JP4680652B2 - Method for manufacturing metal bent pipe having cross-sectional shape for parts - Google Patents

Method for manufacturing metal bent pipe having cross-sectional shape for parts Download PDF

Info

Publication number
JP4680652B2
JP4680652B2 JP2005099823A JP2005099823A JP4680652B2 JP 4680652 B2 JP4680652 B2 JP 4680652B2 JP 2005099823 A JP2005099823 A JP 2005099823A JP 2005099823 A JP2005099823 A JP 2005099823A JP 4680652 B2 JP4680652 B2 JP 4680652B2
Authority
JP
Japan
Prior art keywords
bending
shape
metal
degrees
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005099823A
Other languages
Japanese (ja)
Other versions
JP2006272451A (en
Inventor
義幸 具志堅
岳 宗村
美彦 江口
芳宏 尾崎
貴朗 井口
Original Assignee
本田技研工業株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, Jfeスチール株式会社 filed Critical 本田技研工業株式会社
Priority to JP2005099823A priority Critical patent/JP4680652B2/en
Publication of JP2006272451A publication Critical patent/JP2006272451A/en
Application granted granted Critical
Publication of JP4680652B2 publication Critical patent/JP4680652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空調設備や各種プラントの他、自動車や電気機器などの配管として用いられる、部品用の断面形状をもつ金属曲管およびその製造方法ならびにその製造過程での金属管の曲げ加工方法に関する。   The present invention relates to a metal bent pipe having a cross-sectional shape for parts used as piping for automobiles, electrical equipment, etc., in addition to air conditioning equipment and various plants, a manufacturing method thereof, and a bending method of a metal pipe in the manufacturing process thereof. .
空調設備や各種プラントの他、自動車や電気機器などの配管として、該配管特有の断面形状をもつ金属曲管が用いられることがある。そのような特有の断面形状をもつ金属曲管の一例を図10に示す。(a)は平面図、(b)は側面図、(c)は各断面図である。
このような特有の断面形状をもつ金属曲管は、例えば、図11に示すように、従来、金属板10をプレス成形した後、トリミングしてフランジ20の部分を形成したものを2枚用意し、裏表対向させて、フランジ20の部分を溶接し、全体的に略管状になるようにすることで製造していた。図示していないが、あるいはさらに、溶接によってできた重ねしろ30の部分をトリミングして切除する場合もあった。
In addition to air-conditioning equipment and various plants, a bent metal pipe having a cross-sectional shape peculiar to the pipe may be used as a pipe for an automobile or an electric device. An example of a metal curved pipe having such a unique cross-sectional shape is shown in FIG. (A) is a top view, (b) is a side view, (c) is each sectional drawing.
For example, as shown in FIG. 11, two metal bent tubes having such a unique cross-sectional shape are conventionally prepared by press-molding the metal plate 10 and then trimming to form the flange 20 portion. The flange 20 is welded so that the front and back surfaces are opposed to each other so that the whole is substantially tubular. Although not shown in the drawing, there is a case where a portion of the overlap margin 30 formed by welding is trimmed and removed.
しかしながら、このような工数の多い製造のしかたは、非常に手間がかかるとともに、何よりもコスト高になるという問題があった。
さらに、プレス成形した後、トリミングする必要があることから、トリミング屑(スクラップ)の発生が避けらず、素材金属板の歩留まりが悪く、これもコスト高の要因になるという問題もあった。
However, such a manufacturing method with many man-hours has a problem that it is very time-consuming and the cost is higher than anything.
Furthermore, since it is necessary to perform trimming after press forming, generation of trimming scraps (scrap) is unavoidable, and the yield of the metal sheet is poor, which also increases the cost.
また、溶接のためのフランジ20や、重ねしろ30があるため、このような特有の断面形状をもつ金属曲管(以下、部品用の断面形状をもつ金属曲管)に成形後の配管は、必要以上に重くなったり、大きすぎて設置スペースが余計に必要になるなど、先述の空調設備や各種プラントの他、自動車や電気機器などの設計に影響を及ぼす場合もあった。溶接後にフランジ20の部分をトリミングして切除するのは、前述と同様、工数増によるコスト高につながる問題もあった。   In addition, since there is a flange 20 for welding and an overlap margin 30, a pipe after being formed into a metal bent pipe having such a unique cross-sectional shape (hereinafter, a metal bent pipe having a cross-sectional shape for parts) In addition to the above-mentioned air conditioning equipment and various plants, the design of automobiles, electrical equipment, etc. may be affected, such as being heavier than necessary or being too large and requiring additional installation space. As described above, trimming and cutting off the flange 20 after welding has a problem that leads to high costs due to an increase in man-hours.
また、先述の各種配管には様々な特性が要求される。即ち、使用環境下で変形したり破壊したりしないようにするため、強度の他にも、耐食性、耐熱性、耐磨耗性などが要求される場合がある。
先述のような各種配管の設計に際しては、腐食や磨耗による減肉の影響や、温度上昇による強度低下の影響があった場合でも、十分耐えられるように、配管の板厚を厚くしておくことで、耐久性を確保する。即ち、その配管に要求される耐食性や耐熱性などの特性から、使用する素材の材質が決まるのであるが、材質が決まれば、その使用する最高温度下での強度も決まるため、前述の腐食や磨耗による減肉の影響や、温度上昇による強度低下の影響があった場合でも、十分耐えられる板厚の下限も決まる。
In addition, various characteristics are required for the various pipes described above. That is, in order not to be deformed or broken under the usage environment, in addition to strength, corrosion resistance, heat resistance, wear resistance, and the like may be required.
When designing various types of piping as described above, increase the thickness of the piping so that it can withstand even if there is an effect of thinning due to corrosion or wear, or a decrease in strength due to temperature rise. In order to ensure durability. That is, the material to be used is determined from the characteristics required for the piping, such as corrosion resistance and heat resistance, but once the material is determined, the strength at the highest temperature to be used is also determined, the above-mentioned corrosion and Even if there is an influence of thinning due to wear or an influence of strength reduction due to temperature rise, the lower limit of the plate thickness that can be sufficiently endured is also determined.
すると、以上述べたようにして設計した各種配管は、製造段階で、そのような板厚の下限を下回らないように成形することが最も重要になる。即ち、成形により減肉が発生するような場合には、減肉を可及的に小さくして、前述の板厚の下限を下回らないようにすることが重要になる。
部品用の断面形状をもつ金属曲管を製造するに際しては、鋼管をはじめとする各種金属管を素材に用いれば、部品点数が少なくなるのと、溶接が不要になるのとで、工数が減り、素材金属管の歩留まりも向上することから、低コスト化の可能性が出てくる。
Then, it is most important that the various pipes designed as described above are molded so as not to fall below the lower limit of the plate thickness at the manufacturing stage. In other words, when thinning occurs due to molding, it is important to reduce the thinning as much as possible so that it does not fall below the lower limit of the plate thickness.
When manufacturing bent metal pipes with a cross-sectional shape for parts, the use of various metal pipes including steel pipes as the material reduces the number of parts and reduces the need for welding. Since the yield of the metal tube is improved, there is a possibility of cost reduction.
一端での軸の方向Xが他端での軸の方向Yと60度以上の角度θをなす金属管の一例を図12に示すが、60度以上の曲げ加工、特に180度の曲げ加工を行なう所謂U字曲げでは、そのような曲げ加工に伴って、減肉が発生する。そして、曲げの曲率半径が小さくなるほど、その減肉は顕著になる。
加えて、部品用の断面形状をもつ金属曲管にするために、機械加工により拡管を行うものとすれば、断面形状の造り込みには複雑な形状の芯金を挿入する必要が生じる。
An example of a metal tube in which the axial direction X at one end forms an angle θ of 60 degrees or more with the axial direction Y at the other end is shown in FIG. 12, but a bending process of 60 degrees or more, particularly a 180 degree bending process is performed. In so-called U-shaped bending, thinning occurs along with such bending. And the thinning becomes so remarkable that the curvature radius of bending becomes small.
In addition, if the pipe is expanded by machining in order to obtain a metal bent pipe having a cross-sectional shape for a part, it is necessary to insert a core metal having a complicated shape to build the cross-sectional shape.
このような問題があるため、先述のような各種配管を、工業的規模で量産するには用いられることは殆ど無かった。
ところで、素材に鋼管を用い、ハイドロフォーミングを行って異形の断面形状をもつようにする技術としては、特許文献1のように金型の形状を工夫する方法や、特許文献2、特許文献3のようにハイドロフォーミングに用いる素材鋼管の機械的特性や表面性状を規定する方法があった。
Because of such problems, the various pipes as described above are rarely used for mass production on an industrial scale.
By the way, as a technique of using a steel pipe as a material and performing hydroforming so as to have an irregular cross-sectional shape, a method of devising the shape of a mold as in Patent Document 1, Patent Document 2, and Patent Document 3 Thus, there has been a method for defining the mechanical properties and surface properties of the steel pipe used for hydroforming.
なお、後述の発明を実施するための最良の形態に登場する回転引き曲げに関する先行技術として、ここで特許文献4、特許文献5を挙げておく。
特開2000-343141号公報 特開平10-175027号公報 特開2000-17329号公報 特開昭55-128324号公報 特開平5-96332号公報
Here, Patent Document 4 and Patent Document 5 are cited as prior arts related to rotational pulling that appear in the best mode for carrying out the invention described later.
JP 2000-343141 A Japanese Patent Laid-Open No. 10-175027 JP 2000-17329 A JP 55-128324 A JP 5-96332 A
しかし、いずれも、ハイドロフォーミングを、直管に対して行うことを前提としている。このように、ハイドロフォーミングは、本発明の対象とする、図12に示すような、金属曲管の一端での軸の方向Xが該金属曲管の他端での軸の方向Yと60度以上の角度θをなす、異形の断面形状をもつ金属曲管の成形に対しては、未だ適用されたことはない。
しかも、先述のような各種配管用の素材として、耐食性あるいは耐熱性を要求されるような用途には、SUS304に代表されるオーステナイト系ステンレス鋼管が用いられることも多いが、高価なため、コスト高の問題があり、最近では、比較的安価でありながら、これまでの種々の研究により、耐食性や加工性がオーステナイト系ステンレス鋼管に近づきつつある、フェライト系ステンレス鋼管を素材として用いようとする動きも出てきている。
However, all assume that hydroforming is performed on a straight pipe. Thus, hydroforming is the object of the present invention, as shown in FIG. 12, the axial direction X at one end of the curved metal tube is 60 degrees with the axial direction Y at the other end of the curved metal tube. It has not yet been applied to the formation of a metal bent tube having an irregular cross-sectional shape having the above angle θ.
In addition, austenitic stainless steel pipes typified by SUS304 are often used for applications that require corrosion resistance or heat resistance as materials for various pipes as described above. Recently, although it is relatively inexpensive, various studies so far have brought corrosion resistance and workability closer to austenitic stainless steel pipes. It has come out.
とはいえ、耐食性や加工性がSUS304に近づいてきたとはいうものの、フェライト系ステンレス鋼は、未だ伸びなどの加工性に若干の改善が望まれ、高度な加工性が要求される用途には、使用するのは難しい。
本発明は、上述のような従来技術の問題を解決するべくなされたものであり、部品用の断面形状をもつ金属曲管有利に製造する方法に関するものである。
However, although corrosion resistance and workability have approached SUS304, ferritic stainless steel still requires some improvement in workability such as elongation, and for applications that require high workability, Difficult to use.
The present invention has been made to solve the above-described problems of the prior art, and relates to a method for advantageously manufacturing a metal bent tube having a cross-sectional shape for a part.
本発明の要旨は、以下のとおりである。
)金属管の一端での軸の方向が該金属管の他端での軸の方向と60度以上の角度をなすように該金属管に回転引き曲げによる曲げ加工を行い、その際、該曲げ加工を複数回に分け、2回目以降の曲げ加工での軸押し力が、1回目の曲げ加工での軸押し力を下回らないように行うものとし、該曲げ加工後、該金属管内に液圧を作用させるとともに該金属管の少なくとも一端に軸方向の押し力を作用させるハイドロフォーミングを行って該金属管が部品用の断面形状をもつようにすることを特徴とする部品用の断面形状をもつ金属曲管の製造方法。
)前記曲げ加工を、1回の曲げ角度が70度以下となるように、分けて行うことを特徴とする前記(1)に記載の部品用の断面形状をもつ金属曲管の製造方法。
)前記金属管は、フェライト系ステンレス鋼管であることを特徴とする前記()または(に記載の部品用の断面形状をもつ金属曲管の製造方法。
)前記フェライト系ステンレス鋼管は、r値が1.3以上のものであることを特徴とする前記(に記載の部品用の断面形状をもつ金属曲管の製造方法。
The gist of the present invention is as follows.
(1) axis at one end of the metal tube have rows bending by rotating draw bending to the metal tube so as to form a direction 60 degrees or more of angle of the axis at the other end of the metal tube, in which The bending process is divided into a plurality of times so that the axial pressing force in the second and subsequent bending processes is not less than the axial pressing force in the first bending process, and after the bending process, A cross section for a component characterized in that the metal tube has a cross-sectional shape for a component by applying hydroforming to apply a hydraulic pressure to at least one end of the metal tube and to apply an axial pushing force to at least one end of the metal tube. A method of manufacturing a bent metal pipe having a shape.
(2) pre-Symbol bending process, once bending angle to be equal to or less than 70 degrees, divided above, wherein the performed (1) of metal bent tube having a cross-sectional shape of the parts described in Production method.
( 3 ) The method for producing a bent metal pipe having a cross-sectional shape for parts according to ( 1 ) or ( 2 ) , wherein the metal pipe is a ferritic stainless steel pipe.
( 4 ) The method for producing a bent metal pipe having a cross-sectional shape for parts according to ( 3 ) above, wherein the ferritic stainless steel pipe has an r value of 1.3 or more.
本発明によれば、曲げ加工とハイドロフォーミングを組み合わせることで、減肉の抑制と、部品用の断面形状実現を両立せしめ、工数減、素材金属管の歩留まり向上による低コスト化も図れるとともに、部品用の断面形状をもつ金属曲管に成形後の配管の軽量化、設置スペースの節約などにも寄与する。また、減肉を抑制できることで、フェライト系ステンレス鋼管などの安価な素材金属管も使用可能になる。   According to the present invention, by combining bending and hydroforming, it is possible to achieve both the reduction in thickness and the realization of the cross-sectional shape for parts, reduce man-hours, and reduce the cost by improving the yield of the material metal pipe. This contributes to reducing the weight of the pipe after molding into a bent metal pipe with a cross-sectional shape for use and saving installation space. In addition, since metal thinning can be suppressed, inexpensive metal pipes such as ferritic stainless steel pipes can be used.
(部品用の断面形状をもつ金属曲管)
図1に本発明の部品用の断面形状をもつ金属曲管の製造方法の一つの実施形態を示す。
本発明にいう“部品用の断面形状をもつ”とは、曲げ加工された金属管のどこか一部でも、ある点をとった場合に、その点での中心軸方向を法線とするような仮想平面で切られるその金属曲管の断面が、部品としての機能を満たすべくデザインされた単純でない形状であることを意味する。単純でないとは、断面円筒形の金属管に曲げ加工を加えただけとか、もしくはそれが扁平されただけのようなものを除くことを意味する。
(Metal bent pipe with cross-sectional shape for parts)
FIG. 1 shows one embodiment of a method for producing a metal bent tube having a cross-sectional shape for a component according to the present invention.
In the present invention, “having a cross-sectional shape for a part” means that when a certain point is taken at any part of a bent metal tube, the direction of the central axis at that point is taken as a normal line. This means that the cross section of the bent metal pipe cut by a virtual plane is a non-simple shape designed to satisfy the function as a part. Non-simple means that a metal tube having a cylindrical cross-section is simply bent or is not flattened.
素材には代表的なフェライト系ステンレス鋼であるSUS430製のフェライト系ステンレス鋼管を用いる。ハイドロフォーミングも含めた最終的な加工終了後のフェライト系ステンレス鋼管の各部断面の形状は、図10に示したものと同じとする。
はじめに、フェライト系ステンレス鋼管に曲げ加工を行う。本実施の形態では、曲げ加工の曲率半径を1D(曲げ加工の曲率半径=フェライト系ステンレス鋼管の素材の直径)とし、180度の曲げ加工を行った後、加工すべき外形形状の転写内形形状をもつ金型40にセットし、該フェライト系ステンレス鋼管内に液圧を作用させるとともに、該フェライト系ステンレス鋼管の少なくとも一端に軸方向の押し力を作用させるハイドロフォーミングを行って、該フェライト系ステンレス鋼管が部品用の断面形状をもつようにする。
The material used is a ferritic stainless steel pipe made of SUS430, which is a typical ferritic stainless steel. The shape of the cross-section of each part of the ferritic stainless steel pipe after the final processing including hydroforming is the same as that shown in FIG.
First, bend the ferritic stainless steel pipe. In the present embodiment, the bending radius of curvature is 1D (bending radius of curvature = the diameter of the ferritic stainless steel pipe material), and after bending 180 degrees, the transferred inner shape of the outer shape to be processed The ferritic stainless steel pipe is set to a die 40 having a shape, and a hydraulic pressure is applied to the ferritic stainless steel pipe, and at least one end of the ferritic stainless steel pipe is subjected to hydroforming to apply an axial pressing force. Ensure that the stainless steel pipe has a cross-sectional shape for the part.
その一連の製造工程について、以下に、さらに詳細に説明する。
(金属管の曲げ加工方法)
曲げ加工後の形状の目標は、ハイドロフォーミングも含めた最終的な加工終了後のフェライト系ステンレス鋼管の形状にして、その一端での軸の方向Xが他端での軸の方向Yと180度の角度をなすU字状であるため、まず180度の曲げ加工を行う。その曲げ加工は、本実施の形態では、後述の回転引き曲げと呼ばれる方法で行う。ここで用いた回転引き曲げ機は、その機械仕様上、1回で90度までの曲げ加工ができるので、図1(a)のように180度の曲げ加工を90度ずつ2回に分けて行うのが最も工数が少なくてすむ。ただ、理論上は、ハイドロフォーミングも含めた最終的な加工終了後のフェライト系ステンレス鋼管の曲げ加工が行われた部分の減肉の程度が許す限度において、1回で最大180度の曲げ加工を行うこともできる。
The series of manufacturing steps will be described in further detail below.
(Metal pipe bending method)
The target of the shape after bending is the shape of the ferritic stainless steel pipe after the final processing including hydroforming, and the axial direction X at one end is 180 degrees with the axial direction Y at the other end. First, bending is performed at 180 degrees. In the present embodiment, the bending process is performed by a method called rotational pulling, which will be described later. The rotary pulling and bending machine used here can bend up to 90 degrees at a time because of its mechanical specifications. Therefore, as shown in Fig. 1 (a), the 180 degree bending process is divided into 90 degrees twice. It takes the least amount of work. However, in theory, bending of a ferritic stainless steel pipe after final processing, including hydroforming, can be performed at a maximum of 180 degrees at a time, as long as the degree of thinning of the portion where bending was performed is allowed. It can also be done.
一方、図1(b)では180度の曲げ加工を60度ずつ3回に分けて行っているが、このように曲げ加工の回数を多くして、1回の曲げ加工の角度を小さくするほど、ハイドロフォーミングも含めた最終的な加工終了後のフェライト系ステンレス鋼管の曲げ加工が行われた部分の減肉を抑制できる。
しかしながら、曲げ加工の回数を多くするほど、工数が増え、生産能率が低下するため、それを抑制する観点から、3回以下で180度の曲げ加工が完了するのが好ましく、また、必ずしも等しい角度ずつ曲げる必要はなく、例えば、70度、55度、55度という具合に行っても良い。このようなことから、曲げ加工は、1回の曲げ角度が70度以下となるように行うのが好ましい。
On the other hand, in FIG. 1 (b), the bending process of 180 degrees is performed in three steps of 60 degrees, but as the number of bending processes is increased in this way, the angle of one bending process becomes smaller. Further, it is possible to suppress the thinning of the portion where the bending of the ferritic stainless steel pipe after the final processing including the hydroforming is performed.
However, as the number of times of bending increases, the man-hour increases and the production efficiency decreases. From the viewpoint of suppressing this, it is preferable that bending of 180 degrees is completed in three times or less, and the angle is not necessarily equal. There is no need to bend each step, for example, 70 degrees, 55 degrees, and 55 degrees may be performed. For this reason, the bending process is preferably performed so that the bending angle at one time is 70 degrees or less.
ここで、先に述べた回転引き曲げについて説明しておく。図2は、ここで用いた回転引き曲げ機の概要を示したものである。図2において、1は金属管10を曲げる曲げ型、2は金属管10をクランプし、曲げ型1と共に回転するクランプ、3は金属管10の中に挿入されるマンドレルで、マンドレル本体4及びその先端部に複数のボール5を有し、軸6で挿入される。7は金属管10の移動と共に移動可能に構成された押さえ型、8は金属管10の内側曲がり部の皺抑制のためのワイパー部材、9は金属管10の端部の軸押しを行うバックブースタである。   Here, the rotational pulling bending described above will be described. FIG. 2 shows an outline of the rotary bending machine used here. In FIG. 2, 1 is a bending die that bends the metal tube 10, 2 is a clamp that rotates the metal tube 10 and rotates together with the bending die 1, and 3 is a mandrel that is inserted into the metal tube 10. It has a plurality of balls 5 at its tip and is inserted by a shaft 6. 7 is a holding die configured to be movable along with the movement of the metal tube 10, 8 is a wiper member for suppressing wrinkles at the inner bent portion of the metal tube 10, and 9 is a back booster that performs axial pushing of the end of the metal tube 10. It is.
クランプ2で金属管10を押し上げつつ曲げ型を所望の角度だけ回転させることで、曲げ加工を行う。このとき、バックブースタ9で金属管10の端部の軸押しを行うことで、曲げ加工に伴って金属管10が曲げ型1の側にスムーズに引き込まれていくように後押しする。
以上のような曲げ加工を行った後に、ハイドロフォーミングを行うと、もう一つの本発明である、部品用の断面形状をもつ金属曲管を製造することができるのであるが、ハイドロフォーミングに先立って、焼鈍を行っても良い。焼鈍を行うことで、延性が回復するからである。
(部品用の断面形状をもつ金属曲管の製造方法)
図1の方に戻るが、図1(c)にハイドロフォーミングを行うようすを示す。ハイドロフォーミングでは、180度の曲げ加工後のフェライト系ステンレス鋼管を、加工すべき外形形状の転写内形形状をもつ金型にセットし、該フェライト系ステンレス鋼管内に液圧を作用させるとともに該フェライト系ステンレス鋼管の少なくとも一端に軸方向の押し力を作用させる。素材であるフェライト系ステンレス鋼管をセットできるようにするため、金型40は、図1(c)の下図(側面図)に示すように分割されており、180度の曲げ加工後のフェライト系ステンレス鋼管のセット後は、液圧、それに、軸押し力が作用することで開放してしまわないように締結される。
Bending is performed by rotating the bending die by a desired angle while pushing up the metal tube 10 by the clamp 2. At this time, the back booster 9 pushes the end of the metal tube 10 so that the metal tube 10 is smoothly pulled into the bending die 1 along with the bending process.
When hydroforming is performed after bending as described above, a metal bent tube having a cross-sectional shape for parts, which is another aspect of the present invention, can be manufactured. Prior to hydroforming, Annealing may be performed. This is because the ductility is restored by annealing.
(Manufacturing method of bent metal pipe with cross-sectional shape for parts)
Returning to FIG. 1, FIG. 1 (c) shows the hydroforming. In hydroforming, a ferritic stainless steel pipe after bending at 180 degrees is set in a die having a transfer inner shape of the outer shape to be processed, and hydraulic pressure is applied to the ferritic stainless steel pipe and the ferrite stainless steel pipe is applied. An axial pushing force is applied to at least one end of the stainless steel pipe. In order to be able to set the ferritic stainless steel pipe, which is the material, the mold 40 is divided as shown in the lower figure (side view) of FIG. After the steel pipe is set, it is fastened so that it does not open due to the hydraulic pressure and the axial pressing force acting on it.
フェライト系ステンレス鋼管内に液圧を作用させることで、フェライト系ステンレス鋼管が膨らみ、加工すべき外形形状の転写内形形状に予め加工した金型に当接するため、次第に金型の内形形状に沿うように変形していくが、その際に、同時にフェライト系ステンレス鋼管の両端に軸押し力を作用させる。
軸押し力を作用させることで、180度の曲げ加工の際に発生した減肉が、さらに進展しようとするのを抑制するとともに、軸押しによる圧縮で、180度の曲げ加工の際に減肉の発生した部分に素材であるフェライト系ステンレス鋼管の一部を供給し、これにより、減肉を抑制ないしは減肉した分を補償することができる。
By applying hydraulic pressure to the ferritic stainless steel pipe, the ferritic stainless steel pipe swells and comes into contact with the mold that has been pre-processed into the transferred inner shape of the outer shape to be processed. At the same time, axial pressing force is applied to both ends of the ferritic stainless steel pipe.
By applying the axial pushing force, the thinning that occurred during the 180 degree bending process is prevented from further progressing, and the compression by the axial pushing reduces the thinning during the 180 degree bending process. A portion of the ferritic stainless steel pipe that is the material is supplied to the portion where the occurrence of this occurs, whereby the thinning can be suppressed or compensated for the thinning.
しかしながら、過度の軸押しはフェライト系ステンレス鋼管に座屈を発生させる。液圧と軸押し力の関係を適切に調整することが重要になる。   However, excessive axial pushing causes buckling of ferritic stainless steel tubes. It is important to appropriately adjust the relationship between the hydraulic pressure and the axial pushing force.
図10に示したU字管の製造に本発明の方法を適用した場合について、以下に説明する。素材には、フェライト系ステンレス鋼SUH409製の直径50mm、肉厚2mm(正確には1.963mmであった。)、長さ500mmの鋼管で、Hi-r材(r値=1.3)とLo-r材(r値=1.0)の2種類を用いた。
図3には、Hi-r材を用いて、曲げ回数を種々変更した場合に、それぞれ、曲げ外周部の板厚がどのようになるか、すなわち減肉の程度を測定した結果を示している。Aは90度ずつ2回に分けて、Bは60度ずつ3回に分けて、Cは45度ずつ4回に分けてそれぞれ180度の曲げ加工を行ったものである。
The case where the method of this invention is applied to manufacture of the U-shaped tube shown in FIG. 10 is demonstrated below. The material is a steel pipe made of ferritic stainless steel SUH409 with a diameter of 50 mm, a wall thickness of 2 mm (precisely 1.963 mm), and a length of 500 mm, a Hi-r material (r value = 1.3) and Lo- Two kinds of r materials (r value = 1.0) were used.
FIG. 3 shows the results of measuring the thickness of the outer periphery of the bend, that is, the degree of thinning, when the number of bendings is variously changed using the Hi-r material. . A is divided into 90 degrees twice, B is divided into 60 degrees three times, and C is divided into 45 degrees four times and 180 degrees each.
いずれも180度の曲げ加工を行ったものであるが、曲げ回数に相当する数の板厚の極小箇所があることがわかる。そして、各極小箇所の最小板厚の中でも最小の板厚は、Cが最も厚く、C > B > Aの順に薄くなる。即ち、曲げ回数が多くなるほど最小板厚が厚く、180度の曲げ加工に伴う減肉が抑制されていることがわかる。
また、図4には、Hi-r材とLo-r材で180度の曲げ加工を60度ずつ3回に分けて行った場合の、曲げ外周部の板厚分布を示す。Hi-r材の方が最小板厚が大きい。即ち素材のr値が高い方が、180度の曲げ加工に伴う減肉が抑制されていることがわかる。
In all cases, bending was performed at 180 degrees, but it can be seen that there are minimum portions of the plate thickness corresponding to the number of bending times. And among the minimum plate thickness of each minimum location, C is the thickest, and becomes thin in order of C>B> A. That is, it can be seen that as the number of times of bending increases, the minimum plate thickness increases, and the reduction in thickness due to bending at 180 degrees is suppressed.
Further, FIG. 4 shows the plate thickness distribution of the outer periphery of bending when the bending process of 180 degrees with the Hi-r material and the Lo-r material is performed in three steps of 60 degrees. Hi-r material has a larger minimum thickness. That is, it can be seen that the higher the r value of the material, the smaller the thickness reduction due to the bending process of 180 degrees.
図5には、曲げ加工の際の、バックブースタ9による軸押し力を変化させた場合の、曲げ外周部の板厚分布を示す。軸押し力が大きい場合ほど、曲げ加工を行う前の金属管に対する板厚比が大きく、減肉が抑制されていることがわかる。
図6には、60度ずつ3回で180度曲げを行った場合の1回目(0〜60度)の曲げ、2回目(60〜120度)の曲げ、および3回目(120〜180度)の曲げにおいて、クランプ2がスリップする限界の軸押し力と曲げ外周部の板厚を調べたものである。板厚の測定点は、後述の図8に登場する曲げ外周部中央Zの<1>である。
FIG. 5 shows the plate thickness distribution of the outer periphery of the bending when the axial pushing force by the back booster 9 is changed during bending. It can be seen that the greater the axial pushing force, the greater the plate thickness ratio to the metal tube before bending, and the reduction in thickness is suppressed.
Figure 6 shows the first bend (0-60 degrees), the second (60-120 degrees), and the third (120-180 degrees) when 180 degrees are bent three times at 60 degrees. In this bending, the axial pushing force at which the clamp 2 slips and the thickness of the outer periphery of the bending are examined. The measurement point of the plate thickness is <1> at the center Z of the outer periphery of the bend appearing in FIG.
2回目の曲げと3回目の曲げでは、スリップする限界は、ほぼ同等であるが、1回目の曲げはスリップする限界が低く、比較的小さい軸押し力でもクランプ2がスリップしてしまうことがわかる。1回目の曲げの開始時は直管で、スリップしやすいのに対して、2回目の曲げ、および3回目の曲げでは、曲げの開始時にすでに金属管10はある程度曲がっているため、クランプ2もスリップしにくいためである。クランプ2がスリップしてしまうと、軸押し力が有効に作用しないため、減肉が大きくなる。   In the second and third bends, the slip limit is almost the same, but in the first bend, the slip limit is low and the clamp 2 slips even with a relatively small axial force. . The straight pipe is easy to slip at the start of the first bend, whereas the metal pipe 10 is already bent to some extent at the start of the bend in the second and third bends. This is because it is difficult to slip. When the clamp 2 slips, the axial pushing force does not act effectively, and the thinning increases.
以上の結果より、軸押し力はスリップを発生させない範囲で大きいほど減肉を抑制でき、1回目の曲げは、2回目以降の曲げよりスリップが発生しやすいため、軸押し力を低く設定する必要があることがわかる。すなわち、曲げ加工を複数回に分けて行う場合、複数回に分けて行う曲げ加工のうちの2回目の曲げ加工以降のときの軸押し力が、1回目の曲げ加工のときの軸押し力を下回らないようにするのが、減肉の抑制に有効であることがわかる。   From the above results, it is possible to suppress the thinning as the axial pushing force is large in the range where slip does not occur, and the first bending is more likely to generate slip than the second and subsequent bendings, so it is necessary to set the axial pushing force low. I understand that there is. That is, when the bending process is performed in a plurality of times, the axial pressing force after the second bending process among the bending processes performed in a plurality of times is the axial pressing force in the first bending process. It can be seen that it is effective to suppress the thinning to avoid lowering.
ここで、話は変わるが、図7には、180度の曲げ加工を60度ずつ3回に分けて行った後、ハイドロフォーミングを行なって図10に示したU字管の製造を行なった際の液圧および軸押しの条件と、成形の成否についての結果を示す。
図7のダイヤグラムは、成形可能領域とそれ以外の不適領域に大きく分けられ、不適領域は、さらに、成形力不足領域、破裂領域、座屈領域にそれぞれ分けられる。軸押し量を多くし過ぎると座屈を生じ、特に液圧の低い場合には顕著になる。軸押し量が比較的少ない場合は、液圧が低いと成形力不足で加工すべき外形形状が得られなくなり、逆に液圧が高すぎると破裂することがわかる。したがって液圧と軸押しの両方を調整することで、最適なハイドロフォーミングを行なうことができるようになる。
Here, the story changes, but in FIG. 7, when the bending process of 180 degrees is performed in three steps of 60 degrees, hydroforming is performed and the U-shaped tube shown in FIG. 10 is manufactured. The results of the hydraulic pressure and axial pressing conditions and the success or failure of molding are shown.
The diagram of FIG. 7 is broadly divided into a formable region and other unsuitable regions, and the unsuitable regions are further divided into a forming force insufficient region, a rupture region, and a buckling region, respectively. If the amount of axial push is increased too much, buckling will occur, particularly when the hydraulic pressure is low. When the axial push amount is relatively small, it can be seen that if the hydraulic pressure is low, the outer shape to be machined cannot be obtained due to insufficient molding force, and conversely, if the hydraulic pressure is too high, bursting occurs. Therefore, the optimum hydroforming can be performed by adjusting both the hydraulic pressure and the shaft push.
図7中の成形可能領域のa〜p各点に相当する液圧と軸押しの条件でハイドロフォーミングを行なった場合について、曲げ外周部中央と曲げ側線部中央の板厚(図8に該板厚の測定点を示す)を、180度の曲げ加工後とハイドロフォーミング後でそれぞれ測定した。結果を表1に示す。   In the case where hydroforming is performed under the conditions of hydraulic pressure and axial pressing corresponding to the points a to p in the formable region in FIG. 7, the plate thicknesses at the center of the bending outer periphery and the center of the bending side line (see FIG. Thickness measurement points are shown) after 180 degree bending and after hydroforming. The results are shown in Table 1.
表1より、測定点<1>:曲げ外周部中央では、ハイドロフォーミングでの減肉は180度の曲げ加工での減肉に比べて小さいことがわかる。これは、以下に述べるような理由によるものである。曲げ外周部は180度の曲げ加工で減肉の最も起こりやすい箇所であるが、この曲げ外周部はハイドロフォーミングでは軸押しにより図8のZ部分が金型に押付けられることで拘束されるため、減肉が抑制される。ハイドロフォーミングでは、逆に、金型に押付けられる方向に力がはたらかない側線部Wで減肉が起こりやすい。即ち、本発明の製造方法では、曲げ加工とハイドロフォーミングとで、減肉の最も起こりやすい箇所が一致しないことが、最終的な加工終了後のフェライト系ステンレス鋼管の形状の目標に達した際の減肉の抑制を可能にしている。   From Table 1, it can be seen that at the measurement point <1>: the center of the outer periphery of bending, the thinning by hydroforming is smaller than the thinning by bending at 180 degrees. This is due to the reason described below. The bending outer peripheral part is the most likely to be thinned by 180 degree bending, but this bending outer peripheral part is constrained by pressing the Z part of FIG. Thinning is suppressed. In hydroforming, conversely, thinning tends to occur at the side line W where the force does not work in the direction pressed against the mold. That is, in the manufacturing method of the present invention, the most prone portion of the thinning does not coincide between bending and hydroforming, when the final shape of the ferritic stainless steel pipe after the end of processing is reached. This makes it possible to suppress thinning.
以上の通りであるが、本発明の実施の形態は以上述べたものに限られるものではない。
例えば、本発明の部品用の断面形状をもつ金属曲管は、金属管の一端での軸の方向が該金属管の他端での軸の方向と60度以上の角度をなすものを対象としているが、金属管の一端での軸の方向が該金属管の他端での軸の方向と60度以上の角度をなすとは、2次元的な加工が行われ、金属管の一端での軸の方向が該金属管の他端での軸の方向と同じ仮想平面内にある場合に限られるものではない。2次元的な曲げ加工後にハイドロフォーミングが行われ、しかる後に3次元的な加工が行われるか、3次元的な曲げ加工後にハイドロフォーミングが行われるか、いずれにしても、3次元的な加工が行われた結果、図9に示すように、金属管の一端での軸の方向が該金属管の他端での軸の方向と同じ仮想平面内にない場合、金属管の一端での軸の方向と該金属管の他端での軸の方向とのなす角度とは、どちらかの軸を仮想的に平行移動させて交差させたときに両軸のなす角度θのことを指すものとする。
As described above, the embodiments of the present invention are not limited to those described above.
For example, a metal bent tube having a cross-sectional shape for a component of the present invention is intended for a tube in which the direction of the axis at one end of the metal tube forms an angle of 60 degrees or more with the direction of the axis at the other end of the metal tube. However, if the direction of the axis at one end of the metal tube forms an angle of 60 degrees or more with the direction of the axis at the other end of the metal tube, two-dimensional processing is performed. The present invention is not limited to the case where the axial direction is in the same virtual plane as the axial direction at the other end of the metal tube. Hydroforming is performed after two-dimensional bending, and then three-dimensional processing is performed, or hydroforming is performed after three-dimensional bending. As a result, as shown in FIG. 9, when the direction of the axis at one end of the metal tube is not in the same virtual plane as the direction of the axis at the other end of the metal tube, The angle formed by the direction and the direction of the axis at the other end of the metal tube refers to an angle θ formed by both axes when one of the axes is virtually translated and intersected. .
また、曲げ加工の方法として、比較的量産性に優れる方法として広く用いられている回転引き曲げを例に挙げたが、プレス曲げ(押曲げとも呼ばれる)、引張り曲げ(押付け曲げとも呼ばれる)、ロール曲げ、高周波局部加熱曲げなど、公知のいずれの曲げ加工方法も用いることができ、材質や製品の寸法、形状に応じて、適宜最適な曲げ加工の方法を選択して用いて良い。   In addition, as a method of bending, rotary pull bending, which has been widely used as a method that is relatively excellent in mass productivity, was cited as an example, but press bending (also referred to as pressing bending), tensile bending (also referred to as pressing bending), roll Any known bending method such as bending or high-frequency local heating bending can be used, and an optimal bending method may be selected and used as appropriate according to the material, product dimensions, and shape.
さらに、部品用の断面形状をもつ金属曲管の各部断面の形状は、図10に示すようなものに限るものではなく、さらに素管の直径に比べて金型の対応部分の断面寸法の方が小さい箇所があるなど、曲げ加工後の金属曲管がそのまま金型にセットできない場合には、曲げ加工後の金属曲管に適宜つぶし加工を加えた後に金型にセットするか、もしくは金型の締結力でつぶしながらセットするなどしても良い。   Furthermore, the shape of the cross section of each part of the metal curved pipe having a cross section shape for parts is not limited to that shown in FIG. 10, and the cross sectional dimension of the corresponding part of the mold is larger than the diameter of the raw pipe. If the bent metal tube cannot be set in the mold as it is, such as where there is a small part, either after crushing the bent metal tube appropriately, set it in the die, or It is also possible to set while crushing with the fastening force.
さらに、以上述べた実施の形態では、フェライト系ステンレス鋼管の両端に軸押し力を作用させるようにしているが、外形形状によっては、必ずしも両端に軸押し力を作用させる必要まではなく、少なくとも一端に軸方向の押し力を作用させるようにすれば良い。
最後に、本発明はフェライト系ステンレス鋼管を対象とする場合だけでなく、炭素鋼や、鋼以外のあらゆる金属管を対象とする場合にも適用できる。
Furthermore, in the above-described embodiment, the axial pushing force is applied to both ends of the ferritic stainless steel pipe. However, depending on the outer shape, it is not always necessary to apply the axial pushing force to both ends. It is sufficient to apply an axial pushing force to the surface.
Finally, the present invention can be applied not only to ferritic stainless steel pipes but also to carbon steel and all metal pipes other than steel.
本発明の部品用の断面形状をもつ金属曲管の製造方法の一つの実施形態を示す図である。It is a figure which shows one Embodiment of the manufacturing method of the metal curved pipe with the cross-sectional shape for components of this invention. 本発明の部品用の断面形状をもつ金属曲管の製造過程で、ハイドロフォーミングを施す前の、金属管の曲げ加工に用いる回転引き曲げ機の概要を示す図である。It is a figure which shows the outline | summary of the rotary draw bending machine used for the bending process of a metal pipe before performing hydroforming in the manufacture process of the metal bent pipe with the cross-sectional shape for components of this invention. 本発明の部品用の断面形状をもつ金属曲管の製造方法により、曲げ回数を種々変更した場合に、曲げ外周部の減肉の程度がどのように変化したかを示す図である。It is a figure which shows how the grade of the thinning of a bending outer peripheral part changed when the frequency | count of bending was changed variously by the manufacturing method of the metal curved pipe with the cross-sectional shape for components of this invention. Hi-r材とLo-r材で180度の曲げ加工を60度ずつ3回に分けて行った場合の、曲げ外周部の板厚分布を比較して示す図である。It is a figure which compares and shows the plate | board thickness distribution of a bending outer peripheral part at the time of carrying out 180 degree | times bending process by 60 degree | times 3 times by Hi-r material and Lo-r material. 軸押し力を変化させた場合の、曲げ外周部の板厚分布を示す図である。It is a figure which shows the plate | board thickness distribution of a bending outer peripheral part at the time of changing axial pushing force. 60度ずつ3回で180度曲げを行った場合の1回目(0〜60度)の曲げ、2回目(60〜120度)の曲げ、および3回目(120〜180度)の曲げにおいて、クランプがスリップする限界の軸押し力と曲げ外周部の板厚を示す図である。Clamp in the first (0-60 degrees), second (60-120 degrees), and third (120-180 degrees) bends when bending 180 degrees by 60 degrees 3 times It is a figure which shows the axial pushing force of the limit which slips, and the plate | board thickness of a bending outer peripheral part. 180度の曲げ加工を60度ずつ3回に分けて行った後、ハイドロフォーミングを行なってU字管の製造を行なった際の液圧および軸押しの条件と、成形の成否についての結果を示す図である。Shows the results of hydraulic pressure and axial pushing conditions, and the success or failure of molding when hydroforming and U-shaped tube manufacturing after performing 180 degree bending in 3 steps of 60 degrees FIG. 曲げ外周部中央と曲げ側線部中央の板厚の測定点の位置を示す図である。It is a figure which shows the position of the measurement point of the board thickness of a bending outer peripheral part center and a bending side line part center. 本発明の部品用の断面形状をもつ金属曲管の別な例を示す図である。It is a figure which shows another example of the metal curved pipe with the cross-sectional shape for components of this invention. 部品用の断面形状をもつ金属曲管の例を示す図である。It is a figure which shows the example of the metal bending pipe which has the cross-sectional shape for components. 従来の部品用の断面形状をもつ金属曲管の製造方法を示す図である。It is a figure which shows the manufacturing method of the conventional metal curved pipe with the cross-sectional shape for components. 一端での軸の方向が他端での軸の方向と60度以上の角度をなす金属管の一例を示す図である。It is a figure which shows an example of the metal tube which makes the direction of the axis | shaft in one end the angle of the axis | shaft in the other end, and 60 degrees or more.
符号の説明Explanation of symbols
1 曲げ型
2 クランプ
3 マンドレル
4 マンドレル本体
5 ボール
6 軸
7 押さえ型
8 ワイパー部材
9 バックブースタ
10 金属板、金属管
20 フランジ
30 重ねしろ
40 金型
x 軸方向
X 一端での軸の方向
Y 他端での軸の方向
Z 金型に押付けられる部分
W 側線部
θ 金属管の一端での軸の方向と該金属管の他端での軸の方向とのなす角度
DESCRIPTION OF SYMBOLS 1 Bending die 2 Clamp 3 Mandrel 4 Mandrel main body 5 Ball 6 Shaft 7 Holding die 8 Wiper member 9 Back booster 10 Metal plate, metal pipe 20 Flange 30 Overlay 40 Mold x Axial direction X Direction of axis at one end Y Other end Axial direction at
Z part pressed against the mold W side line part θ The angle formed by the direction of the axis at one end of the metal tube and the direction of the axis at the other end of the metal tube

Claims (4)

  1. 金属管の一端での軸の方向が該金属管の他端での軸の方向と60度以上の角度をなすように該金属管に回転引き曲げによる曲げ加工を行い、その際、該曲げ加工を複数回に分け、2回目以降の曲げ加工での軸押し力が、1回目の曲げ加工での軸押し力を下回らないように行うものとし、該曲げ加工後、該金属管内に液圧を作用させるとともに該金属管の少なくとも一端に軸方向の押し力を作用させるハイドロフォーミングを行って該金属管が部品用の断面形状をもつようにすることを特徴とする部品用の断面形状をもつ金属曲管の製造方法。 Axis at one end of the metal tube have rows bending by rotating draw bending to the metal tube so as to form a direction 60 degrees or more of angle of the axis at the other end of the metal tube, this time, the bending The processing is divided into multiple times so that the axial pushing force in the second and subsequent bending processes is not less than the axial pushing force in the first bending process. The metal tube has a cross-sectional shape for a part, wherein hydroforming is performed so that an axial pressing force is applied to at least one end of the metal tube so that the metal tube has a cross-sectional shape for the part. A method of manufacturing a metal bent pipe.
  2. 記曲げ加工を、1回の曲げ角度が70度以下となるように、分けて行うことを特徴とする請求項1に記載の部品用の断面形状をもつ金属曲管の製造方法。 The pre-Symbol bending process, once bending angle to be equal to or less than 70 degrees, divided method for producing a metal bent tube having a cross-sectional shape of the component of claim 1, wherein the performed.
  3. 前記金属管は、フェライト系ステンレス鋼管であることを特徴とする請求項1または2に記載の部品用の断面形状をもつ金属曲管の製造方法。 The method of manufacturing a metal bent tube having a cross-sectional shape for a part according to claim 1 or 2, wherein the metal tube is a ferritic stainless steel tube.
  4. 前記フェライト系ステンレス鋼管は、r値が1.3以上のものであることを特徴とする請求項3に記載の部品用の断面形状をもつ金属曲管の製造方法。 The method for producing a bent metal pipe having a cross-sectional shape for a part according to claim 3, wherein the ferritic stainless steel pipe has an r value of 1.3 or more.
JP2005099823A 2005-03-30 2005-03-30 Method for manufacturing metal bent pipe having cross-sectional shape for parts Expired - Fee Related JP4680652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099823A JP4680652B2 (en) 2005-03-30 2005-03-30 Method for manufacturing metal bent pipe having cross-sectional shape for parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099823A JP4680652B2 (en) 2005-03-30 2005-03-30 Method for manufacturing metal bent pipe having cross-sectional shape for parts

Publications (2)

Publication Number Publication Date
JP2006272451A JP2006272451A (en) 2006-10-12
JP4680652B2 true JP4680652B2 (en) 2011-05-11

Family

ID=37207686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099823A Expired - Fee Related JP4680652B2 (en) 2005-03-30 2005-03-30 Method for manufacturing metal bent pipe having cross-sectional shape for parts

Country Status (1)

Country Link
JP (1) JP4680652B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689320B2 (en) * 2005-03-30 2011-05-25 本田技研工業株式会社 Ferritic stainless steel curved pipe with cross-sectional shape for parts
JP4920772B2 (en) * 2010-06-18 2012-04-18 リンツリサーチエンジニアリング株式会社 Flanged metal pipe manufacturing apparatus, manufacturing method thereof, and blow mold
CN104438434B (en) * 2014-10-20 2016-06-22 新昌县丰亿电器有限公司 A kind of process of processing Y-shaped three-way

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009530A (en) * 1999-06-25 2001-01-16 Nippon Steel Corp Good workability inner face high lubrication steel pipe, and its manufacturing method
JP2002294405A (en) * 2001-04-02 2002-10-09 Nippon Steel Corp Steel tube superior in formability and the production method for the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577805B2 (en) * 1975-08-12 1982-02-13
JPS5613530B2 (en) * 1978-12-22 1981-03-28
JPS5929334B2 (en) * 1982-10-19 1984-07-19 Kogyo Gijutsuin
JP3342401B2 (en) * 1998-05-12 2002-11-11 三菱重工業株式会社 Pipe bending method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009530A (en) * 1999-06-25 2001-01-16 Nippon Steel Corp Good workability inner face high lubrication steel pipe, and its manufacturing method
JP2002294405A (en) * 2001-04-02 2002-10-09 Nippon Steel Corp Steel tube superior in formability and the production method for the same

Also Published As

Publication number Publication date
JP2006272451A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP2006061944A (en) Hydrostatic bulging method, hydrostatically bulged product and hydrostatic bulging die
KR101996155B1 (en) Method for manufacturing molded article, mold, and tubular molded article
JP2006274436A (en) Ferritic stainless sheet sheet and steel tube for bent tube having sectional shape for components
JP5868891B2 (en) Manufacturing method of different diameter tubular parts
EP2143508B1 (en) Method of hydroforming work
US8191583B2 (en) Hydroformed product
JP2008173648A (en) Method and apparatus for cold bending pipe, and elbow manufactured by the same method and apparatus
JP4680652B2 (en) Method for manufacturing metal bent pipe having cross-sectional shape for parts
JP4479327B2 (en) Punch device for U press in UOE steel pipe manufacturing process
CN104271279B (en) The manufacture method of steel pipe
JP4248788B2 (en) Forming roll and forming method
WO2011125968A1 (en) Method for manufacturing wheel rim for vehicle
JP4906849B2 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP4914962B2 (en) Pipe manufacturing method
JP2005205488A (en) Method for working metallic tube
JP2006320922A (en) Method and apparatus for manufacturing steel tube
JP6665644B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
JP6009266B2 (en) Manufacturing method of wheel rim for vehicle
JP4781137B2 (en) Clad material for press molding and seamless cans press-molded by the clad material
JP2016073987A (en) Device and method for manufacturing end-thickened steel pipe
WO2019189873A1 (en) Molded article manufacturing method
JPWO2018155414A1 (en) Mandrel, curved pipe, manufacturing method and manufacturing apparatus thereof
US9283602B2 (en) Process and apparatus for producing a hollow body, and hollow body
TWI711498B (en) Formed material manufacturing method and formed material
JP5291306B2 (en) Different diameter pipe joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees