JP2008076297A - Evaluation method for stress corrosion cracking resistance of aluminum alloy material, and aluminum alloy material excellent in stress corrosion cracking resistance - Google Patents

Evaluation method for stress corrosion cracking resistance of aluminum alloy material, and aluminum alloy material excellent in stress corrosion cracking resistance Download PDF

Info

Publication number
JP2008076297A
JP2008076297A JP2006257531A JP2006257531A JP2008076297A JP 2008076297 A JP2008076297 A JP 2008076297A JP 2006257531 A JP2006257531 A JP 2006257531A JP 2006257531 A JP2006257531 A JP 2006257531A JP 2008076297 A JP2008076297 A JP 2008076297A
Authority
JP
Japan
Prior art keywords
aluminum alloy
corrosion cracking
stress corrosion
alloy material
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006257531A
Other languages
Japanese (ja)
Other versions
JP4690279B2 (en
Inventor
Shinji Sakashita
真司 阪下
Toshiyuki Tanaka
敏行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006257531A priority Critical patent/JP4690279B2/en
Publication of JP2008076297A publication Critical patent/JP2008076297A/en
Application granted granted Critical
Publication of JP4690279B2 publication Critical patent/JP4690279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved evaluation method, as to competence to a stress corrosion cracking resistance behavior of an actual aluminum alloy material, and the aluminum alloy material excellent in stress corrosion cracking resistance evaluated by the evaluation method. <P>SOLUTION: An aluminum alloy material test piece of an evaluation object is subjected as a C-ring test piece loaded with a prescribed rate of stress, an anode polarization curve is measured in an aqueous solution containing 5.8 mass% of NaCl adjusted to pH 10 at 30°C, by a three-electrode method, the stress corrosion cracking resistance is evaluated in a range from 1 A/cm<SP>2</SP>of current density to 10 A/cm<SP>2</SP>thereof, based on an average gradient of current/potential, and a 6000 type aluminum alloy forged material is judged to be excellent in the stress corrosion cracking resistance, when the average gradient of current/potential is 350 Ω<SP>-1</SP>M<SP>-2</SP>or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルミニウム合金材の耐応力腐食割れ性の評価方法およびこの評価方法で評価された耐応力腐食割れ性に優れたアルミニウム合金材に関する。そして、実際の耐応力腐食割れ性試験結果と良く対応するとともに、実際の耐応力腐食割れ性試験よりもごく短期間で試験できる耐応力腐食割れ性の評価方法と、この評価方法で評価された耐応力腐食割れ性に優れたアルミニウム合金材とに関するものである。以下、アルミニウムをAlとも言う。   The present invention relates to an evaluation method for stress corrosion cracking resistance of an aluminum alloy material and an aluminum alloy material excellent in stress corrosion cracking resistance evaluated by this evaluation method. And the evaluation method of stress corrosion cracking resistance that can be tested in a shorter time than the actual stress corrosion cracking resistance test, and corresponded well with the actual stress corrosion cracking resistance test result, and was evaluated by this evaluation method The present invention relates to an aluminum alloy material excellent in stress corrosion cracking resistance. Hereinafter, aluminum is also referred to as Al.

応力腐食割れ(Stress Corrosion Cracking)は、環境の腐食作用と負荷される応力の機械的作用とが重畳されて、金属材料が破壊に至る現象である。応力腐食割れは、金属材料、環境及び応力の三者がある特定の条件を満足する時に発生するものであり、様々な組み合わせで発生することが知られている。   Stress corrosion cracking is a phenomenon in which the corrosion of the environment and the mechanical action of the stress applied are superimposed, leading to the destruction of the metal material. It is known that stress corrosion cracking occurs when the metal material, environment, and stress satisfy certain conditions, and are generated in various combinations.

応力腐食割れは、その作用応力が金属材料の強度(=実環境ではなく実験室などで通常評価される破壊の限界)以下であっても発生する。従って、構造材の設計強度を定める場合には、応力腐食割れの限界応力を正確に把握する必要があり、その特性評価技術は実用上極めて重要である。また、金属材料の応力腐食割れの抑止策を講じる材料開発の場合にも、応力腐食割れの、短期間で実験室的な特性評価技術が必要不可欠である。   Stress corrosion cracking occurs even when the working stress is less than the strength of the metal material (= the limit of fracture normally evaluated in a laboratory, not in the actual environment). Therefore, when determining the design strength of a structural material, it is necessary to accurately grasp the critical stress of stress corrosion cracking, and its characteristic evaluation technique is extremely important in practice. Also, in the case of material development that takes measures to prevent stress corrosion cracking of metal materials, a short-term laboratory characterization technique for stress corrosion cracking is indispensable.

応力腐食割れの試験方法としては、定荷重法や定ひずみ法などが知られており、JISやASTM(American Society for Testing Material )などで規格化されている。例えば、アルミニウム合金の応力腐食割れ試験方法はJIS H8711に規格されている。   As a stress corrosion cracking test method, a constant load method, a constant strain method, and the like are known, and standardized by JIS, ASTM (American Society for Testing Material), and the like. For example, a stress corrosion cracking test method for an aluminum alloy is standardized in JIS H8711.

一方で、周知の通り、車両、船舶、航空機、自動二輪あるいは自動車などの輸送機の構造材乃至部品用として、JIS 6000系(Al-Mg-Si 系) などのAl合金が使用されている。このJIS 6000系Al合金は、比較的高強度で、耐食性にも優れており、また、スクラップをJIS 6000系Al合金溶解原料として再利用できるリサイクル性の点からも優れている。   On the other hand, as is well known, Al alloys such as JIS 6000 series (Al-Mg-Si series) are used for structural materials or parts of transportation equipment such as vehicles, ships, aircrafts, motorcycles or automobiles. This JIS 6000 series Al alloy is relatively high in strength and excellent in corrosion resistance, and is also excellent in terms of recyclability in which scrap can be reused as a JIS 6000 series Al alloy melting raw material.

ただ、これらアルミニウム合金鍛造材を高強度化する場合、通常、過剰Siを多くしたり、あるいはCuのような高強度化元素を添加する。しかし、このように、過剰Si量を多くしたり、Cuのような高強度化元素を含んだ場合には、Al合金鍛造材の組織の、粒界腐食や応力腐食割れの感受性が著しく高くなり、耐食性が低下するという、別の問題が生じる。そして、この耐食性低下の問題は、構造材としての基本的要求特性である耐久性や信頼性にかかわる問題として重大となる。   However, when increasing the strength of these aluminum alloy forgings, usually an excessive amount of Si is added or a strengthening element such as Cu is added. However, when the amount of excess Si is increased or a strengthening element such as Cu is included in this way, the structure of the Al alloy forging material becomes extremely sensitive to intergranular corrosion and stress corrosion cracking. Another problem arises that the corrosion resistance is reduced. And the problem of this corrosion-resistance fall becomes serious as a problem regarding durability and reliability which are the fundamental required characteristics as a structural material.

前記輸送機などの構造材では、構成がAl合金鍛造材だけではなく、Al合金よりも貴な他の鉄などの金属材料と組み合わせたり、接合されて用いられることも多い。また、使用環境としても、海水や塩水を含み、氷点下以下の低温から真夏の高温までの、厳しい塩水腐食環境下となる。   In the structural material such as the transport aircraft, the structure is often used not only in the Al alloy forging material but also in combination with or joined to other metal materials such as iron, which is noble than the Al alloy. In addition, the environment of use includes seawater and salt water, and is in a severe salt water corrosive environment from a low temperature below freezing to a high temperature in midsummer.

したがって、このような使用環境下にあっても、また、前記した通り、自身が高強度化された場合でも、耐応力腐食性に優れるという要求特性および技術的課題が、Al合金鍛造材にはある。   Therefore, even in such an environment of use, and as described above, even when the strength of the alloy itself is increased, the required characteristics and technical problems of excellent stress corrosion resistance are present in Al alloy forgings. is there.

この課題に対して、特定組成の6000系アルミニウム合金鍛造材として、組織の粒界上に存在する晶析出物サイズなどを制御するとともに、更に、このアルミニウム合金鍛造材をアノードとし、30℃で5 % 濃度のNaCl水溶液中において、100 μA/cm2 で30分間直流電解後に測定されるアルミニウム合金鍛造材の自然電位の最低値を特定値以上とした技術が提案されている(特許文献1参照)。 In response to this problem, as a 6000 series aluminum alloy forging material having a specific composition, the size of crystal precipitates existing on the grain boundary of the structure is controlled, and further, this aluminum alloy forging material is used as an anode, and 5% at 30 ° C. A technique has been proposed in which the minimum value of the natural potential of an aluminum alloy forged material measured after direct current electrolysis at 100 μA / cm 2 for 30 minutes in a NaCl solution at a concentration of% is greater than a specific value (see Patent Document 1). .

また、6000系アルミニウム合金鍛造材の耐応力腐食性評価方法として、このアルミニウム合金鍛造材をアノードとし、1 〜10% 濃度のNaCl水溶液中において、10〜1000μA/cm2 で10〜60分間直流電解後に測定されるアルミニウム合金鍛造材の自然電位の値により評価することも提案されている(特許文献2参照)。
特開2002−294382号公報 (全文) 特開2001−99812号公報 (全文)
In addition, as a method for evaluating the stress corrosion resistance of 6000 series aluminum alloy forgings, this aluminum alloy forging was used as an anode and DC electrolysis was carried out at 10 to 1000 μA / cm 2 for 10 to 60 minutes in 1 to 10% NaCl aqueous solution. Evaluation based on the value of the natural potential of the aluminum alloy forging material measured later is also proposed (see Patent Document 2).
JP 2002-294382 A (full text) JP 2001-99812 A (full text)

上記特許文献1や2におけるAl合金鍛造材の自然電位を用いた耐応力腐食割れの簡易評価方法は、輸送機の構造材の海水などの塩水腐食環境下を模擬したNaCl水溶液中において、まず、Al合金鍛造材の直流電解による強制的なエッチングを行い、しかる後に、このNaCl水溶液中におけるAl合金鍛造材の自然電位の経時変化を測定して、自然電位の最低値を測定するものである。   The simple evaluation method of stress corrosion cracking resistance using the natural potential of the Al alloy forging material in Patent Documents 1 and 2 described above is as follows. First, in a NaCl aqueous solution that simulates a salt water corrosion environment such as seawater of a structural material of a transport aircraft, Forcible etching by direct current electrolysis of the Al alloy forging material is performed, and then the change over time of the natural potential of the Al alloy forging material in the NaCl aqueous solution is measured to measure the minimum value of the natural potential.

これら自然電位を用いた耐応力腐食割れの簡易評価方法は、実際の耐応力腐食割れ性試験よりもごく短期間で試験でき、測定自然電位の傾向は、実際の耐応力腐食割れ性の傾向と良く対応している。   These simple evaluation methods for stress corrosion cracking using natural potentials can be tested in a much shorter period of time than actual stress corrosion cracking resistance tests, and the measured natural potential tends to be the same as the actual stress corrosion cracking tendency. It corresponds well.

これら自然電位を用いた耐応力腐食割れの簡易評価方法は、ただ、実際の6000系アルミニウム合金鍛造材の耐応力腐食割れ性挙動との対応について、より改善すべき点もある。   These simple evaluation methods for stress corrosion cracking using natural potentials, however, have a point to be further improved with respect to the correspondence with the stress corrosion cracking behavior of actual 6000 series aluminum alloy forgings.

本発明は、上記の事情に鑑みてなしたものであって、その目的は、実際のアルミニウム合金材の耐応力腐食割れ性挙動との対応につき、より改善された評価方法およびこの評価方法で評価された耐応力腐食割れ性に優れたアルミニウム合金材やアルミニウム合金鍛造材を提供するものである。   The present invention has been made in view of the above circumstances, and the object thereof is to evaluate the improved evaluation method and the evaluation method with respect to the correspondence with the stress corrosion cracking resistance behavior of an actual aluminum alloy material. The present invention provides an aluminum alloy material and an aluminum alloy forged material that are excellent in resistance to stress corrosion cracking.

上記の目的を達成するために、本発明の要旨は、アルミニウム合金材の耐応力腐食割れ性の評価方法であって、評価対象となるアルミニウム合金材試験片に所定の応力を負荷させた状態において、温度30℃、pH10に調整した5.8 質量% 濃度のNaCl水溶液中でのアノード分極曲線を3 電極法により測定し、この測定されたアノード分極曲線の電流密度が1A/cm2から10A/cm2 までの範囲における電流/ 電位の平均勾配によって、このアルミニウム合金材の耐応力腐食割れを評価することである。 In order to achieve the above object, the gist of the present invention is an evaluation method of stress corrosion cracking resistance of an aluminum alloy material, in a state where a predetermined stress is applied to an aluminum alloy material test piece to be evaluated. The anodic polarization curve in a 5.8 mass% NaCl aqueous solution adjusted to a temperature of 30 ° C. and a pH of 10 was measured by the three-electrode method, and the current density of the measured anodic polarization curve was from 1 A / cm 2 to 10 A / cm 2. The stress corrosion cracking resistance of this aluminum alloy material is evaluated by the average current / potential gradient in the range up to.

また、上記の目的を達成するために、本発明アルミニウム合金材の要旨は、上記評価方法によって耐応力腐食割れ性が評価されたAl-Mg-Si系アルミニウム合金材であって、このアルミニウム合金材の0.2%耐力値の80% の応力がこのアルミニウム合金材試験片に負荷された状態において、3 電極法により測定された、温度30℃、pH10に調整した5.8 質量% 濃度のNaCl水溶液中でのアノード分極曲線における、電流密度が1A/cm2から10A/cm2 までの範囲における電流/ 電位の平均勾配が350 Ω -1 ・m -2以下であることとする。 In order to achieve the above object, the gist of the aluminum alloy material of the present invention is an Al-Mg-Si aluminum alloy material whose stress corrosion cracking resistance has been evaluated by the above evaluation method, and this aluminum alloy material In a state in which 80% of the 0.2% proof stress of the aluminum alloy material was loaded on this specimen, it was measured by a three-electrode method in a 5.8 mass% NaCl aqueous solution adjusted to a temperature of 30 ° C. and a pH of 10. In the anodic polarization curve, the average current / potential gradient in the current density range of 1 A / cm 2 to 10 A / cm 2 is 350 Ω −1 · m −2 or less.

前記Al-Mg-Si系アルミニウム合金材としては、耐応力腐食割れ性が重要な課題となる、質量% にて、Mg:0.30 〜5.0%、Si:0.20 〜2.0%、Cu:0.01 〜2.0%、Mn:0.01 〜1.0%、Fe:0.01 〜1.0%、Cr:0.01 〜2.0%、Zn:0.005〜10.0% を各々含み、残部Alおよび不可避的不純物からなる鍛造材であることが好ましい。   As the Al-Mg-Si-based aluminum alloy material, stress corrosion cracking resistance is an important issue, in mass%, Mg: 0.30-5.0%, Si: 0.20-2.0%, Cu: 0.01-2.0% , Mn: 0.01 to 1.0%, Fe: 0.01 to 1.0%, Cr: 0.01 to 2.0%, Zn: 0.005 to 10.0%, respectively, and a forging material composed of the balance Al and inevitable impurities is preferable.

そして、このAl-Mg-Si系アルミニウム合金鍛造材としては、更に、質量% にて、Ti:0.001〜0.5%、B:0.0001〜0.05% 、Nb:0.01 〜1.0%、Zr:0.01 〜1.0%、V:0.01〜1.0%から選択される1 種または2 種以上を含有してもよい。   And, as this Al-Mg-Si based aluminum alloy forging material, further, in mass%, Ti: 0.001-0.5%, B: 0.0001-0.05%, Nb: 0.01-1.0%, Zr: 0.01-1.0% V: One or two or more selected from 0.01 to 1.0% may be contained.

本発明は、前提として、上記特許文献1や2におけるアルミニウム合金鍛造材の塩水腐食環境下を模擬したNaCl水溶液中における自然電位測定を用いた耐応力腐食割れの評価方法を踏襲する。   The present invention presupposes the stress corrosion cracking evaluation method using natural potential measurement in a NaCl aqueous solution simulating the salt water corrosion environment of the aluminum alloy forging material in Patent Documents 1 and 2 described above.

但し、本発明では、この自然電位測定に際し、負荷応力を作用させたアルミニウム合金材試験片をアノードとした3 電極法により測定するとともに、上記特定電流密度範囲における、アノード分極曲線の勾配、即ち電流/ 電位の平均勾配によって耐応力腐食割れを評価することが特徴的である。   However, in the present invention, the natural potential is measured by the three-electrode method using an aluminum alloy material specimen subjected to a load stress as an anode, and the slope of the anode polarization curve in the specific current density range, that is, the current / It is characteristic that stress corrosion cracking resistance is evaluated by the average gradient of potential.

これによって、本発明は、上記特許文献1や2における耐応力腐食割れの評価方法と同様に、短期間での耐応力腐食割れ性評価や、耐応力腐食割れ性向上のための構造物設計や材料開発の迅速化が可能となる。   As a result, the present invention, like the method for evaluating stress corrosion cracking in Patent Documents 1 and 2 above, evaluates stress corrosion cracking resistance in a short period of time, and designs a structure for improving stress corrosion cracking resistance. It is possible to speed up material development.

また、実際のアルミニウム合金材の耐応力腐食割れ性挙動との対応につき、より対応や相関ある、改善された評価方法、およびこの評価方法で評価された耐応力腐食割れ性に優れたアルミニウム合金鍛造材を提供できる。   In addition, with regard to the correspondence with the stress corrosion cracking resistance behavior of actual aluminum alloy materials, there is an improved evaluation method that has more correspondence and correlation, and aluminum alloy forging with excellent stress corrosion cracking resistance evaluated by this evaluation method. Can provide material.

以下、本発明の実施形態に係る耐応力腐食割れ性評価方法を図面を参照して説明する。図1は、本発明評価方法に用いる測定装置の概念図である。   Hereinafter, a stress corrosion cracking resistance evaluation method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a measuring apparatus used in the evaluation method of the present invention.

(測定装置)
この図1では、評価対象となるアルミニウム合金材で作製したCリング型試験片に、所定割合の応力を負荷させてアノード電極とし、アノード分極曲線を測定する態様を示している。
(measuring device)
FIG. 1 shows an aspect in which an anode polarization curve is measured by applying a predetermined ratio of stress to a C-ring type test piece made of an aluminum alloy material to be evaluated to form an anode electrode.

図1において、1は容器、2は容器内に充填されたNaCl水溶液である。3は応力を負荷した評価対象となるアルミニウム合金材のCリング型アノード電極試験片、4は対極となるカソード電極である。5は照合電極、6 は分極曲線測定装置である。これら電極3 、4 、5 は、いずれもNaCl水溶液2内に浸漬される。   In FIG. 1, 1 is a container, 2 is NaCl aqueous solution with which the container was filled. Reference numeral 3 denotes a C-ring type anode electrode test piece of an aluminum alloy material to be evaluated under stress, and reference numeral 4 denotes a cathode electrode as a counter electrode. 5 is a reference electrode, and 6 is a polarization curve measuring device. These electrodes 3, 4, 5 are all immersed in the NaCl aqueous solution 2.

1の容器は、ガラス容器やポリ容器など、NaCl水溶液に侵されにくい材質のものを選択する。また、ウオーターバスや投げ込みヒータなどを用いてNaCl水溶液の温度調節を行う。4のカソード電極には、白金板やカーボンなど、通常の電気化学測定に用いられる対極が使用できる。対極4の面積は1cm2以上とする。照合電極5 は、銀/ 塩化銀電極や、飽和カロメル電極などの、通常の電気化学測定に用いられる電極が使用できる。また、照合電極5 は、NaCl水溶液に侵されにくくするために、塩橋を介して、NaCl水溶液を満たした容器2 とは別の容器に浸漬して用いてもよい。 As the container 1, a material such as a glass container or a plastic container that is not easily affected by the NaCl aqueous solution is selected. In addition, the temperature of the NaCl aqueous solution is adjusted using a water bath, a throw-in heater, or the like. For the cathode electrode 4, a counter electrode used for usual electrochemical measurement, such as a platinum plate or carbon, can be used. The area of the counter electrode 4 is 1 cm 2 or more. As the reference electrode 5, an electrode used for usual electrochemical measurement such as a silver / silver chloride electrode or a saturated calomel electrode can be used. Further, the reference electrode 5 may be used by being immersed in a container different from the container 2 filled with the NaCl aqueous solution through a salt bridge in order to make it difficult to be attacked by the NaCl aqueous solution.

分極曲線測定装置6 は、ポテンショスタット、ファンクションジェネレータなどの、通常の分極曲線測定装置を、単独あるいは組み合わせて用いることができる。得られた電位および電流値( 電流密度) はパーソナルコンピュータやデータロガーなどで収集することが可能である。   As the polarization curve measuring device 6, a normal polarization curve measuring device such as a potentiostat or a function generator can be used alone or in combination. The obtained potential and current value (current density) can be collected by a personal computer or a data logger.

(電流/ 電位の勾配測定)
以上のような装置構成において、照合電極5 に対する電圧 (電位) を0Vから経時的に増加させることによって、評価対象となるアルミニウム合金材の試験片3は、電解作用を受けて電流が生じる。この電解作用は、前記実際のアルミニウム合金材の使用環境における、応力腐食割れと同様の挙動である。
(Current / potential gradient measurement)
In the apparatus configuration as described above, by increasing the voltage (potential) with respect to the reference electrode 5 from 0 V with time, the test piece 3 of the aluminum alloy material to be evaluated is subjected to an electrolysis action to generate a current. This electrolytic action is the same behavior as stress corrosion cracking in the actual use environment of the aluminum alloy material.

試験片3の粒界腐食や応力腐食割れの感受性が高い場合、試験片3の腐食の先端部分では、腐食溶解したAlイオンの加水分解などによって、水素イオン生成が顕著であり、かつClイオンの濃縮も顕著となることによって、試験片3の溶解速度を表す電流密度の電位に対する増加が著しくなるという現象が生じる。   When the test piece 3 is highly susceptible to intergranular corrosion and stress corrosion cracking, hydrogen ions are generated at the tip of the test piece 3 due to corrosion and dissolution of Al ions, and Cl ions As the concentration becomes remarkable, a phenomenon occurs in which the current density representing the dissolution rate of the test piece 3 increases remarkably with respect to the potential.

本発明では、この電流増加現象を、動電位法でとらえ、応力腐食割れ性に対する感受性として、応力を負荷させたCリング型アノード電極試験片(評価対象アルミニウム合金材試験片)3の電流密度が1mA/cm2 〜10mA/cm2の範囲における、電流/ 電位の勾配 (電位- 電流曲線の勾配) でとらえる。 In the present invention, this current increase phenomenon is detected by the dynamic potential method, and the current density of the C-ring type anode electrode test piece (evaluation target aluminum alloy material test piece) 3 loaded with stress as sensitivity to the stress corrosion cracking property is as follows. in the range of 1mA / cm 2 ~10mA / cm 2 , the slope of the current / potential - taken in a (potential gradient of the current curve).

(電位送り速度)
この際、電位を増加させる速度 (電位送り速度) は20A/cm2 〜100mA/cm2 の範囲とすることが好ましい。電位送り速度は、より好ましくは30A/cm2 〜80mA/cm2の範囲とする。上記電流/ 電位の勾配測定において、電位送り速度が大きすぎると、試験片の溶解反応が電位変化に追いつかなくなる。このため、正確な電位- 電流の関係が得られない。また、反対に、電位を増加させる速度 (電位送り速度) が小さすぎると、測定に要する時間が長くなり、腐食生成物の堆積によって、上記溶解反応が緩和してしまい、やはり正確な電位- 電流の関係が得られなくなる。
(Potential feed rate)
At this time, the rate of increasing the potential (potential feed rate) is preferably in the range of 20 A / cm 2 to 100 mA / cm 2 . The potential feed rate is more preferably in the range of 30 A / cm 2 to 80 mA / cm 2 . In the current / potential gradient measurement, if the potential feed rate is too large, the dissolution reaction of the test piece cannot catch up with the potential change. For this reason, an accurate potential-current relationship cannot be obtained. On the other hand, if the rate of increasing the potential (potential feed rate) is too small, the time required for the measurement becomes longer, and the dissolution reaction is relaxed by the accumulation of corrosion products. The relationship cannot be obtained.

図2に、これらのアルミニウム合金材試験片をアノードとした3 電極法により、温度30℃、pH10に調整した5.8 質量% 濃度のNaCl水溶液中において、直流電解した際のアノード分極曲線 (電位- 電流曲線) を動電位法で測定した1 例を示す。この例では電位送り速度を50A/cm2 としている。 Fig. 2 shows the anodic polarization curve (potential-current) when DC electrolysis was performed in a 5.8 mass% NaCl aqueous solution adjusted to a temperature of 30 ° C and pH 10 by the three-electrode method using these aluminum alloy specimens as anodes. (Curve) is an example measured by the potentiodynamic method. In this example, the potential feed rate is 50 A / cm 2 .

この図2において、アルミニウム合金材A は、電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配は比較的緩く350 Ω -1 ・m -2以下である。これに対して、アルミニウム合金材B は、電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配は比較的きつく350 Ω -1 ・m -2を超えている。したがって、アルミニウム合金材A は応力腐食割れに対する感受性が小さく、アルミニウム合金材B は応力腐食割れに対する感受性が大きい。 In FIG. 2, the aluminum alloy material A has a relatively gentle average current / potential gradient in the range of current density from 1 A / cm 2 to 10 A / cm 2, and is 350 Ω −1 · m −2 or less. On the other hand, in the case of aluminum alloy material B, the average current / potential gradient in the current density range from 1 A / cm 2 to 10 A / cm 2 exceeds 350 Ω -1 · m -2 . . Therefore, the aluminum alloy material A has a low sensitivity to stress corrosion cracking, and the aluminum alloy material B has a high sensitivity to stress corrosion cracking.

即ち、電流/ 電位の勾配 (アノード分極曲線の勾配、電位- 電流曲線の勾配とも言う) が大きいほど、応力腐食割れ性に対する感受性が高く、耐応力腐食割れ性が劣ると言える。一方、電流/ 電位の勾配 (電位- 電流曲線の勾配) が小さいほど、応力腐食割れ性に対する感受性が低く、耐応力腐食割れ性が優れると言える。   That is, it can be said that the greater the current / potential gradient (also referred to as the slope of the anodic polarization curve or the potential-current curve), the higher the sensitivity to stress corrosion cracking and the lower the stress corrosion cracking resistance. On the other hand, it can be said that the smaller the current / potential slope (the slope of the potential-current curve), the lower the sensitivity to stress corrosion cracking and the better the stress corrosion cracking resistance.

言い換えると、電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配は比較的緩く350 Ω -1 ・m -2以下であれば、実環境での腐食先端における、水素イオン発生やClイオン濃縮による、粒界腐食や粒界割れの促進は起こりがたく、評価試験片の3 の耐応力腐食割れ性が優れている。 In other words, if the current / potential average slope is relatively gentle and the current density is less than 350 Ω -1 · m -2 in the current density range of 1 A / cm 2 to 10 A / cm 2, Acceleration of intergranular corrosion and intergranular cracking due to hydrogen ion generation and Cl ion concentration hardly occurs, and the stress corrosion cracking resistance 3 of the evaluation test piece is excellent.

このように、本発明では応力腐食割れに起因するアルミニウム合金材の電流増加挙動の傾向をよく捉えている (反映している) 測定条件となっているために、上記試験片3の電流/ 電位の勾配 (アノード分極曲線の勾配、電位- 電流曲線の勾配) が、実際のアルミニウム合金材の耐応力腐食割れ性と良く対応している。   As described above, in the present invention, the current / potential of the test piece 3 is measured because the measurement condition captures (reflects) the tendency of current increase behavior of an aluminum alloy material due to stress corrosion cracking. The slope of anodic polarization (the slope of the anodic polarization curve, the slope of the potential-current curve) corresponds well to the stress corrosion cracking resistance of the actual aluminum alloy material.

なお、耐応力腐食割れ性評価の基準値となる、この電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配は、アルミニウム合金としての成分組成(合金元素の種類と含有量)や、組織(晶出物や析出物の粒界や粒内での大きさ、個数、あるいは結晶粒径など)によって大きく異なる。この結果、評価対象アルミニウム合金材の合金の種類や、展伸材の種類、あるいは、同じ合金の種類や展伸材の種類であっても、その製造条件の違いなどによって、大きく異なる。 It should be noted that the average gradient of current / potential in this current density range from 1 A / cm 2 to 10 A / cm 2, which is the standard value for stress corrosion cracking resistance evaluation, is the component composition (alloy element) of the aluminum alloy. Type and content) and the structure (size, number, crystal grain size, etc. of crystallized and precipitated grains at grain boundaries and grains). As a result, the type of alloy of the aluminum alloy material to be evaluated, the type of wrought material, or the type of the same alloy or type of wrought material are greatly different depending on the manufacturing conditions.

これに対して、同じAl-Mg-Si系(6000 系) アルミニウム合金材の場合は、鍛造材を含めて、この電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配は、比較的緩い、350 Ω -1 ・m -2以下であれば、実環境での腐食先端における、水素イオン発生やClイオン濃縮による、粒界腐食や粒界割れの促進は起こりがたく、評価試験片の3 の耐応力腐食割れ性が優れている。一方、この電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配が、比較的きつい350 Ω -1 ・m -2を超えた場合には、応力腐食割れ感受性が高く、耐応力腐食割れ性に劣る。 On the other hand, in the case of the same Al-Mg-Si (6000 series) aluminum alloy material, the current / potential in this current density range from 1 A / cm 2 to 10 A / cm 2 including forgings. If the average slope of the material is relatively gentle, if it is 350 Ω -1 · m -2 or less, the acceleration of intergranular corrosion and intergranular cracking occurs due to hydrogen ion generation and Cl ion concentration at the corrosion front in the actual environment. The evaluation test piece 3 has excellent stress corrosion cracking resistance. On the other hand, if the current / potential average gradient exceeds 350 Ω -1 · m -2 in the current density range of 1 A / cm 2 to 10 A / cm 2 , it is susceptible to stress corrosion cracking. Is high and inferior in stress corrosion cracking resistance.

以下、アノード分極曲線の具体的測定方法について説明する。
(応力負荷試験片)
負荷応力を作用させる試験片3 は、図3 に示すように、JIS H8711の付属書5 に記載されている外径19mmのCリング試験片とし、負荷応力は、ボルト6 の締め付けにより、定ひずみ条件で負荷するものとする。負荷応力は、試験片3 の最大応力点(頂点)における応力値を意味し、外側の面の頂点部にひずみゲージを貼り付けて、ボルト6 の締め付けにより負荷応力を制御することが好ましい。
Hereinafter, a specific method for measuring the anodic polarization curve will be described.
(Stress load test piece)
As shown in Fig. 3, the test piece 3 to which the load stress is applied is a C-ring test piece with an outer diameter of 19 mm described in Annex 5 of JIS H8711. The load stress is fixed by tightening the bolt 6. It shall be loaded under conditions. The load stress means a stress value at the maximum stress point (vertex) of the test piece 3, and it is preferable to attach a strain gauge to the apex portion of the outer surface and control the load stress by tightening the bolt 6.

Cリング試験片3 の外側の面の頂点を通る線を中心線として幅5mmの領域を電極面として、電極面以外はシリコンシーラントなどで被覆するものとする。これは、負荷応力したCリング試験片3 において、実際に応力が作用している領域のみのアノード分極曲線の勾配を測定するためである。   An area having a width of 5 mm is defined as an electrode surface with a line passing through the apex of the outer surface of the C-ring test piece 3 as a center line, and the other surface is covered with a silicon sealant or the like. This is for measuring the gradient of the anodic polarization curve only in the region where the stress is actually applied in the C-ring test piece 3 subjected to the load stress.

負荷応力を作用させる試験片3 、あるいは負荷応力を作用させない試験片3 の前処理としては、再現性のために、共通して、10質量%NaOH (70℃)に15秒間浸漬し、水洗を行った後に30質量%HNO3 (30℃)に30秒間浸漬する条件とする。 As a pretreatment of the test piece 3 to which the applied stress is applied or the test piece 3 to which the applied stress is not applied, for reproducibility, it is commonly immersed for 15 seconds in 10% NaOH (70 ° C) and washed with water. as the condition of immersion for 30 seconds in 30 wt% HNO 3 (30 ℃) after performing.

(負荷応力)
この負荷応力は、実際のアルミニウム合金材の耐応力腐食割れ性と対応、相関させ、かつ、測定に再現性を持たせるために、測定の際には、アルミニウム合金材の0.2%耐力値に対する同じ割合の (同じ、一定割合の) 負荷応力とする。この負荷応力は、より良く相関させるために、アルミニウム合金材の使用環境 (用途) で負荷される応力に応じて、これと同等に決定することが好ましい。
(Load stress)
This load stress corresponds to and correlates with the stress corrosion cracking resistance of the actual aluminum alloy material, and in order to make the measurement reproducible, during the measurement, it is the same as the 0.2% proof stress value of the aluminum alloy material. The load stress is a percentage (same, constant percentage). In order to better correlate the load stress, it is preferable to determine it equivalent to the stress applied in the environment (use) of the aluminum alloy material.

この点、Al-Mg-Si系(6000 系) アルミニウム合金鍛造材の場合は、最も使用環境 (用途) で負荷される応力が高い、自動車などの足回り部材としてのサスペンションアームに合わせて、この負荷応力をアルミニウム合金材の0.2%耐力値の80% の応力とすることが好ましい。   In this regard, in the case of Al-Mg-Si (6000 series) aluminum alloy forgings, this is matched to the suspension arm as an undercarriage member for automobiles, etc., which has the highest stress in the usage environment (application). The applied stress is preferably 80% of the 0.2% proof stress value of the aluminum alloy material.

試験片への応力負荷方法については、Cリング試験片の他にも、従来一般的に使用されているU字曲げ試験片、3点曲げ試験片、4点曲げ試験片などにボルト締め付けで所定の応力を負荷する応力付加方法があるが、再現性を考慮して、本発明ではCリング試験片に特定する。   As for the stress loading method on the test piece, in addition to the C-ring test piece, a U-bend test piece, a 3-point bend test piece, a 4-point bend test piece, etc., which are generally used in the past, are bolted. Although there is a stress applying method for applying a stress of 2 mm, it is specified as a C-ring test piece in the present invention in consideration of reproducibility.

(試験溶液)
アノード分極曲線の測定に用いる試験溶液2 は、NaOHによりpHを10(±0.2 )に調整した、5.8 質量% 濃度のNaCl水溶液とする。ウォーターバスなどにより、このNaCl水溶液温度を30℃に調整し、大気開放条件にて測定を行う。比液量は試験片1 個当たり300mL 以上とする。
(Test solution)
Test solution 2 used for the measurement of the anodic polarization curve is a 5.8 mass% NaCl aqueous solution adjusted to pH 10 (± 0.2) with NaOH. Adjust the NaCl aqueous solution temperature to 30 ° C with a water bath or the like, and perform measurement under open air conditions. The specific volume should be at least 300 mL per specimen.

応力腐食割れは、前記した応力負荷と、特に塩化物イオンを含む環境で発生する場合が多い。このため、アルミニウム合金材の使用腐食環境を模擬するために、上記試験溶液2 は、再現性のために上記特定濃度としたNaCl水溶液とする。   Stress corrosion cracking often occurs in an environment containing the above-described stress load, particularly chloride ions. Therefore, in order to simulate the corrosive environment in which the aluminum alloy material is used, the test solution 2 is a NaCl aqueous solution having the above specific concentration for reproducibility.

この際、試験溶液2 のpHが低くなり過ぎると、すなわちH+ イオン濃度が高くなると、応力腐食割れ感受性の違いによるH+ イオン生成の違いが、電流勾配の違いとして現れない。このため、試験片 (アルミニウム合金材) の応力腐食割れ感受性 (応力腐食割れ特性) を正確に評価できない場合が起こり得る。一方、pHが高すぎると、逆に、全面腐食を促進したり、アルカリ脆性割れを生じて、試験片 (アルミニウム合金材) の応力腐食割れ特性を正確に評価できない場合がある。したがって、耐応力腐食割れ性の評価において、試験溶液2 のpHは中性からアルカリ性が好ましいが、本発明では、より良い再現性を考慮して、試験溶液2 のpHを10(±0.2 )に調整する。 At this time, if the pH of the test solution 2 becomes too low, that is, if the H + ion concentration becomes high, the difference in H + ion generation due to the difference in stress corrosion cracking sensitivity does not appear as a difference in current gradient. For this reason, the case where the stress corrosion cracking sensitivity (stress corrosion cracking characteristic) of a test piece (aluminum alloy material) cannot be accurately evaluated may occur. On the other hand, if the pH is too high, on the other hand, overall corrosion may be accelerated or alkali brittle cracks may occur, and the stress corrosion cracking characteristics of the test piece (aluminum alloy material) may not be accurately evaluated. Therefore, in the evaluation of stress corrosion cracking resistance, the pH of the test solution 2 is preferably neutral to alkaline, but in the present invention, the pH of the test solution 2 is set to 10 (± 0.2) in consideration of better reproducibility. adjust.

試験溶液2 の温度は特に限定されるものではないが、室温が推奨され、本発明では、より良い再現性を考慮して、30℃とする。水溶液の温度が低すぎる場合には応力腐食割れのき裂進展が遅いので促進には不利であり、逆に、高すぎる場合には溶液の蒸発などの問題があるため、冷却を要することになる。   The temperature of the test solution 2 is not particularly limited, but room temperature is recommended. In the present invention, the temperature is set to 30 ° C. in consideration of better reproducibility. If the temperature of the aqueous solution is too low, the crack growth of stress corrosion cracking is slow, which is disadvantageous for promotion. On the other hand, if it is too high, there is a problem such as evaporation of the solution, which requires cooling. .

データ(電流、電位)の採取は1mV 当たりに1 点または1 秒当たりに1 点以上行い、電流密度が1 〜10mA/cm2に達した電位を読みとって、平均勾配を算出するものとする。また、データ(電流、電位)のばらつきを考慮すると、前記した勾配(電流、電位)の測定は5 回以上行って、平均値をとることが好ましい。 Data (current and potential) shall be collected at 1 point per 1 mV or 1 point per second , and the average gradient shall be calculated by reading the potential at which the current density has reached 1 to 10 mA / cm 2 . In consideration of variations in data (current, potential), it is preferable to measure the gradient (current, potential) as described above five times or more and take an average value.

(アルミニウム合金材)
上記本発明アルミニウム合金材の耐応力腐食割れ性の評価方法は、1000系、2000系、3000系、4000系、5000系、6000系、7000系、などの種々のアルミニウム合金を対象にし、かつ、これらアルミニウム合金の鍛造材、圧延材、押出材などの展伸材を対象にすることができる。
(Aluminum alloy material)
The evaluation method of the stress corrosion cracking resistance of the aluminum alloy material of the present invention covers various aluminum alloys such as 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, 7000 series, and the like, and These aluminum alloy forged materials, rolled materials, extruded materials such as extruded materials can be targeted.

(Al-Mg-Si系Al合金材)
ただ、これらアルミニウム合金材の中でも、応力腐食割れ発生条件が多く、使用環境 (用途) が厳しくて、耐応力腐食割れ性がより求められる、自動車構造部材(パネル、形材、鍛造品)としてのAl-Mg-Si系(60000 系)Al合金材に適用されて好ましい。また、この中でも、負荷される応力が高く、しかも塩水環境下に曝されるなど、使用環境での応力腐食割れ発生条件が多く、かつ、より耐応力腐食割れ性が厳しく求められる、自動車などの足回り部材(保安部品、サスペンションアームなど)としての、Al-Mg-Si系Al合金鍛造材に適用されて好ましい。
(Al-Mg-Si Al alloy material)
However, among these aluminum alloy materials, there are many conditions for stress corrosion cracking, the usage environment (application) is severe, and the stress corrosion cracking resistance is more demanded, as automotive structural members (panels, profiles, forgings). It is preferably applied to an Al—Mg—Si (60000) Al alloy material. In addition, among them, there are many stress corrosion cracking conditions in the usage environment such as high stress applied and exposure to salt water environment, and more severe stress corrosion cracking resistance is required. It is preferably applied to an Al—Mg—Si based Al alloy forging as an underbody member (security part, suspension arm, etc.).

本発明Al-Mg-Si系Al合金材では、耐応力腐食割れ性を向上させるために、上記測定、評価方法にしたがい、このアルミニウム合金材の0.2%耐力値の80% の応力を負荷させた状態とした試験片の、温度30℃でpH10に調整した5.8 質量% 濃度のNaCl水溶液中でのアノード分極曲線を3 電極法により測定し、このアノード分極曲線m の電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配を350 Ω -1 ・m -2以下とする。 In the Al-Mg-Si Al alloy material of the present invention, in order to improve the stress corrosion cracking resistance, according to the above measurement and evaluation method, 80% of the 0.2% proof stress value of this aluminum alloy material was loaded. The anodic polarization curve in a 5.8 mass% NaCl aqueous solution adjusted to pH 10 at a temperature of 30 ° C. was measured by the three-electrode method, and the current density of the anodic polarization curve m from 1 A / cm 2 was measured. The average current / potential gradient in the range up to 10A / cm 2 is 350 Ω -1 · m -2 or less.

また、本発明Al-Mg-Si系Al合金鍛造材では、上記自動車足回り部材としての必要強度や靱性などの基本要求特性を満足した上で、耐応力腐食割れ性を向上させるために、以下の成分組成とすることが好ましい。   In addition, in the Al-Mg-Si based Al alloy forging of the present invention, in order to improve the stress corrosion cracking resistance after satisfying the basic required characteristics such as the required strength and toughness as the automobile undercarriage member, It is preferable to set it as the component composition.

即ち、本発明Al-Mg-Si系Al合金鍛造材としては、質量% にて、Mg:0.30 〜5.0%、Si:0.20 〜2.0%、Cu:0.01 〜2.0%、Mn:0.01 〜1.0%、Fe:0.01 〜1.0%、Cr:0.01 〜2.0%、Zn:0.005〜10.0% を各々含み、残部Alおよび不可避的不純物からなるものとする。また、このAl-Mg-Si系アルミニウム合金鍛造材は、更に、結晶粒の微細化のために、質量% にて、Ti:0.001〜0.5%、B:0.0001〜0.05% 、Nb:0.01 〜1.0%、Zr:0.01 〜1.0%、V:0.01〜1.0%から選択される1 種または2 種以上を含有してもよい。   That is, as the Al-Mg-Si-based Al alloy forging material of the present invention, in mass%, Mg: 0.30-5.0%, Si: 0.20-2.0%, Cu: 0.01-2.0%, Mn: 0.01-1.0%, Fe: 0.01 to 1.0%, Cr: 0.01 to 2.0%, Zn: 0.005 to 10.0%, respectively, and the balance is Al and inevitable impurities. Further, this Al-Mg-Si-based aluminum alloy forging material is further used in terms of mass% to refine crystal grains in terms of mass%, Ti: 0.001 to 0.5%, B: 0.0001 to 0.05%, Nb: 0.01 to 1.0. %, Zr: 0.01 to 1.0%, V: 0.01 to 1.0%, or one or more may be contained.

(各元素量)
次に、本発明Al合金鍛造材の上記各元素の含有量について、臨界的意義や好ましい範囲について以下に説明する。
(Each element amount)
Next, critical contents and preferable ranges of the contents of the respective elements of the Al alloy forged material of the present invention will be described below.

Mg:0.30 〜5.0%
Mgは人工時効により、SiとともにMg2Si(β' 相) として析出し、最終製品使用時の高強度 (耐力) を付与するために必須の元素である。Mgの0.30% 未満の含有では時効硬化量が低下する。一方、5.0%を越えて含有されると、強度 (耐力) が高くなりすぎ、鍛造性を阻害する。また、溶体化処理後の焼き入れ途中に多量のMg2Si が析出しやすくなり、耐食性や靱性を低下させる。したがって、Mgの含有量は0.30〜5.0%の範囲、好ましくは0.45〜4.0%の範囲、更に好ましくは0.6 〜3.0%の範囲とする。
Mg: 0.30-5.0%
Mg precipitates as Mg 2 Si (β 'phase) together with Si by artificial aging, and is an essential element for imparting high strength (yield strength) when the final product is used. If the Mg content is less than 0.30%, the age hardening amount decreases. On the other hand, if the content exceeds 5.0%, the strength (yield strength) becomes too high and the forgeability is impaired. In addition, a large amount of Mg 2 Si is likely to precipitate during the quenching after the solution treatment, thereby reducing the corrosion resistance and toughness. Therefore, the Mg content is in the range of 0.30 to 5.0%, preferably in the range of 0.45 to 4.0%, and more preferably in the range of 0.6 to 3.0%.

Si:0.20 〜2.0%
SiもMgとともに、人工時効処理により、Mg2Si(β' 相) として析出して、最終製品使用時の高強度 (耐力) を付与するために必須の元素である。Siの0.20% 未満の含有では人工時効で十分な強度が得られない。一方、2.0%を越えて含有されると、鋳造時および溶体化処理後の焼き入れ途中で、粗大な単体Si粒子が晶出および析出して、前記した通り、耐食性と靱性を低下させる。更に伸びが低くなるなど、加工性も阻害する。したがって、Siの含有量は0.20〜2.0%の範囲とし、この範囲の中でも、Mg含有量との関係で、できるだけ過剰Siは少なくするこのが好ましい。
Si: 0.20-2.0%
Si, together with Mg, is an essential element for precipitating as Mg 2 Si (β ′ phase) by artificial aging treatment and imparting high strength (yield strength) when the final product is used. If the Si content is less than 0.20%, sufficient strength cannot be obtained by artificial aging. On the other hand, if the content exceeds 2.0%, coarse single Si particles crystallize and precipitate during casting and during quenching after solution treatment, and as described above, corrosion resistance and toughness are reduced. Furthermore, workability is also hindered, for example, elongation becomes low. Therefore, the Si content is in the range of 0.20 to 2.0%, and within this range, it is preferable to reduce the excess Si as much as possible in relation to the Mg content.

Cr:0.01〜2.0%
Crは均質化熱処理時およびその後の熱間鍛造時に、Al12Mg2Cr 、Al-Cr 系などの分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒や亜結晶粒を得ることができる。この結晶粒の微細化、亜結晶粒化は、破壊靱性や疲労特性などの向上効果が大きい。Cr含有量が少なすぎると、これらの効果が期待できず、一方、Crの過剰な含有は溶解、鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の金属間化合物や晶析出物を生成しやすく、破壊の起点となり、靱性や疲労特性を低下させる原因となる。したがって、高靱性や高疲労特性を得ることができない。このため、Crの含有量は0.01〜2.0%の範囲とする。
Cr: 0.01-2.0%
Cr forms dispersed particles (dispersed phase) such as Al 12 Mg 2 Cr and Al—Cr during homogenization heat treatment and subsequent hot forging. Since these dispersed particles have an effect of hindering grain boundary movement after recrystallization, fine crystal grains and sub-crystal grains can be obtained. This refinement of crystal grains and subgraining have a great effect of improving fracture toughness and fatigue characteristics. If the Cr content is too low, these effects cannot be expected.On the other hand, excessive Cr content can be dissolved and coarse Al-Fe-Si- (Mn, Cr, Zr) based intermetallic compounds and crystals during casting. Precipitates are easily generated, become the starting point of fracture, and cause a decrease in toughness and fatigue characteristics. Therefore, high toughness and high fatigue characteristics cannot be obtained. For this reason, the Cr content is in the range of 0.01 to 2.0%.

Cu:0.01〜2.0%、
Cu は固溶強化にて強度の向上に寄与する他、時効処理に際して、最終製品の時効硬化を著しく促進する効果も有し、高強度化に必須である。しかし、Cuは、Al合金鍛造材の組織の応力腐食割れや粒界腐食の感受性を著しく高め、Al合金鍛造材の耐食性や耐久性を低下させる。したがって、本発明では、これらの観点からCu含有量を0.01〜2.0%の範囲、好ましくは0.05〜1.5%の範囲、更に好ましくは0.10〜1.0%の範囲とする。
Cu: 0.01-2.0%,
In addition to contributing to strength improvement by solid solution strengthening, Cu also has the effect of significantly accelerating age hardening of the final product during aging treatment, and is essential for high strength. However, Cu significantly increases the susceptibility to stress corrosion cracking and intergranular corrosion of the structure of the Al alloy forging, and reduces the corrosion resistance and durability of the Al alloy forging. Therefore, in the present invention, from these viewpoints, the Cu content is in the range of 0.01 to 2.0%, preferably in the range of 0.05 to 1.5%, and more preferably in the range of 0.10 to 1.0%.

Mn:0.01〜1.0%
Mnは均質化熱処理時およびその後の熱間鍛造時に、Al20Cu2Mn3などのAl-Mn 系の分散粒子を生成し、この分散粒子により、再結晶後の粒界移動を妨げ、微細な結晶粒を得る効果がある。そして、固溶による強度およびヤング率の増大も見込める。しかし、Mnは、一方では、Al-Fe-Si-(Mn、Cr、Zr) 系の晶析出物を生成するため、Mnの含有量が多いと、耐食性と靱性を低下させる。したがって、本発明では、これらの観点からMn含有量を0.01〜1.0%の範囲、好ましくは0.02〜0.8%の範囲、更に好ましくは0.03〜0.6%の範囲とする。
Mn: 0.01-1.0%
Mn generates Al-Mn-based dispersed particles such as Al 20 Cu 2 Mn 3 during the homogenization heat treatment and the subsequent hot forging. There is an effect of obtaining crystal grains. In addition, an increase in strength and Young's modulus due to solid solution can be expected. However, Mn, on the other hand, produces Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates, so that if Mn content is high, corrosion resistance and toughness are lowered. Therefore, in the present invention, from these viewpoints, the Mn content is in the range of 0.01 to 1.0%, preferably in the range of 0.02 to 0.8%, and more preferably in the range of 0.03 to 0.6%.

Fe:0.01 〜1.0%
Al合金に含まれるFeは、結晶粒を微細化させる効果があり、高強度化に有効である。しかし、Feは、一方では、Al7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)Al6、或いは粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物を生成する。これらの晶析出物は、破壊靱性および疲労特性などを劣化させる。したがって、本発明では、これらの観点からFe含有量を0.01〜1.0%の範囲、好ましくは0.02〜0.3%の範囲とする。特に、Feの含有量を0.30% 以下、より厳密には0.25% 以下とすることで、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物の合計の面積率を、単位面積当たり1.5%以下、好ましくは、1.0%以下とでき、輸送機の構造材などに要求される、より高強度で高靱性を得ることができる。
Fe: 0.01-1.0%
Fe contained in the Al alloy has an effect of refining crystal grains and is effective in increasing the strength. However, Fe, on the other hand, is Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (Fe, Mn) Al 6 , or coarse Al—Fe—Si— (Mn, Cr, Zr) system. To produce a crystalline precipitate. These crystal precipitates deteriorate fracture toughness and fatigue characteristics. Therefore, in the present invention, from these viewpoints, the Fe content is in the range of 0.01 to 1.0%, preferably in the range of 0.02 to 0.3%. In particular, by making the Fe content 0.30% or less, more strictly 0.25% or less, the total area ratio of Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates is reduced per unit area. It can be 1.5% or less, preferably 1.0% or less, and can obtain higher strength and high toughness required for a structural material of a transport aircraft.

Zn:0.005 〜10.0%
Zn は人工時効時において、MgZn2 を微細かつ高密度に析出させ高い強度を実現させる。また、固溶したZnは粒内の電位を下げ、腐食形態を粒界からではなく、全面的な腐食として、粒界腐食や応力腐食割れを結果として軽減する効果が期待できる。Znの0.005%未満の含有では人工時効で十分な強度が得られず、前記耐食性の向上効果もない。一方、10.0% を越えて含有されると、耐蝕性が顕著に低下する。したがって、Znの含有量は0.005 〜10.0% の範囲とする。
Zn: 0.005 to 10.0%
Zn deposits MgZn 2 finely and densely during artificial aging to achieve high strength. In addition, Zn in solid solution lowers the potential in the grain, and the corrosion form is not from the grain boundary, but as an overall corrosion, and the effect of reducing the grain boundary corrosion and stress corrosion cracking can be expected. If the Zn content is less than 0.005%, sufficient strength cannot be obtained by artificial aging, and there is no effect of improving the corrosion resistance. On the other hand, if the content exceeds 10.0%, the corrosion resistance is remarkably lowered. Therefore, the Zn content is in the range of 0.005 to 10.0%.

これ以外の元素として、結晶粒の微細化のために、Ti、B 、Nb、Zr、V から選択される一種または二種以上を選択的に含有してもよい。   As other elements, one or two or more selected from Ti, B 2, Nb, Zr, and V may be selectively contained in order to refine crystal grains.

Ti:0.001〜0.5%。
Tiは鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させるために添加する元素である。しかし、Tiの0.001%未満の含有では、加工性向上の効果が得られず、一方、Tiを0.5%を越えて含有すると、粗大な晶析出物を形成し、前記加工性を低下させる。したがって、Tiの含有量は0.001 〜0.5%の範囲とすることが好ましい。
Ti: 0.001 to 0.5%.
Ti is an element added to refine crystal grains of an ingot and improve workability during extrusion, rolling, and forging. However, if the Ti content is less than 0.001%, the effect of improving the workability cannot be obtained. On the other hand, if the Ti content exceeds 0.5%, coarse crystal precipitates are formed and the workability is lowered. Therefore, the Ti content is preferably in the range of 0.001 to 0.5%.

B:0.0001〜0.05%
B はTiと同様、鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させるために添加する元素である。しかし、B の0.0001% 未満の含有では、この効果が得られず、一方、0.05% を越えて含有されると、やはり粗大な晶析出物を形成し、前記加工性を低下させる。したがって、B の含有量は0.0001〜0.05% の範囲とすることが好ましい。
B: 0.0001-0.05%
B, like Ti, is an element added to refine the ingot crystal grains and improve the workability during extrusion, rolling and forging. However, when the content of B is less than 0.0001%, this effect cannot be obtained. On the other hand, when the content exceeds 0.05%, coarse crystal precipitates are formed and the workability is lowered. Therefore, the B content is preferably in the range of 0.0001 to 0.05%.

Nb:0.01 〜1.0%
Nbも、鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させるために添加する元素である。しかし、0.01% 未満の含有では、この効果が得られず、一方、1.0%を越えて含有されると、やはり粗大な晶析出物を形成し、前記加工性を低下させる。したがって、Nbの含有量は0.01〜1.0%の範囲とすることが好ましい。
Nb: 0.01-1.0%
Nb is also an element added to refine crystal grains of the ingot and improve workability during extrusion, rolling, and forging. However, when the content is less than 0.01%, this effect cannot be obtained. On the other hand, when the content exceeds 1.0%, coarse crystal precipitates are formed, and the workability is lowered. Therefore, the Nb content is preferably in the range of 0.01 to 1.0%.

V:0.01〜1.0%
V は、Mn、Cr、Zr系などと同様に、均質化熱処理時およびその後の熱間鍛造時に、の分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒や亜結晶粒を得ることができる。0.01% 未満の含有では、この効果が得られず、一方、1.0%を越えて含有されると、溶解、鋳造時に、やはりAl-Fe-Si-V系の粗大な金属間化合物や晶析出物を形成し、破壊の起点となって、靱性を低下させる。したがって、V の含有量は0.01〜1.0%の範囲とすることが好ましい。
V: 0.01-1.0%
V produces dispersed particles (dispersed phase) during the homogenization heat treatment and the subsequent hot forging, as in the Mn, Cr, Zr system and the like. Since these dispersed particles have an effect of hindering grain boundary movement after recrystallization, fine crystal grains and sub-crystal grains can be obtained. When the content is less than 0.01%, this effect cannot be obtained. On the other hand, when the content exceeds 1.0%, Al-Fe-Si-V-based coarse intermetallic compounds and crystal precipitates are also produced during melting and casting. Forming a starting point of fracture and reducing toughness. Therefore, the V content is preferably in the range of 0.01 to 1.0%.

Zr:0.01 〜1.0%、
Zrも、均質化熱処理時およびその後の熱間鍛造時に、微細なAl-Zr 系などの分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒や亜結晶粒を得ることができる。0.01% 未満の含有では、この効果が得られず、一方、1.0%を越えて含有されると、溶解、鋳造時に、粗大な金属間化合物や晶析出物を形成し、破壊の起点となって、靱性を低下させる。したがって、Zrの含有量は0.01〜1.0%の範囲とすることが好ましい。
Zr: 0.01-1.0%,
Zr also generates fine dispersed particles (dispersed phase) such as Al-Zr system during homogenization heat treatment and subsequent hot forging. Since these dispersed particles have the effect of hindering the grain boundary movement after recrystallization, fine crystal grains and sub-crystal grains can be obtained. When the content is less than 0.01%, this effect cannot be obtained.On the other hand, when the content exceeds 1.0%, coarse intermetallic compounds and crystal precipitates are formed during melting and casting, which becomes the starting point of fracture. , Reduce toughness. Therefore, the Zr content is preferably in the range of 0.01 to 1.0%.

(Al合金鍛造材の製造方法)
次に、本発明におけるAl合金材は常法にしたがって製造できるが、特に鍛造材の好ましい製造方法について以下に説明する。Al合金鍛造材の製造自体も常法により可能であるが、前記足回り部品などとして必要な、強度、靱性、耐蝕性などの要求特性を得るための好ましい条件について以下に説明する。
(Al alloy forging production method)
Next, although the Al alloy material in the present invention can be manufactured according to a conventional method, a preferable method for manufacturing a forged material will be described below. Although the production of the Al alloy forged material itself can be performed by a conventional method, preferable conditions for obtaining required characteristics such as strength, toughness, and corrosion resistance necessary for the undercarriage parts will be described below.

まず、前記Al合金成分範囲内に溶解調整されたAl合金溶湯を鋳造する場合には、例えば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の溶解鋳造法を適宜選択して鋳造する。   First, in the case of casting an Al alloy melt whose melting is adjusted within the range of the Al alloy component, for example, a normal melt casting such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), a hot top casting method, etc. The method is appropriately selected and cast.

ここで、Al合金鋳塊の結晶粒を微細化し、かつ、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物を制御するためには、Al合金溶湯を、15℃/sec以上の冷却速度で鋳造して鋳塊とすることが好ましい。鋳塊の冷却速度を15℃/sec以上とすることにより、Al合金鋳塊の結晶粒が微細化され、強度、靱性などの機械的な特性が向上する。一方、冷却速度が15℃/sec未満と遅いと、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物が粗大化し、かつ結晶粒が粗大化し、鋳塊のデンドライト二次アーム間隔(DAS) が大きくなるために、強度、靱性および耐食性が低下する。   Here, in order to refine the crystal grains of the Al alloy ingot and control the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates present on the grain boundaries, an Al alloy molten metal is used. The ingot is preferably cast at a cooling rate of 15 ° C./sec or more. By setting the cooling rate of the ingot to 15 ° C./sec or more, the crystal grains of the Al alloy ingot are refined, and mechanical properties such as strength and toughness are improved. On the other hand, if the cooling rate is slower than 15 ° C / sec, the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates present on the grain boundaries are coarsened, and the crystal grains are coarsened. As the dendrite secondary arm spacing (DAS) increases, strength, toughness and corrosion resistance decrease.

次いで、このAl合金鋳塊 (鋳造材) の均質化熱処理温度は500 〜 560℃の温度範囲とすることが好ましい。この種Al合金鋳造材の通常の均質化熱処理温度は、通常は480 〜580 ℃程度であるが、本発明では、耐食性および靱性の向上のために、均質化熱処理時に、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物を十分に固溶させ、調質処理後の鍛造材の組織の粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物を微細化させることが好ましい。 Next, the homogenization heat treatment temperature of the Al alloy ingot (cast material) is preferably in the temperature range of 500 to 560 ° C. The normal homogenization heat treatment temperature of this kind of Al alloy cast material is usually about 480 to 580 ° C. However, in the present invention, in order to improve the corrosion resistance and toughness, the Al-Fe-Si- (Mn, Cr, Zr) Mg 2 Si or Al-Fe-Si- (Mn, Cr, Zr) present on the grain boundaries of the forged structure after sufficiently crystallization and precipitation of the system crystal precipitates ) It is preferable to refine the system crystal precipitate.

このためには、前記500 〜 560℃の高温での均質化熱処理が必要で、均質化熱処理温度が500 ℃未満の温度では、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物が十分に固溶せず、調質処理後の鍛造材の組織の粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物が粗大化する。一方、均質化熱処理温度が560 ℃を越えると、却って、Al合金鋳塊 (鋳造材) にバーニング (溶損) 等が生じ、熱間加工時に割れが生じやすくなる。また、最終鍛造材の靱性や疲労特性等の機械的特性を著しく低下させる可能性がある。 For this purpose, the above-mentioned homogenization heat treatment at a high temperature of 500 to 560 ° C. is necessary. When the homogenization heat treatment temperature is less than 500 ° C., Al—Fe—Si— (Mn, Cr, Zr) crystal precipitates However, Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates present on the grain boundaries of the structure of the forged material after the tempering treatment are coarsened. On the other hand, if the homogenization heat treatment temperature exceeds 560 ° C., on the other hand, burning (melting damage) or the like occurs in the Al alloy ingot (cast material), and cracking is likely to occur during hot working. In addition, mechanical properties such as toughness and fatigue properties of the final forged material may be significantly reduced.

均質化熱処理の後に、型鍛造により熱間鍛造して、前記足回り部品など最終製品形状( ニアネットシェイプ) のAl合金鍛造材に成形する。そして、鍛造後、必要な強度および靱性、耐食性を得るためのT6 (溶体化処理後、最大強さを得る人工時効硬化処理) 、T7 (溶体化処理後、最大強さを得る人工時効硬化処理条件を超えて過剰時効処理) 、T8 (溶体化処理後、冷間加工を行い、更に最大強さを得る人工時効硬化処理) 等の調質処理を適宜行う。また、均質化熱処理、溶体化処理には、空気炉、誘導加熱炉、硝石炉などが適宜用いられる。更に、人工時効硬化処理には、空気炉、誘導加熱炉、オイルバスなどが適宜用いられる。   After the homogenization heat treatment, hot forging is performed by die forging to form an Al alloy forging material having a final product shape (near net shape) such as the undercarriage part. And after forging, T6 (artificial age hardening treatment to obtain maximum strength after solution treatment) to obtain the required strength, toughness and corrosion resistance, T7 (artificial age hardening treatment to obtain maximum strength after solution treatment) Excessive aging treatment exceeding conditions), T8 (artificial aging hardening treatment for obtaining maximum strength by performing cold working after solution treatment, and further appropriate treatment) and the like are appropriately performed. Moreover, an air furnace, an induction heating furnace, a nitrite furnace, etc. are suitably used for the homogenization heat treatment and the solution treatment. Furthermore, an air furnace, an induction heating furnace, an oil bath, or the like is appropriately used for the artificial age hardening treatment.

前記調質処理における最大強さを得る人工時効硬化処理の温度は175 〜200 ℃の範囲、好ましくは180 〜195 ℃の範囲とする。この温度が低くすぎると、必要強度を得るための処理時間が長くなり、応力腐食割れ性が低下する。一方、この温度が高すぎると、析出物が粗大化して強度が低下する。   The temperature of the artificial age hardening treatment for obtaining the maximum strength in the tempering treatment is in the range of 175 to 200 ° C, preferably in the range of 180 to 195 ° C. When this temperature is too low, the processing time for obtaining the required strength becomes long, and the stress corrosion cracking property is lowered. On the other hand, if this temperature is too high, the precipitates become coarse and the strength decreases.

以下、本発明の実施例を説明する。表1 に示す成分組成の6000系Al合金鋳塊を、ホットトップ鋳造法により、表2 に記載した各冷却速度により鋳造した。この鋳塊を表2 に記載した各温度で8 時間均質化熱処理を施し、再加熱後、メカニカル鍛造により熱間鍛造し、厚さ20mmの板状のAl合金鍛造材を製造した。この鍛造材を空気炉を用いて、加熱速度300 ℃/hr で昇温し、共通して540 ℃で1 時間の溶体化処理した後水冷 (水焼入れ) を行い、その後室温(20 〜30℃) で1 時間放置したのち、表2 に記載した各温度で8 時間の時効処理(T6 処理) を行った。   Examples of the present invention will be described below. A 6000 series Al alloy ingot having the composition shown in Table 1 was cast at each cooling rate shown in Table 2 by the hot top casting method. This ingot was subjected to a homogenizing heat treatment at each temperature shown in Table 2 for 8 hours, and after reheating, it was hot forged by mechanical forging to produce a plate-like Al alloy forged material having a thickness of 20 mm. This forged material is heated in an air furnace at a heating rate of 300 ° C / hr, and after common solution treatment at 540 ° C for 1 hour, water cooling (water quenching) is performed, and then room temperature (20-30 ° C) ) For 1 hour, and then an aging treatment (T6 treatment) for 8 hours at each temperature shown in Table 2.

(機械的特性測定)
これら製造したAl合金鍛造材の機械的な性質、引張強度 (σB 、MPa)、耐力 (σ0.2 、MPa)、伸び (δ、%)を、板厚方向と直角な方向を長手方向とするJIS 5 号引張試験片を採取し、JIS Z 2201にしたがって測定した。クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。各サンプルについて3回の試験を行い、その平均値を採用した。
(Mechanical characteristics measurement)
The mechanical properties, tensile strength (σ B , MPa), proof stress (σ 0.2 , MPa), elongation (δ,%) of these manufactured Al alloy forgings are defined as the direction perpendicular to the plate thickness direction. JIS No. 5 tensile test specimens were collected and measured according to JIS Z 2201. The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke. Each sample was tested three times and the average value was adopted.

(電流/ 電位の平均勾配測定)
前記各アルミニウム合金鍛造材から試験片を採取し、前記図3 のCリング試験片に加工し、ボルト締め付けにより、このアルミニウム合金鍛造材の0.2%耐力値に対する表 2に示す各割合(%) の応力を負荷した試験片をCリング型アノード電極試験片3 として準備した。この試験片では頂点(応力最大点)を挟んで幅10mm以外はシリコンシーラントで被覆し、ボルト・ナットなどが露出して電解されないようにした。
(Average slope measurement of current / potential)
Specimens were taken from each of the aluminum alloy forgings, processed into the C-ring specimens shown in FIG. 3, and bolted to obtain the ratios (%) shown in Table 2 for the 0.2% proof stress value of the aluminum alloy forgings. A test piece loaded with stress was prepared as a C-ring type anode electrode test piece 3. This test piece was covered with silicon sealant except the width of 10mm across the apex (maximum stress point) to prevent the bolts and nuts from being exposed to electrolysis.

これら試験片を、共通して、前記した条件で前処理し、図1 で示した装置を用い、表 2に示す各応力 (割合:%) を負荷させた各Cリング型アノード電極試験片3 をNaCl水溶液 (試験水溶液) に浸漬した。NaCl水溶液の各温度と各pH条件を表 2に示す。そして、各Cリング型アノード電極試験片3 のアノード分極曲線を3 電極法により測定し、電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配( Ω -1 ・m -2) を測定した。この際の電位送り速度は50mV/minとした。 These test pieces were commonly pretreated under the conditions described above, and each C-ring type anode electrode test piece 3 loaded with each stress (ratio:%) shown in Table 2 using the apparatus shown in FIG. Was immersed in NaCl aqueous solution (test aqueous solution). Table 2 shows the temperature and pH conditions of the NaCl aqueous solution. Then, the anodic polarization curve of each C-ring type anode electrode test piece 3 was measured by the three-electrode method, and the average gradient of current / potential (Ω −1) in the current density range from 1 A / cm 2 to 10 A / cm 2. -M -2 ) was measured. The potential feed rate at this time was 50 mV / min.

試験溶液条件は、表 2の例1 〜例13までは、本発明の条件である、30℃でpH10に調整した5.8 質量% 濃度のNaCl水溶液とした。これに対して、表 2の例16〜例19までは、温度とpHとを本発明の条件から敢えて外した5.8 質量% 濃度のNaCl水溶液として、応力腐食割れとの相関関係を比較した。また、表 2の例14、15は、アルミニウム合金鍛造材の0.2%耐力値の60% 、40% という比較的低い応力を負荷し、応力腐食割れとの相関関係を比較した。   As test solution conditions, Examples 1 to 13 in Table 2 were 5.8 mass% NaCl aqueous solution adjusted to pH 10 at 30 ° C., which is the condition of the present invention. On the other hand, in Examples 16 to 19 in Table 2, the correlation with stress corrosion cracking was compared as a 5.8 mass% NaCl aqueous solution in which the temperature and pH were intentionally removed from the conditions of the present invention. In Examples 14 and 15 of Table 2, relatively low stresses of 60% and 40% of the 0.2% proof stress value of the aluminum alloy forging were applied, and the correlation with stress corrosion cracking was compared.

( 応力腐食割れ性評価)
更に、この電位差と、応力腐食割れとの関係をみるために、前記各Al合金鍛造材から採取した試験片 (前記電位差測定試験片採取位置と隣接する部位から採取した試験片) を、応力腐食割れ性評価試験として汎用されている、JISH8711に記載されている交互浸漬試験法により、応力腐食割れ性を評価した。
(Stress corrosion cracking evaluation)
Furthermore, in order to see the relationship between this potential difference and stress corrosion cracking, test specimens collected from each of the Al alloy forgings (test specimens collected from the site adjacent to the potential difference measurement specimen collection position) were subjected to stress corrosion. The stress corrosion cracking property was evaluated by an alternate immersion test method described in JISH8711, which is widely used as a cracking property evaluation test.

この交互浸漬試験法は、3.5 質量% 濃度のNaCl水溶液(pH6.8 、25℃)に10分間浸漬した後に取り出して、温度25℃、湿度50%RH の恒温恒湿雰囲気下で50分保持して乾燥させる工程を繰り返した。そして、1 回/1日の試験片表面観察によって、応力腐食割れが発生するまでの日数 (時間) を測定した。30日以内に応力腐食割れが発生したものを×、31日〜90日の間に応力腐食割れが発生したものを△、91〜180 日の間に応力腐食割れが発生したものを○、181 日以上応力腐食割れが発生しなかったものを◎と評価した。これらの結果を表2 に示す。   In this alternate immersion test method, the sample is immersed for 10 minutes in a 3.5% by weight NaCl aqueous solution (pH 6.8, 25 ° C) and then taken out for 50 minutes in a constant temperature and humidity atmosphere at 25 ° C and 50% RH. The process of drying was repeated. Then, the number of days (hours) until stress corrosion cracking occurred was measured by observing the surface of the specimen once / day. X where stress corrosion cracking occurred within 30 days, △ where stress corrosion cracking occurred between 31 and 90 days, and ○ and 181 where stress corrosion cracking occurred between 91 and 180 days Those in which stress corrosion cracking did not occur for more than a day were evaluated as ◎. These results are shown in Table 2.

図4 に、上記アノード分極曲線における電流/ 電位の平均勾配( Ω -1 ・m -2) と、交互浸漬試験法による応力腐食割れ性評価結果との関係を示す。図4 において、縦軸が応力腐食割れ発生までの日数、横軸が電流/ 電位の平均勾配( Ω -1 ・m -2) であり、縦に引いた線が電流/ 電位の平均勾配が350 Ω -1 ・m -2の箇所である。なお、図4 において、表2 の例1 、2 の上への矢印は、例1 、2 の応力腐食割れ発生までの日数が縦軸にプロットできないほど多いことを示す。 FIG. 4 shows the relationship between the average current / potential gradient (Ω −1 · m −2 ) in the anodic polarization curve and the stress corrosion cracking evaluation result by the alternate immersion test method. In Fig. 4, the vertical axis is the number of days until the occurrence of stress corrosion cracking, the horizontal axis is the average gradient of current / potential (Ω -1・ m -2 ), and the vertical line is the average current / potential gradient of 350 It is the place of Ω -1 · m -2 . In FIG. 4, the arrows above Examples 1 and 2 in Table 2 indicate that the number of days until stress corrosion cracking in Examples 1 and 2 cannot be plotted on the vertical axis.

図4 から明らかな通り、本発明試験条件内で測定した電流/ 電位の平均勾配は、表 2の例1 〜13までの応力腐食割れ発生までの日数と、良く対応 (相関) している。   As is clear from FIG. 4, the average current / potential gradient measured under the test conditions of the present invention corresponds well (correlation) with the days until stress corrosion cracking in Examples 1 to 13 in Table 2.

これに対して、表 2の例14、15は、表 2の例10と、鍛造材の合金組成、製造条件は同じだが、上記アノード分極曲線における電流/ 電位の平均勾配の測定条件のみが異なる。即ち、試験片 (電極3)への応力負荷のみを変更し、アルミニウム合金鍛造材の0.2%耐力値の60% 、40% という比較的低い応力を負荷している。   In contrast, Examples 14 and 15 in Table 2 have the same alloy composition and manufacturing conditions as the forged material, but differ only in the measurement conditions for the average gradient of current / potential in the above anodic polarization curve. . That is, only the stress load on the test piece (electrode 3) was changed, and a relatively low stress of 60% and 40% of the 0.2% proof stress value of the aluminum alloy forging was applied.

このため、表 2の例10のように、実際の鍛造材の応力腐食割れ性は低いにもかかわらず、表 2の例14、15の上記アノード分極曲線における電流/ 電位の平均勾配は、350 Ω -1 ・m -2以下であり、本発明範囲を満たしている。したがって、実際の耐応力腐食割れ性と、上記アノード分極曲線における電流/ 電位の平均勾配の傾向とが相関しておらず、評価方法として使用できない。 Therefore, as in Example 10 of Table 2, the average slope of current / potential in the above anodic polarization curves of Examples 14 and 15 in Table 2 is 350, although the actual forging has low stress corrosion cracking property. Ω −1 · m −2 or less, which satisfies the scope of the present invention. Therefore, the actual stress corrosion cracking resistance does not correlate with the tendency of the average gradient of current / potential in the anodic polarization curve, and cannot be used as an evaluation method.

一方、表 2の例16〜例19は、温度とpHとを本発明の条件から敢えて外した5.8 質量%NaCl 水溶液としている。この結果、応力腐食割れとの相関関係は、温度とpHが本発明条件範囲内の例3 と同じであるものの、上記アノード分極曲線における電流/ 電位の平均勾配は、互いに、また、例3 とも微妙に異なる。   On the other hand, Examples 16 to 19 in Table 2 are 5.8 mass% NaCl aqueous solutions in which the temperature and pH are deliberately excluded from the conditions of the present invention. As a result, although the correlation with stress corrosion cracking is the same as in Example 3 where the temperature and pH are within the range of the present invention, the average current / potential gradient in the above anodic polarization curve is similar to that of Example 3 and Example 3. Slightly different.

したがって、これらの結果から、上記アノード分極曲線における電流/ 電位の平均勾配による、耐応力腐食割れ評価の有効性が分かる。また、アノード分極曲線における電流/ 電位の平均勾配の各測定条件の、測定の再現性のための意義が分かる。   Therefore, these results show the effectiveness of stress corrosion cracking resistance evaluation based on the average current / potential gradient in the anodic polarization curve. It also shows the significance of each measurement condition for the average current / potential gradient in the anodic polarization curve for measurement reproducibility.

更に、表2 の例1 〜8 は、本発明鍛造材の成分組成範囲内 (表1 の合金番号A 〜H)で、かつ、表2 に記載の通り、前記した好ましい製造方法で製造されている。この結果、表2 の例1 〜8 は、耐応力腐食割れ性が優れており、かつ、30℃でpH10に調整した5.8 質量%NaCl 水溶液中でのアノード分極曲線を3 電極法により測定した、電流密度が1A/cm2から10A/cm2 までの範囲における、電流/ 電位の平均勾配が350 Ω -1 ・m -2以下である。 Further, Examples 1 to 8 in Table 2 are produced by the above-described preferred production method as described in Table 2 within the component composition range of the forging material of the present invention (alloy numbers A to H in Table 1). Yes. As a result, Examples 1 to 8 in Table 2 were excellent in stress corrosion cracking resistance, and the anodic polarization curve in a 5.8 mass% NaCl aqueous solution adjusted to pH 10 at 30 ° C. was measured by the three-electrode method. In the current density range of 1 A / cm 2 to 10 A / cm 2 , the average current / potential gradient is 350 Ω -1 · m -2 or less.

一方、本発明鍛造材の成分組成範囲内だが、表2 に記載の通り、鋳造冷却速度が小さすぎる例9 、人工時効温度が低すぎる例10、均質化処理温度が高すぎる例11、人工時効温度が低すぎる例12は、前記電流/ 電位の平均勾配が350 Ω -1 ・m -2を超え、耐応力腐食割れ性が劣っている。なお、人工時効温度が高すぎる例13は電流/ 電位の平均勾配が350 Ω -1 ・m -2を下回り、耐応力腐食割れ性は優れているが、好ましい人工時効温度の例8に比べると強度がかなり低下しており、合金元素添加による強度向上が得られていない。 On the other hand, within the component composition range of the forged material of the present invention, as shown in Table 2, the casting cooling rate is too low Example 9, the artificial aging temperature is too low Example 10, the homogenization treatment temperature is too high Example 11, artificial aging In Example 12 where the temperature is too low, the average gradient of the current / potential exceeds 350 Ω −1 · m −2 , and the resistance to stress corrosion cracking is poor. In Example 13, the artificial aging temperature is too high, the average current / potential gradient is less than 350 Ω -1 m- 2 , and the stress corrosion cracking resistance is excellent, but compared to the preferred artificial aging temperature example 8. The strength is considerably lowered, and the strength is not improved by the addition of alloy elements.

したがって、これらの結果から、本発明6000系鍛造材における上記アノード分極曲線における電流/ 電位の平均勾配値350 Ω -1 ・m -2の、耐応力腐食割れ性に対する臨界的な意義が分かる。 Therefore, from these results, the critical significance of the current / potential average slope value 350 Ω −1 · m −2 in the anodic polarization curve in the 6000 series forged material of the present invention to the stress corrosion cracking resistance can be understood.

Figure 2008076297
Figure 2008076297

Figure 2008076297
Figure 2008076297

本発明によれば、実際のアルミニウム合金材の耐応力腐食割れ性挙動との対応につき、より改善された評価方法およびこの評価方法で評価された耐応力腐食割れ性に優れたアルミニウム合金材を提供できる。この結果、自動車部品、部材などの用途に、6000系アルミニウム合金材の適用を拡大できる。   According to the present invention, there is provided a more improved evaluation method for the correspondence with the stress corrosion cracking resistance behavior of an actual aluminum alloy material and an aluminum alloy material excellent in stress corrosion cracking resistance evaluated by this evaluation method. it can. As a result, the application of the 6000 series aluminum alloy material can be expanded for uses such as automobile parts and members.

本発明に係るアノード分極曲線測定装置を示す概念図である。It is a conceptual diagram which shows the anode polarization curve measuring apparatus which concerns on this invention. 図1の装置で測定したアノード分極曲線を示す説明図である。It is explanatory drawing which shows the anodic polarization curve measured with the apparatus of FIG. アノード分極曲線測定に用いるC リング試験片 (電極) 形状を示す説明図である。It is explanatory drawing which shows the C ring test piece (electrode) shape used for an anodic polarization curve measurement. 実施例における、応力腐食割れ発生までの時間と、アノード分極曲線における電流/ 電位の平均勾配値との相関関係を示す説明図である。It is explanatory drawing which shows the correlation with the time until stress corrosion crack generation in an Example, and the average gradient value of the electric current / potential in an anodic polarization curve.

符号の説明Explanation of symbols

1:容器、2:NaCl水溶液、3:カソード電極(試験片)、4:対極、
5:照合電極、6:分極測定装置
1: container, 2: NaCl aqueous solution, 3: cathode electrode (test piece), 4: counter electrode,
5: reference electrode, 6: polarization measuring device

Claims (4)

アルミニウム合金材の耐応力腐食割れ性の評価方法であって、評価対象となるアルミニウム合金材試験片に所定の応力を負荷させた状態において、温度30℃、pH10に調整した5.8 質量% 濃度のNaCl水溶液中でのアノード分極曲線を3 電極法により測定し、この測定されたアノード分極曲線の電流密度が1A/cm2から10A/cm2 までの範囲における電流/ 電位の平均勾配によって、このアルミニウム合金材の耐応力腐食割れを評価することを特徴とするアルミニウム合金材の耐応力腐食割れ性の評価方法。 A method for evaluating the resistance to stress corrosion cracking of an aluminum alloy material, in which 5.8 mass% NaCl adjusted to a temperature of 30 ° C. and pH 10 in a state where a predetermined stress is applied to the aluminum alloy material test piece to be evaluated. The anodic polarization curve in an aqueous solution was measured by the three-electrode method, and the current density of the measured anodic polarization curve in the range from 1 A / cm 2 to 10 A / cm 2 was determined by the current / potential average gradient. An evaluation method for stress corrosion cracking resistance of an aluminum alloy material, characterized by evaluating stress corrosion cracking resistance of the material. 請求項1の評価方法によって耐応力腐食割れ性が評価されたAl-Mg-Si系アルミニウム合金材であって、このアルミニウム合金材の0.2%耐力値の80% の応力がこのアルミニウム合金材試験片に負荷された状態において、3 電極法により測定された、温度30℃、pH10に調整した5.8 質量% 濃度のNaCl水溶液中でのアノード分極曲線における、電流密度が1A/cm2から10A/cm2 までの範囲における電流/ 電位の平均勾配が350 Ω -1 ・m -2以下であることを特徴とする、耐応力腐食割れ性に優れたアルミニウム合金材。 An Al-Mg-Si aluminum alloy material whose stress corrosion cracking resistance has been evaluated by the evaluation method according to claim 1, wherein a stress of 80% of the 0.2% proof stress value of the aluminum alloy material In the state of anodic polarization in a 5.8 mass% NaCl aqueous solution adjusted to a temperature of 30 ° C. and a pH of 10, measured by the three-electrode method, the current density was 1 A / cm 2 to 10 A / cm 2 An aluminum alloy material excellent in stress corrosion cracking resistance, characterized by an average current / potential gradient in the range up to 350 Ω -1 · m -2 or less. 前記Al-Mg-Si系アルミニウム合金材が、質量% にて、Mg:0.30 〜5.0%、Si:0.20 〜2.0%、Cu:0.01 〜2.0%、Mn:0.01 〜1.0%、Fe:0.01 〜1.0%、Cr:0.01 〜2.0%、Zn:0.005〜10.0% を各々含み、残部Alおよび不可避的不純物からなる鍛造材である請求項2に記載の耐応力腐食割れ性に優れたアルミニウム合金材。   The Al-Mg-Si-based aluminum alloy material is, by mass%, Mg: 0.30 to 5.0%, Si: 0.20 to 2.0%, Cu: 0.01 to 2.0%, Mn: 0.01 to 1.0%, Fe: 0.01 to 1.0 The aluminum alloy material having excellent stress corrosion cracking resistance according to claim 2, which is a forging material comprising:%, Cr: 0.01 to 2.0%, Zn: 0.005 to 10.0%, and the balance Al and inevitable impurities. 前記Al-Mg-Si系アルミニウム合金鍛造材が、更に、質量% にて、Ti:0.001〜0.5%、B:0.0001〜0.05% 、Nb:0.01 〜1.0%、Zr:0.01 〜1.0%、V:0.01〜1.0%から選択される1 種または2 種以上を含有する請求項3に記載の耐応力腐食割れ性に優れたアルミニウム合金材。   The Al-Mg-Si based aluminum alloy forged material is further, in mass%, Ti: 0.001 to 0.5%, B: 0.0001 to 0.05%, Nb: 0.01 to 1.0%, Zr: 0.01 to 1.0%, V: The aluminum alloy material excellent in stress corrosion cracking resistance according to claim 3, containing one or more selected from 0.01 to 1.0%.
JP2006257531A 2006-09-22 2006-09-22 Evaluation method of stress corrosion cracking resistance of aluminum alloy materials Expired - Fee Related JP4690279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257531A JP4690279B2 (en) 2006-09-22 2006-09-22 Evaluation method of stress corrosion cracking resistance of aluminum alloy materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257531A JP4690279B2 (en) 2006-09-22 2006-09-22 Evaluation method of stress corrosion cracking resistance of aluminum alloy materials

Publications (2)

Publication Number Publication Date
JP2008076297A true JP2008076297A (en) 2008-04-03
JP4690279B2 JP4690279B2 (en) 2011-06-01

Family

ID=39348514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257531A Expired - Fee Related JP4690279B2 (en) 2006-09-22 2006-09-22 Evaluation method of stress corrosion cracking resistance of aluminum alloy materials

Country Status (1)

Country Link
JP (1) JP4690279B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261652A (en) * 2007-04-10 2008-10-30 Nippon Steel Corp Sensor for measuring amount of corrosion
WO2011134486A1 (en) * 2010-04-26 2011-11-03 Sapa Ab Damage tolerant aluminium material having a layered microstructure
CN104251798A (en) * 2013-06-26 2014-12-31 宝山钢铁股份有限公司 High-strength bolt delayed fracture test method and apparatus thereof
CN105256188A (en) * 2015-10-20 2016-01-20 安徽天祥空调科技有限公司 Anti-bacterial anti-corrosion light and thin aluminum alloy sheet for air conditioner radiator and manufacturing method for anti-microbial anti-corrosion light and thin aluminum alloy sheet
US20180119262A1 (en) * 2016-10-27 2018-05-03 Novelis Inc. High strength 7xxx series aluminum alloys and methods of making the same
CN109136681A (en) * 2018-09-07 2019-01-04 安徽耀强精轮机械有限公司 6061 aluminium casting rod material formulas of one kind and its casting technique
CN112986123A (en) * 2021-05-12 2021-06-18 中国航发北京航空材料研究院 Method for judging aluminum alloy environment induced corrosion cracking tendency
US11590565B2 (en) 2016-10-27 2023-02-28 Novelis Inc. Metal casting and rolling line
CN116879010A (en) * 2023-09-06 2023-10-13 雄邦压铸(南通)有限公司 Corrosion-resistant detection device for aluminum alloy vehicle body structural part
CN116952826A (en) * 2023-09-19 2023-10-27 江苏乔科科技有限公司 PCB corrosion resistance detection system
US11821065B2 (en) 2016-10-27 2023-11-21 Novelis Inc. High strength 6XXX series aluminum alloys and methods of making the same
CN117250146A (en) * 2023-11-20 2023-12-19 中汽数据(天津)有限公司 Evaluation method for galvanic corrosion reversal of automobile metal plate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267131A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Al alloy having superior resistance to stress corrosion cracking
JPH0641669A (en) * 1992-03-24 1994-02-15 Mikihiro Sugano High strength aluminum alloy excellent in stress corrosion cracking resistance
JPH0853773A (en) * 1994-08-10 1996-02-27 Kobe Steel Ltd High corrosion resistant surface treated metallic material and its production
JPH1161311A (en) * 1997-08-28 1999-03-05 Nippon Steel Corp Aluminum alloy sheet for car body panel and its production
JPH11174016A (en) * 1997-12-09 1999-07-02 Kobe Steel Ltd Al-mg base aluminum alloy capable of assuring local corrosion characteristics and local corrosion characteristic evaluation method for al-mg base aluminum alloy
JP2001099812A (en) * 1999-10-01 2001-04-13 Kobe Steel Ltd Method for evaluating intergranular corrosion resistance of aluminum alloy material, and aluminum alloy material of superior intergranular corrosion resistance
JP2002294382A (en) * 2001-03-29 2002-10-09 Kobe Steel Ltd High strength and high toughness aluminum forging having excellent corrosion resistance
JP2003239030A (en) * 2002-02-18 2003-08-27 Kobe Steel Ltd HIGH-RIGIDITY BORON-CONTAINING Al ALLOY
JP2004162140A (en) * 2002-11-14 2004-06-10 Toyota Motor Corp Al-Mg ALLOY FOR DIE CASTING AND METHOD FOR MANUFACTURING DIE-CAST PRODUCT MADE FROM Al-Mg ALLOY
JP2006234421A (en) * 2005-02-22 2006-09-07 Kobe Steel Ltd Accelerated test method of stress corrosion cracking

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267131A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Al alloy having superior resistance to stress corrosion cracking
JPH0641669A (en) * 1992-03-24 1994-02-15 Mikihiro Sugano High strength aluminum alloy excellent in stress corrosion cracking resistance
JPH0853773A (en) * 1994-08-10 1996-02-27 Kobe Steel Ltd High corrosion resistant surface treated metallic material and its production
JPH1161311A (en) * 1997-08-28 1999-03-05 Nippon Steel Corp Aluminum alloy sheet for car body panel and its production
JPH11174016A (en) * 1997-12-09 1999-07-02 Kobe Steel Ltd Al-mg base aluminum alloy capable of assuring local corrosion characteristics and local corrosion characteristic evaluation method for al-mg base aluminum alloy
JP2001099812A (en) * 1999-10-01 2001-04-13 Kobe Steel Ltd Method for evaluating intergranular corrosion resistance of aluminum alloy material, and aluminum alloy material of superior intergranular corrosion resistance
JP2002294382A (en) * 2001-03-29 2002-10-09 Kobe Steel Ltd High strength and high toughness aluminum forging having excellent corrosion resistance
JP2003239030A (en) * 2002-02-18 2003-08-27 Kobe Steel Ltd HIGH-RIGIDITY BORON-CONTAINING Al ALLOY
JP2004162140A (en) * 2002-11-14 2004-06-10 Toyota Motor Corp Al-Mg ALLOY FOR DIE CASTING AND METHOD FOR MANUFACTURING DIE-CAST PRODUCT MADE FROM Al-Mg ALLOY
JP2006234421A (en) * 2005-02-22 2006-09-07 Kobe Steel Ltd Accelerated test method of stress corrosion cracking

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261652A (en) * 2007-04-10 2008-10-30 Nippon Steel Corp Sensor for measuring amount of corrosion
US10661338B2 (en) 2010-04-26 2020-05-26 Hydro Extruded Solutions Ab Damage tolerant aluminium material having a layered microstructure
WO2011134486A1 (en) * 2010-04-26 2011-11-03 Sapa Ab Damage tolerant aluminium material having a layered microstructure
CN103025901A (en) * 2010-04-26 2013-04-03 萨帕有限公司 Damage tolerant aluminium material having a layered microstructure
EP2728026A1 (en) 2010-04-26 2014-05-07 Sapa AB Damage tolerant aluminium material having a layered microstructure
CN103025901B (en) * 2010-04-26 2017-03-08 萨帕有限公司 There is the damage tolerance aluminum of the micro-structural of layering
CN107022700A (en) * 2010-04-26 2017-08-08 萨帕有限公司 The damage tolerance aluminum of micro-structural with layering
CN104251798A (en) * 2013-06-26 2014-12-31 宝山钢铁股份有限公司 High-strength bolt delayed fracture test method and apparatus thereof
CN105256188A (en) * 2015-10-20 2016-01-20 安徽天祥空调科技有限公司 Anti-bacterial anti-corrosion light and thin aluminum alloy sheet for air conditioner radiator and manufacturing method for anti-microbial anti-corrosion light and thin aluminum alloy sheet
US11806779B2 (en) 2016-10-27 2023-11-07 Novelis Inc. Systems and methods for making thick gauge aluminum alloy articles
US20180119262A1 (en) * 2016-10-27 2018-05-03 Novelis Inc. High strength 7xxx series aluminum alloys and methods of making the same
US11590565B2 (en) 2016-10-27 2023-02-28 Novelis Inc. Metal casting and rolling line
US11692255B2 (en) * 2016-10-27 2023-07-04 Novelis Inc. High strength 7XXX series aluminum alloys and methods of making the same
US11821065B2 (en) 2016-10-27 2023-11-21 Novelis Inc. High strength 6XXX series aluminum alloys and methods of making the same
CN109136681A (en) * 2018-09-07 2019-01-04 安徽耀强精轮机械有限公司 6061 aluminium casting rod material formulas of one kind and its casting technique
CN112986123A (en) * 2021-05-12 2021-06-18 中国航发北京航空材料研究院 Method for judging aluminum alloy environment induced corrosion cracking tendency
CN116879010B (en) * 2023-09-06 2023-11-21 雄邦压铸(南通)有限公司 Corrosion-resistant detection device for aluminum alloy vehicle body structural part
CN116879010A (en) * 2023-09-06 2023-10-13 雄邦压铸(南通)有限公司 Corrosion-resistant detection device for aluminum alloy vehicle body structural part
CN116952826A (en) * 2023-09-19 2023-10-27 江苏乔科科技有限公司 PCB corrosion resistance detection system
CN116952826B (en) * 2023-09-19 2023-12-05 江苏乔科科技有限公司 PCB corrosion resistance detection system
CN117250146A (en) * 2023-11-20 2023-12-19 中汽数据(天津)有限公司 Evaluation method for galvanic corrosion reversal of automobile metal plate
CN117250146B (en) * 2023-11-20 2024-04-09 中汽数据(天津)有限公司 Evaluation method for galvanic corrosion reversal of automobile metal plate

Also Published As

Publication number Publication date
JP4690279B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4690279B2 (en) Evaluation method of stress corrosion cracking resistance of aluminum alloy materials
Aung et al. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy
Wang et al. The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling
Lin et al. Microstructures and properties of 2099 Al-Li alloy
Deng et al. Effects of Sc and Zr microalloying additions and aging time at 120 C on the corrosion behaviour of an Al–Zn–Mg alloy
Ben-Haroush et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures
Huang et al. Effects of grain size and texture on stress corrosion cracking of friction stir processed AZ80 magnesium alloy
Alexopoulos et al. The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al–Cu) aluminium alloy
Marlaud et al. Electrochemical aspects of exfoliation corrosion of aluminium alloys: The effects of heat treatment
Li et al. Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr
Li et al. Influence of aging temperature on corrosion behavior of Al–Zn–Mg–Sc–Zr alloy
Rodriguez et al. Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys
CA2807344C (en) Aging of aluminum-lithium alloys for improved combination of fatigue performance and strength
Tahamtan et al. Evaluation of pitting corrosion of thixoformed A356 alloy using a simulation model
US20210340656A1 (en) 7xxx aluminum alloys
Charalampidou et al. Corrosion-induced mechanical properties degradation of Al-Cu-Li (2198-T351) aluminium alloy and the role of side-surface cracks
Li et al. Grain boundary pre-precipitation and its contribution to enhancement of corrosion resistance of Al–Zn–Mg alloy
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
Wang et al. Effect of travel speed on the stress corrosion behavior of friction stir welded 2024-T4 aluminum alloy
Liu et al. Effect of minor Ge addition on microstructure and localized corrosion behavior of Al-Zn-Mg alloy sheet
JP4933891B2 (en) Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same
Heider et al. Influence of heated forming tools on corrosion behavior of high strength aluminum alloys
Zhou et al. Passivation behaviors of 6082 aluminium alloy under stress corrosion process
Sathish et al. Corrosion studies on friction welded dissimilar aluminum alloys of AA7075-T6 and AA6061-T6
Doig et al. The influence of solute depleted zones on the stress-corrosion susceptibility of aged Al-7.2 mass% Mg and Al-4.4 mass% Cu alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

R150 Certificate of patent or registration of utility model

Ref document number: 4690279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees