JP2002294405A - Steel tube superior in formability and the production method for the same - Google Patents

Steel tube superior in formability and the production method for the same

Info

Publication number
JP2002294405A
JP2002294405A JP2001103655A JP2001103655A JP2002294405A JP 2002294405 A JP2002294405 A JP 2002294405A JP 2001103655 A JP2001103655 A JP 2001103655A JP 2001103655 A JP2001103655 A JP 2001103655A JP 2002294405 A JP2002294405 A JP 2002294405A
Authority
JP
Japan
Prior art keywords
steel pipe
formability
less
steel
diameter reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001103655A
Other languages
Japanese (ja)
Other versions
JP4567907B2 (en
Inventor
Yasuhiro Shinohara
康浩 篠原
Nobuhiro Fujita
展弘 藤田
Naoki Yoshinaga
直樹 吉永
Hitoshi Asahi
均 朝日
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001103655A priority Critical patent/JP4567907B2/en
Publication of JP2002294405A publication Critical patent/JP2002294405A/en
Application granted granted Critical
Publication of JP4567907B2 publication Critical patent/JP4567907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel tube with excellent formability in hydro-forming or the like, and a production method for the same. SOLUTION: This steel tube has an excellent formability characterized by the r value of 1.5 or more in the axial direction of tube, the average value of X-ray random intensity ratio of 2.0 or more in the group of directions of 110}<110>- 111}<110> on the plane at one half of the thickness of the steel sheet face, the X-ray random intensity ration of 3.0 or more in the direction of 110}<110> on the plane at one half of the thickness of the steel sheet face and the average value of X-ray random intensity ratio of 3.0 or less in the group of directions of 100}<110>- 223}<110> on the plane at one half of the thickness of the steel sheet face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車のパ
ネル類、足廻り、メンバー等に用いられる鋼管とその製
造方法に関し、特に、ハイドロフォーミング法にて成形
したこれら用途に適した鋼管とその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe used for, for example, automobile panels, undercarriages, members, and the like, and a method of manufacturing the same. In particular, a steel pipe formed by a hydroforming method and suitable for these uses and a method of manufacturing the same. It is about the method.

【0002】[0002]

【従来の技術】自動車の軽量化ニーズに伴い、鋼板の高
強度化が望まれており、これにより板厚減少による軽量
化や衝突時の安全性向上が可能となる。また、最近では
複雑な形状の部材については、高強度鋼の鋼管をハイド
ロフォーミング法(特開平10−175027号公報参
照)によって成形加工する試みが行われている。これ
は、自動車の軽量化や低コストのニーズに伴う部品数の
減少や溶接フランジ箇所の削減を狙ったものである。こ
のように、ハイドロフォームなどの新しい成形加工方法
が実際に使用されることで、コスト低減や設計の自由度
が拡大される等の大きなメリットが期待できる。このハ
イドロフォーム成形のメリットを十分に生かすために
は、この新しい成形方法に適した材料が必要となる。本
発明者らは、既に特願2000−52574号により集
合組織を制御した成形性に優れた鋼管について提案して
いる。
2. Description of the Related Art Along with the need to reduce the weight of an automobile, it is desired to increase the strength of a steel sheet. This makes it possible to reduce the thickness of the steel sheet and improve the safety in a collision. Recently, for members having a complicated shape, attempts have been made to form a high-strength steel pipe by a hydroforming method (see Japanese Patent Application Laid-Open No. 10-175027). This aims to reduce the number of parts and reduce the number of weld flanges due to the need for weight reduction and low cost of automobiles. As described above, by using a new forming method such as hydroforming, a great advantage such as a reduction in cost and an increase in design freedom can be expected. In order to make full use of the advantages of this hydroform molding, materials suitable for this new molding method are required. The present inventors have already proposed in Japanese Patent Application No. 2000-52574 a steel pipe having a controlled texture and excellent formability.

【0003】[0003]

【発明が解決しようとする課題】このような状況におい
て、ハイドロフォーム成形に対しては、これまで以上に
高強度の鋼管への要求が高まり、しかもより高い成形性
が要求されることは必至と考えられる。本発明は、より
一層成形性に優れ、しかも低コストの鋼管とその製造方
法を提供することを目的とする。
In such a situation, there is an increasing demand for hydroform molding for a steel pipe having higher strength than ever, and it is inevitable that a higher formability is required. Conceivable. An object of the present invention is to provide a steel pipe which is more excellent in formability and which is inexpensive, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、ハイドロフォ
ーム等の成形性に優れた材料の集合組織およびその制御
方法を見いだし、これら制御方法の条件を特定すること
で新たなハイドロフォーム成形性に優れた鋼管とその製
造方法を提案するもので、その要旨は次のとおりであ
る。 (1)質量%で、C :0.0005〜0.5%、S
i:0.001〜2.0%、Mn:0.01〜3.0
%、を含有し、残部Feおよび不可避的不純物からなる
鋼管で、引張強度TS(MPa)と一様伸びU.EL
(%)の関係が TS+60U.EL>1300 を満たし、かつ鋼管板厚1/2での板面の{110}<
110>〜{111}<110>の方位群のX線ランダ
ム強度比の平均が2.0以上、および鋼管板厚1/2で
の板面の{110}<110>のX線ランダム強度比が
3.0以上の何れか一方または両方の集合組織を有する
ことを特徴とする成形性に優れた鋼管。 (2)前記鋼管の集合組織が、鋼管板厚1/2での板面
の{100}<110>〜{223}<110>の方位
群のX線ランダム強度比の平均、および鋼管板厚1/2
での板面の{100}<110>のX線ランダム強度比
の何れか一方または両方が3.0以下の集合組織を有す
ることを特徴とする上記(1)記載の成形性に優れた鋼
管。 (3)前記鋼管の集合組織が、鋼管板厚1/2での板面
の{100}<100>のX線ランダム強度比が1以上
8以下の集合組織を有することを特徴とする上記(1)
または(2)記載の成形性に優れた鋼管。 (4)前記鋼管の管軸方向のr値が1.5以上を満たす
ことを特徴とする上記(1)〜(3)の何れかの項に記
載の成形性に優れた鋼管。 (5)前記鋼管が、質量%で、更にAl:0.3%以
下、P:0.1%以下含有することを特徴とする上記
(1)〜(4)の何れかの項に記載の成形性に優れた鋼
管。 (6)前記鋼管が、質量%で、更にTi,Zr,V,N
b,Mgの一種または二種以上を合計で0.001〜
0.5%含有することを特徴とする上記(1)〜(5)
の何れかの項に記載の成形性に優れた鋼管。 (7)前記鋼管が、質量%で、更に、Cr,Cu,N
i,Co,W,Moの1種または2種以上を合計で0.
001〜3.0%含有することを特徴とする上記(1)
〜(6)の何れかの項に記載の成形性に優れた鋼管。 (8)前記鋼管が、質量%で、更にBが0.001〜
0.01%含有することを特徴とする上記(1)〜
(7)の何れかの項に記載の成形性に優れた鋼管。 (9)前記鋼管が、金属組織の体積率で50%以上がフ
ェライトからなり、フェライト粒の結晶粒径が0.5〜
500μmの範囲を有し、かつ平均粒径が10μm以上
のフェライト粒を有することを特徴とする上記(1)〜
(7)の何れかの項に記載の成形性に優れた鋼管。 (10)上記(1)〜(8)の何れかの項に記載の成形
性に優れた鋼管の製造において、母管を造管後、Ac3
変態点+80℃以上、1350℃以下の温度に加熱後、
Ar3 変態点以上、Ar3 変態点+200℃の温度領域
で縮径率25%以上の縮径加工を行うことを特徴とする
成形性に優れた鋼管の製造方法。 (11)上記(1)〜(8)の何れかの項に記載の成形
性に優れた鋼管の製造において、母管を造管後、Ac3
変態点+80℃以上、1350℃以下の温度に加熱後、
Ar3 変態点以上、Ar3 変態点+200℃の温度領域
で縮径率25%以上の縮径加工を行い、引き続きAr3
変態点以下で縮径率2〜20%の縮径加工後、Ar3
態点−100℃以上、Ar3 変態点以下で縮径加工を終
了することを特徴とする成形性に優れた鋼管の製造方
法。 (12)前記記載の成形性に優れた鋼管の製造におい
て、縮径加工後の鋼管の板厚変化が、−30%〜+20
%であることを特徴とする成形性に優れた鋼管の製造方
法。
DISCLOSURE OF THE INVENTION The present invention finds a texture of a material having excellent formability such as a hydroform and a control method thereof, and specifies a condition of the control method to provide a new form of hydroform. It proposes an excellent steel pipe and its manufacturing method, and the gist is as follows. (1) In mass%, C: 0.0005 to 0.5%, S
i: 0.001 to 2.0%, Mn: 0.01 to 3.0
%, With the balance being Fe and inevitable impurities, having a tensile strength TS (MPa) and uniform elongation U.P. EL
(%) Is TS + 60U. EL> 1300 and {110} <
The average of the X-ray random intensity ratio of the orientation group of 110> to {111} <110> is 2.0 or more, and the X-ray random intensity ratio of {110} <110> on the sheet surface at a steel pipe sheet thickness of 1/2. Characterized by having one or both textures of 3.0 or more. (2) The texture of the steel pipe has an average of the X-ray random intensity ratios of the {100} <110> to {223} <110> orientation groups of the sheet surface at a steel pipe thickness of 1 /, and the steel pipe thickness. 1/2
Characterized in that one or both of the X-ray random intensity ratios of {100} <110> on the sheet surface in the above have a texture of 3.0 or less, the steel pipe having excellent formability according to the above (1), . (3) The texture of the steel pipe has a texture in which the X-ray random intensity ratio of {100} <100> of the plate surface at a steel pipe plate thickness of 1/2 is 1 or more and 8 or less. 1)
Or a steel pipe excellent in formability according to (2). (4) The steel pipe excellent in formability according to any one of the above (1) to (3), wherein the r value in the pipe axis direction of the steel pipe satisfies 1.5 or more. (5) The steel pipe according to any one of (1) to (4), wherein the steel pipe further contains Al: 0.3% or less and P: 0.1% or less by mass%. Steel tube with excellent formability. (6) The steel pipe has a mass percentage of Ti, Zr, V, N
b, one or more of Mg in total of 0.001 to
(1) to (5), characterized by containing 0.5%.
The steel pipe excellent in formability according to any one of the above items. (7) The steel pipe contains Cr, Cu, and N in mass%.
One, two or more of i, Co, W, and Mo are used in a total of 0.
(1) characterized by containing 001 to 3.0%.
A steel pipe excellent in formability according to any one of (6) to (6). (8) The steel pipe is in mass%, and B is 0.001 to
(1) to (1), which are contained at 0.01%.
The steel pipe excellent in formability according to any one of the above items (7). (9) In the steel pipe, at least 50% by volume of the metal structure is made of ferrite, and the crystal grain size of the ferrite grains is 0.5 to 0.5%.
(1) to (1) to (4), wherein the ferrite particles have a range of 500 μm and have an average particle size of 10 μm or more.
The steel pipe excellent in formability according to any one of the above items (7). (10) In the production of a steel pipe excellent in formability according to any one of the above (1) to (8), after producing a mother pipe, Ac 3
After heating to the transformation point + 80 ° C or higher and 1350 ° C or lower,
A method for producing a steel pipe excellent in formability, comprising performing diameter reduction processing at a diameter reduction ratio of 25% or more in a temperature range of an Ar 3 transformation point or more and an Ar 3 transformation point + 200 ° C. (11) In the production of a steel pipe excellent in formability according to any one of the above (1) to (8), after producing a mother pipe, Ac 3
After heating to the transformation point + 80 ° C or higher and 1350 ° C or lower,
Ar 3 transformation point or higher, subjected to diameter reduction of radial contraction rate of 25% or more at a temperature range of Ar 3 transformation point + 200 ° C., subsequently Ar 3
A steel pipe excellent in formability, characterized in that after diameter reduction at a transformation point or lower and a diameter reduction ratio of 2 to 20%, diameter reduction processing is completed at an Ar 3 transformation point of −100 ° C. or more and an Ar 3 transformation point or less. Production method. (12) In the manufacture of a steel pipe having excellent formability as described above, the change in the thickness of the steel pipe after the diameter reduction is from -30% to +20.
%. A method for producing a steel pipe having excellent formability, wherein

【0005】[0005]

【発明の実施の形態】ハイドロフォームをはじめとした
これまでにない厳しい加工に耐えうる鋼管に必要な材質
のひとつに一様伸びがある。一般に、一様伸びは引張強
度の上昇に伴い低下する。今後予想される厳しい加工に
耐えうる成形性に優れた鋼管として、引張強度TS(M
Pa)と一様伸びU.EL(%)との関係は、TS+6
0U.EL>1300を満たすことが必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the necessary materials for a steel pipe capable of withstanding unprecedented severe processing such as hydroforming is uniform elongation. Generally, uniform elongation decreases with increasing tensile strength. As a steel pipe excellent in formability that can withstand severe processing expected in the future, tensile strength TS (M
Pa) and uniform elongation. The relationship with EL (%) is TS + 6
0U. It is necessary to satisfy EL> 1300.

【0006】このような制約下で、たとえば枝張り成型
のような絞り加工が支配的となる加工において良好であ
るためには、r値が高いことが重要となる。r値向上は
集合組織形成の工夫によって達成される。発明者らは、
鋼管の縮径加工によって鋼管の管軸方向r値を高めるこ
とが出来る知見を新たに見出し、一様伸びが高くかつ管
軸方向のr値が高い鋼管及び製造方法について明らかに
した。
Under these restrictions, a high r value is important for good processing in which drawing is dominant, such as branching, for example. The improvement of the r value is achieved by devising the texture formation. The inventors have
A new finding was found that can increase the r value in the pipe axis direction of a steel pipe by reducing the diameter of the steel pipe, and clarified a steel pipe having a high uniform elongation and a high r value in the pipe axis direction and a manufacturing method.

【0007】以下に、本発明を詳細に説明する。まず、
上記(1)の要件について説明する。成分含有量は質量
%である。 C:高強度化に有効で0.0005%以上の添加とする
が、集合組織を制御する上では過度の添加は好ましいも
のではなく、上限を0.50%とする。0.001〜
0.3%がより好ましく、0.002〜0.2%がさら
に好ましい範囲である。
Hereinafter, the present invention will be described in detail. First,
The requirement (1) will be described. The component content is% by mass. C: Addition of 0.0005% or more is effective for increasing the strength, but excessive addition is not preferable in controlling the texture, and the upper limit is set to 0.50%. 0.001
0.3% is more preferable, and 0.002 to 0.2% is a still more preferable range.

【0008】Si:安価に機械的強度を高めることが可
能であり、要求される強度レベルに応じて添加すれば良
いが、過剰の添加はメッキのぬれ性や加工性の劣化を招
くばかりか良好な集合組織形成を阻害するので、上限を
2.0%とした。下限を0.001%としたのは、これ
未満とするのは製鋼技術上困難なためである。 Mn:高強度化に有効な元素であるため下限を0.01
%とした。また、Mnは変態中のバリアント選択に好ま
しい影響を与え、集合組織を改善する効果を有するの
で、0.5%以上の添加が好ましい。一方で過剰の添加
は延性の低下を招くため、上限を3.0%とした。
Si: It is possible to increase mechanical strength at low cost, and it is sufficient to add Si according to the required strength level. However, excessive addition not only causes deterioration of wettability and workability of plating, but also is good. Therefore, the upper limit was set to 2.0%, since the formation of an unusual texture was inhibited. The lower limit is set to 0.001% because the lower limit is difficult due to steelmaking technology. Mn: Since the element is effective for increasing the strength, the lower limit is 0.01.
%. Further, since Mn has a favorable effect on variant selection during transformation and has an effect of improving texture, it is preferable to add 0.5% or more. On the other hand, since excessive addition causes a decrease in ductility, the upper limit is set to 3.0%.

【0009】鋼板の1/2板厚での板面の{110}<
110>〜{111}<110>の方位群および{11
0}<110>のX線ランダム強度比:ハイドロフォー
ム成形等を行う上で最も重要な特性値である。板厚中心
位置での板面のX線回折を行い、ランダム試料に対する
各方位の強度比を求めたときの、{110}<110>
〜{111}<110>の方位群での平均が2.0以上
とした。
The {110} <of the plate surface at a half plate thickness of the steel plate
Orientation group of {110> to {111} <110> and {11}
X-ray random intensity ratio of 0 ラ ン ダ ム <110>: the most important characteristic value in performing hydroform molding or the like. {110} <110> when X-ray diffraction of the plate surface at the plate thickness center position was performed and the intensity ratio of each direction with respect to the random sample was obtained.
The average in the orientation group of {111} <110> was 2.0 or more.

【0010】この方位群に含まれる主な方位は{11
0}<110>,{661}<110>,{441}<
110>,{331}<110>,{221}<110
>である。これらは深絞り冷延鋼板を素材として電縫溶
接などによって単に鋼管にしたのでは得られない結晶方
位群である。また本発明では、高r値冷延鋼板の代表的
な結晶方位である{111}<112>や{554}<
225>はほとんどなく、これらはいずれも2.0以
下、さらに好ましくは1.0未満である。これらの各方
位のX線ランダム強度比は{110}極点図よりベクト
ル法により計算した3次元集合組織や、{110},
{100},{211},{310}極点図のうち複数
の極点図を基に級数展開法で計算した3次元集合組織か
ら求めればよい。
The main azimuth included in this azimuth group is $ 11.
0} <110>, {661} <110>, {441} <
110>, {331} <110>, {221} <110
>. These are crystal orientation groups that cannot be obtained simply by forming a steel pipe from a deep drawn cold-rolled steel sheet as a material by electric resistance welding or the like. In the present invention, {111} <112> and {554} <, which are typical crystal orientations of a high r-value cold-rolled steel sheet, are used.
225> is scarcely present, and these are all 2.0 or less, more preferably less than 1.0. The X-ray random intensity ratio in each of these directions can be calculated from the three-dimensional texture calculated by the vector method from the {110} pole figure, {110},
What is necessary is just to obtain | require from the three-dimensional texture calculated by the series expansion method based on several pole figures among {100}, {211}, and {310} pole figures.

【0011】たとえば、後者の方法によって各結晶方位
のX線ランダム強度比を求めるには、3次元集合組織の
φ2=45°断面における(110)[1−10],
(661)[1−10],(441)[1−10],
(331)[1−10],(221)[1−10]の強
度で代表させる。なお、本発明の集合組織は通常の場
合、φ2=45°断面において上記の方位群の範囲内に
最高強度を有し、この方位群から離れるにしたがって徐
々に強度レベルが低下するが、X線の測定精度の問題や
鋼管製造時の軸周りのねじれの問題、X線試料作製の精
度の問題などを考慮すると、最高強度を示す方位がこれ
らの方位群から±5°ないし10°程度ずれる場合も有
りうる。
For example, to determine the X-ray random intensity ratio of each crystal orientation by the latter method, the (110) [1-10],
(661) [1-10], (441) [1-10],
(331) Intensity of [1-10] and (221) [1-10] are represented. Note that the texture of the present invention usually has the highest intensity within the range of the above orientation group in a section of φ2 = 45 °, and the intensity level gradually decreases as the distance from the orientation group increases. Considering the problem of measurement accuracy, twisting around the axis at the time of steel pipe production, and the problem of accuracy of X-ray sample preparation, when the orientation showing the highest intensity deviates from these orientation groups by about ± 5 ° to 10 ° Is also possible.

【0012】{110}<110>〜{111}<11
0>方位群の平均X線ランダム強度比とは、上記の各方
位のX線ランダム強度比の相加平均である。上記方位の
すべての強度が得られない場合には{110}<110
>,{441}<110>,{221}<110>の方
位の相加平均で代替しても良い。中でも、{110}<
110>は重要であり、本発明ではこの方位のX線ラン
ダム強度比が3.0以上である。また、成形困難な場合
には上記方位群の平均強度比が4.0以上でかつ{11
0}<110>の強度比が8.0以上であることが望ま
しい。
{110} <110> to {111} <11
The average X-ray random intensity ratio of the group of 0> azimuths is an arithmetic average of the X-ray random intensity ratios of the above-described directions. If all the intensities in the above orientations cannot be obtained, {110} <110
>, {441} <110>, and {221} <110> may be substituted by the arithmetic mean. Among them, {110} <
110> is important, and in the present invention, the X-ray random intensity ratio in this direction is 3.0 or more. When molding is difficult, the average intensity ratio of the above orientation group is 4.0 or more and # 11
It is desirable that the intensity ratio of 0} <110> be 8.0 or more.

【0013】さらに{001}<110>および{11
2}<110>は、いずれもその強度が2.0以下でな
くてはならない。これらは軸方向のr値を低下せしめる
方位だからである。好ましくは1.0以下である。その
他の方位、例えば{116}<110>,{114}<
110>,{113}<110>,{223}<110
>などの強度は特に限定しないが、これらも軸方向のr
値を低下させるので、それぞれ2.0以下であることが
好ましい。
Further, {001} <110> and {11}
Each of 2} <110> must have a strength of 2.0 or less. This is because these are the directions that decrease the r value in the axial direction. Preferably it is 1.0 or less. Other orientations, for example {116} <110>, {114} <
110>, {113} <110>, {223} <110
> And the like are not particularly limited.
In order to reduce the value, it is preferable that each is 2.0 or less.

【0014】さらに、{110}<110>をより先鋭
に発達させるため、1000℃以上の高温加熱を行いγ
域で高縮径加工した場合、変態後の集合組織は{10
0}<100>の方位が同時に発達することが新たに知
見された。{100}<100>の方位は成形後の形状
保存に良好であるが、過度に大きいとr値低下を招く。
従って、X線ランダム強度比は1以上8以下とした。
Further, in order to develop {110} <110> more sharply, γ is heated at a high temperature of 1000 ° C. or more to perform γ.
Texture after transformation is $ 10
It was newly found that the orientation of 0 ° <100> developed simultaneously. The orientation of {100} <100> is good for shape preservation after molding, but if it is excessively large, the r value will be reduced.
Therefore, the X-ray random intensity ratio is set to 1 or more and 8 or less.

【0015】{001}<110>,{116}<11
0>,{114}<110>,{113}<110>,
{112}<110>,{223}<110>のX線ラ
ンダム強度比とは、3次元集合組織のφ2=45°断面
における、(001)[1−10],(116)[1−
10],(114)[1−10],(113)[1−1
0],(112)[1−10],(223)[1−1
0]で代表させれば良い。
{001} <110>, {116} <11
0>, {114} <110>, {113} <110>,
The X-ray random intensity ratios of {112} <110> and {223} <110> are (001) [1-10] and (116) [1-
10], (114) [1-10], (113) [1-1
0], (112) [1-10], (223) [1-1
0].

【0016】鋼管のX線回折を行う場合には、鋼管より
弧状試験片を切り出し、これをプレスして平板としX線
解析を行う。また、弧状試験片から平板とするときは、
試験片加工による結晶回転の影響を避けるため極力低歪
みで行うものとし、加工により導入される歪み量の上限
を10%以下で行うこととした。このようにして得られ
た板状の試料について機械研磨や化学研磨などによって
板厚中心付近まで研磨し、バフ研磨によって鏡面に仕上
げた後、電解研磨や化学研磨によって歪みを除去すると
同時に、板厚中心層が測定面となるように調整する。な
お、鋼板の板厚中心層に偏析帯が認められる場合には、
板厚の3/8〜5/8の範囲で偏析帯のない場所につい
て測定すればよい。さらにX線測定が困難な場合には、
EBSP法やECP法により測定しても差し支えない。
When X-ray diffraction of a steel pipe is performed, an arc-shaped test piece is cut out from the steel pipe and pressed to make a flat plate for X-ray analysis. Also, when making a flat plate from an arc-shaped test piece,
In order to avoid the influence of crystal rotation due to the processing of the test piece, the processing was performed with as low a strain as possible, and the upper limit of the amount of strain introduced by the processing was set to 10% or less. The plate-like sample obtained in this manner is polished to the vicinity of the center of the plate thickness by mechanical polishing or chemical polishing, and finished to a mirror surface by buff polishing, and then the distortion is removed by electrolytic polishing or chemical polishing. Adjust so that the center layer is the measurement surface. When a segregation zone is observed in the thickness center layer of the steel sheet,
What is necessary is just to measure about the place where there is no segregation zone in the range of 3 to 5 of the plate thickness. If X-ray measurement is more difficult,
It may be measured by the EBSP method or the ECP method.

【0017】本発明の集合組織は、上述の通り板厚中心
または板厚中心近傍の面におけるX線測定結果により規
定されるが、中心付近以外の板厚においても同様の集合
組織を有することが好ましい。しかしながら鋼管の外側
表面〜板厚1/4程度までは、後述する縮径加工による
せん断変形に起因して集合組織が変化し、上記の集合組
織の要件を満たさない場合もあり得る。
As described above, the texture of the present invention is defined by the X-ray measurement results at the center of the sheet thickness or at the surface near the center of the sheet thickness. preferable. However, from the outer surface of the steel pipe to a plate thickness of about 1/4, the texture changes due to shear deformation due to the diameter reduction described below, and the above-mentioned requirements for the texture may not be satisfied.

【0018】本発明の集合組織に関する特徴は、通常の
逆極点図や正極点図だけでは表すことができないが、例
えば鋼管の半径方向の方位を表す逆極点図を板厚の中心
付近に関して測定した場合、各方位のX線ランダム強度
比は以下のようになることが好ましい。 <100>:1.5以下、<411>:1.5以下、<
211>:1.5以下、<111>:5以下、<332
>:10以下、<221>:30.0以下、<110
>:50.0以下。
Although the features relating to the texture of the present invention cannot be represented only by a normal inverse pole figure or a positive pole figure, for example, an inverse pole figure representing the radial direction of a steel pipe was measured in the vicinity of the center of the sheet thickness. In this case, the X-ray random intensity ratio in each direction is preferably as follows. <100>: 1.5 or less, <411>: 1.5 or less, <
211>: 1.5 or less, <111>: 5 or less, <332
>: 10 or less, <221>: 30.0 or less, <110
>: 50.0 or less.

【0019】また、軸方向を表す逆極点図においては、
<110>:15以上、<110>以外の全ての方位:
3以下。鋼管のr値は、集合組織の変化によって種々変
化するが、少なくとも軸方向のr値は1.5以上とな
る。製造条件によっては軸方向のr値が3.5を超える
場合もある。r値の異方性については特に限定するもの
ではないが、本発明では軸方向のr値が円周方向や半径
方向のr値よりも常に大きい。なお、例えば高r値冷延
鋼板を単に電縫溶接により鋼管とした場合、板取りによ
っては軸方向のr値が1.7以上となる場合がある。し
かしながら、本発明は既述の集合組織を有し、同時にr
値が1.5以上である点において、そのような鋼管とは
明瞭に区別されるものである。
In the reverse pole figure showing the axial direction,
<110>: 15 or more, all orientations other than <110>:
3 or less. The r-value of the steel pipe changes variously due to the change in texture, but at least the r-value in the axial direction is 1.5 or more. The r value in the axial direction may exceed 3.5 depending on the manufacturing conditions. Although the anisotropy of the r value is not particularly limited, in the present invention, the r value in the axial direction is always larger than the r value in the circumferential direction or the radial direction. For example, when a high r-value cold rolled steel sheet is simply made into a steel pipe by electric resistance welding, the r value in the axial direction may be 1.7 or more depending on the stripping. However, the present invention has the texture described above and at the same time r
It is clearly distinguished from such steel pipes in that the value is at least 1.5.

【0020】r値の評価は、JIS11号管状試験片ま
たはJIS12号弧状試験片によって行えば良い。その
ときの歪量は伸び率15%で評価するが、均一伸びが1
5%未満のときには、均一伸びの範囲内の歪量で評価す
る。なお、試験片はシーム部以外から試料を採取するこ
とが望ましい。なお、鋼管を板状に巻き戻してJIS1
3号板状引張試験片とすると、弧状試験片よりもr値が
大きくなる傾向にあるので、板状試験片で評価する場合
には、r値は1.9以上となる。
The evaluation of the r value may be performed using a JIS No. 11 tubular test piece or a JIS No. 12 arc-shaped test piece. The amount of strain at that time is evaluated at an elongation percentage of 15%.
When it is less than 5%, it is evaluated by the amount of strain within the range of uniform elongation. In addition, it is desirable that a test piece be collected from a portion other than the seam portion. It should be noted that the steel pipe is rewound into a plate shape and JIS1
In the case of the No. 3 plate-shaped tensile test piece, the r value tends to be larger than that of the arc-shaped test piece.

【0021】本発明においては、上述した成分に加え、
以下の成分を添加することができる。 Al,Zr,Mg:脱酸元素として有効である。一方、
過剰の添加は酸化物、硫化物や窒化物の多量の晶出や析
出を招き清浄度が劣化して、延性を低下させてしまう
上、めっき性を損なう。したがって、必要に応じてこれ
らの1種または2種以上を合計で0.0001〜0.5
0%とする。
In the present invention, in addition to the components described above,
The following components can be added: Al, Zr, Mg: effective as a deoxidizing element. on the other hand,
Excessive addition causes a large amount of crystallization or precipitation of oxides, sulfides, or nitrides, deteriorating cleanliness, lowering ductility, and impairing plating properties. Therefore, if necessary, one or more of these may be used in a total amount of 0.0001 to 0.5.
0%.

【0022】Ti,V,Nb,P:必要に応じて添加す
る。Ti,V,Nbは、炭化物、窒化物もしくは炭窒化
物を形成することによって、鋼材を高強度化したり加工
性を向上することができるばかりでなく、集合組織形成
にも好ましいので、0.001%以上添加する。その合
計が0.5%を超えた場合には母相であるフェライト粒
内もしくは粒界に多量の炭化物、窒化物もしくは炭窒化
物として析出して、延性を低下させることから、添加範
囲を0.001〜0.5質量%とした。より好ましくは
0.01〜0.08%である。Pも高強度化に有効な元
素であるので0.4%以下添加する。0.4%を超えて
添加すると熱間圧延や縮径加工時に欠陥が発生したり、
成形性が劣化するので0.4%を上限とする。
Ti, V, Nb, P: added as needed. By forming carbide, nitride or carbonitride, Ti, V, and Nb not only can increase the strength of the steel material and improve the workability, but are also preferable for forming a texture. % Or more. If the total amount exceeds 0.5%, a large amount of carbides, nitrides or carbonitrides precipitates in ferrite grains or grain boundaries as a parent phase and lowers ductility. 0.001 to 0.5% by mass. More preferably, it is 0.01 to 0.08%. Since P is also an element effective for increasing the strength, it is added in an amount of 0.4% or less. If added in excess of 0.4%, defects may occur during hot rolling and diameter reduction,
Since the moldability deteriorates, the upper limit is 0.4%.

【0023】Cr,Cu,Ni,Co,W,Mo:これ
らは強化元素であり、必要に応じてこれらの1種又は2
種以上の合計で0.001%以上添加する。また、過剰
の添加は、コストアップや延性の低下を招くことから、
3.0%以下とした。 B:Bは、粒界の強化や鋼材の高強度化に有効ではある
が、その添加量が0.01%を超えるとその効果が飽和
するばかりでなく、必要以上に鋼板強度を上昇させ、加
工性も低下させることから、0.0001〜0.01%
とした。
Cr, Cu, Ni, Co, W, Mo: these are strengthening elements, and if necessary, one or two of these
0.001% or more is added in total of the species or more. In addition, excessive addition causes cost increase and decrease in ductility,
3.0% or less. B: B is effective for strengthening grain boundaries and increasing the strength of steel materials. However, if the added amount exceeds 0.01%, not only the effect is saturated, but also the steel sheet strength is unnecessarily increased, 0.0001 to 0.01%, since workability is also reduced
And

【0024】さらに製造にあたっては、高炉、電炉等に
よる溶製に続き各種の2次製錬を行いインゴット鋳造や
連続鋳造を行い、連続鋳造の場合には室温付近まで冷却
することなく熱間圧延するCC−DRなどの製造方法を
組み合わせて製造してもかまわない。鋳造インゴットや
鋳造スラブを再加熱して熱間圧延を行っても良いのは言
うまでもない。熱間圧延の加熱温度は特に限定するもの
ではなく、目的とする仕上げ温度を具現化するのに適切
な温度であれば良い。
Further, in the production, ingot casting or continuous casting is performed by performing various secondary smelting following smelting using a blast furnace, an electric furnace, or the like. In the case of continuous casting, hot rolling is performed without cooling to around room temperature. It may be manufactured by combining manufacturing methods such as CC-DR. It goes without saying that hot rolling may be performed by reheating the cast ingot or cast slab. The heating temperature of the hot rolling is not particularly limited, and may be any temperature that is appropriate for realizing the desired finishing temperature.

【0025】熱延の仕上げ温度は通常のγ単相域のほか
α+γ2相域やα単相域、α+パーライト、α+セメン
タイトのいずれの温度域で行っても良い。熱間圧延の1
パス以上について潤滑を施しても良い。また、粗圧延バ
ーを互いに接合し、連続的に仕上げ熱延を行っても良
い。粗圧延バーは一度巻き取っても再度巻き戻してから
仕上げ熱延に供してもかまわない。熱延後の冷却速度や
巻き取り温度は特に限定するものではない。熱間圧延後
は酸洗することが望ましい。さらにスキンパス圧延や5
0%以下の圧下率の冷間圧延を施しても良い。
The finishing temperature of hot rolling may be performed in any temperature range of α + γ2 phase region, α single phase region, α + pearlite, and α + cementite in addition to the normal γ single phase region. Hot rolling 1
Lubrication may be applied to more than the pass. Further, the rough rolling bars may be joined to each other and the finish hot rolling may be continuously performed. The rough rolling bar may be wound once or rewound again and then subjected to finish hot rolling. The cooling rate and winding temperature after hot rolling are not particularly limited. After hot rolling, it is desirable to perform pickling. Furthermore, skin pass rolling and 5
Cold rolling with a rolling reduction of 0% or less may be performed.

【0026】鋼管の製造にあたっては、通常は電縫溶接
を用いるが、TIG,MIG、レーザー溶接、UOや鍛
接等の溶接・造管手法等を用いることも出来る。これら
の溶接鋼管製造に於いて、溶接熱影響部は必要とする特
性に応じて局部的な固溶化熱処理を単独あるいは複合し
て、場合によっては複数回重ねて行っても良く、本発明
の効果をさらに高める。この熱処理は溶接部と溶接熱影
響部のみに付加することが目的であって、製造時にオン
ラインであるいはオフラインで施工できる。
In the production of steel pipes, generally, electric resistance welding is used, but welding and pipe forming techniques such as TIG, MIG, laser welding, UO, forging and the like can also be used. In the production of these welded steel pipes, the heat-affected zone of the weld may be subjected to local solution heat treatment alone or in combination depending on the required properties, and in some cases, may be performed a plurality of times. Further enhance. This heat treatment is intended to be applied only to the welded portion and the heat affected zone, and can be applied online or offline during manufacturing.

【0027】鋼管を縮径加工する前の加熱温度および続
く縮径加工の条件は、本発明において重要である。本発
明は以下のような新知見に立脚するものである。すなわ
ち、鋼管をγ域まで加熱後、引き続きγ域で縮径加工す
るわけであるが、縮径加工に基づく応力あるいは歪み状
態下で加工したγから変態させると、ハイドロフォーム
成形に良好な{110}<110>近傍の集合組織が顕
著に発達することを見出した。
The heating temperature before diameter reduction of the steel pipe and the conditions of the subsequent diameter reduction are important in the present invention. The present invention is based on the following new findings. In other words, after the steel pipe is heated to the γ region, the steel tube is continuously reduced in diameter in the γ region. It was found that the texture near <110> remarkably developed.

【0028】加熱温度についてはγ粒径を大きくするこ
とが集合組織形成に影響を及ぼすので、Ac3点+80
℃以上にする必要がある。ただし鋼管の表面性状を考慮
すると、最大1350℃となる。γ域での縮径加工は縮
径率が25%以上となるように行う。20%未満では集
合組織がγ域で発達しないため、最終的に好ましいr値
や集合組織を得ることが困難となる。γ域で縮径率30
%以上とするのが好ましく、50%以上がより一層望ま
しい。なお、この場合の縮径率とは{(縮径加工前の母
管の直径−γ域での縮径完了後の鋼管の直径)/縮径加
工前の母管の直径)}×100(%)で定義される。
Regarding the heating temperature, increasing the γ particle size affects the texture formation, so that the Ac 3 point +80
It is necessary to be higher than ° C. However, considering the surface properties of the steel pipe, the maximum temperature is 1350 ° C. The diameter reduction in the γ region is performed so that the diameter reduction rate is 25% or more. If it is less than 20%, since the texture does not develop in the γ region, it is difficult to finally obtain a desirable r value and texture. Diameter reduction rate 30 in γ range
% Or more, more preferably 50% or more. In this case, the diameter reduction ratio is {(diameter of mother pipe before diameter reduction-diameter of steel pipe after completion of diameter reduction in γ region) / diameter of mother pipe before diameter reduction)} × 100 ( %).

【0029】さらにAr3点以上Ar3点+200℃の
温度域で、縮径率25%以上の縮径加工を行うことが望
ましい。すなわち縮径という応力ないし歪み状態下でγ
を加工し、再結晶+加工集合組織を大きく発達させ、そ
の後の変態で目的とする集合組織形成すなわち{11
0}<110>〜{111}<110>方位群、特に
{110}<110>の先鋭な発達に必須だからであ
る。
Further, it is desirable to perform a diameter reduction process with a diameter reduction ratio of 25% or more in the temperature range of Ar 3 points or more and Ar 3 points + 200 ° C. That is, γ under the stress or strain state of diameter reduction
And recrystallized + processed texture is greatly developed, and the desired texture formation in the subsequent transformation, ie, {11}
This is because the {0} <110> to {111} <110> orientation groups are essential for the sharp development of {110} <110>.

【0030】上記縮径加工に引き続き、Ar3点以下で
縮径加工するとさらに目的とする集合組織はさらに発達
する。Ar3点以下の温度域でフェライト組織を若干出
すことでγにより大きな歪みが集中し、γ集合組織が発
達する。その結果、変態後の目的とする集合組織はより
一層発達する。その効果を発揮させるためには、Ar3
点以下の縮径率は2%以上必要である。ただし過度に縮
径加工すると一様伸びが大きく低下するので、Ar3点
以下の縮径加工は20%以下とする。
After the above diameter reduction processing, if the diameter reduction processing is performed at three points or less of Ar, the target texture further develops. By slightly producing a ferrite structure in a temperature range of three points or less of Ar, a larger strain is concentrated on γ, and a γ texture develops. As a result, the target texture after transformation further develops. In order to exert the effect, Ar3
The diameter reduction ratio below the point needs to be 2% or more. However, if the diameter is excessively reduced, the uniform elongation is greatly reduced. Therefore, the diameter reduction at three or less Ar points is set to 20% or less.

【0031】このようにして製造された鋼管の全縮径率
は29%以上でなくてはならない。全縮径率が29%未
満では集合組織の発達が十分ではない。好ましくは50
%以上である。全縮径率は下式で定義される。 {(縮径加工後前の母管の直径−縮径完了後の鋼管の直
径)/縮径加工前の母管の直径)}×100(%)。
The total diameter reduction ratio of the steel pipe manufactured in this way must be 29% or more. If the total diameter reduction ratio is less than 29%, the texture is not sufficiently developed. Preferably 50
% Or more. The total diameter reduction ratio is defined by the following equation. {(Diameter of mother pipe before diameter reduction-diameter of steel pipe after completion of diameter reduction) / diameter of mother pipe before diameter reduction)} × 100 (%).

【0032】母管に対する縮径加工後の鋼管の板厚変化
率は、+15%〜−30%とすることが好ましい。板厚
減少率は{(縮径加工完了後の鋼管の板厚−縮径加工前
の母管の板厚)/縮径加工前の母管の板厚)}×100
(%)で定義される。なお、鋼管の直径は鋼管の外形を
測定する。目的とする{110}<110>〜{11
1}<110>方位群、特に{110}<110>方位
の集合組織を発達させるためには、縮径加工中に板厚が
減少する方がより効果的である。板厚が増加するように
なると、集合組織形成が弱くなり、15%以下の増加に
押さえなければならない。また、生産性を考慮すると減
少率は30%程度までであり、これらから、板厚変化
は、−30%〜+15%が望ましい。
It is preferable that the rate of change in the thickness of the steel pipe after diameter reduction processing on the mother pipe is + 15% to -30%. The sheet thickness reduction rate is {(sheet thickness of steel pipe after diameter reduction is completed-thickness of mother pipe before diameter reduction) / sheet thickness of mother pipe before diameter reduction)} × 100
(%). In addition, the diameter of a steel pipe measures the external shape of a steel pipe. Target {110} <110> to $ 11
In order to develop a texture of the 1} <110> orientation group, particularly the {110} <110> orientation, it is more effective to reduce the thickness during the diameter reduction processing. As the plate thickness increases, the texture formation becomes weaker and must be suppressed to 15% or less. Further, considering productivity, the reduction rate is up to about 30%, and from these, the change in plate thickness is preferably -30% to + 15%.

【0033】縮径加工は、複数のロールを組み合わせて
多段パスのラインを通板することによって行っても良い
し、ダイスを用いて引き抜いて行っても良い。また、縮
径時に潤滑を施すことは成形性向上の点で望ましい。本
発明に係る鋼管は、延性を確保するためフェライトを面
積率で50%以上含有することが好ましいが、フェライ
ト以外の金属組織として、パーライト、ベイナイト、マ
ルテンサイト、オーステナイトおよび炭窒化物等の組織
を含んでも良い。
The diameter reducing process may be performed by combining a plurality of rolls and passing a multi-pass line, or may be performed by using a die. Further, it is desirable to provide lubrication at the time of diameter reduction from the viewpoint of improving formability. The steel pipe according to the present invention preferably contains ferrite in an area ratio of 50% or more in order to secure ductility. However, as a metal structure other than ferrite, a structure such as pearlite, bainite, martensite, austenite, and carbonitride is used. May be included.

【0034】フェライト粒径は、Ar3変態点近傍で加
工すると混粒となり、その粒径は0.5μmから500
μmとなる。平均粒径が10μm以下となると、一様伸
びあるいはn値が大きく低下することから、平均粒径は
10μm以上が望ましい。
The ferrite grain size becomes mixed when processed near the Ar3 transformation point, and the grain size ranges from 0.5 μm to 500 μm.
μm. If the average particle size is 10 μm or less, the uniform elongation or the n value is greatly reduced. Therefore, the average particle size is preferably 10 μm or more.

【0035】[0035]

【実施例】表1に示す成分の各鋼を溶製して1250℃
に加熱後、表1に示す仕上げ温度で熱間圧延して巻き取
った。酸洗に引き続き電縫溶接により直径100〜20
0mmに造管した後、所定の温度に加熱して、縮径加工を
行った。得られた鋼管の加工性の評価は以下の方法で行
った。
EXAMPLES Each steel having the components shown in Table 1 was melted at 1250 ° C.
, And then hot-rolled at the finishing temperature shown in Table 1 and wound up. 100 to 20 in diameter by ERW after pickling
After forming the tube to 0 mm, the tube was heated to a predetermined temperature to perform a diameter reduction process. The workability of the obtained steel pipe was evaluated by the following method.

【0036】前もって鋼管に10mmφのスクライブドサ
ークルを転写し、内圧と軸押し量を制御して、円周方向
への張り出し成形を行った。バースト直前での最大拡管
率を示す部位(拡管率=成形後の最大周長/母管の周
長)の軸方向の歪εΦと円周方向の歪εθを測定した。
この2つの歪の比ρ=εΦ/εθと最大拡管率をプロッ
トし、ρ=−0.5となる拡管率Reをもってハイドロ
フォームの成形性指標とした。X線測定は、縮径前の母
管および縮径後の鋼管から弧状試験片を切り出し、プレ
スして平板として行った。(110),(200),
(211),(310)極点図を測定し、これらを用い
て級数展開法により3次元集合組織を計算し、φ2=4
5°断面における各結晶方位のX線ランダム強度比を求
めた。
A scribed circle having a diameter of 10 mm was transferred to a steel pipe in advance, and the inner pressure and the amount of axial pressing were controlled to form a stretch in the circumferential direction. The strain εΦ in the axial direction and the strain εθ in the circumferential direction of the portion showing the maximum expansion rate immediately before the burst (expansion rate = maximum perimeter after molding / perimeter of the mother pipe) were measured.
The ratio of these two strains, ρ = εΦ / εθ, and the maximum expansion ratio were plotted, and the expansion ratio Re, at which ρ = −0.5, was used as the formability index of the hydroform. The X-ray measurement was performed by cutting out an arc-shaped test piece from the mother pipe before the diameter reduction and the steel pipe after the diameter reduction and pressing it as a flat plate. (110), (200),
(211), (310) The pole figures are measured, and a three-dimensional texture is calculated by using the pole figures by a series expansion method, and φ2 = 4
The X-ray random intensity ratio of each crystal orientation in the 5 ° cross section was determined.

【0037】表2、表3には、縮径加工の諸条件と縮径
加工後の鋼管の特性を示す。本発明例ではいずれも良好
な集合組織とr値を有し、ハイドロフォーム成形時の最
大拡管率も高いのに対して、本発明外の例では集合組
織、r値が好ましくなく、最大拡管率も低い。
Tables 2 and 3 show various conditions for diameter reduction and characteristics of the steel pipe after diameter reduction. In the examples of the present invention, all have a good texture and r value, and the maximum expansion ratio during hydroform molding is high, whereas in the examples other than the present invention, the texture and r value are not preferable, and the maximum expansion ratio is large. Is also low.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【発明の効果】以上述べたように、本発明による鋼管
は、特に軸押し力の働くハイドロフォーム成形性に極め
て優れており、ハイドロフォーム成形時の自動車用部品
の製造効率を向上させることができる。また、本発明は
高強度鋼管にも適用できるため部品の板厚を低減させる
ことが可能となる。
As described above, the steel pipe according to the present invention is particularly excellent in hydroform moldability in which axial pushing force is exerted, and can improve the production efficiency of automotive parts during hydroform molding. . Further, since the present invention can be applied to a high-strength steel pipe, it is possible to reduce the thickness of a part.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 (72)発明者 吉永 直樹 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 朝日 均 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA09 AA10 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA22 AA23 AA24 AA27 AA31 AA32 AA35 AA36 AA37 AA39 BA03 CA01 CA02 CB01 CB02 CC02 CC03 CC04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/58 C22C 38/58 (72) Inventor Naoki Yoshinaga 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation (72) Inventor Hitoshi Asahi 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation (72) Inventor Manabu Takahashi 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation F-term in the R & D Headquarters of the Company (reference)

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.0005〜0.5%、 Si:0.001〜2.0%、 Mn:0.01〜3.0%、 を含有し、残部Feおよび不可避的不純物からなる鋼管
で、引張強度TS(MPa)と一様伸びU.EL(%)
の関係が TS+60U.EL>1300 を満たし、かつ鋼管板厚1/2での板面の{110}<
110>〜{111}<110>の方位群のX線ランダ
ム強度比の平均が2.0以上、および鋼管板厚1/2で
の板面の{110}<110>のX線ランダム強度比が
3.0以上の何れか一方または両方の集合組織を有する
ことを特徴とする成形性に優れた鋼管。
1. The composition contains, by mass%, C: 0.0005 to 0.5%, Si: 0.001 to 2.0%, and Mn: 0.01 to 3.0%, with the balance being Fe and inevitable. Steel tube made of natural impurities, with tensile strength TS (MPa) and uniform elongation U. EL (%)
Is TS + 60U. EL> 1300 and {110} <
The average of the X-ray random intensity ratio of the orientation group of 110> to {111} <110> is 2.0 or more, and the X-ray random intensity ratio of {110} <110> on the sheet surface at a steel pipe sheet thickness of 1/2. Characterized by having one or both textures of 3.0 or more.
【請求項2】 前記鋼管の集合組織が、鋼管板厚1/2
での板面の{100}<110>〜{223}<110
>の方位群のX線ランダム強度比の平均、および鋼管板
厚1/2での板面の{100}<110>のX線ランダ
ム強度比の何れか一方または両方が3.0以下の集合組
織を有することを特徴とする請求項1記載の成形性に優
れた鋼管。
2. A steel pipe having a texture of steel plate thickness 1/2.
{100} <110> to {223} <110
> The average of the X-ray random intensity ratios of the orientation groups and the one or both of the {100} <110> X-ray random intensity ratios of the sheet surface at a steel pipe thickness of 1/2 are set to 3.0 or less. The steel pipe excellent in formability according to claim 1, having a structure.
【請求項3】 前記鋼管の集合組織が、鋼管板厚1/2
での板面の{100}<100>のX線ランダム強度比
が1以上8以下の集合組織を有することを特徴とする請
求項1または2記載の成形性に優れた鋼管。
3. The texture of the steel pipe has a steel pipe plate thickness of 1 /.
The steel pipe having excellent formability according to claim 1 or 2, wherein the steel pipe has a texture in which the X-ray random intensity ratio of {100} <100> of the plate surface is 1 or more and 8 or less.
【請求項4】 前記鋼管の管軸方向のr値が1.5以上
を満たすことを特徴とする請求項1〜3の何れかの項に
記載の成形性に優れた鋼管。
4. The steel pipe excellent in formability according to claim 1, wherein the r value of the steel pipe in the pipe axis direction satisfies 1.5 or more.
【請求項5】 前記鋼管が、質量%で、更にAl:0.
3%以下、P:0.1%以下含有することを特徴とする
請求項1〜4の何れかの項に記載の成形性に優れた鋼
管。
5. The steel pipe according to claim 1, further comprising:
The steel pipe excellent in formability according to any one of claims 1 to 4, which contains 3% or less and P: 0.1% or less.
【請求項6】 前記鋼管が、質量%で、更にTi,Z
r,V,Nb,Mgの一種または二種以上を合計で0.
001〜0.5%含有することを特徴とする請求項1〜
5の何れかの項に記載の成形性に優れた鋼管。
6. The steel pipe according to claim 1, further comprising Ti, Z
One, two or more of r, V, Nb, and Mg may be used in a total of 0.
001-0.5% is contained.
Item 5. The steel pipe excellent in formability according to any one of Items 5.
【請求項7】 前記鋼管が、質量%で、更に、Cr,C
u,Ni,Co,W,Moの1種または2種以上を合計
で0.001〜3.0%含有することを特徴とする請求
項1〜6の何れかの項に記載の成形性に優れた鋼管。
7. The steel pipe according to claim 1, further comprising Cr, C
The moldability according to any one of claims 1 to 6, wherein one or more of u, Ni, Co, W, and Mo are contained in a total amount of 0.001 to 3.0%. Excellent steel pipe.
【請求項8】 前記鋼管が、質量%で、更にBが0.0
01〜0.01%含有することを特徴とする請求項1〜
7の何れかの項に記載の成形性に優れた鋼管。
8. The steel pipe according to claim 1, wherein B is 0.0% by mass.
The content is from 0.01 to 0.01%.
7. The steel pipe excellent in formability according to any one of items 7 to 7.
【請求項9】 前記鋼管が、金属組織の体積率で50%
以上がフェライトからなり、フェライト粒の結晶粒径が
0.5〜500μmの範囲を有し、かつ平均粒径が10
μm以上のフェライト粒を有することを特徴とする請求
項1〜7の何れかの項に記載の成形性に優れた鋼管。
9. The steel pipe according to claim 1, wherein the volume ratio of the metal structure is 50%.
The above is composed of ferrite, the crystal grain size of the ferrite grains is in the range of 0.5 to 500 μm, and the average grain size is 10
The steel pipe excellent in formability according to any one of claims 1 to 7, wherein the steel pipe has ferrite grains of μm or more.
【請求項10】 請求項1〜8の何れかの項に記載の成
形性に優れた鋼管の製造において、母管を造管後、Ac
3 変態点+80℃以上、1350℃以下の温度に加熱
後、Ar3 変態点以上、Ar3 変態点+200℃の温度
領域で縮径率25%以上の縮径加工を行うことを特徴と
する成形性に優れた鋼管の製造方法。
10. The method for producing a steel pipe excellent in formability according to claim 1, wherein after the mother pipe is formed, Ac is produced.
Molding characterized in that after heating to a temperature of 3 transformation points + 80 ° C. or more and 1350 ° C. or less, a diameter reduction process of 25% or more is performed in a temperature range of Ar 3 transformation points or more and Ar 3 transformation point + 200 ° C. Method for manufacturing steel pipes with excellent properties.
【請求項11】 請求項1〜8の何れかの項に記載の成
形性に優れた鋼管の製造において、母管を造管後、Ac
3 変態点+80℃以上、1350℃以下の温度に加熱
後、Ar3 変態点以上、Ar3 変態点+200℃の温度
領域で縮径率25%以上の縮径加工を行い、引き続きA
3 変態点以下で縮径率2〜20%の縮径加工後、Ar
3 変態点−100℃以上、Ar3 変態点以下で縮径加工
を終了することを特徴とする成形性に優れた鋼管の製造
方法。
11. The method for producing a steel pipe excellent in formability according to claim 1, wherein after the mother pipe is formed, Ac is produced.
After heating to a temperature of 3 transformation points + 80 ° C. or more and 1350 ° C. or less, a diameter reduction process of 25% or more in the temperature range of Ar 3 transformation points or more and Ar 3 transformation point + 200 ° C. is performed.
After reducing the diameter to 2 to 20% at the r 3 transformation point or lower, Ar
A method for producing a steel pipe excellent in formability, characterized in that diameter reduction processing is completed at a temperature of not less than 3 transformation point -100 ° C. and not more than Ar 3 transformation point.
【請求項12】 前記記載の成形性に優れた鋼管の製造
において、縮径加工後の鋼管の板厚変化が、−30%〜
+20%であることを特徴とする成形性に優れた鋼管の
製造方法。
12. In the production of a steel pipe excellent in formability as described above, a change in the thickness of the steel pipe after diameter reduction is -30% or more.
+ 20%, a method for producing a steel pipe excellent in formability.
JP2001103655A 2001-04-02 2001-04-02 Steel pipe excellent in hydroformability and manufacturing method thereof Expired - Fee Related JP4567907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001103655A JP4567907B2 (en) 2001-04-02 2001-04-02 Steel pipe excellent in hydroformability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001103655A JP4567907B2 (en) 2001-04-02 2001-04-02 Steel pipe excellent in hydroformability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002294405A true JP2002294405A (en) 2002-10-09
JP4567907B2 JP4567907B2 (en) 2010-10-27

Family

ID=18956678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103655A Expired - Fee Related JP4567907B2 (en) 2001-04-02 2001-04-02 Steel pipe excellent in hydroformability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4567907B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272451A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Metal bend having sectional shape for component, and its manufacturing method
JP2014009374A (en) * 2012-06-29 2014-01-20 Jfe Steel Corp Electroseamed steel pipe having excellent low temperature toughness and method for producing the same
CN105008569A (en) * 2013-02-28 2015-10-28 杰富意钢铁株式会社 Thick steel plate and production method for thick steel plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220535A (en) * 1993-01-25 1994-08-09 Nippon Steel Corp Production of coiled steel pipe having excellent cold workability
WO1999000525A1 (en) * 1997-06-26 1999-01-07 Kawasaki Steel Corporation Ultrafine-grain steel pipe and process for manufacturing the same
JP2000096142A (en) * 1998-09-21 2000-04-04 Kawasaki Steel Corp Method for reducing steel tube
JP2000144329A (en) * 1998-11-13 2000-05-26 Kawasaki Steel Corp Steel tube excellent in balance of strength-ductility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220535A (en) * 1993-01-25 1994-08-09 Nippon Steel Corp Production of coiled steel pipe having excellent cold workability
WO1999000525A1 (en) * 1997-06-26 1999-01-07 Kawasaki Steel Corporation Ultrafine-grain steel pipe and process for manufacturing the same
JP2000096142A (en) * 1998-09-21 2000-04-04 Kawasaki Steel Corp Method for reducing steel tube
JP2000144329A (en) * 1998-11-13 2000-05-26 Kawasaki Steel Corp Steel tube excellent in balance of strength-ductility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272451A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Metal bend having sectional shape for component, and its manufacturing method
JP4680652B2 (en) * 2005-03-30 2011-05-11 本田技研工業株式会社 Method for manufacturing metal bent pipe having cross-sectional shape for parts
JP2014009374A (en) * 2012-06-29 2014-01-20 Jfe Steel Corp Electroseamed steel pipe having excellent low temperature toughness and method for producing the same
CN105008569A (en) * 2013-02-28 2015-10-28 杰富意钢铁株式会社 Thick steel plate and production method for thick steel plate
US10041159B2 (en) 2013-02-28 2018-08-07 Jfe Steel Corporation Thick steel plate and production method for thick steel plate

Also Published As

Publication number Publication date
JP4567907B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
EP1231289B1 (en) Steel pipe having high formability and method for producing the same
US20080166257A1 (en) Steel sheet excellent in workability and method for producing the same
JP2002155345A (en) Highly corrosion resistant steel tube having excellent formability and its manufacturing method
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP6518596B2 (en) High-strength hot-rolled steel strip or steel plate having excellent formability and fatigue performance, and method for producing the steel strip or steel plate
JP2002129285A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JPH10280090A (en) High strength cold rolled steel sheet having superior shape and excellent in bendability, and its production
JP3828719B2 (en) Manufacturing method of steel pipe with excellent formability
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP2002294405A (en) Steel tube superior in formability and the production method for the same
JP3887155B2 (en) Steel pipe excellent in formability and manufacturing method thereof
JP2000282167A (en) Low yield ratio type steel product and steel pipe, excellent in toughness, and their manufacture
JP2004225131A (en) High strength steel pipe having excellent workability, and production method therefor
JP4344071B2 (en) Steel pipe with excellent formability and method for producing the same
JP6589710B2 (en) High Young&#39;s modulus ultrathin steel plate excellent in deep drawability and method for producing the same
JP2002129286A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JP2000192191A (en) High tensile strength steel plate excellent in burring property, and its manufacture
JP2000119749A (en) Production of chromium-molybdenum seamless steel pipe for machine structure
JP2002020841A (en) Steel tube excellent in formability and its production method
JP3981580B2 (en) Manufacturing method of aluminized steel pipe with excellent workability, corrosion resistance and heat resistance
JP3828720B2 (en) Steel pipe with excellent formability and method for producing the same
JP2001355035A (en) High strength steel tube excellent in formability and its production method
JP2002069584A (en) High strength steel tube having excellent formability, and its manufacturing method
JP2001355036A (en) High strength steel tube excellent in formability and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R151 Written notification of patent or utility model registration

Ref document number: 4567907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees