2の実施の形態を示す流動乾燥装置の正面断面図、図5には本発明の第2の実施の形態を示す流動乾燥装置の斜視断面図、図6には本発明の第2の実施の形態を示す流動乾燥装置の側面断面図、図7には本発明の第2の実施の形態の燃焼排気を方法を示す流動乾燥装置の斜視図、図8には本発明の第2の実施の形態の燃焼排気を方法の他例を示す流動乾燥装置に斜視図、図9には本発明の第2の実施の形態の実施例を示すブロック図、図10には本発明の第2の実施の形態の実施例を示すフローチャート図である。
【0021】
図1において、流動乾燥装置1は水平方向に終始端に渡って凹溝構成で、底面が小孔開口した気体噴出面10からなる被乾燥物αを通風しながら搬送する乾燥物搬送体2と、乾燥物搬送体の始端17には乾燥物搬送体2上に被乾燥物αを連続的に投入するバルブ20とホッパ21からなる供給装置3と、乾燥物搬送体2の上部には被乾燥物αに遠赤外線γを放射する遠赤外線放射構成4を備え、通風装置5で乾燥物搬送体2の気体噴出面10から被乾燥物αに通風する構成になっており、被乾燥物αが供給装置3より連続的に乾燥物搬送体の始端17側に供給され、遠赤外線放射構成4からの遠赤外線γを被乾燥物αに照射しながら、通風装置5からの通風を受け浮上、沈降を繰り返し乾燥物搬送体の終端18で表層の乾燥終了した被乾燥物αが横溢口16から順次横溢するものである。なお、図1には乾燥物搬送体2上に被乾燥物αをより撹拌させるための撹拌機9が設けているが、この撹拌機9が実施されなくてもよい(図示せず)。
【0022】
以上のように構成された流動乾燥装置1には乾燥物搬送体2の長手方向に渡って風路6で接続された塵埃収集室7が隣接して設けられている。しかも図2及び図3に示すように、風路6は乾燥物搬送体2の上部より塵埃収集室7に渡り円弧形状面でつながれていて、塵埃収集室7の円弧形状面の終部下には、塵埃収集室7の略全長に渡って乾燥物搬送体2と平行に天面が凹形状の塵埃収集路8が設けられていて、塵埃収集路8の内部には搬送手段11が設置されていている。図2及び図3では仕切り板19によって乾燥物搬送体2と塵埃収集室7とを隔てており、塵埃収集室7の塵埃収集路8の内部に塵埃を導くよう仕切り板19の先端が湾曲しているとよい。
【0023】
ホッパ21に投入された被乾燥物αはバルブ20の定量供給によって供給装置3から連続的に乾燥物搬送体2に投入され、通風装置5の気体噴出面10からの通風と撹拌機9の作用によって乾燥物搬送体の始端17から乾燥物搬送体の終端18に渡る凹溝内に滞留する。この時、遠赤外線放射構成4からの遠赤外線γを被乾燥物αが受け、被乾燥物α自体の温度が上昇し内部に含まれる水分が外部へと移行しながら通風装置5からの通風によって被乾燥物の外部に移行した水分を取り除く。この通風は被乾燥物αの水分を取り除くほか、被乾燥物αを浮上、沈降させながら混合し、供給装置3から連続して被乾燥物αが供給されるので乾燥物搬送体の終端18方向の横溢口16から乾燥の終了した被乾燥物αが横溢される。
【0024】
被乾燥物αが遠赤外線γの放射と通風を受け、浮上、沈降しながら乾燥する過程で被乾燥物αから微粒子を含んだ塵埃βが乾燥物搬送体2から舞上り、遠赤外線放射構成4の側面を通り抜け、風路6から塵埃収集室7内に風路6の円弧形状面に添って塵埃βが移行し、凹形状の塵埃収集路8内に塵埃βのみ収集され、塵埃βは搬送手段11の作用により塵埃収集路8の一端に搬送され次工程に導かれ、塵埃βが取り除かれた風は排気口33より排出される。
【0025】
図4および図5に示す第2の実施の形態における構成は、流動乾燥装置1は水平方向に終始端に渡って凹溝構成で、底面が小孔開口した気体噴出面10からなる被乾燥物αを通風しながら搬送する乾燥物搬送体2と、乾燥物搬送体の始端17には乾燥物搬送体2上に被乾燥物αを連続的に投入する供給装置3と、乾燥物搬送体2の上部には被乾燥物αに遠赤外線γを放射する遠赤外線放射構成4を備え、通風装置5で乾燥物搬送体2の気体噴出面10から被乾燥物αに通風させ、被乾燥物αが通風を受け浮上、沈降を繰り返し乾燥物搬送体の終端18で表層の乾燥終了した被乾燥物αが横溢口16から順次横溢する流動乾燥装置であって、乾燥物搬送体2の長手方向に渡って風路6で接続された塵埃収集室7を隣接して設け、塵埃収集室7で集塵後の排風を乾燥物搬送体2の気体噴出面10から再度被乾燥物αに通風する構成となっている。
【0026】
図4および図5で筐体22の内部には、仕切り板19で上方の風路6と吸引口23の通風口を除いて縦断方向に仕切り、仕切られた一方の下部には通風装置5が設けられ、送風装置5の上部には供給装置3の側の乾燥物搬送体の始端17から横溢口16の乾燥物搬送体の終端18に渡って凹溝構成で、底面が小孔開口した気体噴出面10からなる乾燥物搬送体2が設けられている。
【0027】
また、乾燥物搬送体2の上方には被乾燥物αを撹拌可能な範囲に撹拌機9が設けられ、乾燥物搬送体2と撹拌機9の上方には、遠赤外線放射体14内でのバーナ15の燃焼を利用して遠赤外線γが発生する遠赤外線放射構成4が被乾燥物αが燃焼しないほどの空間A25を保って設けられていて、この空間A25の側面にはこの空間Aの静圧を計るための圧力センサ24が設けられている。
【0028】
遠赤外線放射構成4上の空間から先端が塵埃収集室7内に湾曲した仕切り板19を隔てて塵埃収集室7まで至る風路6が設けられていて、この風路6は図4では塵埃収集室7に入ってから上面が円弧形状をなしているが、乾燥物搬送体2の上部より塵埃収集室7に渡り円弧形状面でつながれているとよい。
【0029】
塵埃収集室7の円弧形状面の終部下には、塵埃収集室7の略全長に渡って乾燥物搬送体2と平行に天面が凹形状の塵埃収集路8が設けられていて、塵埃収集路8の内部には搬送手段11のスクリューコンベア29が設置されている。
【0030】
塵埃収集室7の塵埃収集路8の下の空間B26には側面に温度センサ27が設けられていて、温度センサ27の下方に塵埃収集室7に送られた風を再度通風装置5に導くための吸引口23が仕切り板19の一部に開口している。
【0031】
また、塵埃収集路8の一端にはスクリューコンベア29で集められた塵埃βを筐体22の外部に導く送風手段12が設けられ、塵埃βを収集する粉塵収集器13とは接続管28で繋がれている。
【0032】
被乾燥物αは供給装置3からバルブ20の定量供給によって乾燥物搬送体の始端17から乾燥物搬送体の終端18に渡る凹溝構成の気体噴出面10をもった乾燥物搬送体2上に送り込まれる。凹溝の深さだけ被乾燥物αは凹溝構成の乾燥物搬送体2上に滞留するが、供給装置3から定量的に被乾燥物αが乾燥物搬送体2の面上に投入されるので、被乾燥物αは乾燥物搬送体の終端18の横溢口16より流動乾燥機1の機外に横溢される。
【0033】
被乾燥物αはこの供給装置3から横溢口16に移行する間、乾燥物搬送体2の上部に設けられた遠赤外線放射構成4の遠赤放射体14内でのバーナ15燃焼による遠赤外線γの放射を受けることによって被乾燥物αの内部温度が上昇し、水分を乾燥物の表面に移行させ、被乾燥物αの表面に移行した水分は回転式の撹拌機9の撹拌作用と通風装置5からの通風で浮上、沈降を繰り返し被乾燥物αは次第に均一に乾燥し、乾燥物搬送体の終端18の横溢口16から排出される時点においては、完全に目標水分まで乾燥しているものである。
【0034】
この遠赤外線γの放射と通風による被乾燥物αの流動乾燥よって発生する塵埃βは、空間A25を上昇し遠赤放射体14の周囲を通過し、風路6を経て塵埃収集室7に侵入するが、風路6は仕切り板19によって狭められ、塵埃収集室7に侵入にさいして風速を上げて円弧形状面に沿って塵埃βだけが塵埃収集路8内に導かれる。
【0035】
ここで塵埃βを取り除かれた風は空間B26を通過し、仕切り板19の吸引口23から通風装置5に導かれ、再度乾燥物搬送体2を通過し被乾燥物αの乾燥に利用する循環風となる。なお、空間B26を通過するさいに温度センサ27で循環風の温度を計測することが出来ものである。
【0036】
塵埃収集路8内に導かれた塵埃βは、スクリューコンベア29によって送風手段12の送風機30へ送り込まれ、接続管28の内部を通過して粉塵収集器13に導かれ塵埃と風に分離されて、塵埃は粉塵収集器13内に収集され、風のみ粉塵収集器13から排気される。なお、本実施例での粉塵収集器13はサイクロン方式を図示しているが、フィルター方式の収集器であっても良い(図示せず)。
【0037】
図6に示す流動乾燥機1は、第2の実施の形態の流動乾燥機において、乾燥物搬送体2と、遠赤外線放射構成4と、通風装置5と乾燥物搬送体の終端18で表層の被乾燥物αが順次横溢する横溢口16と、塵埃収集室7と、塵埃収集室7に乾燥物搬送体2と平行に設けられた塵埃収集路8の一端方向に搬送する搬送手段11の終端と、搬送手段11によって一端に集められた塵埃βを空気搬送させる送風手段12と、送風手段12で空気搬送された塵埃βを収集する粉塵収集器13までを断熱材31で覆われた構成を表すものである。
【0038】
被乾燥物αには水分が含まれているが、遠赤外線βの放射と通風によって被乾燥物αから水分は蒸発し、筐体22内部の乾燥物搬送体2、遠赤外線放射構成4、塵埃収集室7、通風装置5を循環しているが、筐体22内部では循環風が滞留する所や側壁の温度が低い所などは風に含まれる湿気が側壁に結露して塵埃の付着を引き起こし、集塵効果の低下や通風の妨げなどを引き起こす原因となっていた。
【0039】
そこで、筐体22の内部即ち、乾燥物搬送体2と、遠赤外線放射構成4と、通風装置5と乾燥物搬送体の終端18で表層の被乾燥物αが順次横溢する横溢口16と、塵埃収集室7と、塵埃収集室7に乾燥物搬送体2と平行に設けられた塵埃収集路8の一端方向に搬送する搬送手段11の終端と、搬送手段11によって一端に集められた塵埃βを空気搬送させる送風手段12と、送風手段12で空気搬送された塵埃βを収集する粉塵収集器13までを断熱材31で覆う事で、側壁と循環風の温度差をなくし、通風経路の結露を防止して集塵効果の低下や通風の妨げなどを無くそうとするものである。
【0040】
特に搬送手段11の終端と、送風手段12と接続管28と粉塵収集器13の出口までの側壁は、外気との接触面が多いため特に結露しやすいので、搬送手段11の終端と、送風手段12と接続管28と粉塵収集器13までを断熱材31で覆う構成であってもよく、風に含まれる湿気の結露を防止して、粉塵収集が良好に粉塵収集器13で行うことが出来る(図示せず)。
【0041】
図7および図8に示す図は、第2の実施の形態の流動乾燥機1において、遠赤外線放射体14内でバーナ15が燃焼し、遠赤外線γを放射後の排気方法を示したものである。第2の実施の形態の図5に示す排気方法は、遠赤外線放射体14内でバーナ15が燃焼し、遠赤外線γを遠赤外線放射体14から放射後直ちに筐体22の外部に排気する方法である。それに対して、図7は遠赤外線放射体14内でバーナ15が燃焼し、遠赤外線γを遠赤外線放射体14から放射後、排気管32で筐体22の外部へ導き、筐体22の内部の空間B26内に排出する方法である。この方法は筐体22内の空間Bから通風装置5そして、乾燥物搬送体2を通過し空間A25から風路6を循環する循環風内に燃焼排気を混合することで循環風の温度を上昇させ、バーナ15の少ない燃焼量で効率良く被乾燥物αを乾燥することが出来る。
【0042】
また、図8では遠赤外線放射体14内でバーナ15が燃焼し、遠赤外線γを遠赤外線放射体14から放射後、排気管32で筐体22の外部へ導き、筐体22の内部の空間B26内を排気管32で通過して筐体22の外部に燃焼排気を排出するものである。この方式は燃焼排気を筐体22内の循環風と混合せず、空間B26内の排気管32の周囲を循環風が通過することで循環風の温度を効率良く上昇させようとするものであって、特に被乾燥物αが食品である場合、燃焼による臭いや煤等の付着を防止することできる。
【0043】
以上のように、第2の実施の形態の流動乾燥機では、被乾燥物の種類によって、バーナ15の燃焼後の排気を上記の3通りのどれかに選択可能であって、それぞれの乾燥の目的を達成することができる。
【0044】
図9では、第2の実施の形態の流動乾燥機の流れをブロック図で示したものであって、圧力センサ24・温度センサ27を用いて制御装置34に入力し、それぞれの装置との関連をしめしているものであり、図10ではさらにそれぞれの制御をフローチャートとして表している。
【0045】
図9において通風装置5からの通風は乾燥物搬送体2から遠赤放射体14の付近を通過し、塵埃収集室7から通風装置5への循環工程を循環し、塵埃収集室7では塵埃βをスクリューコンベア29を経て送風機30に送り込み、粉塵収集器13で塵埃βが収集され風(空気)のみ機外に排出される。
【0046】
上記の循環工程の乾燥物搬送体2と遠赤放射体14との間の空間A25には圧力センサ24が設けられおり、塵埃収集室7と通風装置5との間の空間B26には温度センサ27が設けられていて、圧力センサ24・温度センサ27はそれぞれ制御装置34の入力部に繋がれていて、制御装置34は圧力センサ24・温度センサ27の入力信号に応じてバーナ15・送風機30の出力を制御するようになっている。
【0047】
流動乾燥機1を稼動させると通風装置5とスクリューコンベア29と送風機30が起動し、バーナ15は燃焼を開始し、圧力センサ24と温度センサ27はそれぞれの測定を開始する。圧力センサ24では空間A25内の静圧が設定範囲になるように流動乾燥機1内の循環風の一部を機外に送風機30によって排出することで循環風の圧力を制御し、また温度センサ27は空間B26の温度が設定範囲になるよう燃焼量を制御装置34からの信号を経て調整するものである。
【0048】
バーナ15の燃焼によって流動乾燥機1内の温度が上昇し、空間B26の温度が指定範囲に到達したら、バルブ20が起動し被乾燥物αを乾燥物搬送体2上に供給を開始する。被乾燥物αが乾燥物搬送体2上に広がるにつれて循環風の温度の低下又は被乾燥物αが循環風の抵抗となることで、機体内の静圧は変化を始める。
【0049】
循環風の温度は空間B26の温度センサ27で測定しているのでその減少量(下がった温度)を制御部34に信号として伝達し、常に循環風の温度が設定範囲となるようバーナ15の燃焼量を上昇させ、以後稼動中は設定範囲を保つように働く。また、空間A25内の静圧においても圧力センサ24によって測定され、静圧の変化量に応じて送風機30の風量を変化させ、設定範囲の制圧になるよう制御し、以後これを保つように働くものである。
【0050】
被乾燥物αは供給装置3のバルブ20の定量供給によって乾燥物搬送体2面上に満たされ、遠赤外線放射体14からの遠赤外線γを浴び表面に水分を移行させ、流動乾燥機1内を通風する循環風と撹拌機9の作用によって浮上・沈降しながら乾燥され、乾燥の終了した乾燥物搬送体の終端18近くの表面の被乾燥物αは横溢口16より機外に排出され、排出された被乾燥物αの乾燥はここで終了する。
【0051】
なお、塵埃収集室7の塵埃収集路8に溜まった塵埃βは、スクリューコンベア29によって送風機30に送り込まれ、この送風機30から塵埃収集器13内に移行し、集塵器内で塵埃βと風に分離され、塵埃βは塵埃収集器13内に堆積し、風は機外に排出される。
【0052】
流動乾燥機1の乾燥作業が終了したならば、制御装置から停止動作が開始される。第一にバルブ20が速やかに停止して被乾燥物αの投入を止め、次にバーナ15の燃焼が停止し、バーナ燃焼停止後、通風装置5とスクリューコンベア29が設定時間後に停止する。送風機30においては通風装置5が停止後においても空間B26の温度センサ27が設定範囲以下になるまで稼動し、横溢口16から外気を吸入して流動乾燥機1内部を冷やし、温度センサが設定範囲以下になったら送風機30は停止し全ての乾燥工程は終了する。
【0053】
本発明の第2の実施の形態の流動乾燥機で乾燥できる被乾燥物は、多種多様の物を乾燥できることが可能で例えば、釣りえさ・海草ペレット・海草肥料・茸・オカラ・おが屑等が乾燥可能であって、それぞれの循環風の温度は被乾燥物の種類によって異なり、
乾燥物名 循環風温度(空間B) 乾燥初期水分 乾燥終了水分
釣りえさ 60〜80℃ 13% → 6.5%
海草ペレット 80〜130℃ 35% → 25%
おが屑 60〜80℃ 65% → 20%
以上のことが実験から判明している。
【0054】
以上の乾燥実験では循環風を風速0.5〜3.0m/sが流動乾燥を行わせるのにもっとも適した風量であって、空間A25内における静圧は実験により0から−50Paの範囲が良いことがわかった。この静圧の範囲は横溢口16から外気を若干流動乾燥機1内に吸引し、横溢口16から塵埃βの飛散を無くして乾燥終了した製品の被乾燥物αに粉塵が混入しない作用と被乾燥物αの若干の冷却作用を兼ねるものであって、流動乾燥機1内の循環風量の1/4から1/10の風量がこの値となることが判った。
【0055】
【発明の効果】
本発明によれば、乾燥物搬送体上に被乾燥物を連続的に投入し、一定の層厚で滞留した被乾燥物に、遠赤外線放射と通風と撹拌作用による乾燥工程で発生する塵埃を機外に排出することなく、良好な作業環境を提供することが出来ると同時に、循環風に含まれる塵埃が遠赤外線放射体へ付着することによっておこる塵埃の火災若しくは、塵埃の燃焼臭の発生を防止することが出来るので、高品質の乾燥物を得ることが出来る。
【0056】
なお、横溢口を有する乾燥物搬送体と遠赤外線放射構成との空間を、静圧0〜−50Paを保つよう循環風を送風機で機外に排出しているので、横溢口からの塵埃の飛散と乾燥完了した乾燥物に塵埃が含まれないので、より一層乾燥物の高品質を保つことが出来る。
【0057】
そして、塵埃の搬送工程又は流動乾燥機装置全体を断熱構造としているので、被乾燥物から乾燥の過程で発生する水蒸気が温度の低い部分(外気)との接触で発生する結露現象を防止し、塵埃の良好な収集及び循環風の均一な通風を可能としている。
【0058】
さらに、バーナの燃焼で遠赤外線を放射後、バーナの燃焼ガスの排出方法を機外に又は機内に又は機内を経由して機外に排出のいずれかの選択できるよう構成されているので、燃焼ガスの混合を好まない食品等の乾燥には遠赤外線の放射のみを、又は遠赤外線放射後に燃焼ガスを再度機内に導き間接過熱方式で熱を機内に取り込み機内の乾燥風の温度の上昇を促す乾燥方法や、食品以外の乾燥時間の短縮を望む乾燥物では、遠赤放射後の排気ガスを機内に直接投入することによって機内の温度を効率的に上昇できるなど、乾燥する物体、乾燥時間等の目的によって乾燥の構成を選択できる効果を有するものである。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる流動乾燥装置の概略縦断図である。
【図2】本発明の実施の形態に係わる流動乾燥装置の概略斜視図である。
【図3】本発明の実施の形態に係わる流動乾燥装置の概略縦断正面図である。
【図4】本発明の第2の実施の形態を示す流動乾燥装置の正面断面図である。
【図5】本発明の第2の実施の形態を示す流動乾燥装置の斜視断面図である。
【図6】本発明の第2の実施の形態を示す流動乾燥装置の側面断面図である。
【図7】本発明の第2の実施の形態の燃焼排気を方法を示す流動乾燥装置の斜視図である。
【図8】本発明の第2の実施の形態の燃焼排気を方法の他例を示す流動乾燥装置に斜視図である。
【図9】本発明の第2の実施の形態の実施例を示すブロック図である。
【図10】本発明の第2の実施の形態の実施例を示すフローチャート図である。
【符号の説明】
1 流動乾燥装置
2 乾燥物搬送体
3 供給装置
4 遠赤外線放射構成
5 通風装置
6 風路
7 塵埃収集室
8 塵埃収集路
9 撹拌機
10 気体噴出面
11 搬送手段
12 送風手段
13 粉塵収集器
14 遠赤放射体
15 バーナ
16 横溢口
17 乾燥物搬送体の始端
18 乾燥物搬送体の終端
19 仕切り板
20 バルブ
21 ホッパ
22 筐体
23 吸引口
24 圧力センサ
25 空間A
26 空間B
27 温度センサ
28 接続管
29 スクリューコンベア
30 送風機
31 断熱材
32 排気管
33 排気口
34 制御装置
α 被乾燥物
β 塵埃
γ 遠赤外線
[0001]
BACKGROUND OF THE INVENTION
The present invention continuously feeds the material to be dried to the dry material transporter that conveys the material to be dried, which is composed of a gas ejection surface having a bottom surface with a small hole opening, with a concave groove configuration extending from end to end in the horizontal direction. Then, the object to be dried is irradiated with far-infrared rays, and the object to be dried is air-flowed. The present invention relates to a drying apparatus.
[0002]
[Prior art]
Conventionally, a fluidized plate having a flat shape is laid in the dryer body, a fluid chamber is formed in the upper portion, a blower chamber is formed in the lower portion, and a large number of air holes for blowing dry air are opened on the surface of the fluidized plate, A fluid drier is known which terminates drying while moving to the discharge side while forming a fluidized bed having a certain thickness with dry air that blows dry matter supplied onto the fluidized plate all at once from the nozzle holes.
[0003]
In addition, a large amount of far-infrared rays are radiated into the dryer chamber while keeping the air in the drying chamber in a decompressed state, and a large amount of air in the drying chamber is circulated on the air-permeable conveying device disposed in the drying chamber. Japanese Patent Application Laid-Open No. 11-172997 discloses a method in which the soot is transported in a layered state in a dispersed state, and the soot and the circulating air flow are sufficiently brought into contact with each other by passing a circulating air flow upward from below the soot layer. It is described in.
[0004]
Further, in Japanese Patent Laid-Open No. 2002-22362, a grain support surface of a grain holder provided in a horizontal direction inside a drying chamber is formed by a gas ejection surface having a large number of small holes, and a dam is provided on one of the gas ejection surfaces. Supporting the grain holder while supplying a grain from the other upstream side to form a grain layer and disposing a far infrared heater above this grain layer to radiate far infrared rays to the grain A structure in which the grain is dried while adjusting the thickness of the grain according to the height of the weir member on the gas ejection surface while allowing the gas to penetrate from the gas ejection surface having a small hole on the surface and stirring and fluidizing is already known. It is.
[0005]
[Problems to be solved by the invention]
In a fluidized dryer that dries while drying air on the gas jetting surface with a small opening at the bottom from the bottom toward the top, the drying air is in contact with the material to be dried. Dust containing a large amount of fine particles from dry matter rides on the dry wind and is released outside the machine.
[0006]
Currently, in many fluidized dryers, the fine particles discharged from the material to be dried on the drying air are discharged out of the machine as they are, or are collected by a dust collector that has the ability to process the air volume equivalent to the drying air. The installation area of the dust collector, the operating power, the noise during operation, the cost of the equipment, the maintenance of the dust collector, etc. are problems.
[0007]
Further, in the fluidized drying apparatus that circulates the drying air and passes it through the material to be dried, there is provided a device that prevents the dust containing the fine particles contained in the material to be dried from circulating around the drying air. Therefore, there is a possibility that dust containing fine particles adheres to the inside of the machine and obstructs the ventilation passage, or dust containing fine particles adheres to the far-infrared radiation structure and may cause a fire.
[0008]
Therefore, the present invention vents the material to be dried from the bottom to the top and irradiates the material to be dried with far infrared rays to uniformly and quickly dry the material to be dried, and at the same time, the material to be dried in the dryer. It is a compact that can easily collect the dust containing fine particles scattered from the air, prevent the dust from being released into the atmosphere, prevent the dust from staying in the dryer, and prevent the dust from adhering inside the dryer. An object is to provide an integrated low-cost fluidized drying apparatus.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes a fluidized drying apparatus according to claims 1 to 10.
[0010]
That is, the fluidized-drying apparatus according to claim 1 is a dried product transporter configured to convey a material to be dried having a gas ejection surface with a bottom surface having a small hole in a concave groove configuration across the end in the horizontal direction. In addition, a supply device that continuously feeds the material to be dried onto the dry material carrier at the beginning of the dry material carrier, and a far infrared radiation configuration that irradiates the material to be dried at the top of the dry material carrier The dried product carrier is ventilated from the gas ejection surface of the dried product carrier with the ventilation device, and the dried product is subjected to ventilation and floats and repeats settling, and the dried product on the surface layer at the end of the dried product carrier passes from the side overflow port. A fluidized drying apparatus that overflows sequentially, and is characterized in that a dust collection chamber connected by an air passage is provided adjacent to the longitudinal direction of the dry matter transporter.
[0011]
A fluidized drying apparatus according to a second aspect is the fluidized drying apparatus according to the first aspect, wherein the object to be dried is formed of a gas ejection surface having a concave groove structure extending from the beginning to the end in the horizontal direction and having a bottom surface opening a small hole. A dry material transporter that transports the dry matter, a supply device that continuously feeds the dry matter onto the dry matter transporter at the beginning of the dry matter transporter, and a far infrared ray to the dry matter at the top of the dry matter transporter With a far-infrared radiation structure that irradiates the object to be dried from the gas ejection surface of the dried product carrier with a ventilator, and the dried product is subjected to ventilation and floats and repeats settling while the surface layer at the end of the dried product carrier Is a fluidized drying device in which the material to be dried overflows sequentially from the overflow outlet, and is provided with a dust collection chamber connected by an air passage along the longitudinal direction of the dry matter transporter, and after collecting in the dust collection chamber The exhausted air is again ventilated from the gas ejection surface of the dry product carrier to the dry product It is characterized in.
[0012]
The fluidized drying apparatus according to a third aspect is the fluidized drying apparatus according to any one of the first and second aspects, wherein a dust collecting path is provided in the dust collecting chamber in parallel with the dry matter transporter. To do.
[0013]
The fluidized drying apparatus according to a fourth aspect is the fluidized drying apparatus according to any one of the first to third aspects, wherein the top surface of the dust collecting path provided in the dust collecting chamber in parallel with the dry matter carrier is concave. It is characterized by a shape.
[0014]
The fluidized drying apparatus according to a fifth aspect is the fluidized drying apparatus according to any one of the first to fourth aspects, wherein the air path leading to the dust collecting chamber connected in the longitudinal direction of the dried product transport body is dried. The peripheral surface has a circular arc shape from the upper part of the article transporter to the dust collecting path.
[0015]
A fluidized drying apparatus according to a sixth aspect is the fluidized drying apparatus according to any one of the first to fifth aspects, wherein the dust is collected in a dust collecting path provided in the dust collecting chamber in parallel with the dry matter carrier. The conveying means for conveying in the one end direction of the collecting path, the blowing means for conveying the dust collected at one end by the conveying means to the air, and the dust collector for collecting the dust carried by the blowing means are connected to each other. It is a feature.
[0016]
The fluidized drying apparatus according to a seventh aspect is the fluidized drying apparatus according to any one of the first to sixth aspects, wherein the fluid drying apparatus transports the dust collecting chamber in one direction of a dust collecting path provided in parallel with the dried material transporting body. It is characterized in that the end of the conveying means, the blowing means for conveying the dust collected at one end by the conveying means to the air, and the dust collector for collecting the dust conveyed by the blowing means are heat-insulated. is there.
[0017]
The fluidized-drying apparatus according to claim 8 is the fluidized-drying apparatus according to any one of claims 1 to 7, wherein the dried product carrier, the far-infrared radiation structure, the ventilation device, and the end of the dried product carrier are surface layers. Of the object to be dried are sequentially overflowed, a dust collecting chamber, a terminal end of the conveying means for conveying the dust collecting chamber in the direction of one end of the dust collecting path provided in parallel to the dry substance conveying body, and one end by the conveying means. The blower means for carrying the dust collected in the air and the dust collector for collecting the dust carried by the blower means have a heat insulation structure.
[0018]
The fluidized drying apparatus according to claim 9 is the fluidized drying apparatus according to any one of claims 1 to 8, wherein the far-infrared radiation configuration is far-infrared radiation by burner combustion in a far-infrared radiator, Combustion gas can be selected to be discharged outside the machine after emitting far-infrared radiation, discharged into the dust collection chamber after emitting far-infrared radiation, or discharged outside the machine through the dust collection chamber after emitting far-infrared radiation. It is what.
[0019]
The fluidized-drying apparatus according to claim 10 is the fluidized-drying apparatus according to any one of claims 1 to 9, wherein the static pressure in the space between the dried product carrier and the far-infrared radiation structure is 0 to -50 Pa. It is characterized by that.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1 is a schematic longitudinal sectional view of a fluidized drying apparatus according to an embodiment of the present invention, FIG. 2 is a schematic perspective view of a fluidized drying apparatus according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a front sectional view of a fluid drying apparatus showing a second embodiment of the present invention, and FIG. 5 is a fluid flow diagram showing the second embodiment of the present invention. FIG. 6 is a side sectional view of a fluidized drying apparatus showing a second embodiment of the present invention, and FIG. 7 shows a combustion exhaust method according to the second embodiment of the present invention. FIG. 8 is a perspective view of a fluidized-drying apparatus, FIG. 8 is a perspective view of a fluidized-drying apparatus showing another example of the combustion exhaust method of the second embodiment of the present invention, and FIG. 9 is a second embodiment of the present invention. FIG. 10 is a flowchart showing an example of the second embodiment of the present invention.
[0021]
In FIG. 1, a fluid drying apparatus 1 has a dried product carrier 2 that conveys a to-be-dried material α that is composed of a gas ejection surface 10 that has a concave groove configuration extending from the beginning to the end in the horizontal direction and has a small opening at the bottom. In addition, a feed device 3 including a valve 20 and a hopper 21 for continuously feeding the material to be dried α onto the dry material transport body 2 is provided at the start end 17 of the dry material transport body, and an upper portion of the dry material transport body 2 is to be dried. The object α is provided with a far-infrared radiation configuration 4 for radiating far-infrared rays γ, and the ventilation device 5 is configured to ventilate the material to be dried α from the gas ejection surface 10 of the dried material transport body 2. Continuously supplied from the supply device 3 to the starting end 17 side of the dried product transport body, the irradiated object α is irradiated with the far infrared ray γ from the far infrared radiation structure 4, and the air is supplied from the ventilation device 5 to float and settle. Repeatedly, the object to be dried α after the drying of the surface layer at the end 18 of the dried object carrier is In which successively overflowing from the mouth 16. In FIG. 1, a stirrer 9 for further stirring the material to be dried α is provided on the dried product carrier 2, but the stirrer 9 may not be implemented (not shown).
[0022]
In the fluidized drying apparatus 1 configured as described above, a dust collection chamber 7 connected by an air passage 6 is provided adjacent to the dry matter transport body 2 in the longitudinal direction. Moreover, as shown in FIGS. 2 and 3, the air path 6 is connected to the dust collection chamber 7 from the upper part of the dry matter transport body 2 by an arc-shaped surface, and below the end of the arc-shaped surface of the dust collection chamber 7. A dust collecting path 8 having a concave top surface is provided in parallel with the dry matter transport body 2 over substantially the entire length of the dust collecting chamber 7, and a conveying means 11 is provided inside the dust collecting path 8. ing. 2 and 3, the dry matter carrier 2 and the dust collection chamber 7 are separated by the partition plate 19, and the tip of the partition plate 19 is curved so as to guide the dust into the dust collection path 8 of the dust collection chamber 7. It is good to have.
[0023]
The material to be dried α input to the hopper 21 is continuously input from the supply device 3 to the dry material carrier 2 by the constant supply of the valve 20, and the ventilation from the gas ejection surface 10 of the ventilation device 5 and the action of the stirrer 9. Therefore, it stays in the concave groove extending from the start end 17 of the dry matter transport body to the end 18 of the dry matter transport body. At this time, the far-infrared ray γ from the far-infrared radiation structure 4 is received by the object to be dried α, the temperature of the object to be dried α itself rises, and the moisture contained therein is transferred to the outside by the ventilation from the ventilation device 5. Removes moisture transferred to the outside of the object to be dried. This ventilation removes moisture from the material to be dried α, and also mixes while the material to be dried α floats and sinks, and the material to be dried α is continuously supplied from the supply device 3, so the end 18 direction of the dry material transporter The to-be-dried object α after drying overflows from the side overflow outlet 16.
[0024]
In the process in which the object to be dried α receives the radiation and ventilation of the far-infrared γ, and floats and sinks, the dust β containing fine particles rises from the object to be dried α from the dried object carrier 2, and the far-infrared radiation configuration 4 , The dust β moves from the air passage 6 into the dust collecting chamber 7 along the arc-shaped surface of the air passage 6, and only the dust β is collected in the concave dust collecting passage 8, and the dust β is conveyed. The wind from which the dust β is removed by being transported to one end of the dust collecting path 8 by the action of the means 11 and discharged from the exhaust port 33 is discharged.
[0025]
4 and 5, the fluid drying apparatus 1 has a concave groove configuration extending from the beginning to the end in the horizontal direction, and is a material to be dried comprising a gas ejection surface 10 whose bottom surface is opened with a small hole. A dried product carrier 2 that conveys α while ventilating, a supply device 3 that continuously feeds the material to be dried α onto the dried product carrier 2 at the start end 17 of the dried product carrier, and a dried product carrier 2. Is provided with a far-infrared radiation structure 4 that radiates far-infrared rays γ to the object to be dried α, and is ventilated from the gas ejection surface 10 of the dried object carrier 2 to the object to be dried α by the ventilation device 5. Is a fluidized drying apparatus in which the material to be dried α, which has been dried and surfaced at the end 18 of the dried product transport body, overflows sequentially from the overflow port 16 in the longitudinal direction of the dried product transport body 2. A dust collection chamber 7 connected by an air passage 6 is provided adjacent to the dust collection chamber 7. And it has a configuration that the air across the material to be dried α again the exhaust air from the gas ejecting surface 10 of the dried product carrier 2.
[0026]
4 and 5, the inside of the housing 22 is partitioned in the longitudinal direction by the partition plate 19 except for the upper air passage 6 and the ventilation port of the suction port 23, and the ventilation device 5 is provided at one lower part of the partition. A gas having a concave groove structure extending from the start end 17 of the dry matter transport body on the supply device 3 side to the end 18 of the dry matter transport body of the side overflow port 16 at the top of the blower 5 and having a bottom opening in a small hole. A dried product carrier 2 composed of the ejection surface 10 is provided.
[0027]
In addition, a stirrer 9 is provided above the dry matter transport body 2 in a range in which the object to be dried α can be stirred, and above the dry matter transport body 2 and the stirrer 9, the far-infrared radiator 14 is provided. A far-infrared radiation structure 4 that generates far-infrared rays γ using combustion of the burner 15 is provided so as to maintain a space A25 that does not burn the material to be dried α. A pressure sensor 24 for measuring the static pressure is provided.
[0028]
An air passage 6 is provided from the space on the far-infrared radiation structure 4 to the dust collection chamber 7 through a partition plate 19 whose tip is curved in the dust collection chamber 7, and this air passage 6 is shown in FIG. Although the upper surface is formed in an arc shape after entering the chamber 7, the upper surface of the dry matter transport body 2 may be connected to the dust collection chamber 7 by an arc-shaped surface.
[0029]
Below the end of the arc-shaped surface of the dust collection chamber 7, a dust collection path 8 having a concave top surface is provided in parallel with the dry matter carrier 2 over the entire length of the dust collection chamber 7. A screw conveyor 29 of the conveying means 11 is installed inside the path 8.
[0030]
A temperature sensor 27 is provided on the side surface of the space B26 below the dust collection path 8 in the dust collection chamber 7 so that the wind sent to the dust collection chamber 7 below the temperature sensor 27 is guided to the ventilation device 5 again. The suction port 23 is opened in a part of the partition plate 19.
[0031]
Also, at one end of the dust collecting path 8, a blowing means 12 is provided for guiding the dust β collected by the screw conveyor 29 to the outside of the housing 22, and is connected to the dust collector 13 for collecting the dust β by a connecting pipe 28. It is.
[0032]
The to-be-dried object α is supplied onto the dried product carrier 2 having the gas ejection surface 10 having a concave groove extending from the starting end 17 of the dried product carrier to the end 18 of the dried product carrier by the constant supply of the valve 20 from the supply device 3. It is sent. The to-be-dried object α stays on the dried article transport body 2 having the concave groove structure by the depth of the concave groove, but the to-be-dried object α is quantitatively introduced from the supply device 3 onto the surface of the dried article transport body 2. Therefore, the material to be dried α overflows from the lateral overflow port 16 at the end 18 of the dried material transport body to the outside of the fluid dryer 1.
[0033]
While the material to be dried α moves from the supply device 3 to the horizontal overflow port 16, the far-infrared rays γ due to the burner 15 combustion in the far-red radiator 14 of the far-infrared radiation structure 4 provided on the upper part of the dried material carrier 2. The internal temperature of the object to be dried α is increased by receiving the radiation of the water, and the moisture is transferred to the surface of the dried object. The moisture transferred to the surface of the object to be dried α is stirred by the rotary stirrer 9 and the ventilation device. The object to be dried α is repeatedly dried up and settled by ventilation from 5, and gradually dried uniformly, and when it is discharged from the lateral overflow port 16 at the end 18 of the dried product carrier, it is completely dried to the target moisture. It is.
[0034]
The dust β generated by the fluidized drying of the to-be-dried object α by the radiation of the far infrared rays γ and the ventilation rises in the space A25 and passes around the far red radiator 14 and enters the dust collecting chamber 7 through the air path 6. However, the air path 6 is narrowed by the partition plate 19, and when entering the dust collection chamber 7, the wind speed is increased and only the dust β is guided into the dust collection path 8 along the arc-shaped surface.
[0035]
Here, the wind from which the dust β has been removed passes through the space B26, is guided to the ventilator 5 from the suction port 23 of the partition plate 19, and passes through the dried product carrier 2 again to be used for drying the dried product α. Become a wind. The temperature of the circulating wind can be measured by the temperature sensor 27 when passing through the space B26.
[0036]
The dust β introduced into the dust collecting path 8 is sent to the blower 30 of the blowing means 12 by the screw conveyor 29, passes through the inside of the connecting pipe 28, is guided to the dust collector 13, and is separated into dust and wind. The dust is collected in the dust collector 13 and exhausted only from the wind dust collector 13. In addition, although the dust collector 13 in a present Example has illustrated the cyclone system, it may be a filter-type collector (not shown).
[0037]
The fluidized dryer 1 shown in FIG. 6 is the same as the fluidized dryer according to the second embodiment except that the dried product carrier 2, the far-infrared radiation structure 4, the ventilation device 5, and the end 18 of the dried product carrier are surface layers. The end 16 of the conveyance means 11 which conveys to the one end direction of the dust collection path 8 provided in parallel with the dry matter conveyance body 2 in the dust collection chamber 7, and the dust collection chamber 7 in order to overflow the to-be-dried object (alpha) sequentially. And a blowing unit 12 for conveying the dust β collected at one end by the conveying unit 11 to the air and a dust collector 13 for collecting the dust β conveyed by the blowing unit 12 are covered with a heat insulating material 31. It represents.
[0038]
Although the object to be dried α contains water, the water evaporates from the object to be dried α by the radiation and ventilation of the far infrared ray β, and the dried object carrier 2 in the housing 22, the far infrared radiation configuration 4, dust Although circulating through the collection chamber 7 and the ventilating device 5, in the case 22 where the circulating air stays or where the temperature of the side wall is low, moisture contained in the wind condenses on the side wall and causes dust to adhere. , Causing a decrease in dust collection effect and obstruction of ventilation.
[0039]
Therefore, the inside of the housing 22, that is, the dry matter transport body 2, the far-infrared radiation structure 4, the air overflow device 16 and the overflow port 16 in which the dry matter α on the surface layer sequentially overflows at the end 18 of the dry matter transport body, A dust collecting chamber 7, a terminal end of a conveying means 11 that conveys the dust collecting chamber 7 in the direction of one end of a dust collecting path 8 provided in parallel to the dry matter conveying body 2, and dust β collected at one end by the conveying means 11 By covering the air blowing means 12 for conveying the air and the dust collector 13 for collecting the dust β carried by the air blowing means 12 with the heat insulating material 31, the temperature difference between the side wall and the circulating air is eliminated, and condensation of the ventilation path It is intended to eliminate the deterioration of dust collection effect and obstruction of ventilation.
[0040]
In particular, the end of the conveying unit 11 and the side wall to the outlet of the blowing unit 12, the connecting pipe 28 and the dust collector 13 are particularly susceptible to condensation because of the large contact surface with the outside air. 12, connecting pipe 28, and dust collector 13 may be covered with heat insulating material 31, and condensation of moisture contained in the wind can be prevented, and dust collection can be performed with dust collector 13. (Not shown).
[0041]
7 and 8 show an exhaust method after the burner 15 burns in the far-infrared radiator 14 and radiates far-infrared γ in the fluidized dryer 1 of the second embodiment. is there. The exhaust method shown in FIG. 5 of the second embodiment is a method in which the burner 15 burns in the far-infrared radiator 14 and exhausts the far-infrared γ from the far-infrared radiator 14 to the outside of the housing 22 immediately after emission. It is. On the other hand, in FIG. 7, the burner 15 burns in the far-infrared radiator 14, and after radiating far-infrared γ from the far-infrared radiator 14, the exhaust pipe 32 guides it to the outside of the housing 22. This is a method of discharging into the space B26. In this method, the temperature of the circulating air is increased by mixing the combustion exhaust gas into the circulating air passing through the ventilation device 5 from the space B in the housing 22 and circulating through the air passage 6 from the space A25 through the dried material carrier 2. Thus, the object to be dried α can be efficiently dried with a small amount of combustion of the burner 15.
[0042]
In FIG. 8, the burner 15 burns in the far-infrared radiator 14, and after radiating far-infrared γ from the far-infrared radiator 14, the exhaust pipe 32 guides it to the outside of the housing 22, and the space inside the housing 22. The exhaust gas is exhausted to the outside of the housing 22 through the B26 through the exhaust pipe 32. In this method, combustion exhaust is not mixed with the circulating air in the housing 22, and the circulating air passes through the exhaust pipe 32 in the space B26 so that the temperature of the circulating air is efficiently increased. In particular, when the material to be dried α is a food, it is possible to prevent odors and soot from adhering due to combustion.
[0043]
As described above, in the fluidized dryer according to the second embodiment, the exhaust gas after combustion of the burner 15 can be selected from any one of the above three types depending on the type of material to be dried. Aim can be achieved.
[0044]
In FIG. 9, the flow of the fluid dryer according to the second embodiment is shown in a block diagram, and is input to the control device 34 using the pressure sensor 24 and the temperature sensor 27, and the relationship with each device. FIG. 10 further shows each control as a flowchart.
[0045]
In FIG. 9, the ventilation from the ventilation device 5 passes through the vicinity of the far-red radiator 14 from the dried material carrier 2 and circulates in the circulation process from the dust collection chamber 7 to the ventilation device 5. Is sent to the blower 30 through the screw conveyor 29, the dust β is collected by the dust collector 13, and only the wind (air) is discharged out of the machine.
[0046]
A pressure sensor 24 is provided in the space A25 between the dry matter transport body 2 and the far-red radiator 14 in the circulation process, and a temperature sensor is provided in the space B26 between the dust collection chamber 7 and the ventilation device 5. 27 is provided, and the pressure sensor 24 and the temperature sensor 27 are respectively connected to the input unit of the control device 34, and the control device 34 responds to the input signal of the pressure sensor 24 and the temperature sensor 27 to burner 15 and the blower 30. The output of is controlled.
[0047]
When the fluid dryer 1 is operated, the ventilation device 5, the screw conveyor 29, and the blower 30 are activated, the burner 15 starts combustion, and the pressure sensor 24 and the temperature sensor 27 start their respective measurements. In the pressure sensor 24, the pressure of the circulating air is controlled by discharging a part of the circulating air in the fluid dryer 1 to the outside by the blower 30 so that the static pressure in the space A25 falls within the set range, and the temperature sensor. 27 is for adjusting the amount of combustion through a signal from the control device 34 so that the temperature of the space B26 falls within the set range.
[0048]
When the temperature in the fluidized dryer 1 rises due to combustion of the burner 15 and the temperature of the space B26 reaches the specified range, the valve 20 is activated to start supplying the material to be dried α onto the dry matter transporter 2. As the material to be dried α spreads on the dry material transport body 2, the static pressure in the machine body starts to change due to a decrease in the temperature of the circulating air or the resistance to the air to be dried α.
[0049]
Since the temperature of the circulating wind is measured by the temperature sensor 27 in the space B26, the amount of decrease (decreased temperature) is transmitted to the control unit 34 as a signal, and the burner 15 is combusted so that the temperature of the circulating wind is always within the set range. The amount is increased, and the set range is maintained during operation thereafter. Further, the static pressure in the space A25 is also measured by the pressure sensor 24, and the air volume of the blower 30 is changed according to the amount of change in the static pressure to control the pressure within the set range, and thereafter, this is maintained. Is.
[0050]
The material to be dried α is filled on the surface of the dried material carrier 2 by the constant supply of the valve 20 of the supply device 3, and receives the far-infrared γ from the far-infrared radiator 14 to transfer moisture to the surface. The dried material α on the surface near the terminal end 18 of the dried product transport body that has been dried and floated and settled by the action of the circulating air and the stirrer 9 is exhausted from the side overflow port 16 to the outside of the machine, The drying of the discharged material α to be discharged ends here.
[0051]
The dust β collected in the dust collecting path 8 of the dust collecting chamber 7 is sent to the blower 30 by the screw conveyor 29 and is transferred from the blower 30 into the dust collector 13, and the dust β and the wind in the dust collector. The dust β is accumulated in the dust collector 13 and the wind is discharged outside the apparatus.
[0052]
When the drying operation of the fluidized dryer 1 is completed, a stop operation is started from the control device. First, the valve 20 is quickly stopped to stop the material to be dried α, and then the combustion of the burner 15 is stopped. After the burner combustion is stopped, the ventilation device 5 and the screw conveyor 29 are stopped after the set time. Even after the ventilation device 5 is stopped, the blower 30 operates until the temperature sensor 27 in the space B26 falls below the set range, sucks outside air from the side overflow port 16, cools the inside of the fluid dryer 1, and the temperature sensor is set within the set range. If it becomes below, the air blower 30 will stop and all the drying processes will be complete | finished.
[0053]
The thing to be dried that can be dried by the fluidized dryer according to the second embodiment of the present invention can dry a wide variety of things, for example, fishing baits, seaweed pellets, seaweed fertilizer, salmon, okara, sawdust, etc. are dried. It is possible, the temperature of each circulating air varies depending on the type of material to be dried,
Dried product name Circulating air temperature (space B) Drying initial moisture Drying moisture
Fishing feed 60-80 ° C 13% → 6.5%
Seaweed pellets 80-130 ℃ 35% → 25%
Sawdust 60-80 ℃ 65% → 20%
The above has been found from experiments.
[0054]
In the above drying experiment, the circulating air flow is most suitable for fluidized drying at a wind speed of 0.5 to 3.0 m / s, and the static pressure in the space A25 ranges from 0 to −50 Pa by the experiment. I found it good. This static pressure range is such that the outside air is slightly sucked into the fluid dryer 1 from the side overflow port 16 and the dust β is not scattered from the side overflow port 16 so that the dried product α of the finished product is not mixed with dust. It also serves as a slight cooling action of the dried product α, and it has been found that the air volume of 1/4 to 1/10 of the circulating air volume in the fluid dryer 1 is this value.
[0055]
【The invention's effect】
According to the present invention, to-be-dried material is continuously put on the dried material carrier, and dust generated in the drying process by far-infrared radiation, ventilation and agitation is applied to the to-be-dried material staying at a constant layer thickness. A good working environment can be provided without discharging to the outside of the machine, and at the same time, a dust fire or dust burning odor caused by the dust contained in the circulating wind adhering to the far-infrared radiator Therefore, it is possible to obtain a high quality dried product.
[0056]
In addition, since the circulating air is exhausted outside the machine by a blower so as to maintain a static pressure of 0 to -50 Pa in the space between the dry material carrier having the lateral overflow and the far-infrared radiation structure, scattering of dust from the lateral overflow Since the dried product does not contain dust, the quality of the dried product can be further maintained.
[0057]
And, since the entire dust transporting process or fluidized dryer apparatus has a heat insulating structure, the water vapor generated in the drying process from the object to be dried prevents the dew condensation phenomenon that occurs due to contact with the low temperature part (outside air), Good dust collection and uniform ventilation of the circulating air are possible.
[0058]
Furthermore, after radiating far-infrared rays in burner combustion, the burner's combustion gas discharge method can be selected to be either outside the machine, inside the machine, or via the machine, outside the machine. For drying foods that do not like gas mixing, use only far-infrared radiation, or after the far-infrared radiation, the combustion gas is re-introduced into the machine and heat is taken into the machine by an indirect overheating method to increase the temperature of the drying air in the machine. For dry matter that is desiccated for drying methods and drying time other than food, the temperature inside the machine can be increased efficiently by directly introducing exhaust gas after far-red radiation into the machine. According to the purpose, it is possible to select a drying configuration.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a fluid drying apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic perspective view of a fluidized drying apparatus according to an embodiment of the present invention.
FIG. 3 is a schematic longitudinal sectional front view of a fluidized drying apparatus according to an embodiment of the present invention.
FIG. 4 is a front cross-sectional view of a fluid drying apparatus showing a second embodiment of the present invention.
FIG. 5 is a perspective cross-sectional view of a fluidized drying apparatus showing a second embodiment of the present invention.
FIG. 6 is a side cross-sectional view of a fluid drying apparatus showing a second embodiment of the present invention.
FIG. 7 is a perspective view of a fluidized drying apparatus showing a combustion exhaust method according to a second embodiment of the present invention.
FIG. 8 is a perspective view of a fluidized drying apparatus showing another example of the combustion exhaust method according to the second embodiment of the present invention.
FIG. 9 is a block diagram illustrating an example of the second embodiment of the present invention.
FIG. 10 is a flowchart showing an example of the second embodiment of the present invention.
[Explanation of symbols]
1 Fluid dryer
2 Dry material carrier
3 Supply device
4 Far-infrared radiation configuration
5 Ventilation device
6 Airways
7 Dust collection room
8 Dust collection path
9 Stirrer
10 Gas ejection surface
11 Conveying means
12 Air blowing means
13 Dust collector
14 Far-red radiator
15 Burner
16 Side overflow
17 The beginning of the dry product carrier
18 End of dried product carrier
19 Partition
20 valves
21 Hopper
22 Case
23 Suction port
24 Pressure sensor
25 Space A
26 Space B
27 Temperature sensor
28 Connection pipe
29 Screw conveyor
30 Blower
31 Thermal insulation
32 Exhaust pipe
33 Exhaust port
34 Control device
α To be dried
β dust
γ far infrared

Claims (10)

水平方向に終始端に渡って凹溝構成で、底面が小孔開口した気体噴出面からなる被乾燥物を通風しながら搬送する乾燥物搬送体と、乾燥物搬送体の始端には乾燥物搬送体上に被乾燥物を連続的に投入する供給装置と、乾燥物搬送体の上部には被乾燥物に遠赤外線を照射する遠赤外線放射構成を備え、通風装置で乾燥物搬送体の気体噴出面から被乾燥物に通風させ、被乾燥物が通風を受け浮上、沈降を繰り返しながら乾燥物搬送体の終端で表層の被乾燥物が横溢口から順次横溢する流動乾燥装置であって、乾燥物搬送体の長手方向に渡って風路で接続された塵埃収集室を隣接して設けたことを特徴とする流動乾燥装置。Conveyed dried material transport body that conveys the material to be dried, which is composed of a gas jetting surface with a small opening at the bottom, and a dry material transport to the starting end of the dried material transport body. Equipped with a supply device that continuously feeds the object to be dried onto the body, and a far infrared radiation configuration that irradiates the object to be dried with far infrared radiation on the upper part of the dried object carrier, and the gas blown out of the dried object carrier by the ventilation device This is a fluidized-drying device in which the material to be dried overflows in sequence from the overflow outlet at the end of the dry material transport body while the material to be dried is floated, floated, and settled repeatedly from the surface. A fluid drying apparatus characterized in that a dust collecting chamber connected by an air passage is provided adjacent to the longitudinal direction of the carrier. 水平方向に終始端に渡って凹溝構成で、底面が小孔開口した気体噴出面からなる被乾燥物を通風しながら搬送する乾燥物搬送体と、乾燥物搬送体の始端には乾燥物搬送体上に被乾燥物を連続的に投入する供給装置と、乾燥物搬送体の上部には被乾燥物に遠赤外線を照射する遠赤外線放射構成を備え、通風装置で乾燥物搬送体の気体噴出面から被乾燥物に通風させ、被乾燥物が通風を受け浮上、沈降を繰り返しながら乾燥物搬送体の終端で表層の被乾燥物が横溢口から順次横溢する流動乾燥装置であって、乾燥物搬送体の長手方向に渡って風路で接続された塵埃収集室を隣接して設け、塵埃収集室で集塵後の排風を乾燥物搬送体の気体噴出面から再度被乾燥物に通風することを特徴とする流動乾燥装置。Conveyed dried material transport body that conveys the material to be dried, which is composed of a gas jetting surface with a small opening at the bottom, and a dry material transport to the starting end of the dried material transport body. Equipped with a supply device that continuously feeds the object to be dried onto the body, and a far infrared radiation configuration that irradiates the object to be dried with far infrared radiation on the upper part of the dried object carrier, and the gas blown out of the dried object carrier by the ventilation device This is a fluidized-drying device in which the material to be dried overflows in sequence from the overflow outlet at the end of the dry material transport body while the material to be dried is floated, floated, and settled repeatedly from the surface. A dust collection chamber connected by an air passage across the longitudinal direction of the transport body is provided adjacent to it, and the exhausted air after dust collection in the dust collection chamber is again passed from the gas ejection surface of the dry product transport body to the object to be dried. Fluidized drying apparatus characterized by the above. 塵埃収集室には乾燥物搬送体と平行して塵埃収集路を設けたことを特徴とする請求項1又は請求項2記載の流動乾燥装置。The fluidized drying apparatus according to claim 1 or 2, wherein a dust collecting path is provided in the dust collecting chamber in parallel with the dry matter carrier. 塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路は、天面が凹形状であることを特徴とする請求項1ないし請求項3のいずれか記載の流動乾燥装置。The fluidized drying apparatus according to any one of claims 1 to 3, wherein a top surface of the dust collecting path provided in the dust collecting chamber in parallel with the dry matter carrier is concave. 乾燥物搬送体の長手方向に渡って接続された塵埃収集室に至る風路は、乾燥物搬送体の上部から塵埃収集路に渡り周面が円弧形状であることを特徴とする請求項1ないし請求項3のいずれか記載の流動乾燥装置。The air passage leading to the dust collecting chamber connected in the longitudinal direction of the dry matter transport body has an arc shape extending from the upper part of the dry matter transport body to the dust collection passage. The fluidized drying apparatus according to claim 3. 塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路には、塵埃を塵埃収集路の一端方向に搬送する搬送手段と、搬送手段によって一端に集められた塵埃を空気搬送させる送風手段と、送風手段で空気搬送された塵埃を収集する粉塵収集器とをそれぞれ接続したことを特徴とする請求項1ないし請求項5のいずれか記載の流動乾燥装置。The dust collection path provided in the dust collection chamber in parallel with the dry matter transport body has a transport means for transporting the dust toward one end of the dust collection path, and a blower means for transporting the dust collected at one end by the transport means by air. 6. The fluid drying apparatus according to claim 1, wherein a dust collector that collects dust conveyed by air by a blowing means is connected to each other. 塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路の一端方向に搬送する搬送手段の終端と、搬送手段によって一端に集められた塵埃を空気搬送させる送風手段と、送風手段で空気搬送された塵埃を収集する粉塵収集器までを断熱構成としたことを特徴とする請求項1ないし請求項6のいずれか記載の流動乾燥装置。The end of the transport means for transporting the dust collection chamber in the direction of one end of the dust collection path provided in parallel to the dry matter transport body in the dust collection chamber, the air blowing means for transporting the dust collected at one end by the transport means, and the air by the air blow means The fluidized drying apparatus according to any one of claims 1 to 6, characterized in that a part up to the dust collector that collects the transported dust is heat-insulated. 乾燥物搬送体と、遠赤外線放射構成と、通風装置と乾燥物搬送体の終端で表層の被乾燥物が順次横溢する横溢口と、塵埃収集室と、塵埃収集室に乾燥物搬送体と平行に設けられた塵埃収集路の一端方向に搬送する搬送手段の終端と、搬送手段によって一端に集められた塵埃を空気搬送させる送風手段と、送風手段で空気搬送された塵埃を収集する粉塵収集器までを断熱構成としたことを特徴とする請求項1ないし請求項7のいずれか記載の流動乾燥装置。Dry material carrier, far-infrared radiation structure, ventilator and lateral overflow outlet where the dried material on the surface layer sequentially overflows at the end of the dry material carrier, the dust collection chamber, and the dust collection chamber parallel to the dry matter carrier The end of the transport means for transporting in the direction of one end of the dust collecting path provided in the air, the blower means for transporting the dust collected at one end by the transport means to the air, and the dust collector for collecting the dust transported by the air by the blower means The fluidized drying apparatus according to any one of claims 1 to 7, characterized by having a heat-insulating configuration. 遠赤外線放射構成は、遠赤外線放射体内でのバーナ燃焼による遠赤外線の放射であって、燃焼ガスは遠赤外線放射後に機外に排出、または遠赤外線放射後に塵埃収集室内に排出、または遠赤外線放射後に塵埃収集室内を経て機外に排出のいずれかを選択できるように構成したことを特徴とする請求項1ないし請求項8のいずれか記載の流動乾燥装置。The far-infrared radiation configuration is far-infrared radiation by burner combustion in the far-infrared radiation body, and the combustion gas is discharged outside after the far-infrared radiation, is discharged into the dust collection chamber after the far-infrared radiation, or the far-infrared radiation 9. The fluid drying apparatus according to claim 1, wherein either one of the discharges can be selected outside through the dust collection chamber. 乾燥物搬送体と遠赤外線放射構成との間の空間の静圧を0から−50Paとしたことを特徴とする請求項1ないし請求項9のいずれか記載の流動乾燥装置。The fluidized-drying device according to any one of claims 1 to 9, wherein a static pressure in a space between the dried product carrier and the far-infrared radiation structure is 0 to -50 Pa.
JP2003202786A 2003-07-29 2003-07-29 Fluid dryer Expired - Fee Related JP3952470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202786A JP3952470B2 (en) 2003-07-29 2003-07-29 Fluid dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202786A JP3952470B2 (en) 2003-07-29 2003-07-29 Fluid dryer

Publications (2)

Publication Number Publication Date
JP2005048964A JP2005048964A (en) 2005-02-24
JP3952470B2 true JP3952470B2 (en) 2007-08-01

Family

ID=34262363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202786A Expired - Fee Related JP3952470B2 (en) 2003-07-29 2003-07-29 Fluid dryer

Country Status (1)

Country Link
JP (1) JP3952470B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL211481B1 (en) * 2007-05-30 2012-05-31 Int Tobacco Machinery Poland The manner of increase of efficiency of dryer, especially stream dryer
WO2017195922A1 (en) * 2016-05-13 2017-11-16 장태균 Descending air current type infrared ray conveyor continuous drying apparatus
PL231842B1 (en) * 2017-04-10 2019-04-30 Gozdz Jan Eureka Inzynieria Spozywcza Doradztwo I Projektowanie Method and the device for drying and thermal setting of biological materials, including the grains of plant raw materials, preferably sesame
KR102478165B1 (en) * 2018-09-28 2022-12-16 주식회사 엘지화학 Apparatus for drying particles
KR102607930B1 (en) * 2018-10-31 2023-12-01 주식회사 엘지화학 Apparatus for drying particles
CN111977104B (en) * 2020-09-01 2021-04-09 嘉施利(宜城)化肥有限公司 Preparation method of binary compound fertilizer

Also Published As

Publication number Publication date
JP2005048964A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
CN1048806C (en) System for drying objects
JP3952470B2 (en) Fluid dryer
KR20180116220A (en) Energy saving and environmental protection integrated multi-stage microwave fluidized bed drying system and treatment method
US6487790B2 (en) Apparatus for continuously drying unpackaged food products, in particular vegetables
JP2011521198A (en) Drying method and dryer for drying an object made of an organic substance
CN111578660A (en) Dust-removing drier
JP4349581B2 (en) Fluid dryer
JP4435605B2 (en) Sawdust drying equipment
JP4561777B2 (en) Far infrared grain dryer
JP2004138367A (en) Magnetron drying device
JP2019060541A (en) Grain drying facility, and heat supply device
CN217654259U (en) Circulating air path device applied to feed dryer
RU2479808C1 (en) Seed and grain infrared drying method, and device for its implementation
JP2005265262A (en) Sawdust drying device
JP2002160218A (en) Dryer for synthetic resin particulate material
JP2005009732A (en) Grain far-infrared dryer
JP4019657B2 (en) Far infrared grain dryer
JP2005009731A (en) Grain far-infrared dryer
US2673403A (en) Device for drying materials by means of ventilation
SU922463A1 (en) Device for combined drying of polydispersed materials
JP3332789B2 (en) Grain far-infrared dryer
JP3985604B2 (en) Garbage disposal equipment
JP2016138742A (en) Drier and method of manufacturing dry flammable substance
JP2568913B2 (en) Grain far-infrared hot air dryer
US705849A (en) Apparatus for drying grain, &c.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees