JP2002294382A - High strength and high toughness aluminum forging having excellent corrosion resistance - Google Patents

High strength and high toughness aluminum forging having excellent corrosion resistance

Info

Publication number
JP2002294382A
JP2002294382A JP2001096131A JP2001096131A JP2002294382A JP 2002294382 A JP2002294382 A JP 2002294382A JP 2001096131 A JP2001096131 A JP 2001096131A JP 2001096131 A JP2001096131 A JP 2001096131A JP 2002294382 A JP2002294382 A JP 2002294382A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy
forged
forging
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001096131A
Other languages
Japanese (ja)
Inventor
Manabu Nakai
学 中井
Hiroki Sawada
洋樹 澤田
Yoshiya Inagaki
佳也 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001096131A priority Critical patent/JP2002294382A/en
Publication of JP2002294382A publication Critical patent/JP2002294382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al alloy forging which has high strength and high toughness, and further has excellent corrosion resistance and durability. SOLUTION: The aluminum alloy forging has a composition containing, by mass, 0.6 to 1.8% Mg and 0.6 to 1.8% Si, and further containing one or two kinds selected from 0.1 to 0.2% Cr and 0.1 to 0.2% Zr, and in which the content of Cu is controlled to <=0.25%, Mn to <=0.05%, Fe to <=0.30%, and hydrogen to 0.25 cc/100 g Al or lower, respectively, and the balance Al with inevitable impurities. The average particle size of Mg2 Si and Al-Fe-Si-(Mn, Cr, Zr) that are crystallized and precipitated products present on the grain boundaries in the aluminum alloy structure is controlled to <=1.2 μm, further, the average spacing between the crystallized and precipitated products is controlled to >=3.0 μm, and further, the lowest value of the natural potential of the aluminum alloy forging is controlled to >=-1,020 mV.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、輸送機の構造材部
品に好適な、耐応力腐食割れ性などの耐食性に優れたAl
-Mg-Si系高強度高靱性アルミニウム合金鍛造材 (以下、
アルミニウムを単にAlと言う) に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al alloy having excellent corrosion resistance, such as stress corrosion cracking resistance, which is suitable for structural material parts of transport aircraft.
-Mg-Si based high strength and toughness aluminum alloy forgings (hereinafter referred to as
(Al is simply called Al).

【0002】[0002]

【従来の技術】周知の通り、車両、船舶、航空機、自動
二輪あるいは自動車などの輸送機の構造材乃至部品用と
して、JIS 6000系(Al-Mg-Si 系) などのAl合金が使用さ
れている。このJIS 6000系Al合金は、比較的耐食性にも
優れており、また、スクラップをJIS 6000系Al合金溶解
原料として再利用できるリサイクル性の点からも優れて
いる。
2. Description of the Related Art As is well known, Al alloys such as JIS 6000 series (Al-Mg-Si series) are used for structural materials and parts of transporting machines such as vehicles, ships, aircraft, motorcycles and automobiles. I have. This JIS 6000 series Al alloy is relatively excellent in corrosion resistance and also excellent in terms of recyclability in which scrap can be reused as a JIS 6000 series Al alloy melting raw material.

【0003】前記輸送機の構造材を例にとると、製造コ
ストの低減や、複雑形状部品への加工の点から、Al合金
鋳造材やAl合金鍛造材が用いられる。この内、より高強
度で高靱性などの機械的性質が要求される部品には、Al
合金鍛造材が主として用いられる。そして、これらAl合
金鍛造材は、Al合金鋳造材を均質化熱処理後、メカニカ
ル鍛造、油圧鍛造などの熱間鍛造し、その後T6などの調
質処理が施されて製造される。なお、鍛造素材には、鋳
造材を一旦押出した押出材が用いられることもある。
[0003] Taking the structural material of the transport machine as an example, an Al alloy cast material or an Al alloy forged material is used from the viewpoint of reduction in manufacturing cost and processing into a part having a complicated shape. Of these, components requiring higher strength and mechanical properties such as higher toughness include Al
Alloy forgings are mainly used. Then, these Al alloy forgings are manufactured by subjecting an Al alloy casting to homogenizing heat treatment, hot forging such as mechanical forging, hydraulic forging, and the like, and then performing tempering treatment such as T6. Note that an extruded material obtained by once extruding a cast material may be used as the forged material.

【0004】近年、これら輸送機の構造材においても、
より薄肉化や高強度化が求められており、前記Al合金鍛
造材も、より高強度で高靱性化する必要性が生じてい
る。しかし、現状でこれら用途に使用されているJIS 60
00系Al合金では、どうしても強度不足が生じてしまう。
In recent years, the structural materials of these transport aircraft have
There is a demand for thinner walls and higher strength, and there is a need for the forged Al alloy to have higher strength and higher toughness. However, JIS 60 currently used for these applications
In the case of the 00 series Al alloy, the strength is insufficient.

【0005】このため、従来からAl合金材料の側を改善
することが行われている。例えば、特開平06-256880 号
公報では、Al合金鍛造材用鋳造材として、JIS 6000系(A
l-Mg-Si 系) 鋳造材のMg、Si等の成分を規定するととも
に、晶析出物 (晶出物や析出物) の平均粒径を8 μm 以
下と小さくし、かつデンドライト二次アーム間隔(DAS)
を40μm 以下と細かくして、Al合金鍛造材をより高強度
で高靱性化することが提案されている。
For this reason, improvement of the Al alloy material has been conventionally performed. For example, in Japanese Patent Application Laid-Open No. 06-256880, JIS 6000 series (A
l-Mg-Si system) Define the components such as Mg and Si of the cast material, reduce the average particle size of crystal precipitates (crystals and precipitates) to 8 μm or less, and set the dendrite secondary arm spacing (DAS)
It has been proposed to make Al alloy forgings higher in strength and toughness by reducing the diameter to 40 μm or less.

【0006】しかし、この特開平06-256880 号公報の実
施例にも示されている通り、この従来技術で得られるAl
合金鍛造材のデンドライト二次アーム間隔(DAS) は、小
さいものでも、せいぜい30μm 程度と極めて大きい。
However, as shown in the embodiment of Japanese Patent Application Laid-Open No. 06-256880, the Al
The dendrite secondary arm spacing (DAS) of the forged alloy is very large, at most about 30 μm, even if it is small.

【0007】実際のAl合金鍛造材では、メカニカル鍛造
などの熱間鍛造によっても、鍛造材部品の大きさや形
状、厚み、或いは部品の部位によっては、加工率が低く
なる場合がある。例えば、自動車用のサスペンション部
品としてのアーム類のような形状の場合、50% 程度の低
い加工率にしかならない場合がある。そして、この加工
率が低い部位では、鍛造されても鋳造組織が残るため
に、加工率が高い他の部位に比して、特に靱性は、必然
的に低くなる傾向にある。
[0007] In an actual Al alloy forged material, the working ratio may be reduced depending on the size, shape, thickness, or part of the forged material component even by hot forging such as mechanical forging. For example, in the case of a shape such as an arm as a suspension component for an automobile, the machining rate may be as low as about 50%. Then, in a portion having a low working rate, a cast structure remains even after forging, and therefore, in particular, the toughness tends to necessarily be lower than other portions having a high working ratio.

【0008】したがって、この従来技術で得られるAl合
金鍛造材の強度や靱性は、JIS 6061や6151などのAl合金
などよりも向上しているものの、加工率が低い部位が生
じることにより、この部位の靱性が低くなるようなAl合
金鍛造材に対しては、特にAl合金鍛造材の靱性が不足す
る。即ち、前記従来技術では、加工率が低い部位が存在
する鍛造材製品では、部品全体としての高靱性値を得る
ことができない。
Therefore, although the strength and toughness of the Al alloy forged material obtained by this conventional technique are higher than those of Al alloys such as JIS 6061 and 6151, a portion with a low processing rate is formed, and this portion is formed. In particular, the toughness of the Al alloy forged material is insufficient for an Al alloy forged material having low toughness. That is, in the above-described conventional technology, a high toughness value of the whole part cannot be obtained in a forged product in which a part having a low processing rate exists.

【0009】この結果、鋳塊の晶出物なり、DAS を小さ
くしても、鍛造品では高靱性化を達成できず、全体とし
てのより高強度で高靱性が要求される構造材には適用で
きずに、輸送機の構造材への用途の拡大を妨げていた。
As a result, even if the DAS is reduced, the toughness cannot be attained with a forged product even if the DAS is reduced, and it is applied to structural materials that require higher strength and higher toughness as a whole. Inability to do so hindered the expansion of applications for transport aircraft structural materials.

【0010】これに対し、本発明者らは、Al合金鍛造材
の高強度化、高靱性化のために、特願平10-238564 号に
よって、Mg:0.6〜1.6%(mass%、以下同じ) 、Si:0.8〜1.
8%、Cu:0.1〜1.0%を含むとともに、Feを0.30% 以下に規
制し、更にMn:0.15 〜0.6%、Cr:0.1〜0.2%、Zr:0.1〜0.
2%の一種または二種以上を含み、残部Alおよび不可避的
不純物からなるアルミニウム合金鍛造材であって、Mg2S
i とAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物の合計の面積
率が単位面積当たり1.5%以下であり、耐力 (σ 0.2)の平
均値が350N/mm2以上およびシャルピー衝撃値の平均値が
30J/cm2 以上を達成できる高強度で高靱性なAl合金鍛造
材を提案した。
On the other hand, the inventors of the present invention have forged aluminum alloy
Japanese Patent Application No. 10-238564 for higher strength and higher toughness
Therefore, Mg: 0.6 to 1.6% (mass%, the same applies hereinafter), Si: 0.8 to 1.
8%, Cu: 0.1-1.0%, Fe is regulated to 0.30% or less.
Mn: 0.15-0.6%, Cr: 0.1-0.2%, Zr: 0.1-0.
Contains 1% or more of 2%, with the balance being Al and inevitable
Forged aluminum alloy made of impurities, MgTwoS
i and total area of Al-Fe-Si- (Mn, Cr, Zr) system crystal precipitates
Rate is 1.5% or less per unit area, and the yield strength (σ 0.2Flat)
Average value is 350N / mmTwoAnd the average of the Charpy impact values is
30J / cmTwoHigh strength and high toughness Al alloy forging that can achieve the above
Proposed material.

【0011】この特願平10-238564 号の発明では、Al合
金鋳造材の晶析出物の内、鍛造されたAl合金組織の破壊
の起点となる特定の晶析出物、Mg2Si およびAl-Fe-Si-M
n 、Al-Fe-Si-Cr 、Al-Fe-Si-Zr 等のAl-Fe-Si-(Mn、C
r、Zr) 系の晶析出物を、互いに間隔を開けて分散させ
る(晶析出物の合計の面積率で規定する)ことにより、
高い靱性を確保するものである。
According to the invention of Japanese Patent Application No. 10-238564, specific crystal precipitates, Mg 2 Si and Al—, which are the starting points of the fracture of the forged Al alloy structure, out of the crystal precipitates of the Al alloy casting material. Fe-Si-M
n, Al-Fe-Si-Cr, Al-Fe-Si-Zr and other Al-Fe-Si- (Mn, C
(r, Zr) system by dispersing the crystal precipitates at an interval from each other (defined by the total area ratio of the crystal precipitates),
It ensures high toughness.

【0012】なお、特願平10-238564 号のように、Al合
金鍛造材の分野では、鍛造材を高強度化する場合、通
常、過剰Siを多くしたり、あるいはCuのような高強度化
元素を添加する。
As described in Japanese Patent Application No. 10-238564, in the field of aluminum alloy forging, when increasing the strength of the forged material, it is usually necessary to increase the excess Si or increase the strength of the material such as Cu. Add elements.

【0013】[0013]

【発明が解決しようとする課題】しかし、前記のよう
に、過剰Siを多くしたり、あるいはCuのような高強度化
元素を含んだ場合には、Al合金鍛造材の組織の、粒界腐
食や応力腐食割れの感受性が著しく高くなり、耐食性が
低下するという、別の問題が生じる。そして、この耐食
性低下の問題は、構造材としての基本的な要求特性であ
る耐久性や信頼性にかかわる問題として重大となる。
However, as described above, when excess Si is increased or a high-strength element such as Cu is contained, the grain boundary corrosion of the structure of the forged Al alloy is reduced. Another problem is that the susceptibility to corrosion and stress corrosion cracking is significantly increased and the corrosion resistance is reduced. The problem of deterioration of corrosion resistance becomes serious as a problem relating to durability and reliability, which are basic required characteristics as a structural material.

【0014】例えば、輸送機などの構造材は、基本的に
無塗装 (裸) で使用されるとともに、自動車の走行乃至
使用環境としても、海水や塩水を含み、氷点下以下の低
温から真夏の高温までの、厳しい塩水腐食環境下とな
る。そして、これら構造材は、これら塩水腐食環境下
で、荷重乃至応力、或いは衝撃が付加された状態で使用
される。そして、これらの条件は、全て、粒界腐食や、
更には応力腐食割れを著しく促進する要因となる。
For example, structural materials such as transport aircraft are basically used without painting (bare), and the running or use environment of automobiles includes seawater and salt water, and ranges from low temperatures below freezing to high temperatures in midsummer. Until severe salt water corrosion environment. These structural materials are used under a salt water corrosive environment with a load, stress, or impact applied thereto. And these conditions are all intergranular corrosion and
Further, it is a factor that remarkably promotes stress corrosion cracking.

【0015】更に、輸送機などの構造材では、構成がAl
合金鍛造材だけではなく、Al合金よりも貴な他の金属材
料と組み合わせたり、接合されて用いられることも多
い。そして、このように、Al合金鍛造材がAl合金よりも
貴な他の金属材料と接合されて用いられる場合には、粒
界腐食や、更には応力腐食割れを、非常に生じやすい使
用環境となっている。
Further, in a structural material such as a transport machine, the structure is Al.
In addition to alloy forgings, it is often used in combination with other metallic materials that are nobler than Al alloys, or joined. When the forged Al alloy is used by being joined to another metal material that is more noble than the Al alloy, the use environment in which the intergranular corrosion and further the stress corrosion cracking are very likely to occur is Has become.

【0016】また、使用状況によっては、製品の特定の
部位で、鍛流線に対して直角方向(板材でのST方向に対
応) に引張応力が付加される場合がある。一般的に、こ
のような部位での靱性ならびに耐応力腐食割れ性は低
く、機械的な破壊ならびに腐食に起因する破壊は、ま
ず、このような部位で発生する。
Further, depending on the use condition, a tensile stress may be applied at a specific portion of the product in a direction perpendicular to the forging line (corresponding to the ST direction in the plate material). In general, the toughness and stress corrosion cracking resistance at such sites are low, and mechanical failure and fracture due to corrosion first occur at such sites.

【0017】したがって、このような過酷な使用環境下
にあっても、また、前記した通り、過剰Si量を多く含ん
だ場合や、Cuのような高強度化元素を含んだ場合にも、
粒界腐食や応力腐食割れが生じず、かつ、高強度、高靱
性であるという、厳しい乃至相矛盾しているとも言える
要求特性および技術的課題が、Al合金鍛造材にはある。
Therefore, even in such a severe use environment, as described above, even when a large amount of excess Si is included, or when a high strength element such as Cu is included,
Al alloy forgings have strict or contradictory required characteristics and technical problems that they do not generate intergranular corrosion or stress corrosion cracking and that they have high strength and high toughness.

【0018】この様な事情に着目し、本発明者らは、特
願平11-285372 号として、平成11年10月6 日付けで、M
g:0.6〜1.8% (質量% 、以下同じ) 、Si:0.6〜1.8%を含
み、更に、Cr:0.1〜0.2%およびZr:0.1〜0.2%の一種また
は二種を含むとともに、Cu:0.25%以下、Mn:0.05%以下、
Fe:0.30%以下、水素:0.25 cc/100g Al以下、に各々規制
し、残部Alおよび不可避的不純物からなり、アルミニウ
ム合金組織の粒界上に存在するMg2Si やAl-Fe-Si-(Mn、
Cr、Zr) 系晶析出物の平均粒径を1.2 μm 以下とすると
ともに、これら晶析出物同士の平均間隔を3.0 μm 以上
とし、高強度高靱性であるとともに、耐食性や耐久性に
優れたAl合金鍛造材を提案した。
Focusing on such circumstances, the present inventors have proposed, as Japanese Patent Application No. 11-285372, M.
g: 0.6 to 1.8% (mass%, the same applies hereinafter), Si: 0.6 to 1.8%, Cr: 0.1 to 0.2% and Zr: 0.1 to 0.2%, and Cu: 0.25 % Or less, Mn: 0.05% or less,
Fe: 0.30% or less, hydrogen: regulated to 0.25 cc / 100g Al or less, Mg 2 Si or Al-Fe-Si- (consisting of the balance of Al and unavoidable impurities and present on the grain boundaries of the aluminum alloy structure) Mn,
The average grain size of the (Cr, Zr) -based crystal precipitates is set to 1.2 μm or less, and the average distance between these crystal precipitates is set to 3.0 μm or more.Al, which has high strength and toughness, and has excellent corrosion resistance and durability An alloy forging was proposed.

【0019】本発明は、上記Al合金鍛造材の耐粒界腐食
性や耐応力腐食割れ性を更に確実に向上乃至保証するた
めに、更なる改良を加えた、高強度高靱性であるととも
に、耐食性や耐久性に優れたAl合金鍛造材を提供しよう
とするものである。
The present invention provides high-strength and toughness, further improved, in order to more reliably improve or guarantee the intergranular corrosion resistance and stress corrosion cracking resistance of the forged Al alloy, An object of the present invention is to provide an aluminum alloy forged material having excellent corrosion resistance and durability.

【0020】[0020]

【課題を解決するための手段】この目的を達成するため
に、本発明Al合金鍛造材の要旨は、Mg:0.6〜1.8% (質量
% 、以下同じ) 、Si:0.6〜1.8%を含み、更に、Cr:0.1〜
0.2%およびZr:0.1〜0.2%の一種または二種を含むととも
に、Cu:0.25%以下、Mn:0.05%以下、Fe:0.30%以下、水
素:0.25 cc/100g Al以下、に各々規制し、残部Alおよび
不可避的不純物からなり、アルミニウム合金組織の粒界
上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出
物の平均粒径を1.2 μm 以下とするとともに、これら晶
析出物同士の平均間隔を3.0 μm 以上とし、更に、該ア
ルミニウム合金鍛造材をアノードとし、30℃で5 % のNa
Cl水溶液中において、100 μA/cm2 で30分間直流電解後
に測定されるアルミニウム合金鍛造材の自然電位の最低
値を−1020mV以上としたことである。
In order to achieve this object, the gist of the forged aluminum alloy of the present invention is as follows: Mg: 0.6 to 1.8% (mass
%, The same applies hereinafter), Si: 0.6 to 1.8%, and further, Cr: 0.1 to
0.2% and Zr: Including one or two of 0.1 to 0.2%, Cu: 0.25% or less, Mn: 0.05% or less, Fe: 0.30% or less, Hydrogen: 0.25 cc / 100g Al or less, respectively regulated, The average particle size of Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates consisting of the balance of Al and unavoidable impurities and existing on the grain boundaries of the aluminum alloy structure is reduced to 1.2 μm or less. At the same time, the average interval between these crystal precipitates is set to 3.0 μm or more, and the aluminum alloy forged material is used as an anode, and 5% Na at 30 ° C.
The minimum value of the natural potential of the forged aluminum alloy measured after DC electrolysis at 100 μA / cm 2 for 30 minutes in a Cl aqueous solution is set to −1020 mV or more.

【0021】また、本発明Al合金鍛造材は、耐食性を向
上させるために、後述する通り、アルミニウム合金鋳塊
を530 〜 595℃の温度で均質化熱処理した後に、熱間鍛
造して得られることが好ましい (請求項2 に対応) 。そ
して、必要な機械的特性を得るために、鍛造材がT6、T
7、T8で調質処理されて使用されることが好ましい (請
求項3 に対応) 。
The aluminum alloy forged material of the present invention is obtained by subjecting an aluminum alloy ingot to a homogenizing heat treatment at a temperature of 530 to 595 ° C. and then hot forging to improve corrosion resistance, as described later. Is preferable (corresponding to claim 2). And, in order to obtain the required mechanical properties, the forged material is T6, T
It is preferable to be used after being subjected to a temper treatment at T7 and T8 (corresponding to claim 3).

【0022】また、本発明Al合金鍛造材を高靱性化させ
るために、後述する通り、デンドライト二次アーム間隔
(DAS) が30μm 以下となるように鋳造した鋳塊を用いる
ことが好ましい (請求項4 に対応) 。そして、Al合金鍛
造材を高靱性化させるためには、前記鋳塊を押出或いは
圧延により加工後に鍛造することも好ましい (請求項5
に対応) 。
Further, in order to increase the toughness of the aluminum alloy forging of the present invention, as described later, the dendrite secondary arm spacing
It is preferable to use an ingot cast so that (DAS) is 30 μm or less (corresponding to claim 4). Then, in order to increase the toughness of the Al alloy forging, it is also preferable to forge the ingot after working by extrusion or rolling.
Corresponding).

【0023】更に、本発明Al合金鍛造材は、特に、鋳塊
からの加工率が75% 未満の部位を有し、靱性が低下しや
すいAl合金鍛造材に好適である (請求項6 に対応) 。ま
た、より好適には、耐食性が低下しやすい、鍛流線に対
して直角方向に引張応力が付加されて使用されるAl合金
鍛造材や輸送機の構造材用に好適である (請求項7 、8
に対応) 。
Further, the Al alloy forged material of the present invention is particularly suitable for an Al alloy forged material which has a portion where the working ratio from the ingot is less than 75% and whose toughness is apt to be reduced. ). Further, more preferably, it is suitable for an Al alloy forged material or a structural material of a transport machine, which is used by applying a tensile stress in a direction perpendicular to the forging line, in which the corrosion resistance is apt to be reduced. , 8
Corresponding).

【0024】本発明では、高靱性化したAl合金鍛造材
の、前記過酷な腐食環境下での使用であっても、また、
過剰Siを多くしたり、Cuのような高強度化元素を含んだ
場合にでも、耐粒界腐食性や耐応力腐食割れ性を向上さ
せるために、組成を規定すると同時に、更に、粒界上に
存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物
(晶出物や析出物) の平均粒径を1.2 μm 以下とすると
ともに、これら晶析出物同士の平均間隔を3.0 μm 以上
とする。
According to the present invention, the use of a toughened Al alloy forged material under the above-mentioned severe corrosive environment,
Even in cases where excess Si is increased or a high strength element such as Cu is included, the composition is specified to improve the intergranular corrosion resistance and stress corrosion cracking resistance. Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr) crystal precipitates
The average particle size of (crystals and precipitates) is 1.2 μm or less, and the average distance between these crystal precipitates is 3.0 μm or more.

【0025】例えば、前記特開平06-256880 号公報のよ
うな晶析出物の形態制御、即ち、単に鋳塊の晶析出物の
平均粒径を小さくするだけでは靱性の向上に多く寄与し
ない。本発明者らは、前記特開平06-256880 号公報のよ
うな思想に反して、晶析出物の平均粒径が大きくても、
それが間隔を開けて分散している (まばらに存在する)
ならば、靱性の向上に寄与する。つまり、晶析出物の平
均粒径が小さくても、互いの間隔が小さく密集した状態
乃至つながった状態では、靱性等の機械的特性を劣化さ
せる。
For example, morphological control of crystal precipitates as disclosed in JP-A-06-256880, that is, merely reducing the average particle size of crystal precipitates in an ingot does not contribute much to improvement in toughness. The present inventors, contrary to the idea as described in JP-A-06-256880, even if the average particle size of the crystal precipitate is large,
It is dispersed at intervals (sparsely present)
If so, it contributes to improvement in toughness. In other words, even if the average particle size of the crystal precipitates is small, mechanical properties such as toughness are deteriorated in a state where the distance between the crystal precipitates is small and dense or connected.

【0026】即ち、Mg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系
晶析出物が粒界上に密に存在すると、これら晶析出物自
身および周囲が溶出するため、粒界腐食や応力腐食割れ
を著しく生じやすくなる。
That is, if Mg 2 Si or Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates are densely present on the grain boundaries, these crystal precipitates themselves and their surroundings elute, and the Corrosion and stress corrosion cracking are more likely to occur.

【0027】このため、本発明では、粒界上に存在する
Mg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の形態制御
を行う。しかし、粒界上に存在する晶析出物の平均粒径
を単に小さくするだけでは、耐応力腐食割れや耐粒界腐
食性を向上に多く寄与しない。これら耐食性を向上させ
るために重要なことは、粒界上に存在するMg2Si やAl-F
e-Si-(Mn、Cr、Zr) 系晶析出物同士が、互いに間隔を開
けて分散している (まばらに存在する) ことが必須とな
る。これに対し、晶析出物の平均粒径が小さくても、互
いの間隔が小さく密集した状態乃至長くつながった状態
では、前記応力腐食割れや粒界腐食の粒界に沿った伝播
を防止することができず、靱性も低下させる。
For this reason, in the present invention, it exists on the grain boundary.
Controls the morphology of Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr) crystal precipitates. However, simply reducing the average particle size of the crystal precipitates present on the grain boundaries does not contribute much to improving stress corrosion cracking resistance and intergranular corrosion resistance. What is important for improving these corrosion resistances is Mg 2 Si or Al-F
It is indispensable that e-Si- (Mn, Cr, Zr) -based crystal precipitates are dispersed (sparsely present) at intervals from one another. On the other hand, even if the average particle size of the crystal precipitates is small, it is necessary to prevent the stress corrosion cracking and intergranular corrosion from propagating along the grain boundaries in a state in which the distance between the crystal precipitates is small and dense or long. And the toughness is also reduced.

【0028】そして、この晶析出物の大きさ制御と、晶
析出物が互いに間隔を開けて分散している(晶析出物の
互いの間隔が小さく密集した状態乃至つながった状態で
はない)状況に良く対応する指標として、本発明では、
晶析出物の平均粒径と、該晶析出物間の平均間隔を選択
する。
The size control of the crystal precipitates and the state in which the crystal precipitates are dispersed at intervals from each other (not in a state where the distance between the crystal precipitates is small and dense or connected). As a well-corresponding index, in the present invention,
The average particle size of the crystal precipitate and the average interval between the crystal precipitates are selected.

【0029】以上の組織的改善は、特願平11-285372 号
と同じ内容である。これに対し、本発明者では、Al合金
鍛造材の耐粒界腐食性や耐応力腐食割れ性を確実に保証
するために、前記組織的改善に加えて、更に、Al合金鍛
造材の電気化学的な特性を規定する。
The above organizational improvement is the same as in Japanese Patent Application No. 11-285372. On the other hand, in order to ensure the intergranular corrosion resistance and stress corrosion cracking resistance of the Al alloy forged material, the present inventor, in addition to the above-described structural improvement, further performed an electrochemical Prescribe specific characteristics.

【0030】本発明らは、この電気化学的な特性につい
て、実際の粒界腐食や応力腐食割れに良く対応する、電
気化学的な特性として、Al合金鍛造材をアノードとし、
30℃で5 % のNaCl水溶液中において、100 μA/cm2 で30
分間直流電解後に測定されるAl合金鍛造材の自然電位を
選択する。
According to the present invention, an aluminum alloy forged material is used as an anode, as an electrochemical property corresponding to the actual intergranular corrosion and stress corrosion cracking.
In 5% NaCl aqueous solution at 30 ° C., 30 at 100 μA / cm 2
Select the spontaneous potential of the forged Al alloy measured after DC electrolysis for one minute.

【0031】なお、このAl合金鍛造材の自然電位につい
ては、測定方法を含めて、また、粒界腐食や応力腐食割
れの簡易評価方法としても、本出願人が、特願平11-281
149号として、平成11年10月1 日付けで出願している。
The applicant of the present invention disclosed in Japanese Patent Application No. Hei 11-281 as to the natural potential of this Al alloy forged material, including a measuring method and a simple evaluation method of intergranular corrosion and stress corrosion cracking.
No. 149 filed on October 1, 1999.

【0032】このAl合金鍛造材の自然電位測定方法は、
輸送機の構造材の海水などの塩水腐食環境下を模擬した
NaCl水溶液中において、まず、Al合金鍛造材の直流電解
による強制的なエッチングを行い、しかる後に、このNa
Cl水溶液中におけるAl合金鍛造材の自然電位の経時変化
を測定して、自然電位の最低値を測定するものである。
そして、この測定自然電位の (最低値の) 傾向は、実際
の耐粒界腐食性や耐応力腐食割れ性の傾向と良く対応し
ているものである。
The method for measuring the spontaneous potential of this Al alloy forged material is as follows.
Simulated in a saltwater corrosion environment such as seawater for transport aircraft structural materials
First, in a NaCl aqueous solution, forcible etching of a forged Al alloy material is performed by DC electrolysis, and
The minimum value of the spontaneous potential is measured by measuring the change over time of the spontaneous potential of the forged Al alloy in a Cl aqueous solution.
The tendency of the measured self-potential (the lowest value) corresponds well to the actual tendency of intergranular corrosion resistance and stress corrosion cracking resistance.

【0033】[0033]

【発明の実施の形態】粒界上の晶析出物の平均粒径と平
均間隔。次に、本発明における粒界上に存在する晶析出
物の平均径と平均間隔の規定について、更に具体的に説
明する。本発明で規定する、粒界のMg2Si とAl-Fe-Si-
(Mn、Cr、Zr) 系晶析出物は、前記面積率を規定してい
る晶析出物と同じである。そして、本発明では、前記し
た通り、Al合金鍛造材の靱性および耐応力腐食割れ性や
耐粒界腐食性の向上のために、これら粒界上に存在する
晶析出物の、平均粒径を1.2 μm 以下とするとともに、
これら晶析出物同士の平均間隔を3.0 μm 以上とする。
BEST MODE FOR CARRYING OUT THE INVENTION Average grain size and average spacing of crystal precipitates on grain boundaries. Next, the definition of the average diameter and the average interval of the crystal precipitate existing on the grain boundary in the present invention will be described more specifically. As defined in the present invention, Mg 2 Si and Al-Fe-Si-
The (Mn, Cr, Zr) -based crystal precipitate is the same as the crystal precipitate defining the area ratio. In the present invention, as described above, in order to improve the toughness and stress corrosion cracking resistance and intergranular corrosion resistance of the Al alloy forged material, the average grain size of crystal precipitates present on these grain boundaries is determined. 1.2 μm or less,
The average distance between these crystal precipitates is 3.0 μm or more.

【0034】これら粒界上のMg2Si とAl-Fe-Si-(Mn、C
r、Zr) 系晶析出物同士の平均間隔が3.0 μm 未満の場
合、たとえ晶析出物の平均粒径が1.2 μm 以下と小さく
ても、互いの間隔が小さく密集した状態乃至つながった
状態となり、前記靱性および耐応力腐食割れ性や耐粒界
腐食性を向上させることができない。また、晶析出物同
士の間隔を3.0 μm 以上としても、晶析出物の平均粒径
が1.2 μm を越える場合、結果として、晶析出物が密集
した状態乃至つながった状態となり、前記靱性および耐
応力腐食割れ性や耐粒界腐食性を向上させることができ
ない。
Mg 2 Si and Al—Fe—Si— (Mn, C
(r, Zr) When the average distance between the crystal precipitates is less than 3.0 μm, even if the average particle diameter of the crystal precipitates is as small as 1.2 μm or less, the distance between the crystal precipitates is small and dense or connected, The toughness, stress corrosion cracking resistance and intergranular corrosion resistance cannot be improved. Further, even if the distance between the crystal precipitates is 3.0 μm or more, if the average particle size of the crystal precipitates exceeds 1.2 μm, the crystal precipitates will be in a dense or connected state, resulting in the toughness and stress resistance. Corrosion cracking and intergranular corrosion resistance cannot be improved.

【0035】これら晶析出物の平均粒径と、晶析出物間
の平均間隔の測定は、Al合金鍛造材の組織を、400 倍程
度の光学顕微鏡または500 倍程度の走査型電子顕微鏡(S
EM)により、材質のバラツキを考慮するためAl合金鍛造
材の任意の測定箇所20視野の目視観察乃至画像解析結果
の平均によって行う。測定部位は、鍛造材の表面から中
央部位までを20等分した各位置で行う。
The average grain size of these crystal precipitates and the average interval between the crystal precipitates were measured by examining the structure of the forged Al alloy with an optical microscope of about 400 times or a scanning electron microscope (SEM) of about 500 times.
EM) in order to take account of the variation in the material, the measurement is performed by visual observation or averaging the results of image analysis in 20 visual fields at arbitrary measurement points of the forged Al alloy material. The measurement is performed at each position where the surface from the forged material to the center is equally divided into 20.

【0036】ここにおいて、本発明で言う粒界上の晶析
出物の平均粒径とは、前記各視野の粒界上で測定でき
る、粒界上に存在するMg2Si とAl-Fe-Si-(Mn、Cr、Zr)
系晶析出物粒子の平均の長さを言い、前記各視野で測定
される平均の長さを、前記20視野で平均値化したものと
する。
Here, the average particle size of the crystal precipitates on the grain boundaries referred to in the present invention means Mg 2 Si and Al—Fe—Si existing on the grain boundaries, which can be measured on the grain boundaries in each of the above-mentioned fields. -(Mn, Cr, Zr)
It refers to the average length of the systemic precipitate particles, and the average length measured in each visual field is averaged in the 20 visual fields.

【0037】また、本発明で言う晶析出物間の間隔と
は、各視野で測定される粒界の長さを、各視野の粒界上
に観察される晶析出物粒子の数で除した値を、前記20視
野で平均値化したものとする。
The term "interval between crystal precipitates" as used in the present invention is obtained by dividing the length of a grain boundary measured in each visual field by the number of crystal precipitate particles observed on the grain boundary in each visual field. The values are averaged over the 20 visual fields.

【0038】(自然電位)図1 に、各種Al合金鍛造材をア
ノードとし、30℃で5 % のNaCl水溶液中において、100
μA/cm2 で30分間直流電解後に測定されるアルミニウム
合金鍛造材の自然電位a の経時変化の例を示す。なお、
図1 は、後述する実施例における6000系(Al-Mg-Si 系)
Al合金鍛造材の、直流電解後の、NaCl水溶液中における
自然電位の経時変化の例を示している。
(Spontaneous potential) FIG. 1 shows that various aluminum alloy forgings were used as anodes at 30 ° C. in a 5% NaCl aqueous solution.
An example of the change over time of the natural potential a of a forged aluminum alloy measured after DC electrolysis at μA / cm 2 for 30 minutes is shown. In addition,
FIG. 1 shows a 6000 series (Al-Mg-Si series) in an example described later.
3 shows an example of a temporal change of a spontaneous potential in a NaCl aqueous solution after direct current electrolysis of an Al alloy forging.

【0039】本発明におけるAl合金鍛造材の自然電位の
最低値とは、図1 において、前記直流電解条件で電解処
理後、例えば5 分間 (2 〜10分の間から選択)Al 合金鍛
造材の浸漬して測定した自然電位a の値の内、最も低い
電位a1〜a5である。
The minimum value of the spontaneous potential of the Al alloy forged material in the present invention means, for example, 5 minutes (selected from 2 to 10 minutes) of the Al alloy forged material after the electrolytic treatment under the DC electrolytic conditions in FIG. of the values of the soaked natural potential a measured by a lowest potential a 1 ~a 5.

【0040】そして、Al合金鍛造材の自然電位の具体的
な測定方法は、当該Al合金鍛造材を各々試料電極とし、
後述する直流電解条件のNaClの電解溶液中で、例えば、
Hg/HgCl を基準または標準電極として、公知の電位差計
を用いることにより簡便に測ることが可能である。
A specific method for measuring the natural potential of the Al alloy forging is as follows.
In an electrolytic solution of NaCl under DC electrolysis conditions described below, for example,
It can be easily measured by using a known potentiometer with Hg / HgCl 2 as a reference or standard electrode.

【0041】なお、前記NaCl水溶液の温度と濃度条件、
直流電解の電流密度と時間の条件を一つの条件に特定し
たのは、Al合金鍛造材の自然電位の測定値に再現性をも
たせるためである。自然電位は前記範囲を外れても測定
は可能であるが、発明で規定する自然電位としては、前
記範囲を外れた場合、測定値にバラツキが生じやすい。
The temperature and concentration conditions of the NaCl aqueous solution,
The reason why the conditions of the current density and the time of DC electrolysis are specified as one condition is that the measured value of the natural potential of the forged Al alloy has reproducibility. Although the natural potential can be measured even outside the above range, the measured value tends to vary when the natural potential is out of the range as defined in the invention.

【0042】また、単に、前記NaCl水溶液中において、
Al合金鍛造材の自然電位の経時変化を測定しただけで
は、その測定された自然電位の値 (最低値も含め) は、
実際のAl合金鍛造材の粒界腐食性や応力腐食割れの発生
の傾向とは全く対応しない。
In the above NaCl aqueous solution,
Just by measuring the change over time of the natural potential of an Al alloy forged material, the value of the measured natural potential (including the lowest value) is
It does not correspond to the actual tendency of intergranular corrosion or stress corrosion cracking of Al alloy forgings.

【0043】前記NaCl水溶液中において、まず、Al合金
鍛造材の直流電解による強制的なエッチング、言わばAl
合金鍛造材の粒界腐食の促進を行うことによって、その
後に測定された自然電位の値 (最低値も含め) の傾向
が、実際の耐粒界腐食性や耐応力腐食割れ性の傾向と良
く対応する。
In the above-mentioned NaCl aqueous solution, forcibly etching of the forged Al alloy by direct current electrolysis,
By promoting the intergranular corrosion of the forged alloy, the tendency of the self-potential value (including the lowest value) measured thereafter tends to be better than that of the actual intergranular corrosion resistance and stress corrosion cracking resistance. Corresponding.

【0044】一方、前記アノード溶解法の箇所で述べた
通り、Al合金材をアノードとした直流電解により、Al合
金材の粒界腐食が促進されること自体は公知である。し
かし、この公知の粒界腐食促進方法によっても、実際の
Al合金材の耐粒界腐食性の評価自体は、Al合金材の粒界
腐食部分の面積や深さを評価することにより行われてい
る。即ち、従来技術では、一貫して、Al合金鍛造材の粒
界腐食の程度 (耐粒界腐食性の評価) を、あくまで、直
接、粒界腐食している部分の腐食状況や体積で評価して
いた。
On the other hand, as described in the section on the anode melting method, it is known that intergranular corrosion of an Al alloy material is promoted by DC electrolysis using an Al alloy material as an anode. However, even with this known method of promoting intergranular corrosion, the actual
The evaluation itself of the intergranular corrosion resistance of the Al alloy material is performed by evaluating the area and depth of the intergranular corrosion portion of the Al alloy material. In other words, in the conventional technology, the degree of intergranular corrosion (evaluation of intergranular corrosion resistance) of an aluminum alloy forged material is consistently evaluated directly based on the corrosion state and volume of the intergranular corrosion part. I was

【0045】これに対し、本発明では、Al合金鍛造材の
耐粒界腐食性の評価を、前記従来技術のように、粒界腐
食している部分の腐食状況や体積で行うのではなく、Al
合金鍛造材をアノードとした直流電解後の自然電位によ
り、言わば間接的に行うものである。
On the other hand, according to the present invention, the evaluation of the intergranular corrosion resistance of the forged Al alloy material is not performed based on the corrosion state or volume of the part where the intergranular corrosion is performed as in the above-described prior art, but is performed. Al
This is performed indirectly by the natural potential after DC electrolysis using the forged alloy as an anode.

【0046】Al合金鍛造材をアノードとした直流電解後
の自然電位なり、自然電位の最低値の傾向が、実際の耐
粒界腐食性の傾向と良く対応している理由は定かではな
いが、以下の通りと推考される。即ち、Al合金鍛造材の
耐粒界腐食が生じた場合、腐食の先端部分では、イオン
の拡散が遅れることにより、pHが酸性に変化する。そし
て、このpHが酸性に変化した場合に、Al合金鍛造材の前
記自然電位が低下する現象が生じる。そして、本発明で
は、耐粒界腐食に起因するAl合金鍛造材の自然電位の低
下の傾向をよく捉えている (反映している) 測定条件と
なっているために、Al合金鍛造材をアノードとした直流
電解後の自然電位が、実際の耐粒界腐食性の傾向と良く
対応しているものと推考される。
It is not clear why the natural potential after DC electrolysis using an aluminum alloy forged material as an anode and the tendency of the lowest value of the natural potential correspond well to the actual tendency of intergranular corrosion resistance. It is assumed that: That is, when the intergranular corrosion resistance of the forged Al alloy occurs, the diffusion of ions is delayed at the leading end of the corrosion, so that the pH changes to acidic. When the pH changes to acidic, a phenomenon occurs in which the natural potential of the forged Al alloy decreases. In the present invention, since the measurement conditions are well understood (reflected) for the tendency of a decrease in the spontaneous potential of the Al alloy forging due to intergranular corrosion resistance, the Al alloy forging is used as an anode. It is presumed that the natural potential after DC electrolysis corresponds well to the actual tendency of intergranular corrosion resistance.

【0047】なお、前記輸送機使用環境下でのAl合金鍛
造材の耐応力腐食割れ性は、粒界腐食性に一義的に対応
しており、Al合金鍛造材の耐粒界腐食性を評価すること
が耐応力腐食割れ性の評価にもつながる。
Incidentally, the stress corrosion cracking resistance of the forged Al alloy material in the environment of use of the transport machine corresponds uniquely to the intergranular corrosion property, and the intergranular corrosion resistance of the forged Al alloy material was evaluated. This leads to an evaluation of stress corrosion cracking resistance.

【0048】(自然電位による粒界腐食の評価)自然電位
による粒界腐食の評価は、前記図1 における自然電位の
経時変化の内、初期の自然電位と経時変化後の自然電位
との差、経時変化後の自然電位の最低値などによって行
うことができる。より具体的には、図1 において、後述
する実施例の通り、経時変化後の自然電位の最低値a1
a2が比較的高いAl合金鍛造材は耐粒界腐食性に優れ、経
時変化後の自然電位の最低値a3、a4、a5が比較的低いAl
合金鍛造材は耐粒界腐食性が劣っている。また、経時変
化後の自然電位の最低値a1、a2が比較的高いものは、初
期の各自然電位との差も小さく、経時変化後の自然電位
の最低値a3、a4、a5が比較的低いものは、初期の各自然
電位との差が大きい。
(Evaluation of Intergranular Corrosion by Natural Potential) Evaluation of intergranular corrosion by natural potential is based on the difference between the initial natural potential and the natural potential after the temporal change in the temporal change of the natural potential in FIG. It can be performed by the lowest value of the spontaneous potential after aging. More specifically, in FIG. 1, as in the examples described later, the minimum value a 1
a 2 is relatively high Al alloy forged material excellent in intergranular corrosion resistance, minimum a 3, a 4, a 5 are relatively low Al natural potential after aging
Alloy forgings have poor intergranular corrosion resistance. Further, those having relatively high minimum values a 1 and a 2 of the natural potential after aging have a small difference from the initial natural potentials, and the minimum values a 3 , a 4 and a of the natural potential after aging are small. Those having a relatively low value of 5 have a large difference from the initial self potentials.

【0049】したがって、Al合金の種類毎、或いは熱処
理等の製造履歴毎に、図1 のように、粒界腐食と自然電
位の経時変化の関係を求めておけば、自然電位の経時変
化の内、初期の自然電位と経時変化後の自然電位との
差、経時変化後の自然電位の最低値などによって、Al合
金鍛造材の耐粒界腐食の評価を行うことができる。
Therefore, as shown in FIG. 1, the relationship between the intergranular corrosion and the change over time in the self-potential is determined for each type of Al alloy or each manufacturing history of heat treatment and the like. The intergranular corrosion resistance of the forged Al alloy can be evaluated based on the difference between the initial natural potential and the natural potential after aging, the minimum value of the natural potential after aging, and the like.

【0050】なお、図1 の6000系(Al-Mg-Si 系) Al合金
鍛造材の経時変化後の自然電位において、前記した通
り、自然電位の最低値が−1020mVより大きい乃至−1020
mV以上の (マイナスの数値が小さい) a1、a2であれば、
当該6000系Al合金鍛造材の実際の耐粒界腐食性や耐応力
腐食割れ性が優れる。一方、前記自然電位の最低値が−
1020mVより小さい乃至−1020mV未満の (マイナスの数値
が大きい) a3、a4、a5であれば、当該6000系Al合金鍛造
材の実際の耐粒界腐食性や耐応力腐食割れ性は低下して
いる。したがって、この自然電位の最低値をもって、鍛
造材と、鍛造材よりも耐食性に優れる板材、形材等6000
系Al合金鍛造材の耐粒界腐食性や耐応力腐食割れ性を簡
便に評価することが可能である。
As described above, in the natural potential of the 6000 series (Al-Mg-Si system) Al alloy forged material after the change with time, the minimum value of the natural potential is larger than -1020 mV to -1020 m, as described above.
If the above mV (negative value is small) at a 1, a 2,
The 6000 series Al alloy forged material is excellent in actual intergranular corrosion resistance and stress corrosion cracking resistance. On the other hand, the minimum value of the self potential is-
If it is less than 1020 mV or less than −1020 mV (a large negative value) a 3 , a 4 , a 5 , the actual intergranular corrosion resistance and stress corrosion cracking resistance of the 6000 series Al alloy forged material are reduced. are doing. Therefore, with the lowest value of this natural potential, forged material, plate material, shape material, etc., which have better corrosion resistance than forged material
It is possible to easily evaluate the intergranular corrosion resistance and stress corrosion cracking resistance of forged aluminum alloys.

【0051】(Al合金鍛造材用鋳塊)本発明における鍛造
材用の鋳塊は、Al合金鍛造材の高靱性化を保証するため
に、鋳塊のデンドライト二次アーム間隔(DAS) を30μm
以下とすることが好ましい。これにより、Al合金鋳塊お
よびAl合金鍛造材の結晶粒を微細化させるとともに、Mg
2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の合計の面積
率を低くし、Al合金鍛造材の靱性を向上させる。この鋳
塊のデンドライト二次アーム間隔(DAS) が30μm を越え
て大きくなった場合、前記特開平06-256880 号公報のAl
合金鍛造材のデンドライト二次アーム間隔(DAS) が30μ
m 程度の場合のように、鋳塊からの加工率 (鋳塊を鍛造
のみ行う場合や、鋳塊を押出や圧延後鍛造する場合の全
体の加工率) の低い部位が存在した場合に、Al合金鍛造
材全体の靱性を向上させることができない可能性があ
る。
(Ingot for Al alloy forging) The ingot for forging in the present invention has a dendrite secondary arm spacing (DAS) of 30 μm in order to ensure the toughness of the Al alloy forging.
It is preferable to set the following. As a result, the crystal grains of the Al alloy ingot and the Al alloy forged material are refined, and the Mg
2 Reduce the total area ratio of Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates and improve the toughness of forged Al alloy. If the dendrite secondary arm spacing (DAS) of this ingot becomes larger than 30 μm, the aluminum ingot is disclosed in Japanese Patent Application Laid-Open No. 06-256880.
Dendrite secondary arm spacing (DAS) of alloy forging is 30μ
As in the case of about m, when there is a part with a low processing rate from the ingot (when only the ingot is forged, or when the ingot is extruded or rolled and forged after rolling), Al It may not be possible to improve the toughness of the entire alloy forging.

【0052】なお、鍛造材は、鋳塊を直接熱間鍛造する
場合や、更に鋳塊を一旦押出加工や圧延加工して熱間鍛
造する場合も含む。したがって、鋳塊の形状は、丸棒な
どのインゴットやスラブ形状、或いは成品形状に近いニ
アネットシェイプ等があり、特に制限されるものではな
い。
The forged material includes a case where the ingot is directly hot forged, and a case where the ingot is once extruded or rolled and then hot forged. Therefore, the shape of the ingot includes an ingot such as a round bar, a slab shape, and a near net shape close to a product shape, and is not particularly limited.

【0053】(Al合金鍛造材の化学成分組成)次に、本発
明Al合金鍛造材における、化学成分組成について説明す
る。本発明のAl合金は、自動車、船舶などの輸送機材や
構造材あるいは部品用として、高強度、高靱性および高
耐食性などの高い耐久性を保証する必要がある。
(Chemical component composition of Al alloy forged material) Next, the chemical component composition of the Al alloy forged material of the present invention will be described. The Al alloy of the present invention is required to guarantee high durability such as high strength, high toughness and high corrosion resistance for use in transportation equipment such as automobiles and ships, structural materials or parts.

【0054】したがって、本発明Al合金鍛造材の化学成
分組成は、Al-Mg-Si系のJIS 6000系Al合金の成分規格
(JIS 6101、6111、6003、6151、6061、6N01、6063など)
に相当するものとして、基本的には、Mg:0.6〜1.6%、S
i:0.6〜1.8%を含み、更に、Cr:0.1〜0.2%およびZr:0.1
〜0.2%の一種または二種を含むとともに、Cu:0.20%以
下、Mn:0.05%以下、Fe:0.30%以下、更に好ましくは、水
素:0.25 cc/100g Al以下に各々規制し、残部Alおよび不
可避的不純物からなるAl合金とする。
Therefore, the chemical composition of the Al alloy forged material of the present invention is the same as that of JIS 6000 Al alloy of Al-Mg-Si system.
(JIS 6101, 6111, 6003, 6151, 6061, 6N01, 6063, etc.)
Basically, Mg: 0.6-1.6%, S
i: 0.6-1.8%, Cr: 0.1-0.2% and Zr: 0.1
Including one or two of 0.2% or less, Cu: 0.20% or less, Mn: 0.05% or less, Fe: 0.30% or less, more preferably hydrogen: 0.25 cc / 100g Al or less, and the remaining Al and An Al alloy composed of unavoidable impurities.

【0055】しかし、JIS 6000系Al合金の各成分規格通
りにならずとも、前記前記諸特性を満足してさえいれ
ば、更なる特性の向上や他の特性を付加するための、他
の元素を適宜含むなどの成分組成の変更は適宜許容され
る。また、溶解原料スクラップなどから必然的に混入さ
れる不純物も、本発明鍛造材の品質を阻害しない範囲で
許容される。
However, even if the above-mentioned various properties are satisfied, even if the above-mentioned various properties are not satisfied, other elements for further improving the properties and adding other properties are not required. A change in the composition of the components, such as appropriately including Further, impurities that are inevitably mixed in from the raw material scrap and the like are allowed as long as the quality of the forged material of the present invention is not impaired.

【0056】(各元素量)次に、本発明Al合金鍛造材の各
元素の含有量について、臨界的意義や好ましい範囲につ
いて説明する。
(Amount of Each Element) Next, the critical significance and preferred range of the content of each element in the forged aluminum alloy of the present invention will be described.

【0057】Mg:0.6〜1.8%。 Mgは人工時効により、SiとともにMg2 Si (β' 相) とし
て析出し、最終製品使用時の高強度 (耐力) を付与する
ために必須の元素である。Mgの0.6%未満の含有では時効
硬化量が低下する。一方、1.8%を越えて含有されると、
強度 (耐力) が高くなりすぎ、鍛造性を阻害する。ま
た、溶体化処理後の焼き入れ途中に多量のMg2 Siが析出
しやすく、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、C
r、Zr) 系晶析出物の平均粒径を1.2 μm 以下とすると
ともに、これら晶析出物同士の平均間隔を3.0 μm 以上
とすることができない。したがって、Mgの含有量は0.6
〜1.8%の範囲とする。
Mg: 0.6-1.8%. Mg is precipitated as Mg 2 Si (β ′ phase) together with Si by artificial aging, and is an essential element for imparting high strength (proof stress) when the final product is used. When the content of Mg is less than 0.6%, the age hardening amount decreases. On the other hand, if it is contained in excess of 1.8%,
The strength (proof strength) becomes too high, impairing forgeability. In addition, a large amount of Mg 2 Si tends to precipitate during quenching after the solution treatment, and Mg 2 Si or Al-Fe-Si- (Mn, C
The average particle size of (r, Zr) -based crystal precipitates is not more than 1.2 μm, and the average distance between these crystal precipitates cannot be more than 3.0 μm. Therefore, the content of Mg is 0.6
The range is ~ 1.8%.

【0058】Si:0.6〜1.8%。 SiもMgとともに、人工時効処理により、Mg2 Si (β'
相) として析出して、最終製品使用時の高強度 (耐力)
を付与するために必須の元素である。Siの0.6%未満の含
有では人工時効で十分な強度が得られない。一方、1.8%
を越えて含有されると、鋳造時および溶体化処理後の焼
き入れ途中で、粗大な単体Si粒子が晶出および析出し
て、前記した通り、耐食性と靱性を低下させる。また、
過剰Siが多くなって、粒界上に存在するMg2Si やAl-Fe-
Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を1.2 μm 以下
とするとともに、これら晶析出物同士の平均間隔を3.0
μm 以上とすることができず、高耐食性と高靱性を得る
ことができない。更に伸びが低くなるなど、加工性も阻
害する。したがって、Siの含有量は0.6 〜1.8%の範囲と
し、この範囲の中でも、Mg含有量との関係で、できるだ
け過剰Siは少なくするこのが好ましい。
Si: 0.6-1.8%. Si and Mg are combined with Mg 2 Si (β '
Phase), resulting in high strength (proof stress) when the final product is used
Is an essential element for imparting If the content of Si is less than 0.6%, sufficient strength cannot be obtained by artificial aging. Meanwhile, 1.8%
When it is contained in excess of, coarse single Si particles are crystallized and precipitated during casting and during quenching after the solution treatment, and as described above, the corrosion resistance and toughness are reduced. Also,
Excess Si increases and Mg 2 Si or Al-Fe-
The average particle size of Si- (Mn, Cr, Zr) -based crystal precipitates is set to 1.2 μm or less, and the average distance between these crystal precipitates is set to 3.0 μm.
μm or more, and high corrosion resistance and high toughness cannot be obtained. Further, workability is impaired, such as lower elongation. Therefore, it is preferable that the Si content is in the range of 0.6 to 1.8%, and in this range, the excess Si is reduced as much as possible in relation to the Mg content.

【0059】Cr:0.1〜0.2%およびZr:0.1〜0.2%の一種ま
たは二種。 これらの元素は均質化熱処理時およびその後の熱間鍛造
時に、Al12Mg2Cr 、Al-Cr 系、Al-Zr 系などの分散粒子
(分散相) を生成する。これらの分散粒子は再結晶後の
粒界移動を妨げる効果があるため、微細な結晶粒や亜結
晶粒を得ることができる。また、これらの元素の内で
も、Zrは、数十から数百オングトロームのサイズの、Al
-Mn 系やAl-Cr 系の分散粒子よりも、より微細なAl-Zr
系分散粒子が析出する。このため、特にZrは、結晶粒界
や亜結晶粒界の移動を阻止し、結晶粒の微細化、亜結晶
粒化する効果が大きく、破壊靱性や疲労特性などの向上
効果が大きい。含有量が少なすぎると、これらの効果が
期待できず、一方、これらの元素の過剰な含有は溶解、
鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の金属間化合
物や晶析出物を生成しやすく、破壊の起点となり、靱性
や疲労特性を低下させる原因となる。したがって、Al-F
e-Si-(Mn、Cr、Zr) 系晶析出物の合計の面積率が、単位
面積当たり1.5%以下、好ましくは、1.0%以下とすること
ができず、高靱性や高疲労特性を得ることができない。
このため、これらの元素の含有量は各々、Cr:0.1〜0.2
%、Zr:0.1〜0.2%とする。
One or two types of Cr: 0.1-0.2% and Zr: 0.1-0.2%. These elements are dispersed particles such as Al 12 Mg 2 Cr, Al-Cr-based, and Al-Zr-based during homogenization heat treatment and subsequent hot forging.
(Dispersed phase). Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, fine crystal grains and subcrystal grains can be obtained. Among these elements, Zr is an aluminum alloy having a size of several tens to several hundreds of angstroms.
Finer Al-Zr than dispersed particles of -Mn or Al-Cr
System-dispersed particles precipitate. For this reason, Zr in particular has a great effect of preventing the movement of the crystal grain boundaries and sub-crystal grain boundaries, making the crystal grains finer and sub-crystallizing, and has a great effect of improving the fracture toughness and the fatigue properties. If the content is too small, these effects cannot be expected, while excessive content of these elements will dissolve,
During casting, coarse Al-Fe-Si- (Mn, Cr, Zr) -based intermetallic compounds and crystal precipitates are easily formed, which is a starting point of fracture, and causes a decrease in toughness and fatigue properties. Therefore, Al-F
The total area ratio of e-Si- (Mn, Cr, Zr) -based crystal precipitates cannot be reduced to 1.5% or less, preferably 1.0% or less per unit area, and high toughness and high fatigue properties are obtained. Can not do.
Therefore, the content of each of these elements is Cr: 0.1 to 0.2
%, Zr: 0.1 to 0.2%.

【0060】Cu:0.25%以下。 Cuは、Al合金鍛造材の組織の応力腐食割れや粒界腐食の
感受性を著しく高め、Al合金鍛造材の耐食性や耐久性を
低下させる。したがって、本発明では、この観点からCu
含有量をできるだけ少なく規制する。しかし、一方で、
Cuは固溶強化にて強度の向上に寄与する他、時効処理に
際して、最終製品の時効硬化を著しく促進する効果も有
する。なお、Cu含有量を少なくすると、高純度地金を使
用する必要があり、鋳造コストがかかる問題もある。し
たがって、Cuは0.25% 以下の含有まで許容する。
Cu: 0.25% or less. Cu significantly increases the susceptibility of the structure of the Al alloy forging to stress corrosion cracking and intergranular corrosion, and lowers the corrosion resistance and durability of the Al alloy forging. Therefore, in the present invention, from this viewpoint, Cu
Regulate the content as low as possible. But on the other hand,
Cu contributes to improvement of strength by solid solution strengthening, and also has an effect of remarkably promoting age hardening of a final product during aging treatment. If the Cu content is reduced, it is necessary to use a high-purity ingot, and there is a problem that the casting cost is high. Therefore, Cu is allowed up to 0.25% or less.

【0061】Mn:0.05%以下。 MnはAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物を生成する。
このため、Mnの含有量が多いと、粒界上に存在するAl-F
e-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径、晶析出物同
士の平均間隔を、本発明で規定する範囲にすることがで
きなくなる。したがって、本発明では、Al合金鍛造材の
高強度、高靱性および高耐食性を保証する観点からMn含
有量をできるだけ少なく規制する。しかし、一方で、Mn
は、Cr、Zrと同様に、均質化熱処理時およびその後の熱
間鍛造時に、Al20Cu2Mn3などのAl-Mn 系の分散粒子を生
成し、この分散粒子により、再結晶後の粒界移動を妨
げ、微細な結晶粒を得る効果もある。そして、固溶によ
る強度およびヤング率の増大も見込める。また、Mnの含
有量を少なくするために、鋳造コストがかかる問題もあ
る。したがって、Mnは0.05% 以下の含有まで許容する。
Mn: 0.05% or less. Mn forms Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates.
Therefore, when the content of Mn is large, Al-F
The average particle size of the e-Si- (Mn, Cr, Zr) -based crystal precipitates and the average distance between the crystal precipitates cannot be in the ranges specified in the present invention. Therefore, in the present invention, the Mn content is regulated as small as possible from the viewpoint of ensuring high strength, high toughness and high corrosion resistance of the forged Al alloy. But on the other hand, Mn
As in the case of Cr and Zr, Al-Mn-based dispersed particles such as Al 20 Cu 2 Mn 3 are generated during the homogenization heat treatment and during the subsequent hot forging, and the dispersed particles are used to form the recrystallized particles. This also has the effect of hindering field movement and obtaining fine crystal grains. Further, an increase in strength and Young's modulus due to solid solution can be expected. There is also a problem that casting cost is required to reduce the content of Mn. Therefore, Mn is allowed up to a content of 0.05% or less.

【0062】Fe:0.30%以下。 Al合金に不純物として含まれるFeは、Al7Cu2Fe、Al12(F
e,Mn)3Cu2 、(Fe,Mn)Al6、或いは本発明で問題とする粗
大なAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物を生成する。
これらの晶析出物は、前記した通り、破壊靱性および疲
労特性などを劣化させる。特に、Feの含有量が0.30% 、
より厳密には0.25% を越えると、Al-Fe-Si-(Mn、Cr、Z
r) 系晶析出物の合計の面積率が、単位面積当たり1.5%
以下、好ましくは、1.0%以下とすることができず、輸送
機の構造材などに要求される、より高強度で高靱性を得
ることができない。したがって、Feの含有量は0.30% 以
下、より好ましくは0.25% 以下とすることが好ましい。
Fe: 0.30% or less. Fe contained as impurities in the Al alloy is Al 7 Cu 2 Fe, Al 12 (F
(e, Mn) 3 Cu 2 , (Fe, Mn) Al 6 , or coarse Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates of the present invention.
As described above, these crystal precipitates deteriorate the fracture toughness and the fatigue properties. In particular, the content of Fe is 0.30%,
More strictly, if it exceeds 0.25%, Al-Fe-Si- (Mn, Cr, Z
r) The total area ratio of the system crystal precipitates is 1.5% per unit area.
Below, preferably, it cannot be made 1.0% or less, and it is not possible to obtain higher strength and higher toughness required for a structural material of a transport machine or the like. Therefore, the content of Fe is preferably 0.30% or less, more preferably 0.25% or less.

【0063】水素:0.25 cc/100g Al以下。 水素(H2)は、特に、鍛造材の加工度が小さくなる場合、
水素に起因する気泡が鍛造等加工で圧着せず、破壊の起
点となるため、靱性や疲労特性を著しく低下させる。そ
して、高強度化した輸送機の構造材などにおいては、特
に水素による影響が大きい。したがって、水素は0.25 c
c/100g Al 以下のできるだけ少ない含有量とする。
Hydrogen: 0.25 cc / 100 g Al or less. Hydrogen (H 2 ), especially when the degree of work of the forged material is reduced,
Bubbles due to hydrogen are not pressed by forging or the like but serve as starting points for destruction, so that toughness and fatigue characteristics are significantly reduced. And, in the structural material of the transport machine with the increased strength, the influence of hydrogen is particularly large. Therefore, hydrogen is 0.25 c
c / 100g Al should be as low as possible.

【0064】Zn、Ti、B 、Be、V 等。 Zn、Ti、B 、Be、V 等は、各々目的に応じて、選択的に
含有される元素である。 Zn:0.005〜1.0%。 Znは人工時効時において、MgZn2 を微細かつ高密度に析
出させ高い強度を実現させる。また、固溶したZnは粒内
の電位を下げ、腐食形態を粒界からではなく、全面的な
腐食として、粒界腐食や応力腐食割れを結果として軽減
する効果が期待できる。しかし、Znの0.005%未満の含有
では人工時効で十分な強度が得られず、前記耐食性の向
上効果もない。一方、1.0%を越えて含有されると、耐蝕
性が顕著に低下する。したがって、Znの含有量は0.005
〜1.0%の範囲とすることが好ましい。
Zn, Ti, B, Be, V, etc. Zn, Ti, B, Be, V and the like are elements that are selectively contained depending on the purpose. Zn: 0.005 to 1.0%. Zn achieves high strength by precipitating MgZn 2 finely and at high density during artificial aging. Further, the solid solution Zn lowers the potential in the grains, and the effect of reducing the intergranular corrosion and stress corrosion cracking as a result can be expected because the corrosion form is not the grain boundary but the entire surface corrosion. However, if the content of Zn is less than 0.005%, sufficient strength cannot be obtained by artificial aging, and there is no effect of improving the corrosion resistance. On the other hand, when the content exceeds 1.0%, the corrosion resistance is significantly reduced. Therefore, the content of Zn is 0.005
It is preferably in the range of 1.0% to 1.0%.

【0065】Ti:0.001〜0.1%。 Tiは鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加
工性を向上させるために添加する元素である。しかし、
Tiの0.001%未満の含有では、加工性向上の効果が得られ
ず、一方、Tiを0.1%を越えて含有すると、粗大な晶析出
物を形成し、前記加工性を低下させる。したがって、Ti
の含有量は0.001 〜0.1%の範囲とすることが好ましい。
Ti: 0.001 to 0.1%. Ti is an element added for refining the crystal grains of the ingot and improving workability during extrusion, rolling, and forging. But,
If the content of Ti is less than 0.001%, the effect of improving the workability cannot be obtained. On the other hand, if the content of Ti exceeds 0.1%, coarse crystal precipitates are formed and the workability is reduced. Therefore, Ti
Is preferably in the range of 0.001 to 0.1%.

【0066】B:1 〜300ppm。 B はTiと同様、鋳塊の結晶粒を微細化し、押出、圧延、
鍛造時の加工性を向上させるために添加する元素であ
る。しかし、B の1ppm未満の含有では、この効果が得ら
れず、一方、300ppmを越えて含有されると、やはり粗大
な晶析出物を形成し、前記加工性を低下させる。したが
って、B の含有量は1 〜300ppmの範囲とすることが好ま
しい。
B: 1 to 300 ppm. B refines the crystal grains of the ingot, like Ti, extrudes, rolls,
It is an element added to improve workability during forging. However, if the content of B is less than 1 ppm, this effect cannot be obtained. On the other hand, if the content of B exceeds 300 ppm, coarse crystalline precipitates are also formed and the processability is reduced. Therefore, the content of B is preferably in the range of 1 to 300 ppm.

【0067】Be:0.1〜100ppm。 Beは空気中におけるAl溶湯の再酸化を防止するために含
有させる元素である。しかし、0.1ppm未満の含有では、
この効果が得られず、一方、100ppmを越えて含有される
と、材料硬度が増大し、前記加工性を低下させる。した
がって、Beの含有量は0.1 〜100ppmの範囲とすることが
好ましい。
Be: 0.1 to 100 ppm. Be is an element contained to prevent re-oxidation of the Al melt in the air. However, if the content is less than 0.1 ppm,
If this effect cannot be obtained, on the other hand, if the content exceeds 100 ppm, the hardness of the material increases and the workability decreases. Therefore, the content of Be is preferably in the range of 0.1 to 100 ppm.

【0068】V:0.15% 以下。 V は、Mn、Cr、Zrなどと同様に、均質化熱処理時および
その後の熱間鍛造時に、分散粒子 (分散相) を生成す
る。これらの分散粒子は再結晶後の粒界移動を妨げる効
果があるため、微細な結晶粒を得ることができる。しか
し過剰な含有は溶解、鋳造時に粗大なAl-Fe-Si-V系の金
属間化合物や晶析出物を生成しやすく、破壊の起点とな
り、靱性を低下させる原因となる。したがって、V を含
有させる場合は0.15% 以下とする。
V: 0.15% or less. V forms dispersed particles (dispersed phase) during homogenizing heat treatment and subsequent hot forging, like Mn, Cr, and Zr. Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, fine crystal grains can be obtained. However, excessive content tends to generate coarse Al-Fe-Si-V-based intermetallic compounds and crystal precipitates during melting and casting, becomes a starting point of fracture, and lowers toughness. Therefore, when V is contained, the content should be 0.15% or less.

【0069】(Al合金鍛造材の製造方法)次に、本発明に
おけるAl合金鍛造材の好ましい製造方法について述べ
る。本発明におけるAl合金鍛造材の製造自体は常法によ
り製造が可能である。例えば、前記Al合金成分範囲内に
溶解調整されたAl合金溶湯を鋳造する場合には、例え
ば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホ
ットトップ鋳造法等の通常の溶解鋳造法を適宜選択して
鋳造する。
(Method of Manufacturing Al Alloy Forging) Next, a preferred method of manufacturing an Al alloy forging according to the present invention will be described. The production of the forged Al alloy in the present invention itself can be carried out by an ordinary method. For example, when casting an Al alloy melt that has been melt-adjusted within the range of the above-mentioned Al alloy components, for example, a normal melt casting such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), and a hot top casting method. Casting is performed by appropriately selecting a method.

【0070】しかし、Al合金鋳塊の結晶粒を微細化し、
かつ、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr) 系晶析
出物の平均粒径、晶析出物同士の平均間隔を、本発明で
規定する範囲にするためには、Al合金溶湯を、10℃/sec
以上の冷却速度で鋳造して鋳塊とすることが好ましい。
また、鋳塊の冷却速度が10℃/sec以上とすることによ
り、鋳塊のデンドライト二次アーム間隔(DAS) を30μm
以下とすることができる。一方、これ以上冷却速度が遅
いと、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr)系晶析
出物の平均粒径、晶析出物同士の平均間隔を、本発明で
規定する範囲にできず、かつ結晶粒が粗大化し、鋳塊の
デンドライト二次アーム間隔(DAS) を30μm 以下とする
ことができなくなる可能性がある。
However, the crystal grains of the Al alloy ingot were refined,
In addition, the average particle size of the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates present on the grain boundaries, and the average interval between the crystal precipitates, in order to fall within the range specified in the present invention. , Al alloy melt at 10 ℃ / sec
It is preferable that the ingot is cast at the above cooling rate to form an ingot.
Also, by setting the cooling rate of the ingot to 10 ° C / sec or more, the dendrite secondary arm interval (DAS) of the ingot is set to 30 μm.
It can be: On the other hand, if the cooling rate is slower than this, the average particle size of the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates present on the grain boundaries, the average interval between the crystal precipitates, according to the present invention. There is a possibility that the range cannot be specified and the crystal grains are coarsened, so that the dendrite secondary arm interval (DAS) of the ingot cannot be reduced to 30 μm or less.

【0071】次いで、このAl合金鋳塊 (鋳造材) の均質
化熱処理温度は530 〜 595℃の温度範囲とすることが好
ましい。この種Al合金鋳造材の通常の均質化熱処理温度
は、500 〜520 ℃程度であるが、本発明では、前記した
通り、耐食性および靱性の向上のために、均質化熱処理
時に、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物を十分に固溶
させ、調質処理後の鍛造材の組織の粒界上に存在するMg
2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を
1.2 μm 以下とするとともに、これら晶析出物同士の平
均間隔を3.0 μm 以上とする必要がある。
Next, the homogenizing heat treatment temperature of the Al alloy ingot (cast material) is preferably in a temperature range of 530 to 595 ° C. The normal homogenizing heat treatment temperature of this type of Al alloy casting material is about 500 to 520 ° C., but in the present invention, as described above, in order to improve corrosion resistance and toughness, Al-Fe- The Si- (Mn, Cr, Zr) -based crystal precipitates are sufficiently dissolved to form a solid solution, and Mg present on the grain boundaries of the structure of the forged material after the tempering treatment.
2 The average particle size of Si and Al-Fe-Si- (Mn, Cr, Zr)
In addition to 1.2 μm or less, the average interval between these crystal precipitates must be 3.0 μm or more.

【0072】このためには、前記530 〜 595℃の高温で
の均質化熱処理が必要で、均質化熱処理温度が530 ℃未
満の温度では、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物が十
分に固溶せず、調質処理後の鍛造材の組織の粒界上に存
在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平
均粒径を1.2 μm 以下とするとともに、これら晶析出物
同士の平均間隔を3.0 μm 以上とすることが難しくな
る。一方、均質化熱処理温度が595 ℃を越えると、却っ
て、Al合金鋳塊 (鋳造材) にバーニング (溶損)等が生
じ、熱間加工時に割れが生じやすくなる。また、最終鍛
造材の靱性や疲労特性等の機械的特性を著しく低下させ
る可能性がある。
For this purpose, the above-mentioned homogenization heat treatment at a high temperature of 530 to 595 ° C. is required, and when the homogenization heat treatment temperature is lower than 530 ° C., the Al—Fe—Si— (Mn, Cr, Zr) -based The average of Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr) crystal precipitates on the grain boundaries of the structure of the forged material after tempering treatment, where the crystal precipitates are not sufficiently dissolved. It is difficult to reduce the particle size to 1.2 μm or less and to make the average spacing between these crystal precipitates 3.0 μm or more. On the other hand, if the homogenization heat treatment temperature exceeds 595 ° C., on the contrary, burning (melting damage) occurs in the Al alloy ingot (cast material) and cracks are likely to occur during hot working. In addition, there is a possibility that mechanical properties such as toughness and fatigue properties of the final forged material are significantly reduced.

【0073】均質化熱処理の後に、メカニカル鍛造や油
圧鍛造等により熱間鍛造して、最終製品形状( ニアネッ
トシェイプ) のAl合金鍛造材に成形する。そして、鍛造
後、必要な強度および靱性、耐食性を得るためのT6 (溶
体化処理後、最大強さを得る人工時効硬化処理) 、T7
(溶体化処理後、最大強さを得る人工時効硬化処理条件
を超えて過剰時効処理) 、T8 (溶体化処理後、冷間加工
を行い、更に最大強さを得る人工時効硬化処理) 等の調
質処理を適宜行う。また、均質化熱処理、溶体化処理に
は、空気炉、誘導加熱炉、硝石炉などが適宜用いられ
る。更に、人工時効硬化処理には、空気炉、誘導加熱
炉、オイルバスなどが適宜用いられる。特に、前記T7材
では粒界上に析出するβ' 相、β相 (安定相) の内、β
相の割合が高くなる。このβ相は腐食環境下で溶出しや
すく、耐粒界腐食性、耐応力腐食割れ性を高める。一
方、前記T6材で多く析出するβ' 相は腐食環境下で溶出
しやすく、耐粒界腐食性、耐応力腐食割れ性を低める。
したがって、Al合金鍛造材を前記T7材とすることで、耐
力は若干低くなるものの、他の調質処理に比して、耐食
性はより高くなる。
After the homogenizing heat treatment, hot forging is performed by mechanical forging, hydraulic forging, or the like to form an Al alloy forged material having a final product shape (near net shape). Then, after forging, T6 to obtain necessary strength and toughness, corrosion resistance (artificial age hardening treatment to obtain maximum strength after solution treatment), T7
(After solution treatment, over-aging treatment beyond the artificial aging hardening conditions to obtain the maximum strength), T8 (after solution treatment, cold working, and then artificial aging hardening to further maximize the strength), etc. Temper treatment is performed appropriately. For the homogenization heat treatment and the solution treatment, an air furnace, an induction heating furnace, a nitrite furnace, or the like is appropriately used. Further, for the artificial age hardening treatment, an air furnace, an induction heating furnace, an oil bath and the like are appropriately used. In particular, in the T7 material, of the β phase and β phase (stable phase) precipitated on the grain boundaries,
The proportion of phases is higher. This β phase is easily eluted in a corrosive environment and enhances intergranular corrosion resistance and stress corrosion cracking resistance. On the other hand, the β ' phase, which is largely precipitated in the T6 material, is easily eluted in a corrosive environment, and lowers intergranular corrosion resistance and stress corrosion cracking resistance.
Therefore, when the forged Al alloy is made of the T7 material, the proof stress is slightly lowered, but the corrosion resistance is higher than other tempering treatments.

【0074】なお、Al合金鍛造材に残留する鋳造組織を
無くし、強度と靱性をより向上させるために、Al合金鋳
塊を均質化熱処理後、押出や圧延加工した後に、前記鍛
造を行っても良い。
In order to eliminate the cast structure remaining in the Al alloy forged material and to further improve the strength and toughness, the Al alloy ingot may be subjected to a homogenizing heat treatment, extruded or rolled, and then subjected to the forging. good.

【0075】[0075]

【実施例】次に、本発明の実施例を説明する。表1 に示
す化学成分組成のAl合金鋳塊 (Al合金鋳造材、いずれも
φ68mm径の丸棒) を、ホットトップ鋳造法により、20℃
/sec の冷却速度により鋳造した。この鋳塊を550 ℃の
温度で8 時間均質化熱処理を施し、400 ℃に再加熱後メ
カニカル鍛造により熱間で広げ鍛造し、厚さ20mmの板状
のAl合金鍛造材を製造した。次に、このAl合金鍛造材を
空気炉を用いて、加熱速度300 ℃/hr で昇温し、540 ℃
で1 時間の溶体化処理した後水冷 (水焼入れ) を行い、
その後室温(20 〜30℃) で1 時間放置したのち、175 ℃
×8 時間の時効処理(T6 処理) を行った。また、一部
(表2 の発明例No.11)は195 ℃×5 時間の時効処理(T7
処理) を行った。なお、表1 の比較例No.10 の鋳塊のみ
は、化学成分組成は発明例No.2と同じであるが、前記均
質化熱処理温度を470 ℃の低めとした。
Next, an embodiment of the present invention will be described. An aluminum alloy ingot (Al alloy cast material, both round bars of φ68 mm diameter) with the chemical composition shown in Table 1 was subjected to hot-top casting at 20 ° C.
Casting was performed at a cooling rate of / sec. This ingot was subjected to a homogenizing heat treatment at a temperature of 550 ° C. for 8 hours, reheated to 400 ° C., and then spread hot forging by mechanical forging to produce a plate-shaped aluminum alloy forging material having a thickness of 20 mm. Next, the forged aluminum alloy was heated at a heating rate of 300 ° C./hr using an air furnace, and was heated to 540 ° C.
Solution cooling for 1 hour, then water cooling (water quenching)
Then leave at room temperature (20-30 ℃) for 1 hour, then 175 ℃
Aging treatment (T6 treatment) for × 8 hours was performed. Also, some
(Invention Example No. 11 in Table 2) was aged at 195 ° C for 5 hours (T7
Processing). The chemical composition of the ingot of Comparative Example No. 10 in Table 1 was the same as that of Inventive Example No. 2, but the temperature of the homogenization heat treatment was lowered to 470 ° C.

【0076】そして、前記各Al合金鍛造材から各々試験
片を採取し、下記に示す種々の調査を行った。この結果
を表2 に示すが、表2 の番号は表1 の番号と対応してお
り、同じAl合金鍛造材 (Al合金鋳塊) である。但し、表
2 の発明例No.11 は、表1 に記載はないものの、表1 の
発明例No.3Al合金鋳塊と同じ化学成分組成である。な
お、各試験における試験片の方向を明確にするため、板
状のAl合金鍛造材 (試験片) の、板の最も伸長した長手
方向をL 方向、最も圧縮された板厚方向をST方向、前記
L 方向と直角の板幅方向をLT方向と言う。
Then, test specimens were collected from each of the Al alloy forgings, and various investigations described below were conducted. The results are shown in Table 2. The numbers in Table 2 correspond to the numbers in Table 1, and are the same Al alloy forged material (Al alloy ingot). However, the table
Inventive Example No. 11 of No. 2 is not described in Table 1, but has the same chemical composition as that of Inventive Example No. 3 Al alloy ingot of Table 1. In addition, in order to clarify the direction of the test piece in each test, the most elongated longitudinal direction of the plate of the plate-shaped Al alloy forged material (test piece) is the L direction, the most compressed plate thickness direction is the ST direction, Said
The sheet width direction perpendicular to the L direction is called the LT direction.

【0077】(粒界上の晶析出物)Al合金鍛造材組織の粒
界上に存在する前記晶析出物の平均径と、晶析出物間の
平均間隔の測定を、400 倍の光学顕微鏡により行った。
測定面は、前記した通り、鍛流線(L方向) に対して直角
の板厚方向(ST 方向に対応) に引張応力が付加され、機
械的な破壊や腐食に起因する破壊が生じやすい、鍛造材
のLT-ST 面 (板を縦断する面) の中心部位とした。そし
て、この中心部位で、測定箇所20視野の目視観察結果の
平均によって行った。これらの結果を表2 に示す。
(Crystal Precipitate on Grain Boundary) The average diameter of the crystal precipitates present on the grain boundaries of the Al alloy forged material structure and the average distance between the crystal precipitates were measured by a 400-fold optical microscope. went.
As described above, the measurement surface is subjected to a tensile stress in the thickness direction (corresponding to the ST direction) perpendicular to the forging line (L direction), and is likely to be broken due to mechanical breakage or corrosion. The central part of the LT-ST surface of the forged material (the surface that cuts through the plate). Then, at this central portion, the measurement was performed by averaging the visual observation results of the 20 visual fields at the measurement points. Table 2 shows the results.

【0078】(粒界腐食試験)次に、Al合金鍛造材から各
々試験片を採取し、粒界腐食試験を行った。試験片の腐
食試験面は、前記粒界上の晶析出物測定面と同じく、ま
た同じ理由で、前記LT-ST 面とした (腐食の伝播方向は
L 方向) 。粒界腐食試験はJIS W 1103法により行い、粒
界腐食性を評価した。この粒界腐食試験後、断面試験片
(試験片の断面) を、エッチング溶液(70%濃硝酸2.5ml
、濃塩酸1.5ml 、48% ふっ化水素酸1.0ml 、蒸留水95.
0mlの組成) に10秒間浸漬後、蒸留水で洗浄して乾燥
し、LT-ST面の腐食状況を200 倍の金属顕微鏡により観
察した。
(Grain Intergranular Corrosion Test) Next, test specimens were taken from the forged Al alloy and subjected to a grain boundary corrosion test. The corrosion test surface of the test piece was the same as the crystal precipitate measurement surface on the grain boundary, and for the same reason, the LT-ST surface (the propagation direction of corrosion was
L direction). The intergranular corrosion test was performed according to the JIS W 1103 method to evaluate intergranular corrosion. After this intergranular corrosion test,
(Cross section of test piece) was added to etching solution (2.5 ml of 70% concentrated nitric acid).
, Concentrated hydrochloric acid 1.5 ml, 48% hydrofluoric acid 1.0 ml, distilled water 95.
(Composition of 0 ml) for 10 seconds, washed with distilled water and dried, and the state of corrosion of the LT-ST surface was observed with a 200-fold metal microscope.

【0079】粒界腐食の観察は、前記顕微鏡視野内にお
いて、他の孔食腐食や全面腐食などと区別して、結晶粒
界に沿って腐食が進展し、典型的に粒界腐食と判断され
る腐食が発生しているか否かを評価した。これらの結果
を、粒界腐食が発生している場合を×、発生していない
場合を○として、表2 に示す。
In the observation of intergranular corrosion, corrosion progresses along the crystal grain boundaries in the visual field of the microscope, being distinguished from other pitting corrosion, general corrosion, etc., and is typically determined to be intergranular corrosion. It was evaluated whether corrosion had occurred. These results are shown in Table 2 as x when grain boundary corrosion has occurred and as ○ when grain boundary corrosion has not occurred.

【0080】(応力腐食割れ試験)また、同じく、Al合金
鍛造材から各々、LT-ST 面を背面とする Cリングの試験
片を採取し、応力腐食割れ試験を行った。応力腐食割れ
試験条件は、ASTM G47のCリングを用いた交互浸漬法の
規定に準じて行った。試験条件は、試験片のLT方向の耐
力の75% の応力を負荷した状態で、90日間行い、試験片
の応力腐食割れ発生の有無を確認した。これらの結果
を、応力腐食割れが発生している場合を×、発生してい
ない場合を○として、表2 に示す。
(Stress Corrosion Cracking Test) Similarly, a C-ring test piece having the LT-ST surface as the back surface was sampled from the forged Al alloy, and subjected to a stress corrosion cracking test. The stress corrosion cracking test conditions were performed in accordance with the provisions of the alternate immersion method using the ASTM G47 C ring. The test was conducted for 90 days with a stress of 75% of the proof stress in the LT direction of the test piece, and the presence or absence of stress corrosion cracking of the test piece was confirmed. The results are shown in Table 2 as x when stress corrosion cracking occurred and as ○ when stress corrosion cracking did not occur.

【0081】(引張試験)更に、Al合金鍛造材から複数個
採取した試験片の引張強度 (σB 、MPa)、耐力
0.2 、MPa)、伸び (δ、%)、靱性= シャルピー衝撃
値(J/cm2) 等の機械的特性を測定した。引張試験片の長
手方向はLT方向で、LT方向に引張を行った。また、シャ
ルピー衝撃試験の長手方向はLT方向で、L-ST面を破断面
とした。これらの結果も表2 に示す。
[0081] (Tensile Test) In addition, the tensile strength of the plurality collected specimen from Al alloy forging (sigma B, MPa), yield strength
Mechanical properties such as (σ 0.2 , MPa), elongation (δ,%), and toughness = Charpy impact value (J / cm 2 ) were measured. The longitudinal direction of the tensile test piece was the LT direction, and the tensile test was performed in the LT direction. The longitudinal direction of the Charpy impact test was the LT direction, and the L-ST plane was a fracture surface. Table 2 also shows these results.

【0082】そして、各Al合金鍛造材から採取した試験
片の自然電位の最低値を前記した測定方法で測定した。
なお、測定面はLT-ST 面とした。また、直流電解は、5%
の前記NaCl水溶液中において、試験片をアノードとし、
30℃で、かつ、100 μA/cm2で30分間、直流電解する条
件で行った。これら各Al合金鍛造材の自然電位の測定最
低値を表2 に示す。
Then, the lowest value of the spontaneous potential of the test piece taken from each of the Al alloy forgings was measured by the above-mentioned measuring method.
The measurement surface was the LT-ST surface. DC electrolysis is 5%
In the NaCl aqueous solution of the above, the test piece as an anode,
The electrolysis was performed at 30 ° C. and at 100 μA / cm 2 for 30 minutes under DC electrolysis. Table 2 shows the minimum measured value of the natural potential of each of these Al alloy forgings.

【0083】表2 から明らかな通り、表1 のNo.1〜5 ま
での本発明範囲内の化学成分組成とし、550 ℃の温度で
8 時間均質化熱処理を施した発明例No.1〜5 および11
は、組織において粒界上に存在するMg2Si やAl-Fe-Si-
(Mn、Cr、Zr) 系晶析出物の平均粒径が1.2 μm 以下で
あるとともに、これら晶析出物同士の平均間隔が3.0 μ
m以上であった。そして、これら発明例の粒界上のAl-Fe
-Si-(Mn、Cr、Zr) 系晶析出物の形態を観察したところ
でも、晶析出物が小さく、かつ晶析出物同士が互いに間
隔を開けて細かく分散していることが裏付けられた。
As is clear from Table 2, the chemical composition within the range of the present invention from No. 1 to No. 5 in Table 1 was determined at a temperature of 550 ° C.
Invention Examples Nos. 1 to 5 and 11 after 8 hours of homogenizing heat treatment
Is Mg 2 Si or Al-Fe-Si-
The average particle size of the (Mn, Cr, Zr) -based crystal precipitates is 1.2 μm or less, and the average distance between these crystal precipitates is 3.0 μm.
m or more. And, Al-Fe on the grain boundaries of these invention examples
Observation of the morphology of the -Si- (Mn, Cr, Zr) crystal precipitates confirmed that the crystal precipitates were small and that the crystal precipitates were finely dispersed at intervals.

【0084】また、このような組織を有する各発明例
は、前記自然電位の最低値は、共通して、−1020mV以上
となっていた。
Further, in each of the invention examples having such a structure, the minimum value of the spontaneous potential was commonly −1020 mV or more.

【0085】この結果、各発明例は、鍛造加工率が50%
と低くても、耐力 (σ0.2)の平均値が300MPa以上および
シャルピー衝撃値の平均値が10J/cm2 以上と、高強度と
高靱性を確保している。因みに、表1 のNo.1〜6 までの
発明例を他の条件は同じとして、75% の鍛造加工率で熱
間鍛造したものは、耐力 (σ0.2)の平均値で350MPa以上
およびシャルピー衝撃値の平均値で20J/cm2 以上が得ら
れた。
As a result, in each of the invention examples, the forging rate was 50%.
Even if it is low, the average strength (σ 0.2 ) is 300 MPa or more and the average Charpy impact value is 10 J / cm 2 or more, ensuring high strength and high toughness. Incidentally, assuming that the invention examples Nos. 1 to 6 in Table 1 were the same as the other conditions, the hot forging with a forging rate of 75% was 350 MPa or more in average of the proof stress (σ 0.2 ) and the Charpy impact. An average value of 20 J / cm 2 or more was obtained.

【0086】更に、発明例No.1〜5 および11は、耐粒界
腐食性や耐応力腐食割れ性にも優れていることが分か
る。特に、Al合金鍛造材をT7の調質材とした発明例No.
11は、他のT6材とした発明例に比しても、前記自然電位
の最低値が高くなっている。
Further, it can be seen that Invention Examples Nos. 1 to 5 and 11 are also excellent in intergranular corrosion resistance and stress corrosion cracking resistance. In particular, Invention Example No.
No. 11 has a higher minimum value of the self potential than that of the invention example in which other T6 materials are used.

【0087】一方、表1 、2 から明らかな通り、Cu量が
本発明範囲を高めに外れた比較例No.6 (表1 のNo.6のAl
合金) 、Fe量が本発明範囲を高めに外れた比較例No.7
(表1のNo.7のAl合金) 、Mn量が本発明範囲を高めに外れ
た比較例No.8 (表1 のNo.8のAl合金) 、水素量が本発明
範囲を高めに外れた比較例No.9 (表1 のNo.9のAl合金)
、均質化熱処理温度が本発明の好ましい範囲を低めに
外れた比較例No.10(表1のNo.10 のAl合金) は、いずれ
も、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr)
系晶析出物も、平均粒径が1.2 μm を越えて大きいか、
平均間隔が3.0 μm 未満と小さい。そして、これら比較
例のAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の形態を、発明
例と同様に観察したところ、晶析出物同士が比較的大き
く、かつ長くつながった形状をしていた。
On the other hand, as is clear from Tables 1 and 2, Comparative Example No. 6 in which the amount of Cu deviated from the range of the present invention was relatively high (Al No. 6 in Table 1).
Alloy No.), Comparative Example No. 7 in which the amount of Fe was outside the range of the present invention.
(No. 7 Al alloy in Table 1), Comparative Example No. 8 in which the amount of Mn was outside the range of the present invention, (No. 8 Al alloy in Table 1), hydrogen amount out of the range of the present invention Comparative Example No. 9 (No. 9 Al alloy in Table 1)
Comparative Example No. 10 (No. 10 Al alloy in Table 1) in which the homogenization heat treatment temperature deviated from the preferred range of the present invention was lower than that of Mg 2 Si or Al-Fe present on the grain boundaries. -Si- (Mn, Cr, Zr)
If the average size of the precipitates is larger than 1.2 μm,
Average spacing is small, less than 3.0 μm. Then, when the morphology of the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates of these comparative examples was observed in the same manner as in the invention example, the crystal precipitates were relatively large and connected long. Was doing.

【0088】そして、このような組織を有する各比較例
は、前記自然電位の最低値は、共通して、−1020mV未満
となっていた。
In each of the comparative examples having such a structure, the lowest value of the spontaneous potential was commonly less than −1020 mV.

【0089】この結果、まず、Al合金鍛造材全体として
の平均的な引張特性は、比較例No.10 を除いて、発明例
と同等であるものの、シャルピー衝撃値の平均値は、発
明例No.6を除いて、10J/cm2 未満である。そして、これ
ら比較例は、耐粒界腐食性や耐応力腐食割れ性も、比較
例No.9を除いて、発明例に比して著しく劣っている。し
たがって、これら比較例は、引張特性、シャルピー衝撃
値、耐食性を、いずれも兼備していないことが分かる。
したがって、これら比較例は、耐久性などの構造材とし
ての信頼性の問題から、使用することが出来ないことが
分かる。
As a result, the average tensile properties of the whole Al alloy forged material were the same as those of the inventive example except for Comparative Example No. 10, but the average value of the Charpy impact value was Except for .6, it is less than 10 J / cm 2 . These comparative examples are also significantly inferior in grain boundary corrosion resistance and stress corrosion cracking resistance, except for Comparative Example No. 9, to the invention examples. Accordingly, it can be seen that these comparative examples do not have any of the tensile properties, the Charpy impact value, and the corrosion resistance.
Therefore, it can be seen that these comparative examples cannot be used due to the problem of reliability as a structural material such as durability.

【0090】したがって、これらの結果から、本発明Al
合金鍛造材の組織の要件の臨界的な意義が分かる。ま
た、本発明Al合金鍛造材の自然電位の最低値−1020mVに
臨界的な意義があることが分かる。
Therefore, from these results, it can be seen that the present invention Al
The critical significance of the requirements for the structure of the alloy forgings can be seen. Further, it can be seen that the minimum value of the natural potential of −1020 mV of the forged aluminum alloy of the present invention has a critical significance.

【0091】[0091]

【表1】 [Table 1]

【0092】[0092]

【表2】 [Table 2]

【0093】[0093]

【発明の効果】本発明によれば、高強度、高靱性で、耐
食性にも優れたAl合金鍛造材を提供することができる。
したがって、Al-Mg-Si系Al合金鍛造材の輸送機用への用
途の拡大を図ることができる点で、多大な工業的な価値
を有するものである。
According to the present invention, it is possible to provide an Al alloy forged material having high strength, high toughness and excellent corrosion resistance.
Therefore, the use of the Al-Mg-Si-based Al alloy forged material for a transport machine can be expanded, which is of great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Al合金鍛造材の、直流電解後の、NaCl水溶液中
における自然電位の経時変化を示す説明図である。
FIG. 1 is an explanatory diagram showing a change over time of a natural potential in a NaCl aqueous solution after direct current electrolysis of a forged Al alloy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 C22F 1/00 630A 640 640D 682 682 691 691B 691C 692 692Z 694 694A (72)発明者 稲垣 佳也 三重県員弁郡大安町大字梅戸1100番地 株 式会社神戸製鋼所大安工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 C22F 1/00 630A 640 640D 682 682 691 691B 691C 692 692Z 694 694A (72) Inventor Yoshiyoshi Inagaki Ya 1100 Umedo, Oyasu-cho, Inabe-gun, Mie Prefecture Inside the Oyasu Plant of Kobe Steel, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Mg:0.6〜1.8% (質量% 、以下同じ) 、S
i:0.6〜1.8%を含み、更に、Cr:0.1〜0.2%およびZr:0.1
〜0.2%の一種または二種を含むとともに、Cu:0.25%以
下、Mn:0.05%以下、Fe:0.30%以下、水素:0.25 cc/100g
Al以下、に各々規制し、残部Alおよび不可避的不純物か
らなり、アルミニウム合金組織の粒界上に存在するMg2S
i やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を1.
2 μm 以下とするとともに、これら晶析出物同士の平均
間隔を3.0 μm 以上とし、更に、該アルミニウム合金鍛
造材をアノードとし、30℃で5 % のNaCl水溶液中におい
て、100 μA/cm2 で30分間直流電解後に測定されるアル
ミニウム合金鍛造材の自然電位の最低値を−1020mV以上
としたことを特徴とする、耐食性に優れた高強度高靱性
アルミニウム合金鍛造材。
(1) Mg: 0.6 to 1.8% (mass%, the same applies hereinafter), S
i: 0.6-1.8%, Cr: 0.1-0.2% and Zr: 0.1
Including one or two kinds of up to 0.2%, Cu: 0.25% or less, Mn: 0.05% or less, Fe: 0.30% or less, hydrogen: 0.25 cc / 100g
Al 2 or less, Mg 2 S which consists of Al and unavoidable impurities and exists on the grain boundaries of the aluminum alloy structure
i and Al-Fe-Si- (Mn, Cr, Zr)
2 μm or less, the average spacing between these crystal precipitates is 3.0 μm or more, and the aluminum alloy forged material is used as an anode, in a 5% NaCl aqueous solution at 30 ° C., 100 μA / cm 2 at 30 μA / cm 2 . A high-strength, high-toughness aluminum alloy forging with excellent corrosion resistance, characterized in that the minimum value of the natural potential of the aluminum alloy forging measured after DC electrolysis for one minute is at least −1020 mV.
【請求項2】 前記鍛造材が、アルミニウム合金鋳塊を
530 〜 595℃の温度で均質化熱処理した後に、熱間鍛造
して得られる請求項1に記載の耐食性に優れた高強度高
靱性アルミニウム合金鍛造材。
2. The forging material comprises an aluminum alloy ingot.
The high-strength high-toughness aluminum alloy forged material having excellent corrosion resistance according to claim 1, which is obtained by hot forging after homogenizing heat treatment at a temperature of 530 to 595 ° C.
【請求項3】 前記鍛造材が、T6、T7、T8で調質処理さ
れて使用される請求項1または2に記載の耐食性に優れ
た高強度高靱性アルミニウム合金鍛造材。
3. The high-strength, high-toughness aluminum alloy forged material having excellent corrosion resistance according to claim 1, wherein the forged material is used after being subjected to a tempering treatment at T6, T7, T8.
【請求項4】 前記鍛造材が、デンドライト二次アーム
間隔(DAS) が30μm以下となるように鋳造した鋳塊を用
いた請求項1乃至3の何れか1項に記載の耐食性に優れ
た高強度高靱性アルミニウム合金鍛造材。
4. The high corrosion-resistant high forged material according to claim 1, wherein said forged material is an ingot cast so that a secondary dendrite arm spacing (DAS) is 30 μm or less. High strength tough aluminum alloy forging.
【請求項5】 前記鋳塊を押出或いは圧延により加工後
に鍛造する請求項4に記載の耐食性に優れた高強度高靱
性アルミニウム合金鍛造材。
5. The high-strength and high-toughness aluminum alloy forged material having excellent corrosion resistance according to claim 4, wherein the ingot is processed by extrusion or rolling and then forged.
【請求項6】 前記アルミニウム合金鍛造材が、鋳塊か
らの加工率が75% 未満の部位を有する請求項1乃至5の
何れか1項に記載の耐食性に優れた高強度高靱性アルミ
ニウム合金鍛造材。
6. The high-strength, high-toughness aluminum alloy forging excellent in corrosion resistance according to claim 1, wherein the aluminum alloy forging has a portion where a working ratio from an ingot is less than 75%. Wood.
【請求項7】 前記アルミニウム合金鍛造材が鍛流線に
対して直角方向に引張応力が付加されて使用される請求
項1乃至6の何れか1項に記載の耐食性に優れた高強度
高靱性アルミニウム合金鍛造材。
7. The high-strength and toughness excellent in corrosion resistance according to claim 1, wherein the forged aluminum alloy is used by applying a tensile stress in a direction perpendicular to the forging line. Forged aluminum alloy.
【請求項8】 前記アルミニウム合金鍛造材が輸送機の
構造材用である請求項1乃至7の何れか1項に記載の耐
食性に優れた高強度高靱性アルミニウム合金鍛造材。
8. The high-strength, high-toughness aluminum alloy forging having excellent corrosion resistance according to claim 1, wherein the aluminum alloy forging is used for a structural material of a transport machine.
JP2001096131A 2001-03-29 2001-03-29 High strength and high toughness aluminum forging having excellent corrosion resistance Pending JP2002294382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096131A JP2002294382A (en) 2001-03-29 2001-03-29 High strength and high toughness aluminum forging having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096131A JP2002294382A (en) 2001-03-29 2001-03-29 High strength and high toughness aluminum forging having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
JP2002294382A true JP2002294382A (en) 2002-10-09

Family

ID=18950083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096131A Pending JP2002294382A (en) 2001-03-29 2001-03-29 High strength and high toughness aluminum forging having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP2002294382A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234421A (en) * 2005-02-22 2006-09-07 Kobe Steel Ltd Accelerated test method of stress corrosion cracking
WO2007114078A1 (en) 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
JP2008076297A (en) * 2006-09-22 2008-04-03 Kobe Steel Ltd Evaluation method for stress corrosion cracking resistance of aluminum alloy material, and aluminum alloy material excellent in stress corrosion cracking resistance
DE112008000587T5 (en) 2007-03-14 2010-01-07 Kabushiki Kaisha Kobe Seiko Sho Forgings made of an aluminum alloy and process for their production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234421A (en) * 2005-02-22 2006-09-07 Kobe Steel Ltd Accelerated test method of stress corrosion cracking
JP4519680B2 (en) * 2005-02-22 2010-08-04 株式会社神戸製鋼所 Accelerated testing method for stress corrosion cracking
WO2007114078A1 (en) 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
US8152940B2 (en) 2006-03-31 2012-04-10 Kobe Steel, Ltd. Aluminum alloy forging member and process for producing the same
JP2008076297A (en) * 2006-09-22 2008-04-03 Kobe Steel Ltd Evaluation method for stress corrosion cracking resistance of aluminum alloy material, and aluminum alloy material excellent in stress corrosion cracking resistance
JP4690279B2 (en) * 2006-09-22 2011-06-01 株式会社神戸製鋼所 Evaluation method of stress corrosion cracking resistance of aluminum alloy materials
DE112008000587T5 (en) 2007-03-14 2010-01-07 Kabushiki Kaisha Kobe Seiko Sho Forgings made of an aluminum alloy and process for their production
US8372220B2 (en) 2007-03-14 2013-02-12 Kobe Steel, Ltd. Aluminum alloy forgings and process for production thereof

Similar Documents

Publication Publication Date Title
CN101365818B (en) Aluminum alloy forging member and process for producing the same
JP5901738B2 (en) Aluminum alloy forging and method for producing the same
EP2811042B1 (en) ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
EP2548983B1 (en) High-strength bolt made from aluminium alloy
CA2707311C (en) Improved aluminum-copper-lithium alloys
JP4690279B2 (en) Evaluation method of stress corrosion cracking resistance of aluminum alloy materials
EP1108798B1 (en) Production method of an aluminium alloy extruded material for automotive structural members
JP2007177308A (en) High strength and high toughness aluminum alloy extruded material and forged material having excellent corrosion resistance, and methods for producing the extruded material and forged material
WO2019122076A1 (en) 6xxx aluminium alloy extruded forging stock and method of manufacturing thereof
JP3766357B2 (en) Aluminum alloy forging material for strength member and forging material
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
US20020014290A1 (en) Al-si-mg aluminum alloy aircraft structural component production method
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP2007169699A (en) High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP2002294382A (en) High strength and high toughness aluminum forging having excellent corrosion resistance
JP2002206152A (en) Method for producing aluminum alloy material excellent in suppression of room temperature aging and low temperature age hardenability and the aluminum alloy material
JP4058398B2 (en) Aluminum alloy forging with excellent high-temperature fatigue strength
KR20200028411A (en) High-strength corrosion-resistant aluminum alloy and method for manufacturing same
KR100560252B1 (en) Alluminum alloy forged material excellent in high temperature fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20051129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060322