JP2008261652A - Sensor for measuring amount of corrosion - Google Patents

Sensor for measuring amount of corrosion Download PDF

Info

Publication number
JP2008261652A
JP2008261652A JP2007102624A JP2007102624A JP2008261652A JP 2008261652 A JP2008261652 A JP 2008261652A JP 2007102624 A JP2007102624 A JP 2007102624A JP 2007102624 A JP2007102624 A JP 2007102624A JP 2008261652 A JP2008261652 A JP 2008261652A
Authority
JP
Japan
Prior art keywords
exposed
corrosion
exposed material
corrosion amount
support material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007102624A
Other languages
Japanese (ja)
Other versions
JP4870013B2 (en
Inventor
Kazumi Matsuoka
和巳 松岡
Kenichiro Imafuku
健一郎 今福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007102624A priority Critical patent/JP4870013B2/en
Publication of JP2008261652A publication Critical patent/JP2008261652A/en
Application granted granted Critical
Publication of JP4870013B2 publication Critical patent/JP4870013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor for measuring the amount of corrosion and capable of accurately measuring the amount of corrosion in the same corrosive environment as that of a structure for a long period. <P>SOLUTION: The sensor 1 for measuring the amount of corrosion has both an exposed material 10 to be exposed to a corrosive environment and a supporting material 11 for supporting the exposed material 10 in its elastically bent state. The elastic bending of the exposed material 10 is maintained at a prescribed curvature. A distortion gauge 15 for detecting bending distortion is pasted to the surface of the exposed material 10. It is possible to accurately measure the temporal transition of the amount of corrosion in the same corrosive environment as that of a structure for a long period through the use of a few number of the sensors for measuring the amount of corrosion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構造物の腐食劣化に対する耐久性を評価する技術に関するものであり、さらに詳しくは、構造物の腐食量を連続的に測定するための、腐食量測定センサに関するものである。   The present invention relates to a technique for evaluating durability against corrosion deterioration of a structure, and more particularly to a corrosion amount measurement sensor for continuously measuring the corrosion amount of a structure.

これまで、様々な腐食量を予測する技術が考えられてきた。例えば、非特許文献1には、重量測定法(Corrosion Coupons and
Weight Loss Analysis)の詳細が記載されている。この手法は、腐食評価を行おうとする構造物と同じ鋼材により製作した試験片を架台などに設置し、必要時間暴露して腐食させた後にこれを回収する。その後、表面さびを除去し重量測定を行ない、腐食損耗による重量減を測定する。
Until now, techniques for predicting various amounts of corrosion have been considered. For example, Non-Patent Document 1 includes a gravimetric method (Corrosion Coupons and
Details of Weight Loss Analysis are described. In this method, a test piece made of the same steel material as that of the structure to be evaluated for corrosion is placed on a stand and exposed to the required time for corrosion, and then recovered. Thereafter, the surface rust is removed and the weight is measured, and the weight loss due to corrosion wear is measured.

多くの暴露試験の場合、時間的な変化を捉えた腐食試験をする必要があり、数多くの試験片を必要とする。さらに、腐食試験結果のバラツキを考慮すると一般的には同一条件で3枚以上の試験片が必要で、これも多くの試験体数を要す要因となる。一般的に1枚当たりの試験片は300gで、通常50枚程度は暴露することとなる。したがって、試験片の総重量は15kgでスペースも2m程度は必要で、このために必要となる架台やその他設備もかなり大掛かりとなる。これ加え、試験片の設置、回収、調査にも多くの労力を要する。 In many exposure tests, it is necessary to conduct a corrosion test that captures changes over time, and many test pieces are required. Further, considering the variation in the corrosion test results, generally three or more test pieces are required under the same conditions, which is also a factor that requires a large number of test specimens. Generally, the test piece per piece is 300 g, and usually about 50 pieces are exposed. Therefore, the total weight of the test piece is 15 kg and a space of about 2 m 2 is required, and the frame and other equipment required for this purpose are considerably large. In addition, a lot of labor is required for installing, collecting, and investigating test pieces.

また、非特許文献2では、電気抵抗測定法(Electric Resistance Method)と、電気化学測定法の一つである線形分極抵抗法(LPR法)を用いた腐食速度の測定技術について説明されている。   Non-Patent Document 2 describes a corrosion rate measurement technique using an electric resistance measurement method (Electric Resistance Method) and a linear polarization resistance method (LPR method) which is one of electrochemical measurement methods.

電気抵抗測定法の原理は、腐食により試験片の断面減少が生じ、これにともない金属抵抗が増大する特徴を利用している。しかし、金属試験片は一般的な抵抗は比抵抗で9.7×10-6Ωcmと極めて小さい。このため電気的に抵抗変化を捉えることは困難を伴う。したがって、試験片断面積を極小にして試験片の全抵抗を大きくする必要がある。そのため棒状では長さ50mm程度で径を1.0mm程度以下、板状では面積を1cm×1cmで板厚を0.2mm程度以下に加工する必要がある。したがって極太丸棒や試験面積の広い試験片を用いたい場合には腐食試験は困難となる。 The principle of the electrical resistance measurement method utilizes the feature that the cross section of the test piece is reduced due to corrosion and the metal resistance increases accordingly. However, the general resistance of the metal test piece is very small at a specific resistance of 9.7 × 10 −6 Ωcm. For this reason, it is difficult to electrically detect the resistance change. Therefore, it is necessary to minimize the cross-sectional area of the test piece and increase the total resistance of the test piece. Therefore, it is necessary to process the rod to have a length of about 50 mm and a diameter of about 1.0 mm or less, and for the plate to have an area of 1 cm × 1 cm and a thickness of about 0.2 mm or less. Therefore, when it is desired to use a very thick round bar or a test piece having a large test area, the corrosion test becomes difficult.

また、線形分極抵抗法は、電気化学的理論に基づき測定される分極抵抗、すなわち腐食反応抵抗を測定して、これを腐食速度に換算する手法である。この方法では、瞬間的な腐食速度は得られても、長い期間蓄積された腐食量を得ることはできない。また、瞬間的な腐食速度を積算しても、実際の腐食重量との対比すれは必ずしも一致しないことがある。電気化学測定法は、分極抵抗と腐食速度が逆比例するという電気化学理論を用いて、分極抵抗を連続測定し、これの積分値から腐食量を予測する方法であるが、理論値と測定値との間には条件毎に換算係数を事前に求めておく必要があり、その為の実験が別途必要で、多くの期間と手間を要す。
Corrosion Coupons and Weight Loss Analysis<URL:http://www.alspi.com/cpnintro.htm> プラントエンジニア、pp31-33、Vol.31、12月号、1999
The linear polarization resistance method is a method of measuring a polarization resistance measured based on an electrochemical theory, that is, a corrosion reaction resistance, and converting this to a corrosion rate. In this method, even if an instantaneous corrosion rate is obtained, it is not possible to obtain a corrosion amount accumulated for a long period. Moreover, even if the instantaneous corrosion rate is integrated, the comparison with the actual corrosion weight may not always match. The electrochemical measurement method uses electrochemical theory that polarization resistance and corrosion rate are inversely proportional, and continuously measures polarization resistance and predicts the amount of corrosion from the integrated value. It is necessary to obtain a conversion coefficient for each condition in advance, and an experiment for that is necessary separately, which requires a lot of time and effort.
Corrosion Coupons and Weight Loss Analysis <URL: http://www.alspi.com/cpnintro.htm> Plant Engineer, pp31-33, Vol.31, December issue, 1999

従来、重量法による腐食量測定が一般的であったが、試験片毎のばらつきが存在し、また、腐食の時間推移を把握するために多くの試験体数を要し、コストも大であった。本発明の目的は、構造物と同じ腐食環境化で、腐食量を精度良く長期間にわたり計測することができる腐食量測定センサを得ることを目的としている。   Conventionally, measurement of the amount of corrosion by the gravimetric method has been common, but there are variations from specimen to specimen, and a large number of specimens are required to grasp the time transition of corrosion, and the cost is high. It was. An object of the present invention is to obtain a corrosion amount measurement sensor capable of measuring a corrosion amount with high accuracy over a long period of time in the same corrosive environment as that of a structure.

この目的を達成するために、本発明によれば、腐食雰囲気に暴露される暴露材と、前記暴露材に弾性曲げを生じさせた状態で、前記暴露材を支持する支持材を有し、前記暴露材の弾性曲げは一定の曲率に維持され、前記暴露材の表面に、曲げ歪を検出するひずみゲージが貼付されていることを特徴とする、腐食量測定センサが提供される。   In order to achieve this object, according to the present invention, an exposed material exposed to a corrosive atmosphere, and a support material that supports the exposed material in a state in which the exposed material is elastically bent, There is provided a corrosion amount measuring sensor characterized in that the elastic bending of the exposed material is maintained at a constant curvature, and a strain gauge for detecting bending strain is attached to the surface of the exposed material.

この腐食量測定センサにあっては、前記支持材が実質的に剛体であっても良い。また、前記支持材は、前記暴露材の表面を押して弾性曲げを生じさせる押圧部材を有していても良い。また、前記支持材は、腐食雰囲気に暴露されないようにカバーされていても良い。また、前記支持材と前記暴露材が板形状であり、前記支持材の板厚に対する前記暴露材の板厚の比が0.5以下であっても良い。   In this corrosion amount measurement sensor, the support material may be substantially rigid. Moreover, the said support material may have a press member which produces the elastic bending by pressing the surface of the said exposed material. The support material may be covered so as not to be exposed to a corrosive atmosphere. Further, the support material and the exposed material may be plate-shaped, and a ratio of the plate thickness of the exposed material to the plate thickness of the support material may be 0.5 or less.

また、この腐食量測定センサにあっては、前記支持材が弾性体であり、前記暴露材と前記支持部材との間で作用する力が変化することにより、前記暴露材の弾性曲げが一定の曲率に維持されても良い。この場合、前記支持材は、腐食雰囲気に暴露されることが可能となっていても良い。ここで,弾性体とは完全弾性体,弾塑性体をも含む。   Further, in this corrosion amount measurement sensor, the support material is an elastic body, and the elastic bending of the exposed material is constant by changing the force acting between the exposed material and the support member. The curvature may be maintained. In this case, the support material may be capable of being exposed to a corrosive atmosphere. Here, the elastic body includes a completely elastic body and an elastic-plastic body.

また本発明によれば、腐食雰囲気に暴露される暴露材と、前記暴露材を弾性曲げを生じさせた状態で支持する支持材を有し、前記暴露材と前記支持材の少なくとも一方に、前記暴露材と前記支持材との間で作用する力によって発生する歪を検出するひずみゲージが貼付されていることを特徴とする、腐食量測定センサが提供される。   Further, according to the present invention, the exposed material exposed to a corrosive atmosphere, and a support material that supports the exposed material in a state in which the exposed material is elastically bent, the at least one of the exposed material and the support material, A corrosion amount measuring sensor is provided, in which a strain gauge for detecting strain generated by a force acting between an exposed material and the support material is attached.

この腐食量測定センサにあっては、前記支持材が弾性体であっても良い。また、前記支持材は、腐食雰囲気に暴露されなくても良い。   In this corrosion amount measurement sensor, the support material may be an elastic body. The support material may not be exposed to a corrosive atmosphere.

なお、本発明の腐食量測定センサは、更に、温度補正ゲージを有していても良い。   The corrosion amount measurement sensor of the present invention may further have a temperature correction gauge.

本発明によれば、構造物と同じ腐食環境下で、少ない数の腐食量測定センサを用いて腐食量の時間推移を精度良く、長期間にわたり計測することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to measure the time transition of corrosion amount accurately over a long period of time using the small number of corrosion amount measurement sensors in the same corrosive environment as a structure.

以下、本発明を実施するための最良の形態について、図面を参照に説明する。図1は、本発明の第1の実施の形態にかかる腐食量測定センサ1の概略的な説明図である。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory view of a corrosion amount measuring sensor 1 according to a first embodiment of the present invention. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

この腐食量測定センサ1は、平板状の暴露材10と支持材11を有しており、暴露材10と支持材11を重ね合わせて、暴露材10の両端部を支持材11の両端部に貼り付けた構成になっている。暴露材10と支持材11は、いずれも例えば矩形状である。   The corrosion amount measuring sensor 1 has a flat exposed material 10 and a support material 11, and the exposed material 10 and the support material 11 are overlapped so that both end portions of the exposed material 10 are placed on both end portions of the support material 11. The configuration is pasted. Both the exposed material 10 and the support material 11 are rectangular, for example.

暴露材10は弾性材料であり、例えば構造物の腐食劣化を検査する場合であれば、暴露材10は、腐食の検査対象である構造物の構成部材と同じ材料で構成される。暴露材10は、例えば鋼等の金属材料からなる。一方、支持材11は、暴露材10に比べて十分に大きい剛性を有しており、暴露材10が弾性体であるのに対して、支持材11は実質的に剛体と見なすことができる。暴露材10も、例えば鋼等の金属材料からなるが、暴露材10に対して支持材11が実質的に剛体と見なされるために、支持材11は、暴露材10よりも大きい曲げ剛性を有する,すなわちより大きい弾性率を有するか、あるいは、より大きい厚さを有している。例えば、支持材11と暴露材10が同じ材料で弾性率が等しい場合、支持材11の板厚に対する暴露材10の板厚の比が0.5以下であれば、暴露材10に対して、支持材11は実質的に剛体と見なすことができる。   The exposed material 10 is an elastic material. For example, when inspecting the corrosion deterioration of the structure, the exposed material 10 is made of the same material as the structural member of the structure to be inspected for corrosion. The exposed material 10 is made of a metal material such as steel. On the other hand, the support material 11 has sufficiently larger rigidity than the exposed material 10, and the exposed material 10 is an elastic body, whereas the support material 11 can be regarded as a substantially rigid body. Although the exposed material 10 is also made of a metal material such as steel, for example, the support material 11 is considered to be substantially rigid with respect to the exposed material 10, and thus the support material 11 has a bending rigidity larger than that of the exposed material 10. I.e. having a greater modulus or greater thickness. For example, when the support material 11 and the exposed material 10 are the same material and have the same elastic modulus, if the ratio of the plate thickness of the exposed material 10 to the plate thickness of the support material 11 is 0.5 or less, The support material 11 can be regarded as a substantially rigid body.

図示のように、暴露材10の中央を湾曲させ、暴露材10に弾性曲げを生じさせた状態で、暴露材10の両端部が支持材11の両端部に貼り付けられている。これにより、腐食量測定センサ1の内部には、密閉空間12が形成されている。ここで密閉空間は,完全な密閉状態としても良いが,大気圧と内部圧が等しくなる程度の微小なすき間あるいは開口があるこことが望ましい。   As shown in the drawing, both ends of the exposed material 10 are attached to both ends of the support material 11 in a state where the center of the exposed material 10 is curved and the exposed material 10 is elastically bent. Thereby, a sealed space 12 is formed in the corrosion amount measuring sensor 1. Here, the sealed space may be in a completely sealed state, but it is desirable that there be a minute gap or opening that makes the atmospheric pressure equal to the internal pressure.

この密閉空間12内において、暴露材10の内面には歪ゲージ15が取り付けてある。上述のように暴露材10に弾性曲げが発生していることにより、暴露材10の外面には、引っ張りとなる曲げ歪が発生し、暴露材10の内面には、圧縮となる曲げ歪が発生している。歪ゲージ15は、暴露材10の内面において圧縮となる曲げ歪を検出する。   A strain gauge 15 is attached to the inner surface of the exposed material 10 in the sealed space 12. As described above, due to the occurrence of elastic bending in the exposed material 10, bending strain that becomes tensile occurs on the outer surface of the exposed material 10, and bending strain that compresses occurs on the inner surface of the exposed material 10. is doing. The strain gauge 15 detects a bending strain that is compressed on the inner surface of the exposed material 10.

歪ゲージ15の検出信号は、リード線16によって、外部に配置されたブリッジ回路17に入力されている。ブリッジ回路17では、歪ゲージ15で検出される抵抗値の変化に基いて、暴露材10の内面に生じている圧縮の曲げ歪が検出される。なお図1では、暴露材10におけるリード線16の引き出し部分を開口させて記載している。ここでブリッジ回路17とは,歪ゲージの抵抗変化を電圧変化に変換するブリッジ回路だけではなく,電圧変化を増幅するアンプ機能,電圧をデジタル化,表示する機能,また外部出力させる機能,等も含むものである。   The detection signal of the strain gauge 15 is input to the bridge circuit 17 disposed outside by the lead wire 16. In the bridge circuit 17, a compressive bending strain generated on the inner surface of the exposed material 10 is detected based on a change in the resistance value detected by the strain gauge 15. In FIG. 1, the lead wire 16 leading portion of the exposed material 10 is opened. Here, the bridge circuit 17 includes not only a bridge circuit that converts a strain gauge resistance change into a voltage change, but also an amplifier function that amplifies the voltage change, a function that digitizes and displays the voltage, and a function that outputs the voltage externally. Is included.

支持材11の外面は、腐食防止用のカバー20で覆われている。これにより、支持材11は腐食雰囲気に暴露されない状態となっている。一方、暴露材10の外面は露出している。このため、暴露材10の外面は、腐食雰囲気に暴露される状態である。   The outer surface of the support material 11 is covered with a cover 20 for preventing corrosion. As a result, the support material 11 is not exposed to the corrosive atmosphere. On the other hand, the outer surface of the exposed material 10 is exposed. For this reason, the outer surface of the exposed material 10 is in a state exposed to a corrosive atmosphere.

例えば構造物の腐食劣化を検査する場合、以上のように構成された腐食量測定センサ1を、腐食の検査対象である構造物の構成部材と同じ環境に設置する。これにより、暴露材10は、検査対象である構成部材と同一の腐食雰囲気に暴露された状態となり、腐食の進行に伴って、暴露材10の板厚は、徐々に薄くなっていく。   For example, when the corrosion deterioration of a structure is inspected, the corrosion amount measuring sensor 1 configured as described above is installed in the same environment as the structural member to be inspected for corrosion. As a result, the exposed material 10 is exposed to the same corrosive atmosphere as the component to be inspected, and the plate thickness of the exposed material 10 gradually decreases with the progress of corrosion.

また、ブリッジ回路17により、歪ゲージ15で検出される抵抗値の変化に基いて、暴露材10の内面に生じている圧縮の曲げ歪が検出される。腐食の進行に伴って、暴露材10の内面に生じている圧縮の曲げ歪は徐々に減少していくので、この曲げ歪を検出することによって、暴露材10の板厚を求め、腐食量を測定することができる。   The bridge circuit 17 detects a compressive bending strain generated on the inner surface of the exposed material 10 based on a change in the resistance value detected by the strain gauge 15. As the corrosion progresses, the compressive bending strain generated on the inner surface of the exposed material 10 gradually decreases. By detecting this bending strain, the plate thickness of the exposed material 10 is obtained, and the amount of corrosion is determined. Can be measured.

ここで、図2、3は、腐食の進行に伴う、暴露材10の内面に生じている圧縮の曲げ歪の変化を示す説明図である。図2は、暴露材10の板厚がまだ厚い状態を示し、図3は、暴露材10の板厚が薄くなった状態を示している。上述のように、暴露材10は弾性曲げを有する状態で支持材11に両端を支持されている。このため、腐食の進行によって暴露材10の板厚が薄くなっても、暴露材10の弾性曲げは常に一定の曲率に維持される。従って、図2、3において、暴露材10の中立軸10’は、等しい曲率である。   Here, FIGS. 2 and 3 are explanatory views showing changes in compression bending strain generated on the inner surface of the exposed material 10 as corrosion progresses. FIG. 2 shows a state where the exposed material 10 is still thick, and FIG. 3 shows a state where the exposed material 10 is thin. As described above, the exposed material 10 is supported at both ends by the support material 11 in a state having an elastic bending. For this reason, even if the plate | board thickness of the exposed material 10 becomes thin by progress of corrosion, the elastic bending of the exposed material 10 is always maintained at a fixed curvature. Therefore, in FIGS. 2 and 3, the neutral axis 10 'of the exposed material 10 has an equal curvature.

図2、3に示すように、暴露材10の内部において、中立軸10’より上方では、中立軸10’と平行に引っ張りとなる曲げ応力σが作用し、中立軸10’より下方では、中立軸10’と平行に圧縮となる曲げ応力σが作用する。曲げ応力σは、中立軸10’からの高さに比例するので、暴露材10の内面に生じている圧縮の曲げ歪εも、中立軸10’からの高さHに比例する。   As shown in FIGS. 2 and 3, in the exposed material 10, a bending stress σ that is pulled parallel to the neutral shaft 10 ′ acts above the neutral shaft 10 ′, and below the neutral shaft 10 ′, the neutral shaft 10 ′ A bending stress σ is applied in parallel with the vertical axis 10 ′. Since the bending stress σ is proportional to the height from the neutral axis 10 ′, the compressive bending strain ε generated on the inner surface of the exposed material 10 is also proportional to the height H from the neutral axis 10 ′.

従って、腐食がまだ進行してなく、図2のように暴露材10の板厚がまだ厚い状態では、中立軸10’からの高さH(中立軸10’から暴露材10の内面までの距離、即ち、暴露材10の半分)が比較的大きい。そのため、暴露材10の内面に生じている圧縮の曲げ歪εも相対的に大きくなる。   Therefore, when the corrosion has not yet progressed and the exposed material 10 is still thick as shown in FIG. 2, the height H from the neutral shaft 10 ′ (the distance from the neutral shaft 10 ′ to the inner surface of the exposed material 10). That is, half of the exposed material 10) is relatively large. Therefore, the compressive bending strain ε generated on the inner surface of the exposed material 10 also becomes relatively large.

一方、腐食が進行して、図3のように暴露材10の板厚が薄くなると、中立軸10’からの高さHも比較的小さくなる。そのため、暴露材10の内面に生じている圧縮の曲げ歪εも相対的に小さくなる。   On the other hand, when the corrosion progresses and the plate thickness of the exposed material 10 is reduced as shown in FIG. 3, the height H from the neutral shaft 10 'is also relatively reduced. Therefore, the compressive bending strain ε generated on the inner surface of the exposed material 10 is also relatively small.

このように、暴露材10の内面に生じている圧縮の曲げ歪εは暴露材10の板厚に比例する。このため、ブリッジ回路17において、歪ゲージ15で検出される曲げ歪ε抵抗値の変化に基いて、暴露材10の板厚を求めれば、暴露材10の腐食量を容易に測定できる。暴露材10は、検査対象である構成部材と同一の腐食雰囲気に暴露されているので、暴露材10の腐食量によって、検査対象である構成部材の腐食量を測定することが可能となる。従って、本発明の第1の実施の形態にかかる腐食量測定センサ1を用いることにより、構造物と同じ腐食環境下で、腐食量の時間推移を精度良く、長期間にわたり計測することが可能となる。   Thus, the compressive bending strain ε produced on the inner surface of the exposed material 10 is proportional to the plate thickness of the exposed material 10. For this reason, in the bridge circuit 17, if the plate | board thickness of the exposed material 10 is calculated | required based on the change of the bending-strain (epsilon) resistance value detected by the strain gauge 15, the corrosion amount of the exposed material 10 can be measured easily. Since the exposed material 10 is exposed to the same corrosive atmosphere as the component to be inspected, the amount of corrosion of the component to be inspected can be measured by the amount of corrosion of the exposed material 10. Therefore, by using the corrosion amount measuring sensor 1 according to the first embodiment of the present invention, it is possible to accurately measure the time transition of the corrosion amount over a long period of time in the same corrosive environment as the structure. Become.

図4〜図9は、本発明の第1の実施の形態にかかる腐食量測定センサ1の変形例である。図4に示す腐食量測定センサ1は、更に、温度補正ゲージ21を有している。図4に示す腐食量測定センサ1では、密閉空間12内に温度補正ゲージ21を内蔵させている。   4 to 9 are modified examples of the corrosion amount measuring sensor 1 according to the first embodiment of the present invention. The corrosion amount measurement sensor 1 shown in FIG. 4 further has a temperature correction gauge 21. In the corrosion amount measurement sensor 1 shown in FIG. 4, a temperature correction gauge 21 is built in the sealed space 12.

腐食量測定センサ1は、構造物と同じ腐食環境下に設置されるため、外気の温度変化などの影響を受け、これにより、腐食量測定センサ1を構成する暴露材10と支持材11も膨張、収縮させられ、暴露材10の内面に熱歪が発生する。内部に温度補正用の板片21’を用意し、この板片21’に温度補正ゲージ21を貼り付けて,これを用いて、かかる熱歪の影響をキャンセルすることにより、外気の温度変化などの影響を受けずに、腐食量を正確に測定することができる。   Since the corrosion amount measuring sensor 1 is installed in the same corrosive environment as the structure, it is affected by the temperature change of the outside air and the exposed material 10 and the support material 11 constituting the corrosion amount measuring sensor 1 are thereby expanded. The material is shrunk and heat distortion occurs on the inner surface of the exposed material 10. A plate 21 'for temperature correction is prepared inside, a temperature correction gauge 21 is attached to the plate 21', and this is used to cancel the influence of such thermal strain, thereby changing the temperature of the outside air, etc. It is possible to accurately measure the amount of corrosion without being affected by.

なお、このように熱歪の影響をキャンセルさせる温度補正ゲージ21は、必ずしも腐食量測定センサ1に内蔵させる必要は無い。例えば図5では、腐食量測定センサ1とは別に温度補正用の板片21’を構造物と同じ腐食環境下に用意し、この板片21’に温度補正ゲージ21を取り付けている。かかる構成によっても、熱歪の影響をキャンセルして、外気の温度変化などの影響を受けずに、腐食量を正確に測定することができる。   Note that the temperature correction gauge 21 that cancels the influence of thermal strain in this way is not necessarily built in the corrosion amount measurement sensor 1. For example, in FIG. 5, a plate piece 21 'for temperature correction is prepared in the same corrosive environment as the structure separately from the corrosion amount measuring sensor 1, and a temperature correction gauge 21 is attached to the plate piece 21'. Even with such a configuration, it is possible to accurately measure the amount of corrosion by canceling the influence of thermal distortion and without being affected by the temperature change of the outside air.

図6に示す腐食量測定センサ1は、暴露材10の内面を押して弾性曲げを生じさせる押圧部材22を有している。図7は、図6に示す腐食量測定センサ1の平面図である。   The corrosion amount measurement sensor 1 shown in FIG. 6 has a pressing member 22 that presses the inner surface of the exposed material 10 to cause elastic bending. FIG. 7 is a plan view of the corrosion amount measuring sensor 1 shown in FIG.

この例では、押圧部材22はねじであり、支持材11の下面から押圧部材22を取り付けることにより、押圧部材22の先端によって、密閉空間12内において暴露材10の内面を外側に向けて押し出すことにより、強制的に支持材11に弾性曲げを生じさせている。   In this example, the pressing member 22 is a screw, and by attaching the pressing member 22 from the lower surface of the support material 11, the tip of the pressing member 22 pushes the inner surface of the exposed material 10 outward in the sealed space 12. Thus, the support material 11 is forced to bend elastically.

このように、適当な押圧部材22を用いて支持材11に弾性曲げを生じさせ、歪ゲージ15で曲げ歪の変化を検出することによっても、同様に腐食量を正確に測定することができる。   In this manner, the amount of corrosion can be accurately measured in the same manner by causing the support member 11 to bend elastically using an appropriate pressing member 22 and detecting the change in bending strain with the strain gauge 15.

図8に示す腐食量測定センサ1は、支持材11も弾性体であり、暴露材10と支持部材11との間で作用する力によって、暴露材10に弾性曲げを生じさせている。この図8に示す腐食量測定センサ1では、暴露材10の両端部において、支持材11から暴露材10に曲げモーメントMが作用している。なお、当然に、支持材11の両端部においても、暴露材10から支持材11に、大きさが同じ曲げモーメントMが逆向きに作用している。この暴露材10から受ける逆向きの曲げモーメントMにより、支持材11にも弾性曲げが生じている。   In the corrosion amount measurement sensor 1 shown in FIG. 8, the support material 11 is also an elastic body, and the exposed material 10 is elastically bent by the force acting between the exposure material 10 and the support member 11. In the corrosion amount measuring sensor 1 shown in FIG. 8, a bending moment M acts on the exposed material 10 from the support material 11 at both ends of the exposed material 10. Naturally, the bending moment M having the same magnitude acts on the support material 11 from the exposed material 10 in the opposite direction also at both ends of the support material 11. Due to the reverse bending moment M received from the exposed material 10, the support material 11 is also elastically bent.

このように、暴露材10と支持部材11との間で曲げモーメントMが作用し合うことにより、暴露材10と支持部材11には、いずれも弾性曲げが生じており、これによって、暴露材10の内面中央部と支持部材11の内面中央部との間に、2δの距離の隙間が発生している。なお、この例では、暴露材10と支持部材11は、互いに板厚が等しく、かつ、弾性率も等しい板で構成されている。このため、暴露材10と支持部材11に生じている弾性曲げは、対象形状である。   As described above, the bending moment M acts between the exposed material 10 and the support member 11, so that both the exposed material 10 and the support member 11 are elastically bent. A gap having a distance of 2δ is generated between the inner surface center portion of the support member 11 and the inner surface center portion of the support member 11. In this example, the exposed material 10 and the support member 11 are made of plates having the same plate thickness and the same elastic modulus. For this reason, the elastic bending which has arisen in the exposed material 10 and the supporting member 11 is a target shape.

この図8の腐食量測定センサ1では、支持材11の外面は、カバー20で覆われておらず、暴露材10と同様に、支持材11の外面も、腐食雰囲気に暴露される状態である。   In the corrosion amount measurement sensor 1 of FIG. 8, the outer surface of the support material 11 is not covered with the cover 20, and similarly to the exposed material 10, the outer surface of the support material 11 is also exposed to the corrosive atmosphere. .

この図8の腐食量測定センサ1によれば、腐食雰囲気に暴露されることによって、暴露材10と支持材11が同様に腐食されていく。この腐食に伴って、暴露材10と支持部材11との間で作用しあう曲げモーメントMも減少していくが、腐食の進行で板厚が薄くなることにより、暴露材10と支持材11の曲げ剛性も減少していく。この曲げモーメントMの減少と曲げ剛性の減少が相殺されることにより、暴露材10の弾性曲げを一定の曲率に維持することができる。こうして、歪ゲージ15で検出される暴露材10の板厚から、同様に腐食量を測定することができる。   According to the corrosion amount measuring sensor 1 of FIG. 8, the exposed material 10 and the support material 11 are similarly corroded by being exposed to a corrosive atmosphere. Along with this corrosion, the bending moment M acting between the exposed material 10 and the support member 11 also decreases. However, as the thickness of the exposed material 10 and the support material 11 decreases as the corrosion progresses. Bending rigidity also decreases. By canceling the decrease in the bending moment M and the decrease in the bending rigidity, the elastic bending of the exposed material 10 can be maintained at a constant curvature. Thus, the amount of corrosion can be similarly measured from the plate thickness of the exposed material 10 detected by the strain gauge 15.

図9に示す腐食量測定センサ1は、図8の腐食量測定センサ1の変形例であり、暴露材10と支持部材11との間に、平板状の中間材25を配置している。この図9の腐食量測定センサ1によっても、暴露材10と支持材11が同様に腐食されることによって、暴露材10と支持部材11との間で作用しあう曲げモーメントMの減少と、暴露材10と支持材11の曲げ剛性の減少が相殺され、暴露材10の弾性曲げを一定の曲率に維持することができる。こうして、歪ゲージ15で検出される暴露材10の板厚から、同様に腐食量を測定することができる。   A corrosion amount measurement sensor 1 shown in FIG. 9 is a modification of the corrosion amount measurement sensor 1 of FIG. 8, and a flat intermediate member 25 is disposed between the exposed material 10 and the support member 11. 9, the exposed material 10 and the support material 11 are similarly corroded, thereby reducing the bending moment M acting between the exposed material 10 and the support member 11, and the exposure. The decrease in bending stiffness between the material 10 and the support material 11 is offset, and the elastic bending of the exposed material 10 can be maintained at a constant curvature. Thus, the amount of corrosion can be similarly measured from the plate thickness of the exposed material 10 detected by the strain gauge 15.

図10は、これら図8、9の腐食量測定センサ1において、暴露材10と支持部材11の板厚tが減少していく場合の、ひずみ算出式(1)により計算したグラフである。計算条件は、暴露材10と支持材11の長さL=50mm、板間隔δ=1.41mmとした条件でt=0.184から0.0まで変化させた。   FIG. 10 is a graph calculated by the strain calculation formula (1) when the plate thickness t of the exposed material 10 and the support member 11 decreases in the corrosion amount measurement sensor 1 of FIGS. The calculation condition was changed from t = 0.184 to 0.0 under the condition that the length L of the exposed material 10 and the support material 11 was L = 50 mm and the plate interval δ = 1.41 mm.

Figure 2008261652
Figure 2008261652

次に、図11は、本発明の第2の実施の形態にかかる腐食量測定センサ2の概略的な説明図である。図12は、腐食が進行した状態の腐食量測定センサ2の概略的な説明図である。   Next, FIG. 11 is a schematic explanatory view of a corrosion amount measuring sensor 2 according to the second embodiment of the present invention. FIG. 12 is a schematic explanatory diagram of the corrosion amount measurement sensor 2 in a state where corrosion has progressed.

この腐食量測定センサ2では、先に図8で説明した腐食量測定センサ1と同様、暴露材10と支持材11がいずれも弾性体であり、暴露材10と支持部材11との間で作用する力によって、暴露材10に弾性曲げを生じさせている。暴露材10の両端部において、支持材11から暴露材10に曲げモーメントMが作用している。また、支持材11の両端部においても、暴露材10から支持材11に、大きさが同じ曲げモーメントMが逆向きに作用している。   In this corrosion amount measurement sensor 2, both the exposed material 10 and the support material 11 are elastic bodies, and acts between the exposed material 10 and the support member 11, as in the corrosion amount measurement sensor 1 described above with reference to FIG. 8. The exposed material 10 is elastically bent by the force to be applied. A bending moment M acts on the exposed material 10 from the support material 11 at both ends of the exposed material 10. Also, the bending moment M having the same size acts in the opposite direction from the exposed material 10 to the support material 11 at both ends of the support material 11.

腐食量測定センサ2の内部に形成された密閉空間12内において、暴露材10内面の歪ゲージ15に加えて、支持材11の内面にもひずみゲージ30が取り付けてある。支持材11の外面は、腐食防止用のカバー20で覆われている。これにより、支持材11は腐食雰囲気に暴露されない状態となっている。一方、暴露材10の外面は露出している。このため、暴露材10の外面は、腐食雰囲気に暴露される状態である。   In a sealed space 12 formed inside the corrosion amount measuring sensor 2, a strain gauge 30 is attached to the inner surface of the support material 11 in addition to the strain gauge 15 on the inner surface of the exposed material 10. The outer surface of the support material 11 is covered with a cover 20 for preventing corrosion. As a result, the support material 11 is not exposed to the corrosive atmosphere. On the other hand, the outer surface of the exposed material 10 is exposed. For this reason, the outer surface of the exposed material 10 is in a state exposed to a corrosive atmosphere.

この腐食量測定センサ2において、暴露材10および支持材11の長さ:L、暴露材10内面と支持材11内面との間隔:ΔL、暴露材10の板厚:t1、支持材11の板厚:t2、暴露材10内面の曲げ歪:ε1、支持材11内面の曲げ歪:ε2とおけば、暴露材10内面の曲げ歪ε1、支持材11内面の曲げ歪ε2は、それぞれ、次の式(2)、(3)で概略計算できる。   In this corrosion amount measuring sensor 2, the length of the exposed material 10 and the support material 11 is L, the distance between the inner surface of the exposed material 10 and the inner surface of the support material 11 is ΔL, the plate thickness of the exposed material 10 is t 1, the plate of the support material 11. If the thickness is t2, the bending strain of the exposed material 10 inner surface is ε1, and the bending strain of the inner surface of the support material 11 is ε2, then the bending strain ε1 of the exposed material 10 inner surface and the bending strain ε2 of the inner surface of the supporting material 11 are respectively Approximate calculation can be performed using equations (2) and (3).

Figure 2008261652
Figure 2008261652

Figure 2008261652
Figure 2008261652

図13は、これら式(2)、(3)の係数αと係数βについて、板厚比t1/t2が0.0から1.0までの範囲で計算し、図示したものである。図中の◆は係数αの曲線を、■は係数βの曲線を示している。係数αは、板厚比t1/t2が0.5以下の範囲、つまり暴露材10の板厚t1が、支持材11の板厚t2の半分以下まで腐食して薄くなった範囲において、t1の変化とほぼ直線関係となる。即ち、板厚比t1/t2が0.5以下の範囲では、暴露材10に対して支持材11を実質的に剛体と見なすことができ、暴露材10の弾性曲げはほぼ一定の曲率に維持される。そのため、歪ゲージ15で検出される抵抗値(暴露材10内面の曲げ歪ε1)が板厚比t1/t2とほぼ比例するようになる。   FIG. 13 illustrates the coefficients α and β in the equations (2) and (3) calculated in the range where the plate thickness ratio t1 / t2 is 0.0 to 1.0. In the figure, ◆ represents a curve of coefficient α, and ■ represents a curve of coefficient β. The coefficient α is a value of t1 in the range where the thickness ratio t1 / t2 is 0.5 or less, that is, in the range where the thickness t1 of the exposed material 10 is corroded to become less than half the thickness t2 of the support material 11. The change is almost linear. That is, when the thickness ratio t1 / t2 is 0.5 or less, the support material 11 can be regarded as a substantially rigid body with respect to the exposed material 10, and the elastic bending of the exposed material 10 is maintained at a substantially constant curvature. Is done. Therefore, the resistance value (bending strain ε1 on the inner surface of the exposed material 10) detected by the strain gauge 15 becomes substantially proportional to the plate thickness ratio t1 / t2.

一方、係数βは、板厚比が1.0以下で0.5以上の範囲、つまり暴露材10の板厚t1が、支持材11の板厚t2の半分になるまでの範囲において、t1の変化とほぼ直線関係となる。即ち、板厚比t1/t2が0.5を超える範囲では、暴露材10から支持材11に作用する曲げモーメントMが、暴露材10の板厚t1の減少と共に小さくなっていく。これに比例して、支持材11に生じている弾性曲げの曲率も小さくなり、支持材11内面の曲げ歪ε2が減少していく。そのため、歪ゲージ30で検出される抵抗値(支持材11内面の曲げ歪ε2)が板厚比t1/t2とほぼ比例するようになる。   On the other hand, the coefficient β is equal to or less than t1 in the range where the plate thickness ratio is 1.0 or less and 0.5 or more, that is, the range until the plate thickness t1 of the exposed material 10 becomes half the plate thickness t2 of the support material 11. The change is almost linear. That is, in the range where the thickness ratio t1 / t2 exceeds 0.5, the bending moment M acting on the support material 11 from the exposed material 10 becomes smaller as the thickness t1 of the exposed material 10 decreases. In proportion to this, the curvature of the elastic bending generated in the support material 11 also decreases, and the bending strain ε2 on the inner surface of the support material 11 decreases. Therefore, the resistance value (bending strain ε2 of the inner surface of the support material 11) detected by the strain gauge 30 becomes substantially proportional to the plate thickness ratio t1 / t2.

なお、特に板厚比が1.0から減少していく初期の範囲では、支持材11に生じている弾性曲げの曲率の減少の影響で、逆に、暴露材10の弾性曲げの曲率は増加する。このため、板厚比が1.0から減少していく初期の範囲では、支持材11内面の曲げ歪ε2が僅かに増加する傾向を示す。   In particular, in the initial range in which the plate thickness ratio decreases from 1.0, the elastic bending curvature of the exposed material 10 increases conversely due to the influence of the decrease in the elastic bending curvature occurring in the support material 11. To do. For this reason, in the initial range where the plate thickness ratio decreases from 1.0, the bending strain ε2 of the inner surface of the support member 11 tends to increase slightly.

図14は、暴露材10の板厚の初期値をt1=0.184mm、支持材11の板厚をt2=0.75mmとし、初期値として板厚比がt1/t2=0.24の場合のグラフである。長さ:L=50mm、板間隔ΔL=2.82mmとした条件である。暴露材10の板厚が初期板厚から0まで減肉した場合について式(2)を用いて計算した例を示す。横軸は残存板厚t1で縦軸は暴露材10の歪ε1である。   FIG. 14 is a graph in which the initial value of the thickness of the exposed material 10 is t1 = 0.184 mm, the thickness of the support material 11 is t2 = 0.75 mm, and the initial thickness is the thickness ratio t1 / t2 = 0.24. . Length: L = 50 mm and plate spacing ΔL = 2.82 mm. The example calculated using Formula (2) about the case where the plate | board thickness of the exposed material 10 is reduced from initial plate | board thickness to 0 is shown. The horizontal axis is the remaining thickness t1, and the vertical axis is the strain ε1 of the exposed material 10.

図15は、上記と同じ条件で、式(2)を用いて計算したグラフである。横軸は残存板厚t1で縦軸は支持材11の歪ε2である。   FIG. 15 is a graph calculated using Equation (2) under the same conditions as described above. The horizontal axis is the remaining thickness t1, and the vertical axis is the strain ε2 of the support material 11.

なお、これら図13〜15で示したように、本発明の第2の実施の形態にかかる腐食量測定センサ2においては、板厚比t1/t2が0.5以下の範囲では、暴露材10内面の曲げ歪ε1が板厚比t1/t2とほぼ比例し、板厚比t1/t2が0.5を超える範囲では、支持材11内面の曲げ歪ε2が板厚比t1/t2とほぼ比例するようになる。このため、板厚比t1/t2が0.5以下の範囲では、歪ゲージ15で検出される抵抗値に基いて腐食量を測定し、板厚比t1/t2が0.5を超える範囲では、歪ゲージ30で検出される抵抗値に基いて腐食量を測定することも考えられる。   As shown in FIGS. 13 to 15, in the corrosion amount measurement sensor 2 according to the second embodiment of the present invention, the exposed material 10 is within the range where the thickness ratio t1 / t2 is 0.5 or less. The bending strain ε1 of the inner surface is substantially proportional to the plate thickness ratio t1 / t2, and in the range where the plate thickness ratio t1 / t2 exceeds 0.5, the bending strain ε2 of the inner surface of the support material 11 is substantially proportional to the plate thickness ratio t1 / t2. To come. Therefore, when the plate thickness ratio t1 / t2 is 0.5 or less, the amount of corrosion is measured based on the resistance value detected by the strain gauge 15, and when the plate thickness ratio t1 / t2 exceeds 0.5. It is also conceivable to measure the amount of corrosion based on the resistance value detected by the strain gauge 30.

なお、上記係数α、βは、板厚比t1/t2が0〜1.0の全範囲に渡っては、腐食量と比例関係を示さない。しかし、図13で示したように、上記係数α、βは、板厚比t1/t2と一定の関係にあることは分かっている。このため、腐食量測定センサ2においては、必ずしも図11に示したように、暴露材10内面と支持材11内面の両方にひずみゲージを取り付ける必要はなく、暴露材10内面と支持材11内面のどちらか一方にひずみゲージを取り付けても良い。   The coefficients α and β are not proportional to the corrosion amount over the entire range where the plate thickness ratio t1 / t2 is 0 to 1.0. However, as shown in FIG. 13, it is known that the coefficients α and β have a certain relationship with the plate thickness ratio t1 / t2. Therefore, in the corrosion amount measuring sensor 2, as shown in FIG. 11, it is not always necessary to attach strain gauges to both the exposed material 10 inner surface and the support material 11 inner surface. A strain gauge may be attached to either one.

以上では,暴露材10,支持材11が形状的に簡単なものであるから幾つかの仮定に基づいた歪計算式を用いて説明してきた。しかし,更に形状が複雑な円形の暴露材や支持材である場合には,計算式を導くことは難しい。このような場合には,有限要素法などによる構造解析を行い,暴露材や支持材に発生する歪を計算することができる。また,別の方法として実形状の腐食量測定センサを製作して実験により暴露材や支持材に発生する歪を計測することも有効となる。   In the above, since the exposed material 10 and the support material 11 are simple in shape, the description has been made using the strain calculation formula based on several assumptions. However, it is difficult to derive the calculation formula when the exposed material or support material has a more complicated shape. In such a case, structural analysis by the finite element method or the like can be performed, and the strain generated in the exposed material or the support material can be calculated. As another method, it is also effective to manufacture a real-shaped corrosion amount measurement sensor and measure the strain generated in the exposed material and the support material through experiments.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば、暴露材、支持材は、鋼、ステンレス、銅、アルミニウム、チタン、その他合金等の金属材料の他、樹脂、ゴム等も利用できる。また、曲げ歪を検出するひずみゲージは、必ずしも暴露材、支持材の内面に取り付けなくても良く、外面に取り付けることもできる。なお、暴露材10の両端部を支持材11の両端部に貼り付ける場合、接着剤や、溶接などが利用できる。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to. For example, as the exposed material and the support material, resin, rubber and the like can be used in addition to metal materials such as steel, stainless steel, copper, aluminum, titanium, and other alloys. Further, the strain gauge for detecting the bending strain does not necessarily have to be attached to the inner surface of the exposed material and the support material, and can be attached to the outer surface. In addition, when sticking the both ends of the exposure material 10 to the both ends of the support material 11, an adhesive agent, welding, etc. can be utilized.

図1で説明した腐食量測定センサを以下の条件で製作した。
暴露材: 炭素鋼SS400 板厚t1=0.184mm、
支持材:炭素鋼SS400 板厚t2=0.75mm
暴露材、支持材に用いた鋼板の寸法:L=50mm、幅B=30mm
ひずみゲージ:共和電業製 ゲージ長5mm、2mリード線付き(商品番号:KFG-5-120-C1)
端部接着法:金属製接着材、ベロメタルジャパン株式会社製の商品名「ベロメタル冷間溶接システム」
板間隔ΔL=2.82mm(金属スペーサーを用いて間隔を保持した。)
The corrosion amount measurement sensor described in FIG. 1 was manufactured under the following conditions.
Exposed material: Carbon steel SS400, thickness t1 = 0.184mm,
Support material: Carbon steel SS400 Thickness t2 = 0.75mm
Dimensions of steel plate used for exposed material and support material: L = 50mm, width B = 30mm
Strain gauge: Kyowa Dengyo Gauge length 5mm, with 2m lead wire (Product number: KFG-5-120-C1)
End bonding method: Metal adhesive, product name "Velometal cold welding system" manufactured by Verometal Japan Co., Ltd.
Plate interval ΔL = 2.82 mm (The interval was maintained using a metal spacer.)

測定に際し、温度補正を実施した。温度補正ゲージとして、板厚0.184mmの鋼板に上記と同じゲージを貼付し、表裏面全部を耐酸性の絶縁性テープで被覆した。ひずみ測定では、ブリッジ法により温度補正を行う回路を構成して連続測定をおこなった。測定間隔は0.5秒間隔である。   In the measurement, temperature correction was performed. As a temperature correction gauge, the same gauge as above was attached to a steel plate having a thickness of 0.184 mm, and the entire front and back surfaces were covered with an acid-resistant insulating tape. In the strain measurement, a circuit that performs temperature correction by the bridge method was configured to perform continuous measurement. The measurement interval is 0.5 seconds.

ビーカー内に硝酸5.0%溶液を約500ml程度入れ、この中に腐食量測定センサを浸漬し、ひずみ測定を実施した。同時に腐食板厚を測定する目的で、鋼板板厚0.368mmの腐食試験片4枚を準備し、同じ腐食液に同時に浸漬した。開始後、200秒、400秒、500秒後に腐食試験片1枚をそれぞれ取り出し、ポイントマイクロメーターで板厚を計測した。   About 500 ml of a 5.0% nitric acid solution was placed in a beaker, and a corrosion amount measurement sensor was immersed in the beaker to measure strain. At the same time, for the purpose of measuring the corrosion plate thickness, four corrosion test pieces having a steel plate thickness of 0.368 mm were prepared and simultaneously immersed in the same corrosion solution. After the start, 200 seconds, 400 seconds and 500 seconds later, one corrosion test piece was taken out, and the plate thickness was measured with a point micrometer.

図16は、腐食量測定センサによって測定された歪測定値の時間的変化を示すグラフである。図17、18は、腐食試験後の腐食量測定センサを示している。また、それぞれの時間で引き上げた腐食試験片によって残存板厚と時間との関係は図19のようになった。図16の結果と図19の結果を比較したところ表1のようになった。腐食量測定センサによる歪測定値から推定した残存板厚(残存板厚と推定値)と腐食試験片から測定した残存板厚(試験片値)は良く一致した。   FIG. 16 is a graph showing a temporal change in the strain measurement value measured by the corrosion amount measurement sensor. 17 and 18 show the corrosion amount measurement sensor after the corrosion test. Further, the relationship between the remaining thickness and the time was as shown in FIG. 19 by the corrosion test piece pulled up at each time. The result of FIG. 16 and the result of FIG. 19 are compared with each other as shown in Table 1. The remaining plate thickness (estimated plate thickness and estimated value) estimated from the strain measurement value by the corrosion amount measurement sensor and the remaining plate thickness (test piece value) measured from the corrosion test piece agreed well.

Figure 2008261652
Figure 2008261652

本発明は、構造物などの腐食劣化の測定に適用できる。   The present invention can be applied to the measurement of corrosion deterioration of structures and the like.

本発明の第1の実施の形態にかかる腐食量測定センサの概略的な説明図である。It is a schematic explanatory drawing of the corrosion amount measurement sensor concerning the 1st Embodiment of this invention. 腐食の進行に伴う、暴露材の内面に生じている圧縮の曲げ歪の変化を示す説明図であり、暴露材の板厚がまだ厚い状態を示している。It is explanatory drawing which shows the change of the bending strain of the compression which has arisen in the inner surface of the exposed material with progress of corrosion, and has shown the state where the plate | board thickness of an exposed material is still thick. 腐食の進行に伴う、暴露材の内面に生じている圧縮の曲げ歪の変化を示す説明図であり、暴露材の板厚が薄くなった状態を示している。It is explanatory drawing which shows the change of the bending strain of the compression which has arisen on the inner surface of the exposed material with progress of corrosion, and has shown the state where the plate | board thickness of the exposed material became thin. 本発明の第1の実施の形態にかかる腐食量測定センサの変形例であり、温度補正ゲージを有している。It is a modification of the corrosion amount measuring sensor according to the first embodiment of the present invention, and has a temperature correction gauge. 本発明の第1の実施の形態にかかる腐食量測定センサの変形例であり、腐食量測定センサとは別に温度補正ゲージを有している。It is a modification of the corrosion amount measurement sensor according to the first embodiment of the present invention, and has a temperature correction gauge separately from the corrosion amount measurement sensor. 本発明の第1の実施の形態にかかる腐食量測定センサの変形例であり、暴露材の内面を押して弾性曲げを生じさせる押圧部材を有している。It is a modification of the corrosion amount measuring sensor according to the first embodiment of the present invention, and has a pressing member that presses the inner surface of the exposed material to cause elastic bending. 図6に示す腐食量測定センサの平面図である。FIG. 7 is a plan view of the corrosion amount measurement sensor shown in FIG. 6. 本発明の第1の実施の形態にかかる腐食量測定センサの変形例であり、暴露材と支持部材との間で作用する力によって、暴露材に弾性曲げを生じさせている。It is a modification of the corrosion amount measuring sensor according to the first embodiment of the present invention, and the exposed material is elastically bent by the force acting between the exposed material and the support member. 図8の腐食量測定センサの変形例であり、暴露材と支持部材との間に、平板状の中間材を配置している。It is a modification of the corrosion amount measurement sensor of FIG. 8, and a flat intermediate material is disposed between the exposed material and the support member. 図8、9の腐食量測定センサにおいて、暴露材と支持部材の板厚tが減少していく場合の、ひずみ算出式(1)により計算したグラフである。10 is a graph calculated by the strain calculation formula (1) when the plate thickness t of the exposed material and the support member is decreased in the corrosion amount measurement sensor of FIGS. 本発明の第2の実施の形態にかかる腐食量測定センサの概略的な説明図である。It is a schematic explanatory drawing of the corrosion amount measuring sensor concerning the 2nd Embodiment of this invention. 図12は、腐食が進行した状態の本発明の第2の実施の形態にかかる腐食量測定センサの概略的な説明図である。FIG. 12 is a schematic explanatory view of a corrosion amount measurement sensor according to the second embodiment of the present invention in a state where corrosion has progressed. 本発明の第2の実施の形態にかかる腐食量測定センサにおいて、係数αと係数βについて、板厚比t1/t2が0.0から1.0までの範囲で計算し、図示したグラフである。In the corrosion amount measurement sensor according to the second embodiment of the present invention, the coefficient α and the coefficient β are calculated in the range where the plate thickness ratio t1 / t2 is 0.0 to 1.0, and are shown in the graph. . 暴露材の残存板厚と曲げ歪ε1の関係を示すグラフである。It is a graph which shows the relationship between the residual plate | board thickness of an exposed material, and bending distortion (epsilon) 1. 暴露材の残存板厚と曲げ歪ε2の関係を示すグラフである。It is a graph which shows the relationship between the residual plate | board thickness of an exposed material, and bending distortion (epsilon) 2. 実施例の腐食量測定センサによって測定された歪測定値の時間的変化を示すグラフである。It is a graph which shows the time change of the strain measurement value measured by the corrosion amount measurement sensor of an Example. 腐食試験後の腐食量測定センサを示す写真である。It is a photograph which shows the corrosion amount measurement sensor after a corrosion test. 腐食試験後の腐食量測定センサを示す写真である。It is a photograph which shows the corrosion amount measurement sensor after a corrosion test. 腐食試験片によって測定された残存板厚と腐食時間との関係示すグラフである。It is a graph which shows the relationship between the remaining board | plate thickness measured with the corrosion test piece, and corrosion time.

符号の説明Explanation of symbols

1、2 腐食量測定センサ
10 暴露材
11 支持材
12 密閉空間
15 歪ゲージ
16 リード線
17 ブリッジ回路
20 カバー
21 温度補正ゲージ
21’ 板片
22 押圧部材
25 中間材
30 ひずみゲージ
1, 2 Corrosion amount measurement sensor 10 Exposed material 11 Support material 12 Sealed space 15 Strain gauge 16 Lead wire 17 Bridge circuit 20 Cover 21 Temperature correction gauge 21 'Plate piece 22 Press member 25 Intermediate material 30 Strain gauge

Claims (11)

腐食雰囲気に暴露される暴露材と、前記暴露材に弾性曲げを生じさせた状態で、前記暴露材を支持する支持材を有し、前記暴露材の弾性曲げは一定の曲率に維持され、前記暴露材の表面に、曲げ歪を検出するひずみゲージが貼付されていることを特徴とする、腐食量測定センサ。   An exposed material exposed to a corrosive atmosphere, and a support material that supports the exposed material in a state in which the exposed material is elastically bent, the elastic bending of the exposed material is maintained at a constant curvature, A corrosion amount measuring sensor, wherein a strain gauge for detecting bending strain is attached to the surface of an exposed material. 前記支持材が実質的に剛体であることを特徴とする、請求項1に記載の腐食量測定センサ。   The corrosion amount measurement sensor according to claim 1, wherein the support member is substantially rigid. 前記支持材は、前記暴露材の表面を押して弾性曲げを生じさせる押圧部材を有することを特徴とする、請求項1または2に記載の腐食量測定センサ。   The corrosion amount measurement sensor according to claim 1, wherein the support member includes a pressing member that presses a surface of the exposed material to cause elastic bending. 前記支持材は、腐食雰囲気に暴露されないようにカバーされていることを特徴とする、請求項1〜3のいずれかに記載の腐食量測定センサ。   The corrosion amount measurement sensor according to claim 1, wherein the support material is covered so as not to be exposed to a corrosive atmosphere. 前記支持材と前記暴露材が板形状であり、前記支持材の板厚に対する前記暴露材の板厚の比が0.5以下であることを特徴とする、請求項1〜4のいずれかに記載の腐食量測定センサ。   The support material and the exposed material are plate-shaped, and the ratio of the thickness of the exposed material to the thickness of the support material is 0.5 or less. Corrosion amount measuring sensor as described. 前記支持材が弾性体であり、前記暴露材と前記支持部材との間で作用する力が変化することにより、前記暴露材の弾性曲げが一定の曲率に維持されることを特徴とする、請求項1に記載の腐食量測定センサ。   The support material is an elastic body, and an elastic bending of the exposed material is maintained at a constant curvature by changing a force acting between the exposed material and the support member. Item 5. The corrosion amount measurement sensor according to item 1. 前記支持材は、腐食雰囲気に暴露されることが可能となっていることを特徴とする、請求項6に記載の腐食量測定センサ。   The corrosion amount measurement sensor according to claim 6, wherein the support material can be exposed to a corrosive atmosphere. 腐食雰囲気に暴露される暴露材と、前記暴露材を弾性曲げを生じさせた状態で支持する支持材を有し、前記暴露材と前記支持材の少なくとも一方に、前記暴露材と前記支持材との間で作用する力によって発生する歪を検出するひずみゲージが貼付されていることを特徴とする、腐食量測定センサ。   An exposed material that is exposed to a corrosive atmosphere; and a support material that supports the exposed material in a state in which the exposed material is elastically bent. At least one of the exposed material and the support material includes the exposed material and the support material. A corrosion amount measuring sensor, wherein a strain gauge for detecting a strain generated by a force acting between the two is attached. 前記支持材が弾性体であることを特徴とする、請求項8に記載の腐食量測定センサ。   The corrosion amount measurement sensor according to claim 8, wherein the support material is an elastic body. 前記支持材は、腐食雰囲気に暴露されないことを特徴とする、請求項8または9に記載の腐食量測定センサ。   10. The corrosion amount measurement sensor according to claim 8, wherein the support material is not exposed to a corrosive atmosphere. 更に、温度補正ゲージを有することを特徴とする、請求項1〜10のいずれかに記載の腐食量測定センサ。   Furthermore, it has a temperature correction gauge, The corrosion amount measurement sensor in any one of Claims 1-10 characterized by the above-mentioned.
JP2007102624A 2007-04-10 2007-04-10 Corrosion measurement sensor Expired - Fee Related JP4870013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102624A JP4870013B2 (en) 2007-04-10 2007-04-10 Corrosion measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102624A JP4870013B2 (en) 2007-04-10 2007-04-10 Corrosion measurement sensor

Publications (2)

Publication Number Publication Date
JP2008261652A true JP2008261652A (en) 2008-10-30
JP4870013B2 JP4870013B2 (en) 2012-02-08

Family

ID=39984250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102624A Expired - Fee Related JP4870013B2 (en) 2007-04-10 2007-04-10 Corrosion measurement sensor

Country Status (1)

Country Link
JP (1) JP4870013B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150119286A1 (en) * 2013-10-29 2015-04-30 Massachusetts Institute Of Technology High-throughput corrosion testing platform
JP2017509885A (en) * 2014-03-14 2017-04-06 ローズマウント インコーポレイテッド Corrosion rate measurement system
KR101739562B1 (en) * 2016-06-27 2017-05-26 한국수자원공사 Corrosion protection apparatus, system and control method for pipe
US10190968B2 (en) 2015-06-26 2019-01-29 Rosemount Inc. Corrosion rate measurement with multivariable sensor
US10830689B2 (en) 2014-09-30 2020-11-10 Rosemount Inc. Corrosion rate measurement using sacrificial probe

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365783A (en) * 1976-11-24 1978-06-12 Nippon Steel Corp Corrosion loss measuring method for metal in corrosive environment
JPS58122445A (en) * 1982-01-14 1983-07-21 Toshiba Corp Testing method of stress corrosion cracking
JPS61203344A (en) * 1985-02-23 1986-09-09 神山 輝夫 Block type vessel
JPS62176740A (en) * 1986-01-30 1987-08-03 Mitsubishi Heavy Ind Ltd Controlling method for copying
JPH02272347A (en) * 1989-04-14 1990-11-07 Hitachi Ltd Method and device for monitoring corrosion environment
JPH03160338A (en) * 1989-11-17 1991-07-10 Hitachi Ltd Adhesive type capacitive strain gauge
JPH0436638A (en) * 1990-06-01 1992-02-06 Hitachi Ltd Method and device for monitoring crevice corrosion
JPH05297181A (en) * 1992-04-16 1993-11-12 Hitachi Ltd Method for estimating stress corrosive cracking life of structure, and test device therefor
JPH07146225A (en) * 1993-11-24 1995-06-06 Nippon Steel Corp Delayed fracture characteristic evaluating method for high tensile strength steel plate
JP2002296161A (en) * 2001-03-29 2002-10-09 Toshiba Corp Multi axial stress load test system
US20030029232A1 (en) * 2001-08-08 2003-02-13 Felix Larry G. Coupon for measuring corrosion rates and system
JP2004036007A (en) * 2002-06-28 2004-02-05 Daiwabo Co Ltd Joint part of dryer canvas for papermaking having reinforced selvedge part
JP2006258500A (en) * 2005-03-15 2006-09-28 National Institute For Materials Science Stress corrosion cracking test method
JP2006349535A (en) * 2005-06-16 2006-12-28 Taiheiyo Cement Corp Composite sensor module and sensor device
JP2008076297A (en) * 2006-09-22 2008-04-03 Kobe Steel Ltd Evaluation method for stress corrosion cracking resistance of aluminum alloy material, and aluminum alloy material excellent in stress corrosion cracking resistance

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365783A (en) * 1976-11-24 1978-06-12 Nippon Steel Corp Corrosion loss measuring method for metal in corrosive environment
JPS58122445A (en) * 1982-01-14 1983-07-21 Toshiba Corp Testing method of stress corrosion cracking
JPS61203344A (en) * 1985-02-23 1986-09-09 神山 輝夫 Block type vessel
JPS62176740A (en) * 1986-01-30 1987-08-03 Mitsubishi Heavy Ind Ltd Controlling method for copying
JPH02272347A (en) * 1989-04-14 1990-11-07 Hitachi Ltd Method and device for monitoring corrosion environment
JPH03160338A (en) * 1989-11-17 1991-07-10 Hitachi Ltd Adhesive type capacitive strain gauge
JPH0436638A (en) * 1990-06-01 1992-02-06 Hitachi Ltd Method and device for monitoring crevice corrosion
JPH05297181A (en) * 1992-04-16 1993-11-12 Hitachi Ltd Method for estimating stress corrosive cracking life of structure, and test device therefor
JPH07146225A (en) * 1993-11-24 1995-06-06 Nippon Steel Corp Delayed fracture characteristic evaluating method for high tensile strength steel plate
JP2002296161A (en) * 2001-03-29 2002-10-09 Toshiba Corp Multi axial stress load test system
US20030029232A1 (en) * 2001-08-08 2003-02-13 Felix Larry G. Coupon for measuring corrosion rates and system
JP2004036007A (en) * 2002-06-28 2004-02-05 Daiwabo Co Ltd Joint part of dryer canvas for papermaking having reinforced selvedge part
JP2006258500A (en) * 2005-03-15 2006-09-28 National Institute For Materials Science Stress corrosion cracking test method
JP2006349535A (en) * 2005-06-16 2006-12-28 Taiheiyo Cement Corp Composite sensor module and sensor device
JP2008076297A (en) * 2006-09-22 2008-04-03 Kobe Steel Ltd Evaluation method for stress corrosion cracking resistance of aluminum alloy material, and aluminum alloy material excellent in stress corrosion cracking resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150119286A1 (en) * 2013-10-29 2015-04-30 Massachusetts Institute Of Technology High-throughput corrosion testing platform
US10677712B2 (en) * 2013-10-29 2020-06-09 Massachusetts Institute Of Technology High-throughput corrosion testing platform
JP2017509885A (en) * 2014-03-14 2017-04-06 ローズマウント インコーポレイテッド Corrosion rate measurement system
US9891161B2 (en) 2014-03-14 2018-02-13 Rosemount Inc. Corrosion rate measurement
US10830689B2 (en) 2014-09-30 2020-11-10 Rosemount Inc. Corrosion rate measurement using sacrificial probe
US10190968B2 (en) 2015-06-26 2019-01-29 Rosemount Inc. Corrosion rate measurement with multivariable sensor
KR101739562B1 (en) * 2016-06-27 2017-05-26 한국수자원공사 Corrosion protection apparatus, system and control method for pipe

Also Published As

Publication number Publication date
JP4870013B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4870013B2 (en) Corrosion measurement sensor
Maquin et al. Heat dissipation measurements in low stress cyclic loading of metallic materials: From internal friction to micro-plasticity
RU2663272C1 (en) Measurement of corrosion speed with the use of a consumable probe
JP6010733B2 (en) Plate-shaped specimen evaluation test unit and fixing jig used therefor
JP4680854B2 (en) Mechanical property test equipment
CN103090778B (en) A kind of strain-type Linear Double is to large displacement sensor and detection method thereof
Zhang et al. Rapid determination of fatigue life based on temperature evolution
Verstraete et al. Evaluation and interpretation of ductile crack extension in SENT specimens using unloading compliance technique
Wang et al. Early fatigue damage detecting sensors—A review and prospects
CN103180688A (en) Extensometer for amplifying measurement of high temperature structural deformation
Šeruga et al. Eliminating friction between flat specimens and an antibuckling support during cyclic tests using a simple sensor
CN102692378A (en) Method for measuring prestrain of sample in metal organic coating environment test
JP2006349487A (en) Testing machine of mechanical characteristics
CN106197342A (en) Fracture width change dynamic monitor based on strain sensing
JP2012229982A (en) Method and apparatus for health monitoring of concrete structure
CN103148971A (en) Method for testing local stress field of end part structure of thermal jacket of ultrahigh-pressure tubular reactor
JP6036151B2 (en) Tensile test apparatus and tensile test method
Park et al. Tensile and high cycle fatigue test of Al–3% Ti thin films
Jia et al. Test verification of an extensometer for deformation measurement of high temperature straight pipes
CN101329155A (en) Electric vortex type displacement clip
CN106404553B (en) Three-point bending sample ductile fracture toughness JIC auxiliary test device and test method
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
JP4859224B2 (en) Compression test method, compression tester, and program
Song et al. Analysis of effective nugget size by infrared thermography in spot weldment
CN106403868A (en) Crack width change dynamic monitoring method based on strain induction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R151 Written notification of patent or utility model registration

Ref document number: 4870013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees