JP2002293569A - Glass for electric lamp - Google Patents

Glass for electric lamp

Info

Publication number
JP2002293569A
JP2002293569A JP2001105579A JP2001105579A JP2002293569A JP 2002293569 A JP2002293569 A JP 2002293569A JP 2001105579 A JP2001105579 A JP 2001105579A JP 2001105579 A JP2001105579 A JP 2001105579A JP 2002293569 A JP2002293569 A JP 2002293569A
Authority
JP
Japan
Prior art keywords
glass
ultraviolet
ceo
content
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001105579A
Other languages
Japanese (ja)
Other versions
JP4756429B2 (en
Inventor
Yukio Takagi
幸男 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2001105579A priority Critical patent/JP4756429B2/en
Publication of JP2002293569A publication Critical patent/JP2002293569A/en
Application granted granted Critical
Publication of JP4756429B2 publication Critical patent/JP4756429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PROBLEM TO BE SOLVED: To provide a glass composition for a compact, fluorescent lamp electric lamp having a high luminance, without coloring by UV nor UV leakage out of a tube. SOLUTION: The glass composition has SiO2 -Al2 O3 -R2 O-R'O based composition, and a CeO2 content is 0.2-2 mass% and a SO3 content is 0-0.18 mass%. And after UV radiation, it has the following characteristics. (1) The Y value on the XYZ color specification system regulated in the JIS Z8701, for a wall thickness of 1 mm, is >=90.0%. (2) A light transmittance of 400 nm for a wall thickness of 1 mm, is >=88.0%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蛍光ランプに用いら
れる電灯用ガラス組成物に関し、特にコンパクト型蛍光
ランプに用いられる電灯用ガラス組成物に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass composition for an electric lamp used for a fluorescent lamp, and more particularly to a glass composition for an electric lamp used for a compact fluorescent lamp.

【0002】[0002]

【従来の技術】蛍光ランプは、アーク放電によって発生
する紫外線で、ガラス管壁に塗布されている蛍光体を励
起し、これにより発生する可視光線を利用したものであ
る。
2. Description of the Related Art A fluorescent lamp utilizes ultraviolet light generated by an arc discharge to excite a fluorescent material applied to a glass tube wall, and utilizes visible light generated by the excitation.

【0003】蛍光ランプに使用されるガラスは、管状の
バルブ部とステム部に大別され、バルブ部の形状として
は、直管や、直管を熱加工した環状の形状を有するもの
が一般的であるが、最近ではランプの効率化や小型化を
目的に、U字管やこれを繋いだツイン管といった複雑な
形状を有するコンパクト型蛍光灯が開発されている。当
初、複雑な加工が必要なコンパクト型蛍光灯には、加工
性のよい鉛含有ガラスが使用されていたが、鉛は環境負
荷物質であるため、現在では無鉛ガラスへの代替が進め
られている。
[0003] Glass used for fluorescent lamps is roughly classified into a tubular bulb portion and a stem portion, and the bulb portion generally has a straight pipe or an annular shape obtained by thermally processing the straight pipe. However, recently, compact fluorescent lamps having a complicated shape such as a U-shaped tube and a twin tube connecting them have been developed for the purpose of increasing the efficiency and reducing the size of the lamp. At first, lead-containing glass with good workability was used for compact fluorescent lamps that required complex processing, but lead is an environmentally hazardous substance, so lead-free glass is currently being replaced. .

【0004】[0004]

【発明が解決しようとする課題】ところで蛍光灯管内で
発生した紫外線の一部は蛍光体膜を透過し、ガラス管に
影響を与えることが知られている。特にコンパクト型蛍
光灯では、通常の蛍光灯よりも高い電力が必要なため、
単位面積当たりの紫外線照射量が数倍になる。その結
果、紫外線エネルギーにより、有色イオンやガラス構造
欠陥部の着色中心の生成によるガラスの着色が著しくな
り、蛍光灯の輝度が経時的に劣化するという問題が生じ
る。また管外に漏洩する紫外線量が多くなり、蛍光ラン
プを保護する樹脂カバーを変色させてしまう。
It is known that a part of the ultraviolet light generated in the fluorescent lamp tube passes through the phosphor film and affects the glass tube. In particular, compact fluorescent lamps require higher power than ordinary fluorescent lamps,
The amount of ultraviolet irradiation per unit area becomes several times. As a result, the coloring of the glass due to the generation of colored ions and the coloring centers of the glass structural defect due to the ultraviolet energy becomes remarkable, causing a problem that the luminance of the fluorescent lamp deteriorates with time. Further, the amount of ultraviolet rays leaking out of the tube increases, and the resin cover for protecting the fluorescent lamp is discolored.

【0005】本発明の目的は、紫外線による着色や管外
への紫外線の漏洩がなく、しかも高輝度のコンパクト型
蛍光ランプを作製することが可能な電灯用ガラス組成物
を提供することである。
An object of the present invention is to provide a glass composition for an electric lamp which is capable of producing a high-intensity compact fluorescent lamp without coloring by ultraviolet rays or leakage of the ultraviolet rays to the outside of the tube.

【0006】[0006]

【課題を解決するための手段】本発明者は種々の実験を
行った結果、CeO2を添加するとともに、SO3の含有
量を0.18%以下に制限することにより、上記目的が
達成できることを見いだし、本発明として提案するもの
である。
As a result of various experiments, the present inventors have found that the above object can be achieved by adding CeO 2 and limiting the content of SO 3 to 0.18% or less. And propose the present invention.

【0007】即ち、本発明の電灯用ガラスは、SiO2
−Al23−R2O−R’O系の組成を有し、CeO2
含有量が0.2〜2質量%、SO3の含有量が0〜0.
18質量%であり、紫外線照射後に以下の特性を有す
る。 (1)肉厚1mmにおいて、JIS Z8701に規定
するXYZ表色系に基づくY値が、C標準光源下におい
て90.0%以上。 (2)肉厚1mmにおいて、400nmでの光透過率が
88.0%以上。
That is, the glass for electric lights of the present invention is made of SiO 2
-Al 2 O 3 -R 2 O- R'O has the composition system, the content of CeO 2 is from 0.2 to 2 wt%, the content of SO 3 is 0-0.
18% by mass, and has the following characteristics after irradiation with ultraviolet rays. (1) At a wall thickness of 1 mm, the Y value based on the XYZ color system specified in JIS Z8701 is 90.0% or more under a C standard light source. (2) At a thickness of 1 mm, the light transmittance at 400 nm is 88.0% or more.

【0008】なお、本発明においてY値及び400nm
での光透過率は、30倍視野の光学顕微鏡にて研磨傷が
確認できない程度に光学研磨された30×10mm、肉
厚1.0±0.02mmの試料に対し、256nmに主
波長を有する紫外線を7.5mw/cm2の照度で8時
間照射した後に評価した値である。また400nmでの
光透過率は、C標準光源を用い、分光光度計にて400
nmにおける透過率を求めたものであり、Y値は同様に
して測定域200〜800nmにおける透過率を求め、
JIS Z8701に基づいて算出したものである。
In the present invention, the Y value and 400 nm
Has a dominant wavelength of 256 nm for a sample of 30 × 10 mm and a thickness of 1.0 ± 0.02 mm optically polished to such an extent that polishing scratches cannot be confirmed with an optical microscope having a 30-fold visual field. It is a value evaluated after irradiating with ultraviolet light at an illuminance of 7.5 mw / cm 2 for 8 hours. The light transmittance at 400 nm was measured using a C standard light source with a spectrophotometer.
The transmittance in nm was determined, and the Y value was determined in the same manner as the transmittance in a measurement range of 200 to 800 nm.
It is calculated based on JIS Z8701.

【0009】[0009]

【発明の実施の形態】本発明者は、CeO2の紫外線遮
蔽能力及び紫外線によるガラスの光学的劣化現象につい
て詳細に調査したところ、ガラス中に含まれるSO3
ついて興味深い知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted detailed investigations on the ultraviolet shielding ability of CeO 2 and the optical deterioration phenomenon of glass due to ultraviolet rays, and have found interesting knowledge about SO 3 contained in glass.

【0010】一般に、ガラスに紫外線遮蔽能力を付与す
るにはCeO2を添加すればよいことが知られている。
またCeO2の添加により、紫外線照射による着色が若
干抑制される。一方、CeO2を添加すると400nm
付近の光透過率が低下してガラスが黄色くなる、いわゆ
る初期着色が起こり易く、ランプの輝度が低下してしま
う。従って、紫外線の管外への漏洩や紫外線による着色
を防止しようとすると、ランプの輝度が低くなるという
問題を有していた。
In general, it is known that CeO 2 may be added to impart ultraviolet shielding ability to glass.
Further, by the addition of CeO 2 , coloring due to ultraviolet irradiation is slightly suppressed. On the other hand, when CeO 2 is added, 400 nm
The light transmittance in the vicinity is reduced and the glass becomes yellow, so-called initial coloring is likely to occur, and the brightness of the lamp is reduced. Therefore, there has been a problem that the luminance of the lamp is reduced when it is attempted to prevent the ultraviolet rays from leaking out of the tube or coloring by the ultraviolet rays.

【0011】ところがCeO2を添加したガラスの透過
率特性は、SO3の存在により大きく左右されることが
本発明者の実験で明らかとなった。即ち、SO3の含有
量を0.18質量%以下に制限すると、400nm付近
の光透過率が高くなって初期着色が防止され、また紫外
線照射による着色が著しく抑制される。このSO3は、
ガラス原料(芒硝(Na2SO4)等の硫酸塩原料や不純
物)や、ガラス溶融時の燃焼雰囲気中のSO2ガスの溶
け込みにより、ガラス組成中に取り込まれる。
However, it has been found by experiments of the present inventors that the transmittance characteristics of glass to which CeO 2 is added are greatly affected by the presence of SO 3 . That is, when the content of SO 3 is limited to 0.18% by mass or less, the light transmittance near 400 nm is increased to prevent the initial coloring, and the coloring due to ultraviolet irradiation is significantly suppressed. This SO 3
Glass materials (sulfate materials such as sodium sulfate (Na 2 SO 4 ) and impurities) and SO 2 gas in the combustion atmosphere when the glass is melted are incorporated into the glass composition.

【0012】本発明の電灯用ガラスにおいて、CeO2
やSO3の含有量は、上記知見をふまえて決定したもの
である。
In the lamp glass of the present invention, CeO 2
The contents of SO 3 and SO 3 are determined based on the above findings.

【0013】CeO2は、ガラスに紫外線遮蔽能力を付
与するとともに、SO3が0.18質量%以下という条
件下で、紫外線照射による着色を著しく抑制する働きが
ある。また清澄剤としても機能する。CeO2が0.2
%以下ではその効果がなく、2%を超えると着色が著し
くなり、高輝度のランプを得ることが困難になる。なお
CeO2の好適な範囲は、0.3〜1.2%、特に0.
4〜1%である。
CeO 2 has the function of imparting ultraviolet shielding ability to glass and, at the same time, having an SO 3 content of not more than 0.18% by mass, and has a function of significantly suppressing coloring due to ultraviolet irradiation. It also functions as a fining agent. CeO 2 is 0.2
% Or less, there is no effect, and if it exceeds 2%, coloring becomes remarkable, and it becomes difficult to obtain a high-luminance lamp. The preferred range of CeO 2 is 0.3 to 1.2%, especially 0.1 to 0.2%.
4-1%.

【0014】SO3の含有量は0.18質量%以下に制
限される。SO3は、CeO2によるガラスの着色を助長
し、また紫外線着色を起こしやすい成分であり、その含
有量は少ないほど好ましい。このため0.15%以下、
特に0.1%以下が好ましく、できれば含まないことが
望ましい。
The content of SO 3 is limited to 0.18% by mass or less. SO 3 is a component that promotes coloring of glass with CeO 2 and is liable to cause ultraviolet coloring. The smaller the content, the better. For this reason, 0.15% or less,
In particular, the content is preferably 0.1% or less, and preferably not contained.

【0015】また本発明のガラスは、紫外線照射後に
(1)JIS Z8701に規定するXYZ表色系に基
づくY値が90.0%以上、及び(2)肉厚1mmにお
ける400nmでの光透過率が88.0%以上、という
特性を満足するものである。これらの特性を満足するこ
とにより、輝度が高いランプを作製することができる。
なお400nmでの光透過率は、90.0%以上、特に
90.5%以上であることが好ましく、またY値は9
1.0%以上、特に91.5%以上であることが好まし
い。
Further, the glass of the present invention has, after irradiation with ultraviolet light, (1) a Y value based on the XYZ color system specified in JIS Z8701 of 90.0% or more, and (2) a light transmittance at 400 nm at a thickness of 1 mm. Is 88.0% or more. By satisfying these characteristics, a lamp with high luminance can be manufactured.
The light transmittance at 400 nm is preferably 90.0% or more, particularly preferably 90.5% or more.
It is preferably at least 1.0%, particularly preferably at least 91.5%.

【0016】なお上記特性に加えて、本発明のガラス
は、紫外線の吸収端が314nm以上、特に320nm
以上であることが好ましい。即ち、蛍光ランプから生じ
るスペクトルは、258nm付近に主ピークを持ち、他
にいくつかの副線が存在する。この中でも最長の副線ピ
ークは可視光域にまで及ぶ。一般的な電灯用ガラスで
は、258nmより長波長域の紫外線を十分に遮蔽する
ことは難しいが、通常の蛍光ランプではこれらの副線が
問題となることは殆どない。しかし、紫外線放射量が多
いコンパクト型蛍光ランプでは、この長波長域の副線、
特に313nm付近の副線によって樹脂カバーが変色し
易くなる。それゆえ紫外線の吸収端が313nmより長
波長側にあることが望まれる。
In addition to the above characteristics, the glass of the present invention has an ultraviolet absorption edge of 314 nm or more, especially 320 nm.
It is preferable that it is above. That is, the spectrum generated from the fluorescent lamp has a main peak near 258 nm, and there are some other sub-lines. Among them, the longest sub-line peak extends to the visible light region. Although it is difficult to sufficiently shield ultraviolet rays in a wavelength range longer than 258 nm with general lamp glass, these sub-lines hardly cause a problem in ordinary fluorescent lamps. However, in compact fluorescent lamps that emit a large amount of ultraviolet radiation,
In particular, the resin cover easily discolors due to the sub-line near 313 nm. Therefore, it is desired that the absorption edge of ultraviolet rays is on the longer wavelength side than 313 nm.

【0017】また本発明のガラスは、SiO2−Al2
3−R2O−R’O系の組成を有する。ここでRはアルカ
リ金属(Na、K、Li)を表し、R’はアルカリ土類
金属(Ca,Mg,Sr,Ba)を表している。この系
のガラスであれば、組成は特に限定されないが、環境上
の理由から、PbOやAs23を含有することは避ける
べきである。
The glass of the present invention is made of SiO 2 —Al 2 O
Having a composition of 3 -R 2 O-R'O system. Here, R represents an alkali metal (Na, K, Li), and R ′ represents an alkaline earth metal (Ca, Mg, Sr, Ba). The composition of the glass is not particularly limited, but PbO and As 2 O 3 should be avoided for environmental reasons.

【0018】次に、蛍光ランプ用途に要求される上記以
外の特性と、これに適したガラス組成について説明す
る。 管内に封入される水銀ガスと反応してアマルガム(H
gNa)を生成しないように、高い化学耐久性が求めら
れる。具体的には、JIS R3502に示された方法
で測定されるアルカリ溶出が0.7mg以下であるこ
と。 ステム用として使われる場合、デュメットリード線と
膨張が適合するように、90〜100×10-7/℃の熱
膨張係数を有すること。 ステム用として使われる場合、体積抵抗が10-7Ω・
cm以上と高いこと。 ガラス溶融が容易であること。 コンパクト型蛍光ランプのバルブ用途の場合、高い加
工性を得るために、作業点(104ポイズに相当する温
度)が1010℃以下であること。
Next, other characteristics required for fluorescent lamp applications and glass compositions suitable for the characteristics will be described. Amalgam (H) reacts with mercury gas enclosed in the tube.
High chemical durability is required so as not to generate gNa). Specifically, the alkali elution measured by the method shown in JIS R3502 is 0.7 mg or less. When used for a stem, it must have a coefficient of thermal expansion of 90-100 × 10 −7 / ° C. so that the expansion is compatible with the Dumet lead wire. When used for stems, the volume resistance is 10 -7 Ω
cm or higher. Glass melting is easy. For compact fluorescent lamp bulb applications, the working point (temperature corresponding to 10 4 poise) must be 1010 ° C. or less in order to obtain high workability.

【0019】これらの要求すべてを満足するガラスの好
適な組成例として、質量%表示で、SiO2 60〜8
0%、Al23 0.3〜5%、B23 0〜3%、N
2O2〜10%、K2O 2〜10%、Li2O 0〜
3%、CaO 0〜8%、MgO 0〜8%、SrO
2〜10%、BaO 2〜12%、CeO2 0.2〜
2%、SO3 0〜0.18%のガラスを挙げることが
できる。
As a preferred composition example of a glass satisfying all of these requirements, SiO 2 60 to 8 in terms of mass% is used.
0%, Al 2 O 3 0.3~5 %, B 2 O 3 0~3%, N
a 2 O 2 to 10%, K 2 O 2 to 10%, Li 2 O 0
3%, CaO 0-8%, MgO 0-8%, SrO
2 to 10%, BaO 2 to 12%, CeO 2 0.2 to
2%, can be exemplified SO 3 from 0 to .18% of the glass.

【0020】ガラスの組成範囲を上記のように限定した
理由を以下に示す。
The reasons for limiting the composition range of the glass as described above will be described below.

【0021】SiO2はガラスの骨格を形成する成分で
ある。SiO2が60%より少ないとガラス骨格の生成
が不十分となり、機械的強度が低くなる。SiO2が8
0%より多いとガラスの粘性が上昇し、溶融成形が困難
になる。SiO2の好ましい範囲は60〜75%であ
る。
SiO 2 is a component that forms the skeleton of glass. When the content of SiO 2 is less than 60%, the formation of the glass skeleton becomes insufficient, and the mechanical strength is reduced. 8 SiO 2
If it is more than 0%, the viscosity of the glass increases, and melt molding becomes difficult. The preferred range of SiO 2 is 60 to 75%.

【0022】Al23も骨格形成成分であり、また化学
耐久性を向上させるとともに、ガラス成形時の失透を抑
制する効果がある。Al23が0.3%より少ないとそ
の効果がなく、5%より多いと溶融や成形が困難にな
る。Al23の好ましい範囲は0.5〜3%、特に1〜
3%である。
[0022] Al 2 O 3 is also a skeleton forming component, also improves the chemical durability, the effect of suppressing devitrification during glass molding. If the content of Al 2 O 3 is less than 0.3%, the effect is not obtained, and if it is more than 5%, melting and molding become difficult. The preferred range of Al 2 O 3 is 0.5 to 3%, especially 1 to 3%.
3%.

【0023】B23は化学耐久性を改善し、高温粘性を
低下させる効果がある。しかしB23は環境負荷物質で
あるため、やむを得ない場合を除き、使用しないことが
望ましい。B23が3%より多い場合はガラス低温粘性
が上昇し、加工性が悪化する。またCeO2の着色傾向
を増大させてしまう。
B 2 O 3 has the effect of improving chemical durability and reducing high temperature viscosity. However, B 2 O 3 is an environmentally hazardous substance, and it is desirable not to use it unless it is unavoidable. When the content of B 2 O 3 is more than 3%, the low-temperature viscosity of the glass increases, and the workability deteriorates. In addition, the coloring tendency of CeO 2 is increased.

【0024】Na2O、K2O、Li2Oといったアルカ
リ金属酸化物は、熱膨張係数を調整し、またガラスの粘
性を低下させて加工性を高めるための成分である。Na
2O及びK2Oは特定の比率で共存させることにより、ア
ルカリ混合効果とよばれる化学耐久性や電気絶縁性を向
上させる効果が得られる。またLi2Oは、原料コスト
が高く多量に含有させることは好ましくないが、膨張調
整機能が他のアルカリ金属成分に比べて約2倍と高いた
め、少量の添加で効果がある。
Alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O are components for adjusting the coefficient of thermal expansion and reducing the viscosity of glass to enhance workability. Na
By coexisting 2 O and K 2 O at a specific ratio, an effect of improving chemical durability and electrical insulation, called an alkali mixing effect, can be obtained. It is not preferable to add Li 2 O in a large amount because of the high raw material cost, but the effect of adjusting the expansion is about twice as high as that of other alkali metal components.

【0025】Na2Oが2%未満の場合はその効果がな
く、10%を超える場合はアルカリ混合効果が得られ
ず、化学耐久性が悪くなる。Na2Oの好ましい範囲は
4〜8%である。
When the content of Na 2 O is less than 2%, the effect is not obtained. When the content is more than 10%, no alkali mixing effect is obtained, and the chemical durability is deteriorated. Na 2 O content is preferably within a range of 4-8%.

【0026】K2Oが2%未満の場合はその効果がな
く、10%を超える場合はアルカリ混合効果が得られ
ず、化学耐久性が悪くなる。K2Oの好ましい範囲は4
〜8%である。
When K 2 O is less than 2%, the effect is not obtained. When K 2 O is more than 10%, the alkali mixing effect is not obtained, and the chemical durability is deteriorated. The preferred range of K 2 O is 4
~ 8%.

【0027】Li2Oが3%を超えると原料コストが高
くなりすぎる。なお0.3%未満の場合、デュメットリ
ード線との膨張の整合性を得ようとするとNa2OやK2
Oを多量に含有させる必要が生じ、化学耐久性が悪化す
る傾向が現れる。Li2Oの好ましい範囲は0.3〜3
%、特に0.5〜3%である。
If the content of Li 2 O exceeds 3%, the raw material cost becomes too high. In the case where the content is less than 0.3%, Na 2 O or K 2
A large amount of O must be contained, and the chemical durability tends to deteriorate. Li 2 O The preferred range is 0.3 to 3
%, Especially 0.5 to 3%.

【0028】なおアルカリ金属酸化物の合量は11〜1
8%であることが好ましい。11%未満では、ステム用
途に用いた場合にデュメットリード線との膨張の整合性
が得難くなる。またガラスの粘性が上昇し、加工性が悪
化しやすくなる。またアルカリ金属酸化物の合量が18
%を超えるとステム用途に用いた場合にデュメットリー
ド線との膨張の整合性が得難くなる。また化学耐久性が
悪化し、輝度劣化の原因となるアマルガムの生成を起こ
し易くなる。なおアルカリ金属酸化物の合量のより好ま
しい範囲は13.2〜18%である。
The total amount of the alkali metal oxides is 11 to 1
Preferably, it is 8%. If it is less than 11%, it will be difficult to obtain conformity of expansion with a dumet lead wire when used for a stem application. Further, the viscosity of the glass increases, and the workability tends to deteriorate. When the total amount of alkali metal oxides is 18
%, It becomes difficult to obtain consistency in expansion with a dumet lead wire when used for a stem application. Further, the chemical durability is deteriorated, and the generation of amalgam, which causes the luminance deterioration, is likely to occur. Note that a more preferable range of the total amount of the alkali metal oxide is 13.2 to 18%.

【0029】CaO、MgO、SrO、BaOといった
アルカリ土類金属酸化物は、高電気絶縁性と良好な加工
性を得るための成分である。特に比較的PbOに近い性
質を有するSrOとBaOを主として使用する。しかし
これらの成分は、ガラス溶融時や管引き成形時に使用さ
れる耐火レンガとの反応性が強く、反応生成物の原因と
なる。こうした生成物の発生を避けたい場合には、これ
らの一部をCaOやMgOと置換すればよい。ただしC
aOは、CeO2と共存させるとガラスの光透過率を低
下させる傾向があるため、その添加は最小限に留めるこ
とが望ましい。
Alkaline earth metal oxides such as CaO, MgO, SrO and BaO are components for obtaining high electrical insulation and good workability. In particular, SrO and BaO having properties relatively close to PbO are mainly used. However, these components have strong reactivity with refractory bricks used at the time of glass melting or at the time of pipe forming, and cause reaction products. If it is desired to avoid generation of such products, a part of them may be replaced with CaO or MgO. Where C
Since aO tends to lower the light transmittance of glass when coexisting with CeO 2 , it is desirable to minimize the addition of aO.

【0030】CaOが8%を超えるとガラス成形時の失
透原因となる。なおCaOを0.5%以下に制限するこ
とにより、より高い光透過率を得ることができる。
When CaO exceeds 8%, it causes devitrification during glass forming. By limiting CaO to 0.5% or less, higher light transmittance can be obtained.

【0031】MgOが8%を超えるとガラス成形時の失
透原因となり、またガラスの粘性を上昇させて加工性が
悪化する。MgOの好ましい範囲は2〜6%である。
If the content of MgO exceeds 8%, it causes devitrification at the time of molding the glass, and also increases the viscosity of the glass to deteriorate the workability. The preferred range of MgO is 2-6%.

【0032】SrOが2%未満では、高電気絶縁性と良
好な加工性を得るために他のアルカリ土類金属酸化物を
多量に含有させなければならないが、これによって失透
が起こり易くなる。10%を超えるとSrO系の失透物
が生じ、また原料コストが増大して好ましくない。Sr
Oの好ましい範囲は4〜10%、特に4.2〜8%であ
る。
If SrO is less than 2%, other alkaline earth metal oxides must be contained in a large amount in order to obtain high electrical insulation and good workability, but this tends to cause devitrification. If it exceeds 10%, SrO-based devitrified matter is generated, and the raw material cost is undesirably increased. Sr
The preferred range of O is 4 to 10%, particularly 4.2 to 8%.

【0033】BaOが2%未満では高電気絶縁性と良好
な加工性を得るために他のアルカリ土類金属酸化物を多
量に含有させなければならないが、これによって失透が
起こり易くなる。12%を超えると耐火物(Al系耐火
物)との反応が著しく、失透原因となる。BaOの好ま
しい範囲は3〜10%である。
If the content of BaO is less than 2%, a large amount of other alkaline earth metal oxide must be contained in order to obtain high electrical insulation and good workability, but this tends to cause devitrification. If it exceeds 12%, the reaction with the refractory (Al-based refractory) is remarkable, causing devitrification. The preferred range of BaO is 3 to 10%.

【0034】なおアルカリ土類金属酸化物は合量で5〜
15%であることが好ましい。これらの合量が5%未満
では電気抵抗等、蛍光ランプ用途に必要な特性を得るこ
とが難しくなる。一方15%を超えるとガラスの成形時
に失透物や反応生成物が生じ、製品不良を引き起こす可
能性がある。アルカリ土類金属酸化物の合量のより好ま
しい範囲は6〜13%である。
The alkaline earth metal oxide is 5 to 5 in total.
It is preferably 15%. If these combined amounts are less than 5%, it becomes difficult to obtain characteristics required for fluorescent lamp use, such as electric resistance. On the other hand, if it exceeds 15%, a devitrified substance or a reaction product is generated during molding of the glass, which may cause a product defect. A more preferable range of the total amount of the alkaline earth metal oxide is 6 to 13%.

【0035】以上の成分以外にも、例えば稀土類酸化物
等の光透過特性を改善する成分や、TiO2、ZrO2
の紫外線着色防止効果を有する成分の添加が可能であ
る。また清澄剤としてNaCl等のCl系原料を添加し
てもよい。なお不純物として、Fe23が含まれること
が多いが、Feは有色イオンであり、透過率を低下させ
る要因であるので、0.05%以下、特に0.03%以
下に制限することが重要である。
In addition to the above components, it is possible to add a component for improving the light transmission characteristics such as a rare earth oxide, or a component having an effect of preventing ultraviolet coloring such as TiO 2 and ZrO 2 . Further, a Cl-based raw material such as NaCl may be added as a fining agent. In addition, Fe 2 O 3 is often included as an impurity. However, Fe is a colored ion and causes a reduction in transmittance. Therefore, the content of Fe is limited to 0.05% or less, particularly 0.03% or less. is important.

【0036】また本発明の電灯用ガラスは、酸化性雰囲
気で溶融することが望ましい。
The glass for an electric lamp of the present invention is desirably melted in an oxidizing atmosphere.

【0037】即ち、本発明のガラスにおいて、重要な役
割を有するCeO2は、ガラス中で Ce3+ ⇔ Ce4+ の酸化還元平衡状態にある。一般にCe3+は316nm
に、Ce4+は243nm付近にそれぞれ主たる吸収帯を
有し、両者の働きにより長波長側の紫外線が吸収されガ
ラスの紫外線吸収端が形成される。ここでCe3+量が多
くなると、紫外線の吸収端が長波長側へ移動したり、吸
収帯幅が増加する。その結果、400nm付近の可視域
が吸収されてガラスが黄色味を帯び、透過率が低下す
る。これがCeO2による初期着色であり、高輝度の蛍
光ランプを得ることできない原因となる。従ってCe3+
とCe4+は適切な割合で存在させることが重要である。
そこでガラスを酸化性雰囲気で溶融することにより、C
4+を増加させ、400nm付近の可視域の吸収を抑
え、初期着色を防止することができる。
That is, CeO 2 which plays an important role in the glass of the present invention is in a redox equilibrium state of Ce 3+ ⇔ Ce 4+ in the glass. Generally, Ce 3+ is 316 nm
In addition, Ce 4+ has a main absorption band around 243 nm, and both functions absorb ultraviolet rays on the long wavelength side to form an ultraviolet absorption edge of glass. Here, when the amount of Ce 3+ increases, the absorption edge of ultraviolet rays moves to the longer wavelength side, and the absorption band width increases. As a result, the visible region around 400 nm is absorbed, the glass becomes yellowish, and the transmittance decreases. This is the initial coloring by CeO 2 , which causes a high-luminance fluorescent lamp to not be obtained. Therefore Ce 3+
It is important that Ce 4+ and Ce 4+ be present in an appropriate ratio.
Therefore, by melting the glass in an oxidizing atmosphere, C
e 4+ can be increased, absorption in the visible region around 400 nm can be suppressed, and initial coloring can be prevented.

【0038】なお酸化性雰囲気で溶融する方法として
は、例えばガラス原料バッチに酸化剤(例えば硝酸ナト
リウムや硝酸カリウム)を加え、ガラス溶融時にガラス
が酸化状態になるようにすればよい。酸化剤のバッチへ
の添加量は、使用する酸化剤の種類にもよるが、0.5
〜3質量%程度が好ましい。その理由は、0.5%以下
では十分な効果が得られず、3%を超えて添加しても原
料コストが上昇するのみで、その効果は殆ど変わらない
ためである。
As a method for melting in an oxidizing atmosphere, for example, an oxidizing agent (for example, sodium nitrate or potassium nitrate) may be added to a glass raw material batch so that the glass is oxidized when the glass is melted. The amount of the oxidizing agent to be added to the batch depends on the type of the oxidizing agent to be used.
About 3% by mass is preferable. The reason is that if it is 0.5% or less, a sufficient effect cannot be obtained, and if it exceeds 3%, only the raw material cost increases, and the effect hardly changes.

【0039】[0039]

【実施例】以下、実施例に基づいて本発明を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0040】(実施例1)表1、2は、CeO2とSO3
を変更し、紫外線照射前後の透過率を評価した本発明の
実施例(試料No.1〜4)及び比較例(No.5〜
7)である。また紫外線着色に対するCeO2とSO3
関係を図1に示す。
Example 1 Tables 1 and 2 show CeO 2 and SO 3
Example of the present invention (Sample Nos. 1 to 4) and Comparative Example (Nos.
7). FIG. 1 shows the relationship between CeO 2 and SO 3 with respect to ultraviolet coloring.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】各試料は次のようにして調製した。Each sample was prepared as follows.

【0044】まず表に示す組成となるようにガラス原料
を調合した。さらに調合した原料をライカイ機と呼ばれ
る乳鉢式擂り潰し攪拌機で10分間攪拌し、300gの
原料バッチを得た。なお使用した原料は、SiO2原料
として比較的Fe不純物が少ない海岸砂(SiO2分9
9.8質量%)を、MgO原料及びCaO原料として市
販ドロマイトを、CeO2原料としてガラス工業用酸化
セリウム(CeO2分99.8%以上)を、その他の酸
化物原料は、主として量産に適した一般的に使用される
もののうち、できる限り安価な工業用ガラス原料を使用
した。また酸化剤には硝酸ナトリウムを使用した。
First, glass raw materials were prepared so as to have the composition shown in the table. Further, the prepared raw material was stirred for 10 minutes with a mortar-type crushing and stirring machine called a raikai machine, to obtain a raw material batch of 300 g. The raw material used was shore sand (SiO 2 fraction 9) having relatively few Fe impurities as the SiO 2 raw material.
9.8 mass%), commercially available dolomite as MgO raw material and CaO raw material, cerium oxide for glass industry (CeO 2 fraction of 99.8% or more) as CeO 2 raw material, and other oxide raw materials are mainly suitable for mass production. Among the commonly used materials, the most inexpensive industrial glass materials were used. Sodium nitrate was used as an oxidizing agent.

【0045】次に原料バッチを容量300cm3の白金
ロジウム合金製の坩堝に入れ、箱型電気炉にて1450
〜1500℃で4時間溶融した。なお溶融開始後30分
毎に白金攪拌棒を用いて計3回攪拌を行った。
Next, the raw material batch was placed in a platinum rhodium alloy crucible having a capacity of 300 cm 3 , and was placed in a box-type electric furnace for 1450 hours.
Melted at ~ 1500C for 4 hours. In addition, stirring was performed three times in total using a platinum stirring rod every 30 minutes after the start of melting.

【0046】続いて溶融ガラスをカーボン製成形板上に
流し出し、560℃に保持された箱型カンタル式アニー
ル炉内に入れ、4℃/分の平均冷却速度で炉冷した。さ
らにアニール後のガラス塊から試料を作製し、評価に共
した。結果を表1,2に示す。併せて紫外線照射前後の
Y値の変化を図1に示す。
Subsequently, the molten glass was poured out onto a carbon molded plate, placed in a box-type Kanthal annealing furnace maintained at 560 ° C., and cooled at an average cooling rate of 4 ° C./min. Further, a sample was prepared from the annealed glass block and used for evaluation. The results are shown in Tables 1 and 2. FIG. 1 also shows the change in the Y value before and after ultraviolet irradiation.

【0047】その結果、SO3を0.2%含有する試料
No.5〜7は、初期のY値が低く、また紫外線照射に
よるY値の低下が大きかった。これに対してSO3を含
まない試料No.1〜4は、初期のY値が高く、しかも
Y値の低下が殆どないことが分かった。つまりSO3
少なくすれば、透過率が高く、しかも紫外線着色が起こ
り難いガラスが得られることを示している。
As a result, Sample No. containing 0.2% of SO 3 was obtained. In Nos. 5 to 7, the initial Y value was low, and the decrease in the Y value due to ultraviolet irradiation was large. Sample No. without the SO 3 contrast It was found that the samples Nos. 1 to 4 had a high initial Y value and hardly decreased the Y value. In other words, it is shown that if SO 3 is reduced, glass having a high transmittance and hardly causing ultraviolet coloring can be obtained.

【0048】またNo.5〜7の試料は、CeO2量が
増えるに従いY値が低下する傾向にあるが、実施例であ
るNo.1〜4の試料では、CeO2量が増えても初期
のY値が殆ど変化しない。このことは、ガラスの紫外線
吸収能力を高めるためにCeO2を多量に添加できるこ
とを示唆している。
No. In the samples Nos. 5 to 7, the Y value tends to decrease as the CeO 2 amount increases. In the samples Nos. 1 to 4, the initial Y value hardly changes even if the amount of CeO 2 increases. This suggests that CeO 2 can be added in a large amount in order to enhance the ultraviolet absorbing ability of the glass.

【0049】なお熱膨張係数は、30〜380℃におけ
る平均線熱膨張係数を示すものであり、ディラトメータ
ーを用いて測定した。軟化点は107.6dPa・sの粘
度を示す温度、作業点は104dPa・sの粘度を示す
温度であり、それぞれASTMで規定されるファイバー
引っ張り法、及び白金球引き上げ法を用いて求めた。体
積電気抵抗値は、ASTM C657−78に基づき測
定し、250℃での抵抗値を対数表示した。アルカリ溶
出量は、JIS R−3502に基づいて測定したもの
である。
The coefficient of thermal expansion indicates an average coefficient of linear thermal expansion at 30 to 380 ° C., and was measured using a dilatometer. The softening point is a temperature indicating a viscosity of 10 7.6 dPa · s, and the working point is a temperature indicating a viscosity of 10 4 dPa · s. The softening point was determined by a fiber pulling method and a platinum ball pulling method specified by ASTM, respectively. . The volume electric resistance was measured based on ASTM C657-78, and the resistance at 250 ° C. was logarithmically indicated. The alkali elution amount is measured based on JIS R-3502.

【0050】Y値、400nmでの光透過率及び紫外線
吸収端は、次のようにして求めた。まず30倍視野の光
学顕微鏡にて研磨傷が確認できない程度に光学研磨され
た30×10mm、肉厚1.0±0.02mmの試料を
用意した。次にC標準光源を用い、分光光度計(島津製
作所製UV3100PC)にて200〜800nmにお
ける透過率を測定し、400nmでの透過率及び紫外線
吸収端を求めた。なお紫外線吸収端は、光透過率曲線の
短波長側で実質的に透過率が0%と見なし得る波長とし
た。さらに透過率測定データから、JIS Z8701
に規定するXZY表色系に基づいてY値を算出した。続
いて、UVドライプロセッサー(オーク製作所製)を用
い、256nmに主波長を有する紫外線を試料に7.5
mw/cm2の照度で8時間照射した後、再度透過率を
測定し、紫外線照射後のY値及び400nmにおける透
過率を求めた。
The Y value, the light transmittance at 400 nm, and the ultraviolet absorption edge were determined as follows. First, a sample having a size of 30 × 10 mm and a thickness of 1.0 ± 0.02 mm, which was optically polished to such an extent that polishing scratches could not be confirmed with an optical microscope having a 30 × visual field, was prepared. Next, using a C standard light source, the transmittance at 200 to 800 nm was measured with a spectrophotometer (UV3100PC manufactured by Shimadzu Corporation) to determine the transmittance at 400 nm and the ultraviolet absorption edge. The ultraviolet absorption edge was a wavelength at which the transmittance could be regarded as substantially 0% on the short wavelength side of the light transmittance curve. Further, from the transmittance measurement data, JIS Z8701 was used.
The Y value was calculated based on the XZY color system specified in (1). Subsequently, using a UV dry processor (manufactured by Oak Manufacturing Co., Ltd.), the sample was irradiated with ultraviolet light having a main wavelength of 256 nm at 7.5 nm.
After irradiating at an illuminance of mw / cm 2 for 8 hours, the transmittance was measured again, and the Y value after ultraviolet irradiation and the transmittance at 400 nm were determined.

【0051】(実施例2)表3〜7は本発明の他の実施
例(試料No.8〜27)を、表8は比較例(試料N
o.28)をそれぞれ示している。
(Example 2) Tables 3 to 7 show other examples (samples Nos. 8 to 27) of the present invention, and Table 8 shows a comparative example (sample N).
o. 28) respectively.

【0052】なお各試料は、実施例1に準じて調製し、
評価した。
Each sample was prepared according to Example 1.
evaluated.

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【表5】 [Table 5]

【0056】[0056]

【表6】 [Table 6]

【0057】[0057]

【表7】 [Table 7]

【0058】[0058]

【表8】 [Table 8]

【0059】表から、本発明の実施例である試料No.
8〜27は、紫外線照射後のY値及び400nmでの光
透過率が、それぞれ90.9%以上、88.7%以上で
あり、紫外線照射後も高い透過率を維持していた。
From the table, it can be seen that Sample No. which is an embodiment of the present invention was used.
In Nos. 8 to 27, the Y value after ultraviolet irradiation and the light transmittance at 400 nm were 90.9% or more and 88.7% or more, respectively, and the high transmittance was maintained even after ultraviolet irradiation.

【0060】[0060]

【発明の効果】以上説明したように、本発明の電灯用ガ
ラスは、紫外線による着色や管外への紫外線の漏洩がな
く、しかも高輝度のコンパクト型蛍光ランプを作製する
ことが可能であり、電灯用ガラスとして好適である。な
お本明細書においては、主としてコンパクト型蛍光ラン
プのバルブ用ガラスについて説明したが、本発明のガラ
スはこれに限られるものではなく、他のランプ用途(液
晶ディスプレーに用いられるバックライトの蛍光ランプ
用バルブ等)や、他の照明用部材(ステム、排気管等)
に使用してもよい。
As described above, the lamp glass of the present invention can produce a compact fluorescent lamp with high brightness without coloring by ultraviolet rays or leakage of ultraviolet rays outside the tube. It is suitable as glass for electric lights. In this specification, the glass for a bulb of a compact fluorescent lamp has been mainly described. However, the glass of the present invention is not limited to this, and may be used for other lamps (for a fluorescent lamp of a backlight used for a liquid crystal display). Bulbs) and other lighting components (stems, exhaust pipes, etc.)
May be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】紫外線照射前後のY値の変化を示すグラフであ
る。
FIG. 1 is a graph showing a change in Y value before and after ultraviolet irradiation.

フロントページの続き Fターム(参考) 4G062 AA03 BB01 DA06 DB03 DC01 DD01 DE01 DF01 EA03 EB03 EC03 ED03 EE03 EF03 EG03 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL02 FL03 GA01 GA10 GB01 GB02 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH14 HH15 HH16 HH17 HH18 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM24 NN13 5C043 AA04 AA06 CC09 CD10 DD01 EA09 EB15 EC11 Continued on the front page F term (reference) 4G062 AA03 BB01 DA06 DB03 DC01 DD01 DE01 DF01 EA03 EB03 EC03 ED03 EE03 EF03 EG03 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL02 FL03 GA01 GA01 GB01 H01H HH11 HH13 HH14 HH15 HH16 HH17 HH18 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM24 NN13 5C043 AA04 AA06 CC09 CD10 DD01 EA09 EB15 EC11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiO2−Al23−R2O−R’O系の
組成を有し、CeO 2の含有量が0.2〜2質量%、S
3の含有量が0〜0.18質量%であり、紫外線照射
後に以下の特性を有する電灯用ガラス。 (1)肉厚1mmにおいて、JIS Z8701に規定
するXYZ表色系に基づくY値が、C標準光源下におい
て90.0%以上。 (2)肉厚1mmにおいて、400nmでの光透過率が
88.0%以上。
1. SiO.Two-AlTwoOThree-RTwoO-R'O-based
Having the composition, CeO TwoContent of 0.2 to 2% by mass, S
OThreeIs 0 to 0.18% by mass, and is irradiated with ultraviolet light.
An electric light glass having the following characteristics. (1) Specified in JIS Z8701 when the thickness is 1 mm
Y value based on the XYZ color system
90.0% or more. (2) When the thickness is 1 mm, the light transmittance at 400 nm is
88.0% or more.
【請求項2】 コンパクト型蛍光ランプ用ガラス管とし
て用いられることを特徴とする請求項1の電灯用ガラ
ス。
2. The glass for an electric lamp according to claim 1, which is used as a glass tube for a compact fluorescent lamp.
JP2001105579A 2001-04-04 2001-04-04 Compact fluorescent lamp glass and manufacturing method thereof. Expired - Fee Related JP4756429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105579A JP4756429B2 (en) 2001-04-04 2001-04-04 Compact fluorescent lamp glass and manufacturing method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105579A JP4756429B2 (en) 2001-04-04 2001-04-04 Compact fluorescent lamp glass and manufacturing method thereof.

Publications (2)

Publication Number Publication Date
JP2002293569A true JP2002293569A (en) 2002-10-09
JP4756429B2 JP4756429B2 (en) 2011-08-24

Family

ID=18958247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105579A Expired - Fee Related JP4756429B2 (en) 2001-04-04 2001-04-04 Compact fluorescent lamp glass and manufacturing method thereof.

Country Status (1)

Country Link
JP (1) JP4756429B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293570A (en) * 2001-04-04 2002-10-09 Nippon Electric Glass Co Ltd Glass for electric lamp
WO2009150809A1 (en) * 2008-06-09 2009-12-17 パナソニック株式会社 Glass tube for fluorescent lamp, fluorescent lamp, and lighting system
WO2009150812A1 (en) * 2008-06-09 2009-12-17 パナソニック株式会社 Glass tube for fluorescent lamp, fluorescent lamp, and lighting system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186515A (en) * 1975-01-28 1976-07-29 Tokyo Shibaura Electric Co KANKYUYOGARASU
JPS60155547A (en) * 1983-01-31 1985-08-15 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Glass composition for fluorescent lamp, tube lamp and lamp envelope therefrom and fluorescent lamp having lamp envelopemade therefrom
JPH0616452A (en) * 1991-09-06 1994-01-25 Toshiba Glass Co Ltd Front glass for hid lamp
JPH0656467A (en) * 1992-08-07 1994-03-01 Nippon Electric Glass Co Ltd Ultraviolet light absorbing glass
JPH0692677A (en) * 1992-02-05 1994-04-05 Toshiba Glass Co Ltd Glass composition for illumination
JPH0812369A (en) * 1994-07-04 1996-01-16 Toshiba Glass Co Ltd Glass for hid lamp
JPH11217235A (en) * 1997-10-27 1999-08-10 Carl Zeiss:Fa High-temperature resistant aluminosilicate glass for lamp bulb and its use
JPH11509514A (en) * 1996-05-13 1999-08-24 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Glass compositions suitable for use in fluorescent lamps, lamp vessels made from glass of said compositions, and fluorescent lamps comprising glass lamp vessels of said composition
JP2000203873A (en) * 1998-02-10 2000-07-25 Matsushita Electronics Industry Corp Glass composition for lamp, stem for lamp and bulb for lamp
JP2000290038A (en) * 1999-02-01 2000-10-17 Nippon Electric Glass Co Ltd Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2002003242A (en) * 2000-06-15 2002-01-09 Okamoto Glass Co Ltd Glass to cut off ultraviolet rays
JP2002060241A (en) * 2000-08-18 2002-02-26 Asahi Techno Glass Corp Glass for sealing tungsten
JP2002293570A (en) * 2001-04-04 2002-10-09 Nippon Electric Glass Co Ltd Glass for electric lamp

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186515A (en) * 1975-01-28 1976-07-29 Tokyo Shibaura Electric Co KANKYUYOGARASU
JPS60155547A (en) * 1983-01-31 1985-08-15 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Glass composition for fluorescent lamp, tube lamp and lamp envelope therefrom and fluorescent lamp having lamp envelopemade therefrom
JPH0616452A (en) * 1991-09-06 1994-01-25 Toshiba Glass Co Ltd Front glass for hid lamp
JPH0692677A (en) * 1992-02-05 1994-04-05 Toshiba Glass Co Ltd Glass composition for illumination
JPH0656467A (en) * 1992-08-07 1994-03-01 Nippon Electric Glass Co Ltd Ultraviolet light absorbing glass
JPH0812369A (en) * 1994-07-04 1996-01-16 Toshiba Glass Co Ltd Glass for hid lamp
JPH11509514A (en) * 1996-05-13 1999-08-24 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Glass compositions suitable for use in fluorescent lamps, lamp vessels made from glass of said compositions, and fluorescent lamps comprising glass lamp vessels of said composition
JPH11217235A (en) * 1997-10-27 1999-08-10 Carl Zeiss:Fa High-temperature resistant aluminosilicate glass for lamp bulb and its use
JP2000203873A (en) * 1998-02-10 2000-07-25 Matsushita Electronics Industry Corp Glass composition for lamp, stem for lamp and bulb for lamp
JP2000290038A (en) * 1999-02-01 2000-10-17 Nippon Electric Glass Co Ltd Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2002003242A (en) * 2000-06-15 2002-01-09 Okamoto Glass Co Ltd Glass to cut off ultraviolet rays
JP2002060241A (en) * 2000-08-18 2002-02-26 Asahi Techno Glass Corp Glass for sealing tungsten
JP2002293570A (en) * 2001-04-04 2002-10-09 Nippon Electric Glass Co Ltd Glass for electric lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293570A (en) * 2001-04-04 2002-10-09 Nippon Electric Glass Co Ltd Glass for electric lamp
WO2009150809A1 (en) * 2008-06-09 2009-12-17 パナソニック株式会社 Glass tube for fluorescent lamp, fluorescent lamp, and lighting system
WO2009150812A1 (en) * 2008-06-09 2009-12-17 パナソニック株式会社 Glass tube for fluorescent lamp, fluorescent lamp, and lighting system

Also Published As

Publication number Publication date
JP4756429B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4159708B2 (en) Lamp glass composition, lamp stem and lamp bulb
JP5062589B2 (en) Glass composition for lamp, glass component for lamp, lamp and method for producing glass composition for lamp
JP4786781B2 (en) Neodymium glass for tungsten-halogen lamp envelopes and filters
JP2005320225A (en) Glass for illumination
JP4485572B2 (en) Lamp and backlight unit
JP2007238398A (en) Soda-lime based glass composition
JP2002137935A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2532045B2 (en) Lighting glass composition
JPWO2006106660A1 (en) Lamp glass composition, lamp, backlight unit, and method for producing lamp glass composition
JPWO2007086441A1 (en) Method for producing glass composition for lamp, glass composition for lamp and lamp
KR20080109727A (en) Glass for illumination
JP2004315279A (en) Glass for fluorescent lamp
JP3775734B2 (en) GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
JP2007039281A (en) Ultraviolet-absorbing glass for liquid crystal display illumination and glass tube
JP2004035389A (en) Glass containing substantially no lead and glass tube fabricated from the same
JP3818571B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP4756429B2 (en) Compact fluorescent lamp glass and manufacturing method thereof.
JP2005041729A (en) Illuminating glass
JP4767456B2 (en) Glass composition for lighting
JP2002293570A (en) Glass for electric lamp
JP2003040643A (en) Glass composition for lighting
JP3925898B2 (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP4688398B2 (en) Glass composition for electric lamp
JP5014627B2 (en) GLASS GLASS MANUFACTURING METHOD, LAMP GLASS, AND LAMP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees