JP3775734B2 - GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME - Google Patents

GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME Download PDF

Info

Publication number
JP3775734B2
JP3775734B2 JP2001366280A JP2001366280A JP3775734B2 JP 3775734 B2 JP3775734 B2 JP 3775734B2 JP 2001366280 A JP2001366280 A JP 2001366280A JP 2001366280 A JP2001366280 A JP 2001366280A JP 3775734 B2 JP3775734 B2 JP 3775734B2
Authority
JP
Japan
Prior art keywords
glass
fluorescent lamp
less
tio
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001366280A
Other languages
Japanese (ja)
Other versions
JP2003171141A (en
Inventor
誠 白鳥
Original Assignee
旭テクノグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭テクノグラス株式会社 filed Critical 旭テクノグラス株式会社
Priority to JP2001366280A priority Critical patent/JP3775734B2/en
Publication of JP2003171141A publication Critical patent/JP2003171141A/en
Application granted granted Critical
Publication of JP3775734B2 publication Critical patent/JP3775734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光灯、白熱電球、ステム等に使用される照明用ガラス組成物に関し、特に管壁負荷が高い蛍光ランプの外囲器として好適な照明用ガラス組成物に関する。
【0002】
【従来の技術】
蛍光ランプは、直管タイプのものや直管を曲げ加工した環状タイプのものが一般的であるが、近年、省スペース、高輝度、高出力化の要求に対応すべく、電球型蛍光ランプのようなコンパクト型の蛍光ランプや、重環形蛍光ランプに代表される発光管の外径が従来よりも細いタイプの蛍光ランプが市場に出てきている。
【0003】
このような蛍光ランプは、発光管の容積が従来の蛍光ランプに比べて小さいため、ランプの管壁に対する消費電力の負荷が高く、単位面積当たりの紫外線強度や温度負荷が従来の蛍光ランプに比べて格段に高いものとなっている。
【0004】
蛍光ランプで特に重要視される特性は、ランプの明るさ、すなわち、全光束である。一般に、蛍光ランプの明るさは点灯開始直後から100時間経過した段階で評価される。管壁負荷の高い蛍光ランプはガラスのソーラリゼーションの加速が早く、初期光束評価(100時間後)の段階でソーラリゼーションの影響があることから、このような蛍光ランプに使われるガラスには高い耐紫外線ソーラリゼーション特性が必要とされる。
【0005】
ガラスに高い紫外線ソーラリゼーション特性を与えることは、光束維持率の改善に対して有効と考えられてきたが、管壁負荷の高い蛍光ランプにおいては、初期光束と光束維持率の両方に対して有効であり、蛍光ランプ用ガラスとして非常に重要な特性である。
【0006】
また、ガラス中には原料や製造工程から混入するFeが不純物として含まれる。Feは紫外線を強力に吸収するため、蛍光ランプ内で発生する紫外線のランプ外への漏洩防止を目的に、意図的に加える場合もある。
【0007】
Feはガラス中ではFe3+とFe2+が共存しているが、Fe3+は380nmを中心として狭い範囲に吸収帯が存在するのに対し、Fe2+は1100nmを中心として可視域まで広い範囲に吸収帯が存在する。蛍光ランプの明るさはガラスの透過率に大きく依存し、ランプの全光束を上げるためには、ガラスは高い透過率が必要とされるため、Fe2+による吸収は好ましくない。
【0008】
ガラスを酸化性で溶融することで、全Feに対するFe3+の割合が増加するため、Fe2+の吸収による可視域の透過率低下を抑えることが出来るが、Fe2+も少なからず存在するため、Feのコンタミネーションを極力減らすことが高い透過率を維持する方法として最も望ましい。
【0009】
このような用途の照明用ガラスとして、例えば、特開平6-92677号をはじめ特開平9−12332号,特開平11−224649号,特開2000−290038号に記載されたものが知られている。また、管壁負荷の高いランプ用途のガラスとして、特開2000−315477号,特開2001−243914号に開示されたガラスが開発されている。
【0010】
【発明が解決しようとする課題】
上記特開平6-92677号に開示のガラスは、CeO+TiOによりソーラリゼーション特性を改善した組成物であるが、このガラスには以下のような欠点があることがその後の調査で判明した。このガラス組成物はSbを必須成分として含むため、CeOとSbの共存を認めている。実施例に開示のガラスもCeOとSbが共存するガラスがほとんどであるが、CeOとSbが共存すると下記の反応式で示されるソーラリゼーション反応が起こる。
2Ce3++Sb5+→2Ce4++Sb3+
ここでCe4+は315nm付近に吸収帯を持ち、紫外線照射後は吸収端が長波長側へシフトするが、この影響で可視域の短波長側、特に450nm以下の領域では透過率が低下する。そのため、このガラスを管壁負荷の高い蛍光灯に使用した場合にはソーラリゼーションによる透過率の低下により、初期光束が落ちるという問題があった。
【0011】
また、特開平9−12332号,特開平11−224649号,特開2000−290038号に開示されたガラスは蛍光ランプのバルブとして使用可能なものであるが、特開平9−12332号および特開平11−224649号のガラスはTiOおよびSbを必須成分としておらず、また、CeOの使用も認めているため、上記と同様の問題がある。特開2000−290038号のガラスはTiOを必須成分として含有させることで輝度劣化を抑えたものであるが、Sb含有量が0.1重量%以下と少ないため、酸化性が弱く、また、Feを0.4%までは積極的に添加しても良いことからFe2+による吸収により、可視域の透過率が低下するという問題があった。
【0012】
さらに、特開2000−315477号,特開2001−243914号には管壁負荷の高い蛍光ランプに適したガラス組成が開示されているが、これらもTiOが必須成分でなく、また、CeOの添加を容認していることから、ソーラリゼーションによる透過率の低下が危惧されるものであった。
【0013】
本発明は、このような事情を考慮して成されたものであり、管壁負荷の高い蛍光ランプのバルブに使用してもソーラリゼーションによる透過率の低下が少ないため、従来のガラスを使用する場合に比べて高い初期光束を与えることができる照明用ガラス組成物を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、上記目的を達成するためにCeOを含有せず、Fe含有量を極力低減するとともにZrO TiOおよびSbを必須成分として特定量含有させたことを特徴とする。
【0015】
すなわち、本発明は、熱膨張係数が88〜100×10−7/℃のソーダライム系ガラスであって、CeO を含有せず、質量百分率でTiO が0.05〜5%,Sb が0.12〜1%,Fe が0.02%未満であることを特徴とする。
【0016】
また、具体的には、質量百分率で、SiO 65〜75%,Al 1〜5%, NaO 3〜10%,KO 1〜7%, LiO 0.5〜3%,NaO+KO+LiO 8〜16%, CaO 0〜5%, MgO 0〜5%, BaO 4〜6.5%, SrO 2〜8%, CaO+MgO+BaO+SrO 7〜16%, B 0〜3%,TiO 0.05〜5%,Sb0.12〜1%,TiO+Sb 0.2〜5%, ZrO 0〜3%,Fe 0.02%未満の組成を有し、CeOを含有しないことを特徴とする。
【0017】
さらに、本発明のガラスは、400Wの紫外線光源により300時間紫外線照射した前後での400nmにおける透過率の劣化率が1%以下であることを特徴とする。
【0018】
次に本発明のガラスを構成する各成分の作用と含有量を上記のように限定した理由を説明する。
【0019】
SiOはガラスの網目形成成分であるが、65%未満ではガラスの化学的耐久性が低くなり、75%を超えるとガラスの溶融性、加工性が悪化する。
【0020】
Alはガラスの化学的耐久性を改善する作用があるが、1%未満ではその効果がほとんどなく、ガラスが失透しやすくなる。また、5%を超えると脈理が発生して均質なガラスが得られなくなる。好ましくは、2〜4%の範囲である。
【0021】
NaO,KO,LiOは融剤として作用し、ガラスの溶融性を改善するとともに、ガラスの熱膨張係数を調整する効果も有する。本発明におけるガラスの熱膨張係数はステム部での使用も考慮して導入金属であるジュメット線と膨張係数が整合するように、0〜300℃の熱膨張係数が88〜100×10−7/℃であることが望ましいが、これらの成分がそれぞれ上記上限値を超える場合、あるいはこれら成分の合量が16%を超える場合には熱膨張係数が高くなりすぎるとともに化学的耐久性が低下するので好ましくない。また、それぞれの成分が上記下限値未満、あるいはこれら成分の合量が8%未満ではガラスの粘度が高くなり、溶融が困難になる。
【0022】
CaOおよびMgOはガラスの粘性曲線の調整を目的に上記上限値まで添加することができるが、上限値を超えるとガラスが失透しやすくなるので好ましくない。
【0023】
BaOはガラスに高い電気絶縁性を付与する成分であるが、4%未満では所望の電気絶縁性が得られず、6.5%を超えると溶融炉材の浸食が顕著になり、製品中のブツ不良が増加する。好ましくは上限6%までである。
【0024】
SrOはBaOと同様にガラスの電気絶縁性の増加に寄与するが、2%未満では所望の電気絶縁性が得られない。また添加量を増やしすぎると失透傾向が強まるだけでなく原料コストが著しく増加するため上限を8%とする。好ましくは3〜7%の範囲である。
【0025】
本発明のガラスは、特に管壁負荷の高い蛍光ランプのバルブとして好適なものであるが、ステム部での用途を考えた場合には、電気導入部に当たるため高い電気抵抗が要求され、具体的には250℃における抵抗値で108.0Ω・cm以上の数値が必要になる。アルカリ土類金属酸化物(CaO,MgO,BaO,SrO)は全体としてガラスの電気絶縁性を高める作用を有するが、これらの合量が7%未満では上記の電気抵抗が得られず、16%を越えるとガラスの失透傾向が強くなるため好ましくない。
【0026】
は溶融性を向上させる効果を持ち、3%まで添加することができるが、揮発しやすい成分のため、3%を越えて添加すると溶融時の揮発により溶融炉材が侵食されるため好ましくない。
【0027】
TiOは紫外線ソラリゼーションを抑制する効果を持ち、添加量の増加で蛍光ランプに適した紫外線カット特性を付与できるとともに、化学的耐久性を高める効果も持つ本発明の必須成分である。その含有量が0.05%未満では紫外線ソーラリゼーションを抑制する効果が小さく、含有量が5%を越えるとガラスの着色による外観欠点が発生するだけでなく、失透傾向も強まる。好ましくは0.2〜4%の範囲である。
【0028】
Sbはガラス溶融時の清澄剤、酸化剤として働くだけでなく、TiOと同様、紫外線ソラリゼーションを抑制する効果を持つ必須成分である。その含有量が0.12%未満では清澄剤、酸化剤としての効果が得られず、含有量が増えるに連れてバーナーによる加工時にガラスの黒化現象を起こしやすくなる。1%を越えると、この黒化現象が顕著になるため、最大でも1%までの添加に留めることが好ましい。
【0029】
TiO,Sbは前述の通り紫外線ソーラリゼーションの抑制に効果がある成分であり、これらは合量で0.2%以上含有することが好ましい。0.2%未満ではその効果が小さく、5%を超えると失透性が強くなる。
【0030】
ZrOはガラスの化学的耐久性の改善を目的に3%まで添加することができるが、3%を超えて添加すると、ガラスの失透性が悪くなるため好ましくない。ZrOは少量でもその効果を発揮するので、好ましくは0.01〜3%、より好ましくは0.05〜2%である。
【0031】
Feは原料からの不純物としてガラス中に混入し、含有量が増加するとガラスの透過率低下により、全光束を落とす要因となる。そのため、蛍光ランプ用のガラスとしては高い全光束を与えるためにFeの混入は極力抑えることが望ましく、本発明では0.02%未満に限定した。Feは少なければ少ないほど全光束に対しては有利であり、好ましくは0.015%未満である。
【0032】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。本発明のガラスは、次のようにして作製することができる。まず上記組成範囲、例えば、質量百分率で、SiO 68.0%,Al 2.6%,NaO 7.0%,,KO 6.0%,LiO 1.6%, CaO 2.5%, MgO 1.5%, BaO 5.0%, SrO 4.0%,TiO 1.5%,Sb 0.2%,ZrO 0.1%,Fe 0.015%となるように原料を秤量・混合する。尚、Feは原料の選択により目標値以下となるよう調整する。この原料混合物を白金坩堝に収容し、電気炉内において加熱溶融する。攪拌・清澄の後、所望の形態に成形する。なお、蛍光灯用のバルブやステム、排気管等を作製するために管状に量産成形する場合には、タンク炉にて溶融し、ダンナー法、アップドロー法等の既知の管引成形法によって問題なく成形を行うことができる。
【0033】
次に本発明の蛍光ランプ用ガラスを用いて蛍光ランプを作製する方法を説明する。上記と同様にしてガラス原料を秤量・混合してバッチを作製する。次にこのバッチをタンク式連続溶融炉にて投入し、1500〜1600℃で溶融ガラス化した後、ダンナー法、ダウンドロー法、アップドロー法等によってガラスを管状に成形し、所定の長さに切断してガラス管を得る。
【0034】
続いて、ガラス管の両端に絞り加工を施す等、所望の形状に加工して蛍光ランプ用外囲器を作製する。その後、蛍光体の塗布、ステムの取り付け、排気、水銀やArガスの封入等を行う。環状蛍光灯や特殊形状の蛍光灯の場合は、さらに曲げ加工等を行って蛍光ランプを得る。
【0035】
【実施例】
さらに、実施例により本発明の照明用ガラス組成物について詳細に説明する。表1に本発明の実施例および比較例を示す。表中の組成は質量%で表し、それぞれ上記実施の形態と同様に白金坩堝で溶融して型内に鋳込み、表1記載の諸特性測定用のサンプルとした。
【0036】
【表1】

Figure 0003775734
【0037】
表中の項目について説明すると、熱膨張係数は0〜300℃における値を(×10−7/℃)で示し、ガラス転移点は、ガラスの粘度 η=1012..3 Pa・sを示す温度、軟化点は、ガラスの粘度 η=106.65 Pa・sを示す温度である。
【0038】
耐紫外線ソラリゼーション特性は、各ガラスサンプルを板状にカットし、肉厚1mmで両面光学研磨加工した後、400Wの水銀ランプ(H-400P)から15cmの距離に研摩面を向けて紫外線を照射し、ソラリゼーション加速試験を行った。評価は初期状態から紫外線照射300時間経過後の波長400nmにおける透過率の劣化率で行った(次式参照)。
劣化率(%)=[{(0h透過率)−(300h照射後の透過率)}/(0h透過率)]×100
【0039】
表1から明らかなように、本発明の実施例であるNo.1〜10のガラスは、熱膨張係数が一般的に電球や蛍光灯に用いられているソーダライムガラスや鉛ガラスとほぼ一致する値であり、これらの用途として問題なく使用できる。
【0040】
本発明の特徴であるソーラリゼーション特性については、実施例のガラスは400nmにおける透過率の劣化率がいずれも1%未満という優れた耐紫外線ソーラリゼーション特性を示している。比較例として記載したNo.11のガラスはTiOを含まない従来の組成の例であるが、紫外線照射後の透過率劣化度が1.5%と本発明の実施例よりも劣っている。また、No.12のガラスはCeOを含有した組成例であるが、こちらのガラスは本文中でも示したようにSbとの併用であるため、極端にソーラリゼーション特性が悪く、400nmの透過率劣化も7.1%と大きな数値を示した。
【0041】
次に、本発明の実施例No.6のガラスと比較例No.12のガラスとを使用して、外径12.0mm、厚さ1.0mm、256mmのガラス管を作製した。このガラス管をバーナー加熱して二回屈曲させ、蛍光体を塗布、焼き付けを行った後、ステムの取り付け、排気、水銀やArガスの封入等を行って屈曲部を3つ有する発光管を作製し、電球形蛍光ランプとして組立てた。この蛍光ランプの消費電力は、約14Wで、管壁負荷は約0.14W/cmである。この電球形蛍光ランプに対し点灯後100時間経過時の初期光束および2500時間点灯後の光束維持率を比較した。
【0042】
この結果、実施例No.6のガラスを使用した蛍光ランプは、比較例よりも初期光束において約5%優れており、2500時間点灯後でも約10%の光束維持率の向上が認められた。
【0043】
【発明の効果】
以上のように本発明のガラスは、TiO,Sbを必須成分とし、CeOとの併用を避けることで優れた耐紫外線ソーラリゼーション特性を示すため、管壁負荷の高い蛍光ランプのバルブとして使用する場合、従来のガラスを使用した場合よりも初期光束が高く、光束維持率も良い、高輝度の蛍光ランプを提供することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an illumination glass composition used for fluorescent lamps, incandescent lamps, stems and the like, and more particularly to an illumination glass composition suitable as an envelope of a fluorescent lamp having a high tube wall load.
[0002]
[Prior art]
Fluorescent lamps are generally straight tube types and annular types that are bent straight tubes, but in recent years, in order to meet the demands for space saving, high brightness, and high output, Such compact fluorescent lamps and fluorescent lamps having a smaller outer diameter than conventional ones, such as arcuate fluorescent lamps, are now on the market.
[0003]
Since such a fluorescent lamp has a smaller arc tube volume than a conventional fluorescent lamp, the load of power consumption on the lamp tube wall is high, and the ultraviolet intensity and temperature load per unit area are higher than those of a conventional fluorescent lamp. It is extremely expensive.
[0004]
The characteristic that is particularly important for fluorescent lamps is the brightness of the lamp, that is, the total luminous flux. In general, the brightness of a fluorescent lamp is evaluated at a stage where 100 hours have elapsed since the start of lighting. Fluorescent lamps with high tube wall load accelerate glass solarization quickly, and there is an influence of solarization at the stage of initial luminous flux evaluation (after 100 hours). High UV resistance solarization properties are required.
[0005]
Giving glass a high UV solarization characteristic has been considered effective for improving the luminous flux maintenance factor, but in fluorescent lamps with high tube wall loads, both the initial luminous flux and the luminous flux maintenance factor are considered. It is effective and is a very important characteristic as glass for fluorescent lamps.
[0006]
Further, Fe 2 O 3 mixed from the raw materials and the manufacturing process is contained as impurities in the glass. Since Fe 2 O 3 strongly absorbs ultraviolet rays, it may be intentionally added for the purpose of preventing leakage of ultraviolet rays generated in the fluorescent lamp to the outside of the lamp.
[0007]
Fe 2 O 3 coexists in Fe 3+ and Fe 2+ in glass, but Fe 3+ has an absorption band in a narrow range centering on 380 nm, whereas Fe 2+ is wide in the visible region centering on 1100 nm. There is an absorption band in the range. The brightness of the fluorescent lamp greatly depends on the transmittance of the glass, and in order to increase the total luminous flux of the lamp, the glass needs to have a high transmittance. Therefore, absorption by Fe 2+ is not preferable.
[0008]
By melting the glass in an oxidizing manner, the ratio of Fe 3+ to the total Fe is increased, so that it is possible to suppress a decrease in the visible transmittance due to the absorption of Fe 2+ , but Fe 2+ is also present in a considerable amount, so Fe Reducing the amount of contamination as much as possible is the most desirable method for maintaining high transmittance.
[0009]
Examples of illumination glasses for such applications include those described in JP-A-6-92677, JP-A-9-12332, JP-A-11-224649, and JP-A-2000-290038. . Further, as glasses for lamp applications with a high tube wall load, the glasses disclosed in JP-A Nos. 2000-315477 and 2001-243914 have been developed.
[0010]
[Problems to be solved by the invention]
The glass disclosed in the above-mentioned JP-A-6-92677 is a composition having improved solarization characteristics by CeO 2 + TiO 2, but it has been found by subsequent investigations that this glass has the following drawbacks. . Since this glass composition contains Sb 2 O 3 as an essential component, the coexistence of CeO 2 and Sb 2 O 3 is recognized. Most of the glasses disclosed in the examples are glasses in which CeO 2 and Sb 2 O 3 coexist, but when CeO 2 and Sb 2 O 3 coexist, a solarization reaction represented by the following reaction formula occurs.
2Ce 3+ + Sb 5+ → 2Ce 4+ + Sb 3+
Here, Ce 4+ has an absorption band in the vicinity of 315 nm, and the absorption edge shifts to the long wavelength side after irradiation with ultraviolet rays. However, due to this influence, the transmittance is lowered on the short wavelength side in the visible region, particularly in the region of 450 nm or less. Therefore, when this glass is used for a fluorescent lamp with a high tube wall load, there is a problem that the initial luminous flux falls due to a decrease in transmittance due to solarization.
[0011]
Further, the glasses disclosed in JP-A-9-12332, JP-A-11-224649, and JP-A-2000-290038 can be used as bulbs of fluorescent lamps. Since the glass of No. 11-224649 does not contain TiO 2 and Sb 2 O 3 as essential components and also uses CeO 2 , it has the same problem as described above. The glass of Japanese Patent Application Laid-Open No. 2000-290038 suppresses luminance deterioration by containing TiO 2 as an essential component, but has low oxidizability because the Sb 2 O 3 content is as low as 0.1% by weight or less. Further, since Fe 2 O 3 may be positively added up to 0.4%, there is a problem that the transmittance in the visible region is reduced by absorption by Fe 2+ .
[0012]
Furthermore, JP-A-2000-315477 and JP-A-2001-243914 disclose glass compositions suitable for fluorescent lamps with a high tube wall load, but these also do not contain TiO 2 as an essential component, and CeO 2 Therefore, the decrease in transmittance due to solarization was a concern.
[0013]
The present invention has been made in consideration of such circumstances, and the conventional glass is used because there is little decrease in transmittance due to solarization even when used in a fluorescent lamp bulb having a high tube wall load. It aims at providing the glass composition for illumination which can give a high initial luminous flux compared with the case where it does.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention does not contain CeO 2 , reduces the content of Fe 2 O 3 as much as possible, and ZrO 2. A specific amount of TiO 2 and Sb 2 O 3 is contained as essential components.
[0015]
That is, the present invention is a soda lime glass having a thermal expansion coefficient of 88 to 100 × 10 −7 / ° C., does not contain CeO 2, and is TiO 2 in mass percentage. 0.05 to 5%, Sb 2 O 3 0.12 to 1%, Fe 2 O 3 Is less than 0.02% .
[0016]
Also, specifically, by mass percentage, SiO 2 65~75%, Al 2 O 3 1~5%, Na 2 O 3~10%, K 2 O 1~7%, Li 2 O 0.5~ 3%, Na 2 O + K 2 O + Li 2 O 8-16%, CaO 0-5%, MgO 0-5%, BaO 4-6.5%, SrO 2-8%, CaO + MgO + BaO + SrO 7-16%, B 2 O 3 0~3%, TiO 2 0.05~5% , Sb 2 O 3 0.12~1%, TiO 2 + Sb 2 O 3 0.2~5%, ZrO 2 0~3%, Fe 2 O 3 It has a composition of less than 0.02%, characterized in that it does not contain CeO 2.
[0017]
Furthermore, the glass of the present invention is characterized in that the deterioration rate of the transmittance at 400 nm before and after being irradiated with ultraviolet light by a 400 W ultraviolet light source for 300 hours is 1% or less.
[0018]
Next, the reason why the action and content of each component constituting the glass of the present invention is limited as described above will be described.
[0019]
SiO 2 is a glass network forming component, but if it is less than 65%, the chemical durability of the glass is low, and if it exceeds 75%, the meltability and workability of the glass deteriorate.
[0020]
Al 2 O 3 has the effect of improving the chemical durability of the glass, but if it is less than 1%, there is almost no effect, and the glass tends to devitrify. On the other hand, if it exceeds 5%, striae occur and a homogeneous glass cannot be obtained. Preferably, it is 2 to 4% of range.
[0021]
Na 2 O, K 2 O, and Li 2 O act as a flux, improve the meltability of the glass, and have the effect of adjusting the thermal expansion coefficient of the glass. The thermal expansion coefficient of the glass in the present invention has a thermal expansion coefficient of 88 to 100 × 10 −7 / 0 to 0 to 300 ° C. so that the expansion coefficient matches the jumet wire which is an introduced metal in consideration of use in the stem portion. However, if these components exceed the above upper limit values, or if the total amount of these components exceeds 16%, the coefficient of thermal expansion becomes too high and the chemical durability decreases. It is not preferable. Further, if each component is less than the above lower limit value or the total amount of these components is less than 8%, the viscosity of the glass becomes high and melting becomes difficult.
[0022]
CaO and MgO can be added up to the above upper limit for the purpose of adjusting the viscosity curve of the glass, but if the upper limit is exceeded, the glass tends to devitrify, which is not preferable.
[0023]
BaO is a component that imparts high electrical insulation to glass, but if it is less than 4%, the desired electrical insulation cannot be obtained, and if it exceeds 6.5%, erosion of the melting furnace material becomes prominent, Defects increase. Preferably, the upper limit is up to 6%.
[0024]
SrO contributes to an increase in the electrical insulation of the glass like BaO, but if it is less than 2%, the desired electrical insulation cannot be obtained. Further, if the addition amount is excessively increased, not only the tendency to devitrification is strengthened but also the raw material cost is remarkably increased, so the upper limit is made 8%. Preferably it is 3 to 7% of range.
[0025]
The glass of the present invention is particularly suitable as a bulb of a fluorescent lamp with a high tube wall load. However, when considering the use in the stem portion, it is required to have a high electric resistance because it hits the electric introduction portion. Requires a value of 10 8.0 Ω · cm or more as a resistance value at 250 ° C. Alkaline earth metal oxides (CaO, MgO, BaO, SrO) have the effect of enhancing the electrical insulation of the glass as a whole, but if the total amount of these is less than 7%, the above-mentioned electrical resistance cannot be obtained, and 16% Exceeding the range is not preferable because the tendency of devitrification of the glass becomes strong.
[0026]
B 2 O 3 has the effect of improving meltability and can be added up to 3%. However, since it is a component that easily volatilizes, if it exceeds 3%, the melting furnace material is eroded by volatilization at the time of melting. Therefore, it is not preferable.
[0027]
TiO 2 is an essential component of the present invention that has an effect of suppressing ultraviolet solarization, can impart ultraviolet cut characteristics suitable for fluorescent lamps by increasing the addition amount, and also has an effect of enhancing chemical durability. If the content is less than 0.05%, the effect of suppressing ultraviolet solarization is small. If the content exceeds 5%, not only appearance defects due to coloring of the glass occur, but also the tendency to devitrification increases. Preferably it is 0.2 to 4% of range.
[0028]
Sb 2 O 3 is an essential component that not only functions as a refining agent and an oxidizing agent during glass melting, but also has an effect of suppressing ultraviolet solarization, like TiO 2 . If the content is less than 0.12%, the effect as a refining agent and an oxidizing agent cannot be obtained, and as the content increases, a blackening phenomenon of glass tends to occur during processing with a burner. If it exceeds 1%, this blackening phenomenon becomes remarkable. Therefore, it is preferable to add only 1% at the maximum.
[0029]
As described above, TiO 2 and Sb 2 O 3 are components that are effective in suppressing ultraviolet solarization, and these are preferably contained in a total amount of 0.2% or more. If it is less than 0.2%, the effect is small, and if it exceeds 5%, devitrification becomes strong.
[0030]
ZrO 2 can be added up to 3% for the purpose of improving the chemical durability of the glass, but adding over 3% is not preferable because the devitrification of the glass deteriorates. Since ZrO 2 exhibits its effect even in a small amount, it is preferably 0.01 to 3%, more preferably 0.05 to 2%.
[0031]
Fe 2 O 3 is mixed into the glass as an impurity from the raw material, and when the content increases, the transmittance of the glass decreases, causing a reduction in the total luminous flux. Therefore, it is desirable to suppress the mixing of Fe 2 O 3 as much as possible in order to give a high total luminous flux as glass for a fluorescent lamp, and in the present invention, it is limited to less than 0.02%. The smaller the Fe 2 O 3, the more advantageous for the total luminous flux, and preferably less than 0.015%.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. The glass of the present invention can be produced as follows. First, in the above composition range, for example, mass percentage, SiO 2 68.0%, Al 2 O 3 2.6%, Na 2 O 7.0%, K 2 O 6.0%, Li 2 O 1.6 %, CaO 2.5%, MgO 1.5%, BaO 5.0%, SrO 4.0%, TiO 2 1.5%, Sb 2 O 3 0.2%, ZrO 2 0.1%, Fe The raw materials are weighed and mixed so that 2 O 3 is 0.015%. Incidentally, Fe 2 O 3 is adjusted to be equal to or less than the target value by the selection of raw materials. This raw material mixture is placed in a platinum crucible and heated and melted in an electric furnace. After stirring and clarification, it is formed into a desired form. In addition, when mass-producing and forming into a tube to produce bulbs, stems, exhaust pipes, etc. for fluorescent lamps, they are melted in a tank furnace, and problems are caused by known tube drawing methods such as the Danner method and the updraw method. The molding can be performed without any problems.
[0033]
Next, a method for producing a fluorescent lamp using the fluorescent lamp glass of the present invention will be described. In the same manner as described above, glass raw materials are weighed and mixed to produce a batch. Next, this batch is put in a tank type continuous melting furnace and melted into glass at 1500 to 1600 ° C., and then glass is formed into a tubular shape by the Dunner method, the downdraw method, the updraw method, etc. Cut to obtain a glass tube.
[0034]
Subsequently, an envelope for a fluorescent lamp is manufactured by processing the glass tube into a desired shape such as drawing at both ends. Thereafter, application of a phosphor, attachment of a stem, exhaust, encapsulation of mercury or Ar gas, and the like are performed. In the case of an annular fluorescent lamp or a specially shaped fluorescent lamp, the fluorescent lamp is obtained by further bending.
[0035]
【Example】
Furthermore, the glass composition for illumination of this invention is demonstrated in detail by an Example. Table 1 shows examples and comparative examples of the present invention. The composition in the table is expressed by mass%, and each sample was melted in a platinum crucible and cast into a mold in the same manner as in the above embodiment to obtain samples for measuring various properties described in Table 1.
[0036]
[Table 1]
Figure 0003775734
[0037]
Explaining the items in the table, the coefficient of thermal expansion indicates the value at 0 to 300 ° C. by (× 10 −7 / ° C.), and the glass transition point indicates the viscosity of glass η = 10 12.3 Pa · s. The temperature and the softening point are temperatures indicating the viscosity η = 10 6.65 Pa · s of the glass.
[0038]
Ultraviolet-resistant solarization characteristics are as follows: each glass sample is cut into a plate shape, both sides are optically polished with a thickness of 1 mm, and then the polished surface is irradiated with ultraviolet rays at a distance of 15 cm from a 400 W mercury lamp (H-400P). A solarization acceleration test was conducted. The evaluation was performed based on the deterioration rate of transmittance at a wavelength of 400 nm after 300 hours of ultraviolet irradiation from the initial state (see the following formula).
Degradation rate (%) = [{(0h transmittance) − (transmittance after 300h irradiation)} / (0h transmittance)] × 100
[0039]
As is apparent from Table 1, No. 1 as an example of the present invention. The glass of 1-10 is a value with which a thermal expansion coefficient generally corresponds with the soda lime glass and lead glass generally used for the light bulb and the fluorescent lamp, and can be used without a problem as these uses.
[0040]
Regarding the solarization characteristics that are the characteristics of the present invention, the glasses of the examples show excellent ultraviolet solarization characteristics in which the transmittance deterioration rate at 400 nm is less than 1%. No. described as a comparative example. The glass No. 11 is an example of a conventional composition that does not contain TiO 2 , but the transmittance deterioration degree after ultraviolet irradiation is 1.5%, which is inferior to the embodiment of the present invention. No. The glass No. 12 is a composition example containing CeO 2 , but since this glass is used in combination with Sb 2 O 3 as shown in the text, the solarization characteristics are extremely poor, and the transmittance deterioration of 400 nm. Also showed a large value of 7.1%.
[0041]
Next, Example No. of the present invention. No. 6 glass and Comparative Example No. A glass tube having an outer diameter of 12.0 mm, a thickness of 1.0 mm, and 256 mm was prepared using 12 glasses. This glass tube is heated twice with a burner, and after applying and baking a phosphor, a stem is attached, exhausted, sealed with mercury or Ar gas, etc. to produce an arc tube having three bent portions. And assembled as a bulb-type fluorescent lamp. The power consumption of this fluorescent lamp is about 14 W, and the tube wall load is about 0.14 W / cm 2 . For this bulb-type fluorescent lamp, the initial luminous flux after 100 hours from lighting and the luminous flux maintenance factor after 2500 hours lighting were compared.
[0042]
As a result, Example No. The fluorescent lamp using glass No. 6 was about 5% better in the initial luminous flux than the comparative example, and an improvement in luminous flux maintenance factor of about 10% was observed even after lighting for 2500 hours.
[0043]
【The invention's effect】
As described above, the glass of the present invention contains TiO 2 and Sb 2 O 3 as essential components and exhibits excellent ultraviolet solarization characteristics by avoiding the combined use with CeO 2. When used as a bulb, it is possible to provide a high-intensity fluorescent lamp having a higher initial luminous flux and a better luminous flux maintenance factor than when conventional glass is used.

Claims (3)

熱膨張係数が88〜100×10−7/℃のソーダライム系ガラスであって、CeOを含有せず、質量百分率でTiO
が0.05〜5%,Sbが0.12〜1%,ZrO が0.01〜3%,Feが0.02%未満であり、400Wの紫外線光源により300時間紫外線照射した前後での400nmにおける透過率の劣化率が1%以下であることを特徴とする照明用ガラス組成物。
A soda-lime glass having a thermal expansion coefficient of 88 to 100 × 10 −7 / ° C., does not contain CeO 2, and has a mass percentage of TiO 2.
300 but 0.05 to 5% Sb 2 O 3 is 0.12 to 1% ZrO 2 is 0.01 to 3% Fe 2 O 3 is Ri der less than 0.02%, an ultraviolet light source 400W A lighting glass composition, wherein the deterioration rate of transmittance at 400 nm before and after ultraviolet irradiation for 1 hour is 1% or less .
質量百分率で、SiO65〜75%,Al1〜5%,NaO3〜10%,KO1〜7%,LiO0.5〜3%,NaO+KO+LiO8〜16%,CaO0〜5%,MgO0〜5%,BaO4〜6.5%,SrO2〜8%,CaO+MgO+BaO+SrO7〜16%,B0〜3%,TiO0.05〜5%,Sb0.12〜1%,TiO+Sb0.2〜5%,ZrO 0.01〜3%,Fe0.02%未満の組成を有し、CeOを含有しないことを特徴とする請求項1記載の照明用ガラス組成物。By mass percentage, SiO 2 65~75%, Al 2 O 3 1~5%, Na 2 O3~10%, K 2 O1~7%, Li 2 O0.5~3%, Na 2 O + K 2 O + Li 2 O8 ~ 16%, CaO 0 to 5%, MgO 0 to 5%, BaO 4 to 6.5%, SrO 2 to 8%, CaO + MgO + BaO + SrO 7 to 16%, B 2 O 3 0 to 3%, TiO 2 0.05 to 5%, Sb 2 O 3 0.12~1%, TiO 2 + Sb 2 O 3 0.2~5%, ZrO 2 0.01 ~3%, Fe 2 O 3 has a composition of less than 0.02%, the CeO 2 It does not contain, The glass composition for illumination of Claim 1 characterized by the above-mentioned . 請求項1または2のいずれかに記載の照明用ガラス組成物からなるガラス管を外囲器として用いたことを特徴とする蛍光ランプ。A fluorescent lamp comprising a glass tube made of the glass composition for illumination according to claim 1 or 2 as an envelope.
JP2001366280A 2001-11-30 2001-11-30 GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME Expired - Fee Related JP3775734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366280A JP3775734B2 (en) 2001-11-30 2001-11-30 GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366280A JP3775734B2 (en) 2001-11-30 2001-11-30 GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME

Publications (2)

Publication Number Publication Date
JP2003171141A JP2003171141A (en) 2003-06-17
JP3775734B2 true JP3775734B2 (en) 2006-05-17

Family

ID=19176199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366280A Expired - Fee Related JP3775734B2 (en) 2001-11-30 2001-11-30 GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME

Country Status (1)

Country Link
JP (1) JP3775734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450410A4 (en) * 2016-04-28 2019-11-27 Nippon Electric Glass Co., Ltd. Glass tube for metal sealing and glass for metal sealing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348735B2 (en) * 2003-02-13 2009-10-21 日本電気硝子株式会社 Glass for lighting
JP2007048713A (en) * 2005-08-12 2007-02-22 Matsushita Electric Ind Co Ltd Manufacturing method of fluorescent lamp
FR2895395B1 (en) * 2005-12-22 2008-02-22 Saint Gobain METHOD FOR REFINING GLASS
MY154486A (en) 2007-03-28 2015-06-30 Pilkington Group Ltd Glass composition
FR2921356B1 (en) * 2007-09-21 2011-01-21 Saint Gobain SILICO-SODO-CALCIUM GLASS COMPOSITION
FR2921357B1 (en) * 2007-09-21 2011-01-21 Saint Gobain SILICO-SODO-CALCIUM GLASS COMPOSITION
US8671717B2 (en) 2008-03-06 2014-03-18 Guardian Industries Corp. Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method
JP2010208906A (en) * 2009-03-11 2010-09-24 Asahi Glass Co Ltd Substrate glass for optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450410A4 (en) * 2016-04-28 2019-11-27 Nippon Electric Glass Co., Ltd. Glass tube for metal sealing and glass for metal sealing
US11377385B2 (en) 2016-04-28 2022-07-05 Nippon Electric Glass Co., Ltd. Glass tube for metal sealing and glass for metal sealing

Also Published As

Publication number Publication date
JP2003171141A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP4159708B2 (en) Lamp glass composition, lamp stem and lamp bulb
JP4786781B2 (en) Neodymium glass for tungsten-halogen lamp envelopes and filters
HU213843B (en) Glass composition suitable for use in electric lamps, stem manufactured from this glass composition and fluorescent lamp
JP5062589B2 (en) Glass composition for lamp, glass component for lamp, lamp and method for producing glass composition for lamp
WO1998055413A1 (en) Lead and arsenic free borosilicate glass and lamp containing same
JP2002137935A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JPWO2007086441A1 (en) Method for producing glass composition for lamp, glass composition for lamp and lamp
JP3775734B2 (en) GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME
JP4040684B2 (en) Glass composition suitable for use in fluorescent lamp, lamp vessel manufactured from glass of said composition, and fluorescent lamp comprising glass lamp vessel of said composition
JP2582734B2 (en) Glass for fluorescent lamp
JP2000290038A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
CA2491945C (en) An electric lamp comprising a glass component
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
JP4767456B2 (en) Glass composition for lighting
JP2003040643A (en) Glass composition for lighting
JP4688398B2 (en) Glass composition for electric lamp
JP2619346B2 (en) Fluorescent glass
JP4756429B2 (en) Compact fluorescent lamp glass and manufacturing method thereof.
JP2007297273A (en) Glass composition for lamp, and stem and bulb for lamp
JP2003040644A (en) Glass composition for lighting
JP4348735B2 (en) Glass for lighting
JP2007131530A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2007161583A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2002293570A (en) Glass for electric lamp
JP2008094718A (en) Glass composition for electric lamp

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees