JP4767456B2 - Glass composition for lighting - Google Patents

Glass composition for lighting Download PDF

Info

Publication number
JP4767456B2
JP4767456B2 JP2001266634A JP2001266634A JP4767456B2 JP 4767456 B2 JP4767456 B2 JP 4767456B2 JP 2001266634 A JP2001266634 A JP 2001266634A JP 2001266634 A JP2001266634 A JP 2001266634A JP 4767456 B2 JP4767456 B2 JP 4767456B2
Authority
JP
Japan
Prior art keywords
glass
lighting
effect
lead
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001266634A
Other languages
Japanese (ja)
Other versions
JP2003073142A (en
Inventor
信夫 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
AGC Techno Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Techno Glass Co Ltd filed Critical AGC Techno Glass Co Ltd
Priority to JP2001266634A priority Critical patent/JP4767456B2/en
Publication of JP2003073142A publication Critical patent/JP2003073142A/en
Application granted granted Critical
Publication of JP4767456B2 publication Critical patent/JP4767456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光灯、白熱電球への使用を目的とし、実質的に鉛及びナトリウムを含有しない照明用ガラス組成物に関し、ランプ点灯中に放出される有害紫外線透過量が少なく、耐ウェザリング性に優れた照明用ガラス組成物に関する。
【0002】
【従来の技術】
従来から、蛍光灯や白熱電球のメイン管および電球には、加工性に優れた軟質なソーダライム系のガラス、蛍光灯や白熱電球に導入腺を封止するステム部には、リーク電流の発生を防止するのに十分な電気抵抗を有し、比較的低温で軟化する熱加工性の良さから、PbOを20〜30質量%含有する鉛系ガラスが使用されてきた。
【0003】
しかし、鉛は有害物質であり、鉛系ガラスの溶融・加工時の鉛成分の揮発、原料からの飛散が作業者に悪影響を及ぼし、また製造過程からの大気中への排出や使用済み製品による拡散によって環境汚染をもたらすことが懸念されるため、近年、ガラス製品分野においても鉛を含有しない代替ガラス組成の開発が進展している。
【0004】
さらに環境保護の観点から、蛍光灯に封入される水銀量を削減することができるガラス組成の開発も進められている。
【0005】
しかし、ソーダライム系のガラスにおいては、近年ガラス中のナトリウムによるランプヘの悪影響が判明してきた。まず一つ目にはナトリウムと蛍光体が反応することにより、蛍光体が劣化することが挙げられる。蛍光体の劣化は外観的欠点をもたらすだけでなく、時間経過に伴う光出力の低下およびランプ寿命の短命化につながる。
【0006】
二つ目には、ガラス中に含まれるナトリウムとランプ中の水銀蒸気が反応し、アマルガムを形成することが挙げられる。アマルガムはガラス管内壁に黒色の付着物として生じるため、外観欠点となるだけでなく、光放出量の低下も引き起こす。また現在ランプ作成時には、アマルガム形成による水銀量の減少をみこして、あらかじめ点灯に必要な量以上に水銀を封入しており、近年高まっている環境負荷物質使用量低減の流れに反しており好ましくない。
【0007】
鉛を含有しない照明用ガラスとして、たとえば、特開平6−206737号公報、特開平9−12332号公報、特開平10−152340号公報、特開平11−224649号公報、特開2000−103637号公報に記載されたものなどがある。これらのガラスは、BaO、SrOなどのアルカリ土類金属元素比較的多く含有させて鉛ガラスと同等の電気絶縁性を持たせ、同時にアルカリ金属元素含有量を高めて良好な加工性をもたせたガラスである。
【0008】
しかし、上記ガラスはいずれも鉛ガラスに近い熱加工性を持たせるためにナトリウムを多量に含有する組成であり、上述した水銀の消費問題を解消できていない。
【0009】
このため、上記諸問題に対する対策として、ランプ内壁と蛍光体との間に保護膜を形成することによりナトリウムと水銀及び蛍光体との反応を防ぐ方法が考えられているが、この方法では、ステムとメイン管との封着部分及びステム部分において保護膜の形成がなされないといった問題のほか、製造工程の増加、生産コストの上昇を伴うため経済的にも好ましくない。
【0010】
そこで、より効率的な手段として、ナトリウム成分を含有しないガラスを用いることによって、蛍光体及び水銀との反応を根本的になくそうとする考え方もある。水銀消費量削減のためにナトリウム成分をほとんど含有しない照明用ガラスとして、たとえば特表平11−509514号公報に記載されたものがある。このガラスは、NaO含有量を0.1%未満と少なくした代わりにLiO、KOやアルカリ土類金属酸化物を高率に含有させて、従来のソーダライム系ガラスと同等の特性を実現させたものである。
【0011】
【発明が解決しようとする課題】
上記特表平11−509514号公報に開示されたソーダフリーガラスは、高価な原料であるLiO及びKOを多量に使用する必要があることから、必然的に製品価格が高くなり経済的観点からは好ましくない。またこのガラスは、BaOを比較的高率に含むため、溶融時、炉材の浸食が激しく、溶融炉の短命化、浸食された耐火物に起因するブツ不良の発生が問題となる。さらにまた、ダンナー法によって管成形を行った場合に失透物を生じやすい問題もある。
【0012】
このような照明用ソーダフリーガラスは、ナトリウムに起因する水銀とのアマルガム形成及び蛍光体劣化をなくし、もってランプ輝度の低下を防止することを目的としている。ところが、大気中の水分などの影響による半製品保管中あるいは製品使用中のガラス表面の劣化、いわゆるウェザリングと呼ばれる白曇りによってもランプ輝度の低下が生ずる。したがって、照明用途に適したガラスとするには、耐ウェザリング性にも優れた特性を有している必要がある。
【0013】
本発明は、このような事情を考慮してなされたものであり、実質的にナトリウムを含有せず、照明用ガラスに求められる優れた熱加工性、電気絶縁性を保ちながら、ウェザリングによる表面劣化の少ない照明用ガラス組成物を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、上記目的を達成するために、質量百分率で、SiO2 60〜70%,Al23 2〜5%,Li2 O 1〜5%,K2 O 9〜15%,Li2 O+K2 O 10〜18%,CaO 0〜6%,MgO 0〜3%,BaO 1〜6%,SrO 1〜8%,MgO+CaO+BaO+SrO 8〜20%,B2 3 0.5〜3%,Sb0〜1%,TiO 0〜3%,CeO0〜1%を含有し、かつ実質的にナトリウムおよび鉛を含有しないことを特徴とする。
【0015】
次に本発明のガラスを構成する成分の作用と、その含有量を上記のように限定した理由を説明する。
【0016】
SiO2 はガラスの網目形成成分であるが、60%未満ではガラスの化学的耐久性が低くなり、70%を越えるとガラスの溶融性、加工性が悪化するとともに熱膨張係数が小さくなりすぎる。
【0017】
Al2 3 はガラスの化学的耐久性を改善する作用があるが、2%未満ではガラスに分相が生じて成形が困難となり、5%を越えると脈理が発生して均質なガラスが得られなくなり、また失透性が強くなる。
【0018】
Li2 O,K2 Oは融剤として作用しガラスの溶融性を改善する。同時にガラスの熱膨脹係数を調整する効果も有するが、これらの合量が10%未満では粘度が高くなり溶融性が悪化する。また、合量で18%を越えると化学的耐久性が低下し、熱膨脹係数が高くなり過ぎるので好ましくない。また、これらアルカリ金属酸化物は共存させることにより混合アルカリ効果を生じ、電気絶縁性を高めるので、単独ではなく混合添加することが好ましい。K2 Oは、9%未満ではガラスの熱膨脹係数及び粘性を調整する効果が得られず、15%を越えると熱膨脹係数が高くなり過ぎ、化学的耐久性も悪化するので好ましくない。Li2 O含有量を1%未満とした場合には、良好な溶融性及び熱加工性を得るためにK2 Oの添加量を増やさざるを得なくなり、化学的耐久性が低下するため好ましくない。またLi2 Oが5%を越えた場合は熱膨脹係数が高くなり過ぎるので好ましくない。
【0019】
BaOはガラスに高い電気絶縁性を付与する成分であるが、1%未満では所望の電気絶縁性が得られず、6%を越えると溶融炉材の浸食が顕著となり、製品中のブツ不良が増加するとともにダンナー法による管成形の際に失透の原因となる。好ましくは上限値を5%までとする。
【0020】
SrOはBaOと同様にガラスの電気絶縁性に寄与するが、1%未満では所望の電気絶縁性が得られず、8%を越えると失透傾向が強まるとともに原料コストが上昇する。好ましくは上限値を7%までとする。
【0021】
MgOおよびCaOはそれぞれガラスの軟化点を下げる働きを持つとともに上記上限値までの添加でガラスの化学的耐久性を向上させる効果があるが、各上限値を越えて加えるとガラスが失透しやすくなるので好ましくない。
【0022】
MgO,CaO,BaO,SrOは全体としてガラスの電気絶縁性を高める作用を有するが、これらの合量が8%未満ではその効果が照明用ガラスとして不十分であり、20%を越えるとガラスの結晶化傾向が増大する。好ましくは上限値を17%までとする。
【0023】
2 3 は少量でガラスの溶融性を向上させ、化学的耐久性を向上させる効果をもっているが、0.5%未満ではその十分な効果が得られず、3%を越えて添加すると熱膨張係数が小さくなりすぎる。好ましくは上限値を2.5%までとする。
【0024】
TiOは少量で化学的耐久性を向上させ優れた耐ウエザリング性を与える効果を有し、ランプから放出される紫外線をカットする作用もあるが、3%を越えて添加すると溶融性の悪化まねくとともに、ガラスの着色による外観欠点が発生しやすくなる。好ましくは上限値を2.5%までとする。また、ガラスにはソラリゼーションと呼ばれる、長時問にわたる紫外線への暴露により引き起こされる着色現象が知られている。照明用ガラスがこの耐性に劣る場合、ランプは時間経過および点灯によって光束量の低下を引き起こす。TiOは、ソラリゼーションを抑制する効果をも有するので、その耐性維持のため、少なくとも0.05%以上添加することが好ましい。
【0025】
TiO及びAl2 3 は、ともにガラスの化学的耐久性を向上させる効果を有するが、その合量が2.5%未満では充分な化学的耐久性が得られず、ウェザリングが発生しやすい。また合量が6%を越えると溶融性及び失透性が悪化する。好ましくは合量での上限値を5%とする。
【0026】
蛍光ランプは、アーク放電により水銀から放出される紫外線が蛍光体を励起することにより発光する。その際一部の紫外線はランプから放出されるが、この紫外線は人体に対し有害である為、その放出量が1000lmあたり0.001W/m2以下になるように規制されている(JEL601光源製品の安全性)。CeOは少量で良好な紫外線カット特性を付与する効果を有しているが、添加量が1%を越えてもその効果に変化はなく、反対に着色の原因となるため、1%以内の添加に留めることが好ましい。
【0027】
TiO及びCeOは、それぞれ有害紫外線を遮断する効果を有するが、これらの合量が0.05%未満ではその効果が不充分であり、3%を越えるとガラスの着色及び失透傾向が強まる。好ましくは合量での上限値を2.5%までとする。
【0028】
Sbはガラス溶融時清澄剤として働くだけでなく、ソラリゼーションを抑制する効果も有する。しかしその含有量が増すとバーナーによる加工時にガラスの黒化現象を起こしやすくなるので、上限値を1%までとする。またCeOとの共存は、耐紫外線ソラリゼーション性を逆に悪化させるため好ましくなく、これら成分を共存させる場合には、Sbは0.5%までとすることが好ましい。
【0029】
上記以外の成分として、本発明の目的を損なわない範囲で、F、SO、Cl、Fe、ZnO、ZrO等の成分を添加あるいは含有することが可能である。これらのうち、ZrOはガラスの耐候性改善の効果を有するため、1%程度までは意図的に添加することも可能であるが、溶融性が悪化するため多くとも2%までとすることが好ましい。またFe は紫外線カットの効果を有するのでその効果を利用することもできるが、過剰に含有するとガラスに着色を引き起すため、UVカットを期待して含有させる場合でも0.005〜0.05%程度に抑えることが好ましい。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。本発明のガラスは、次のようにして作製することができる。まず上記組成範囲、たとえば、SiO2 64.0%,Al23 3.5%,K2 O 13.0%,Li2 O 3.5%,CaO 2.0%,MgO 1.0%,BaO 4.7%,SrO 7.0%,B2 3 0.5%,Sb 0.3%,TiO 0.5%となるように原料を秤量・混合する。この原料混合物を白金るつぼに収容し、電気炉内において加熱溶融する。撹拌、清澄の後、所望の形態に成形する。なお、照明用ランプのメイン管、ステム等を作製するために管状に量産成形する場合には、タンク炉にて溶融し、ダンナー法等の既知の管引成形法によって問題なく成形を行うことができる。
【0031】
【実施例】
さらに、実施例により本発明の照明用ガラス組成物について詳細に説明する。表1に本発明の実施例および従来例を示す。表中の組成は質量%で表し、それぞれ上記実施の形態と同様に白金るつぼで溶融して型内に鋳込み、表1記載の諸特性測定用のサンプルとした。
【0032】
表中の項目について説明すると、平均熱膨脹係数は0〜300℃における平均熱膨脹係数を×10-7-1で示し、電気抵抗は100℃における測定値をlogρ(Ω−cm)で示す。また、Tgは転移温度で、ガラスの粘度η=1012.3dPa・sとなる温度、Tsは軟化温度で、ガラスの粘度η=106.65dPa・sとなる温度である。
【0033】
耐ウェザリング性は、各サンプルガラスを板状にカットし、板面を厚さ1mmとなるように光学研磨加工したサンプルでの400nmにおける初期透過率と、このサンプルを温度65℃、湿度95%に保たれた恒温恒湿槽に収容し、500時間保持した後の透過率とを比較し、耐候性として示した。
【0034】
耐ソラリゼーション性は、表中に記載していないが、各ガラスサンプルを板状にカットし、肉厚1mmで両面光学研磨加工した後、研摩面を光源に向けて水銀ランプ(H-400P)から1mの位置に配置して紫外線を照射し、ソラリゼーション加速試験を行った。評価は初期状態から紫外線照射300時間経過後での400nmにおける透過率の比較で行った。この結果、本発明に係る実施例のガラスは、いずれも透過率低下幅が1%以内であり、良好な耐ソラリゼーション性を示した。
【0035】
なお、UVカット性は、ランプ点灯時に生じる紫外線のうち296nm,297nm,313nm,334nmの各波長において、従来から紫外線放出基準を満たしていた鉛ガラスの初期透過率を基準として評価したが、本発明に係る実施例のガラスは、いずれも前記各波長における透過率が鉛ガラスのそれと同等ないし下回っており、蛍光ランプに求められる充分なUVカット特性を備えていた。
【0036】
【表1】

Figure 0004767456
【0037】
【表1】
Figure 0004767456
【0038】
表1から明らかなように、本発明の実施例であるNo.1〜13のガラスは、平均熱膨脹係数が一般的に電球や蛍光灯に用いられているソーダライムガラス又は鉛系ガラスとほぼ一致する値であり、これらのガラス部品と良好に溶着することができ、電気抵抗も十分高い値となっている。また、溶融、鋳込み等の工程を通して本発明の実施例ガラスに失透の発生は認められなかった。
【0039】
ウェザリングに関しては、本発明の実施例においても発生が皆無とは言えないものの、発生したとしてもソーダライムガラス及び無鉛ガラスの従来例として記載した比較例と比較して、その程度が軽度であり、明らかな改善が見られた。
【0040】
なお、上記実施例はいずれもNaOを含まないものであるが、NaOは少量の添加でもガラスの粘性を低下させ、溶融性、熱加工性を改善する作用があるので、従来周知のソーダライムガラスや照明用無鉛ガラスが含有する量に比べて充分少ない量、たとえば1%未満でもその効果を発揮する。したがって、特に溶融温度を低下させ、あるいは熱加工を容易にしたい等の要求に応えるため、極少量のNaOを添加することは考えうる。その場合でも、従来ガラスに比べてNaO含有量が少ない分だけランプの水銀消費量を少なくできる。その結果、蛍光ランプに添加される水銀の量が、ナトリウムを含む従来のガラスを用いたランプ容器を使用したランプよりも減少できることは言うまでもない。
【0041】
【発明の効果】
以上のように本発明のガラスは、実質的に鉛を含有していないにもかかわらず、従来照明用に用いられていたソーダライムガラス又は鉛系ガラスと同等の優れた電気絶縁性、熱加工性を有し、鉛による環境問題の発生もない。また、実質的にナトリウム成分を含有しないことから、蛍光ランプに使用した場合の水銀封入量削減が期待でき、アマルガム形成や蛍光体との反応による光束劣化が防止できる。さらに、耐ウェザリング性にも優れているため、長期にわたる保管やランプ使用によっても光束劣化の少ない変わらない品質を提供できる利点がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lighting glass composition that is substantially free of lead and sodium for the purpose of use in fluorescent lamps and incandescent lamps. The present invention relates to an excellent glass composition for lighting.
[0002]
[Prior art]
Conventionally, main tubes and bulbs of fluorescent lamps and incandescent bulbs have soft soda-lime glass with excellent processability, and leakage current has been generated in the stem part that seals the gland in fluorescent lamps and incandescent bulbs. Lead-based glass containing PbO in an amount of 20 to 30% by mass has been used because of its good thermal workability, which has a sufficient electrical resistance to prevent heat and softens at a relatively low temperature.
[0003]
However, lead is a harmful substance, and volatilization of lead components during the melting and processing of lead-based glass and scattering from raw materials have an adverse effect on workers. In recent years, development of alternative glass compositions that do not contain lead is also progressing in the field of glass products because there is a concern of causing environmental pollution by diffusion.
[0004]
Furthermore, from the viewpoint of environmental protection, development of glass compositions that can reduce the amount of mercury enclosed in fluorescent lamps is also underway.
[0005]
However, in soda-lime glass, the negative effect on the lamp due to sodium in the glass has recently been found. The first is that the phosphor deteriorates due to the reaction between sodium and the phosphor. The deterioration of the phosphor not only causes an appearance defect, but also leads to a decrease in light output with the passage of time and a shortened lamp life.
[0006]
Secondly, sodium contained in the glass and mercury vapor in the lamp react to form an amalgam. Since amalgam occurs as a black deposit on the inner wall of the glass tube, it causes not only an appearance defect but also a decrease in light emission. In addition, at the time of making lamps, the amount of mercury is reduced due to the formation of amalgam, and mercury is already enclosed in excess of the amount necessary for lighting, which is unfavorable against the increasing trend of reducing the use of environmentally hazardous substances in recent years. .
[0007]
Examples of lighting glasses that do not contain lead include, for example, JP-A-6-206737, JP-A-9-12332, JP-A-10-152340, JP-A-11-224649, and JP-A-2000-103637. There are things described in. These glasses contain a relatively large amount of alkaline earth metal elements such as BaO, SrO, etc. so that they have an electrical insulating property equivalent to that of lead glass, and at the same time increase the content of alkali metal elements to provide good workability. It is.
[0008]
However, each of the glasses has a composition containing a large amount of sodium in order to have thermal workability close to that of lead glass, and the above-described mercury consumption problem cannot be solved.
[0009]
For this reason, as a countermeasure against the above problems, a method of preventing a reaction between sodium, mercury, and the phosphor by forming a protective film between the lamp inner wall and the phosphor is considered. In addition to the problem that the protective film is not formed at the sealing portion and the stem portion between the main tube and the main tube, it is not economically preferable because it involves an increase in manufacturing steps and an increase in production cost.
[0010]
Therefore, as a more efficient means, there is also an idea of fundamentally eliminating the reaction with the phosphor and mercury by using glass that does not contain a sodium component. As a glass for lighting which hardly contains a sodium component in order to reduce mercury consumption, for example, there is one described in JP-T-11-509514. This glass contains Li 2 O, K 2 O and alkaline earth metal oxides at a high rate instead of reducing the Na 2 O content to less than 0.1%, and is equivalent to conventional soda lime glass. It realizes the characteristics of.
[0011]
[Problems to be solved by the invention]
The soda-free glass disclosed in the above Japanese National Publication No. 11-509514 is required to use a large amount of Li 2 O and K 2 O, which are expensive raw materials. It is not preferable from a viewpoint. Further, since this glass contains BaO at a relatively high rate, erosion of the furnace material is severe at the time of melting, and there is a problem of short-lived melting furnace and occurrence of defects due to eroded refractories. Furthermore, there is also a problem that devitrification is likely to occur when tube forming is performed by the Danner method.
[0012]
Such a soda-free glass for illumination is intended to eliminate the formation of amalgam with mercury caused by sodium and the deterioration of the phosphor, thereby preventing a decrease in lamp brightness. However, the lamp brightness also decreases due to the deterioration of the glass surface during the storage of semi-finished products or the use of the products due to the influence of moisture in the atmosphere, such as so-called weathering. Therefore, in order to make a glass suitable for lighting applications, it is necessary to have a property excellent in weathering resistance.
[0013]
The present invention has been made in consideration of such circumstances, and does not substantially contain sodium, while maintaining the excellent thermal workability and electrical insulation required for lighting glass, surface deterioration due to weathering. It aims at providing the glass composition for illumination with few.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides, in mass percentage, SiO 2 60 to 70%, Al 2 O 3 2 to 5%, Li 2 O 1 to 5%, K 2 O 9 to 15%, Li 2. O + K 2 O 10-18%, CaO 0-6%, MgO 0-3%, BaO 1-6%, SrO 1-8%, MgO + CaO + BaO + SrO 8-20%, B 2 O 3 0.5-3%, Sb It contains 2 O 3 0 to 1%, TiO 2 0 to 3%, CeO 2 0 to 1% , and is substantially free of sodium and lead .
[0015]
Next, the effect | action of the component which comprises the glass of this invention and the reason which limited the content as mentioned above are demonstrated.
[0016]
SiO 2 is a glass network forming component, but if it is less than 60%, the chemical durability of the glass is low, and if it exceeds 70%, the meltability and workability of the glass deteriorate and the thermal expansion coefficient becomes too small.
[0017]
Al 2 O 3 has the effect of improving the chemical durability of the glass, but if it is less than 2%, phase separation occurs in the glass, making it difficult to form, and if it exceeds 5%, striae occurs and a homogeneous glass is produced. It cannot be obtained, and devitrification becomes stronger.
[0018]
Li 2 O, K 2 O acts as a flux and improves the meltability of the glass. At the same time, it also has the effect of adjusting the thermal expansion coefficient of the glass. However, if the total amount of these is less than 10%, the viscosity increases and the meltability deteriorates. On the other hand, if the total amount exceeds 18%, the chemical durability is lowered and the thermal expansion coefficient becomes too high. Moreover, since these alkali metal oxides coexist to produce a mixed alkali effect and enhance electrical insulation, it is preferable to add them in a mixed manner. If K 2 O is less than 9%, the effect of adjusting the coefficient of thermal expansion and viscosity of the glass cannot be obtained, and if it exceeds 15%, the coefficient of thermal expansion becomes too high and the chemical durability deteriorates. If the Li 2 O content is less than 1%, the amount of K 2 O added must be increased in order to obtain good meltability and thermal processability, and the chemical durability is lowered. . On the other hand, when Li 2 O exceeds 5%, the coefficient of thermal expansion becomes too high, which is not preferable.
[0019]
BaO is a component that imparts high electrical insulation to glass, but if it is less than 1%, the desired electrical insulation cannot be obtained, and if it exceeds 6%, erosion of the melting furnace material becomes prominent, resulting in defects in the product. It increases and causes devitrification when the tube is formed by the Danner method. Preferably, the upper limit is up to 5%.
[0020]
SrO contributes to the electrical insulation of the glass in the same way as BaO, but if it is less than 1%, the desired electrical insulation cannot be obtained, and if it exceeds 8%, the tendency to devitrification increases and the raw material cost increases. Preferably, the upper limit is set to 7%.
[0021]
MgO and CaO each have a function of lowering the softening point of the glass and have an effect of improving the chemical durability of the glass when added up to the above upper limit value. However, if added over each upper limit value, the glass tends to devitrify. This is not preferable.
[0022]
MgO, CaO, BaO and SrO have the effect of enhancing the electrical insulation of the glass as a whole, but if the total amount of these is less than 8%, the effect is insufficient as a glass for lighting. Increases crystallization tendency. Preferably, the upper limit value is up to 17%.
[0023]
B 2 O 3 has the effect of improving the melting property of the glass and improving the chemical durability in a small amount, but if it is less than 0.5%, the sufficient effect cannot be obtained, and if added over 3% The expansion coefficient is too small. Preferably, the upper limit is set to 2.5%.
[0024]
TiO 2 has the effect of improving chemical durability and providing excellent weathering resistance with a small amount, and also has the effect of cutting off the ultraviolet rays emitted from the lamp, but if added over 3%, the meltability will deteriorate. At the same time, appearance defects due to glass coloring tend to occur. Preferably, the upper limit is set to 2.5%. In addition, a coloring phenomenon called solarization, which is caused by long-term exposure to ultraviolet rays, is known for glass. If the lighting glass is inferior to this resistance, the lamp causes a decrease in the amount of light flux over time and lighting. Since TiO 2 also has an effect of suppressing solarization, it is preferable to add at least 0.05% or more in order to maintain its resistance.
[0025]
TiO 2 and Al 2 O 3 both have the effect of improving the chemical durability of the glass, but if the total amount is less than 2.5%, sufficient chemical durability cannot be obtained and weathering is likely to occur. . On the other hand, if the total amount exceeds 6%, the meltability and devitrification properties deteriorate. Preferably, the upper limit of the total amount is 5%.
[0026]
The fluorescent lamp emits light when ultraviolet rays emitted from mercury by arc discharge excite the phosphor. At that time, some ultraviolet rays are emitted from the lamp, but since the ultraviolet rays are harmful to the human body, the emission amount is regulated to be 0.001 W / m 2 or less per 1000 lm (JEL601 light source product) Safety). CeO 2 has an effect of imparting a good UV-cutting property even in a small amount, but even if the addition amount exceeds 1%, the effect does not change, and on the contrary, it causes coloring, so that it is within 1%. It is preferable to keep the addition.
[0027]
TiO 2 and CeO 2 have an effect of blocking harmful ultraviolet rays, respectively, but if the total amount thereof is less than 0.05%, the effect is insufficient, and if it exceeds 3%, the glass tends to be colored and devitrified. Strengthen. Preferably, the upper limit of the total amount is up to 2.5%.
[0028]
Sb 2 O 3 not only functions as a fining agent when melting glass, but also has an effect of suppressing solarization. However, if its content increases, the glass tends to be blackened during processing with a burner, so the upper limit is made 1%. Further, the coexistence with CeO 2 is not preferable because the ultraviolet solarization resistance is deteriorated on the contrary, and when these components are coexisted, Sb 2 O 3 is preferably up to 0.5%.
[0029]
As components other than those described above, components such as F, SO 3 , Cl, Fe 2 O 3 , ZnO, and ZrO 2 can be added or contained as long as the object of the present invention is not impaired. Of these, ZrO 2 has the effect of improving the weather resistance of the glass, so it can be intentionally added up to about 1%, but it may be made up to 2% at most because the meltability deteriorates. preferable. Fe 2 O 3 Has the effect of cutting off ultraviolet rays, so that effect can be used. However, if it is contained excessively, it will cause coloring in the glass. It is preferable to suppress.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. The glass of the present invention can be produced as follows. First, the above composition range, for example, SiO 2 64.0%, Al 2 O 3 3.5%, K 2 O 13.0%, Li 2 O 3.5%, CaO 2.0%, MgO 1.0% BaO 4.7%, SrO 7.0%, B 2 O 3 0.5%, Sb 2 O 3 The raw materials are weighed and mixed so that 0.3% and TiO 2 0.5%. This raw material mixture is placed in a platinum crucible and heated and melted in an electric furnace. After stirring and clarifying, it is formed into a desired form. In addition, when mass-producing and forming into a tubular shape for producing a main tube, a stem, etc. of an illumination lamp, it can be melted in a tank furnace and formed without any problem by a known tube drawing method such as the Dunner method. it can.
[0031]
【Example】
Furthermore, the glass composition for illumination of this invention is demonstrated in detail by an Example. Table 1 shows examples of the present invention and conventional examples. The composition in the table is expressed by mass%, and each was melted in a platinum crucible and cast into a mold in the same manner as in the above embodiment, and a sample for measuring various properties described in Table 1 was obtained.
[0032]
The items in the table will be described. The average coefficient of thermal expansion is indicated by x10 −7 K −1 at 0 to 300 ° C., and the measured electrical resistance at 100 ° C. is indicated by log ρ (Ω-cm). Tg is a transition temperature at which the glass has a viscosity η = 10 12.3 dPa · s, and Ts is a softening temperature at which the glass has a viscosity η = 10 6.65 dPa · s.
[0033]
The anti-weathering property is that each sample glass is cut into a plate shape and optically polished so that the plate surface has a thickness of 1 mm. The initial transmittance at 400 nm and the sample at a temperature of 65 ° C. and a humidity of 95% It was stored in a maintained constant temperature and humidity chamber and compared with the transmittance after holding for 500 hours, and it was shown as weather resistance.
[0034]
Solarization resistance is not described in the table, but after each glass sample was cut into a plate shape and double-sided optically polished with a thickness of 1 mm, the polished surface was directed to the light source from a mercury lamp (H-400P). The solarization acceleration test was performed by irradiating with ultraviolet rays at a position of 1 m. The evaluation was performed by comparing the transmittance at 400 nm after 300 hours of ultraviolet irradiation from the initial state. As a result, all the glasses of the examples according to the present invention had a transmittance decrease width of 1% or less, and exhibited good solarization resistance.
[0035]
The UV-cutting property was evaluated based on the initial transmittance of lead glass that conventionally satisfied the ultraviolet emission standard at each of the wavelengths of 296 nm, 297 nm, 313 nm, and 334 nm among the ultraviolet rays generated when the lamp was turned on. All of the glasses according to the examples had transmittances at the respective wavelengths equal to or lower than those of lead glass, and had sufficient UV cut characteristics required for fluorescent lamps.
[0036]
[Table 1]
Figure 0004767456
[0037]
[Table 1]
Figure 0004767456
[0038]
As is apparent from Table 1, No. 1 as an example of the present invention. Glasses 1 to 13 have an average coefficient of thermal expansion substantially equal to that of soda lime glass or lead-based glass generally used for light bulbs and fluorescent lamps, and can be well welded to these glass parts. The electric resistance is also a sufficiently high value. Further, no devitrification was observed in the glass of Example of the present invention through processes such as melting and casting.
[0039]
Regarding weathering, although it can not be said that there is no occurrence even in the examples of the present invention, even if it occurs, its degree is mild compared to the comparative example described as a conventional example of soda lime glass and lead-free glass, There was a clear improvement.
[0040]
Although the above embodiment does not contain a none Na 2 O, Na 2 O reduces the viscosity of the glass is also added in a small amount, fusible, because an effect of improving the hot workability, well-known Even if the amount is sufficiently smaller than the amount of soda-lime glass or lead-free glass for lighting, for example, less than 1%, the effect is exhibited. Therefore, it is conceivable to add a very small amount of Na 2 O in order to meet demands such as lowering the melting temperature or facilitating thermal processing. Even in that case, the mercury consumption of the lamp can be reduced by the amount of Na 2 O content lower than that of the conventional glass. As a result, it goes without saying that the amount of mercury added to the fluorescent lamp can be reduced as compared with a lamp using a lamp vessel using a conventional glass containing sodium.
[0041]
【The invention's effect】
As described above, the glass of the present invention has excellent electrical insulation and thermal processing equivalent to soda-lime glass or lead-based glass that has been used for conventional lighting, though it does not substantially contain lead. There is no environmental problem caused by lead. Further, since it does not substantially contain a sodium component, it can be expected to reduce the amount of mercury enclosed when used in a fluorescent lamp, and it is possible to prevent light flux deterioration due to amalgam formation and reaction with a phosphor. Furthermore, since it is excellent in weathering resistance, there is an advantage that it is possible to provide unchanging quality with little luminous flux degradation even after long-term storage and lamp use.

Claims (5)

質量百分率で、SiO2 60〜70%,Al23 2〜5%,Li2 O 1〜5%,K2 O 9〜15%,Li2 O+K2 O 10〜18%,CaO 0〜6%,MgO 0〜3%,BaO 1〜6%,SrO 1〜8%,MgO+CaO+BaO+SrO 8〜20%,B2 3 0.5〜3%,Sb0〜1%,TiO 0〜3%,CeO0〜1%を含有し、かつ実質的にナトリウムおよび鉛を含有しないことを特徴とする照明用ガラス組成物。By mass percentage, SiO 2 60~70%, Al 2 O 3 2~5%, Li 2 O 1~5%, K 2 O 9~15%, Li 2 O + K 2 O 10~18%, CaO 0~6 %, MgO 0 to 3%, BaO 1 to 6%, SrO 1 to 8%, MgO + CaO + BaO + SrO 8 to 20%, B 2 O 3 0.5 to 3%, Sb 2 O 3 0 to 1%, TiO 2 0 A glass composition for lighting comprising 3%, CeO 2 0 to 1% , and substantially free of sodium and lead . 質量百分率で、Li 2 O+K 2 3 の合量が16.0〜18.0%であることを特徴とする請求項1記載の照明用ガラス組成物。 The glass composition for lighting according to claim 1, wherein the total amount of Li 2 O + K 2 O 3 is 16.0 to 18.0% by mass percentage . 質量百分率で、TiO+Al23の合量が2.5〜6%であることを特徴とする請求項1又は2に記載の照明用ガラス組成物。The lighting glass composition according to claim 1, wherein the total amount of TiO 2 + Al 2 O 3 is 2.5 to 6% by mass percentage. 質量百分率で、TiO+CeOの合量が0.05〜3%であることを特徴とする請求項1又は2に記載の照明用ガラス組成物。3. The lighting glass composition according to claim 1, wherein the total amount of TiO 2 + CeO 2 is 0.05 to 3% by mass percentage. 質量百分率で、TiO含有量が0.05〜3%であることを特徴とする請求項3又は4に記載の照明用ガラス組成物。The glass composition for lighting according to claim 3 or 4, wherein the TiO 2 content is 0.05 to 3% by mass percentage.
JP2001266634A 2001-09-04 2001-09-04 Glass composition for lighting Expired - Fee Related JP4767456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266634A JP4767456B2 (en) 2001-09-04 2001-09-04 Glass composition for lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266634A JP4767456B2 (en) 2001-09-04 2001-09-04 Glass composition for lighting

Publications (2)

Publication Number Publication Date
JP2003073142A JP2003073142A (en) 2003-03-12
JP4767456B2 true JP4767456B2 (en) 2011-09-07

Family

ID=19092892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266634A Expired - Fee Related JP4767456B2 (en) 2001-09-04 2001-09-04 Glass composition for lighting

Country Status (1)

Country Link
JP (1) JP4767456B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166638A (en) 2003-11-10 2005-06-23 Matsushita Electric Ind Co Ltd Cold-cathode fluorescent lamp, and backlight unit with the same mounted
CN101065821A (en) 2004-11-24 2007-10-31 皇家飞利浦电子股份有限公司 Low-pressure mercury vapor discharge lamp and apparatus for treatment
JP4331214B2 (en) * 2007-01-15 2009-09-16 パナソニック株式会社 Fluorescent lamp and lighting device using fluorescent lamp
US9371247B2 (en) 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
TWI564262B (en) 2012-02-29 2017-01-01 康寧公司 High cte potassium borosilicate core glasses and glass articles comprising the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224649A (en) * 1998-02-10 1999-08-17 Matsushita Electron Corp Lamp glass constituent, lamp stem and lamp bulb
JP2000290038A (en) * 1999-02-01 2000-10-17 Nippon Electric Glass Co Ltd Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2002137935A (en) * 2000-10-26 2002-05-14 Nippon Electric Glass Co Ltd Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2001199738A (en) * 2000-12-08 2001-07-24 Asahi Techno Glass Corp Glass composition for lighting
JP4051698B2 (en) * 2001-03-08 2008-02-27 日本電気硝子株式会社 Tube for fluorescent lamp
JP2002358925A (en) * 2001-05-30 2002-12-13 Toshiba Lighting & Technology Corp Tubular bulb product

Also Published As

Publication number Publication date
JP2003073142A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP4159708B2 (en) Lamp glass composition, lamp stem and lamp bulb
US5883030A (en) Glass composition
JP5062589B2 (en) Glass composition for lamp, glass component for lamp, lamp and method for producing glass composition for lamp
HU213843B (en) Glass composition suitable for use in electric lamps, stem manufactured from this glass composition and fluorescent lamp
JP2002137935A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JPWO2006106659A1 (en) Lamp glass composition, lamp, backlight unit, and method for producing lamp glass composition
JPWO2006106660A1 (en) Lamp glass composition, lamp, backlight unit, and method for producing lamp glass composition
JPWO2007086441A1 (en) Method for producing glass composition for lamp, glass composition for lamp and lamp
US5977001A (en) Glass composition
JP2004315279A (en) Glass for fluorescent lamp
JP2000290038A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP4767456B2 (en) Glass composition for lighting
JP3775734B2 (en) GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME
US5843856A (en) Glass composition
JP2006089342A (en) Glass for fluorescent lamp
JP2003040643A (en) Glass composition for lighting
JPH10324540A (en) Glass composition for illumination
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
JP2002068776A (en) GLASS SUITABLE FOR SEALING Fe-Ni-Co BASED ALLOY
JP2003040644A (en) Glass composition for lighting
JP4688398B2 (en) Glass composition for electric lamp
JP2004315280A (en) Glass for fluorescent lamp
JP4756429B2 (en) Compact fluorescent lamp glass and manufacturing method thereof.
JP2006321686A (en) Glass composition for lamp, glass tube for lamp, and lamp
JP2007297273A (en) Glass composition for lamp, and stem and bulb for lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees