JP2007238398A - Soda-lime based glass composition - Google Patents

Soda-lime based glass composition Download PDF

Info

Publication number
JP2007238398A
JP2007238398A JP2006064993A JP2006064993A JP2007238398A JP 2007238398 A JP2007238398 A JP 2007238398A JP 2006064993 A JP2006064993 A JP 2006064993A JP 2006064993 A JP2006064993 A JP 2006064993A JP 2007238398 A JP2007238398 A JP 2007238398A
Authority
JP
Japan
Prior art keywords
glass composition
soda
lime
glass
based glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006064993A
Other languages
Japanese (ja)
Inventor
Yasukimi Nagashima
廉仁 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006064993A priority Critical patent/JP2007238398A/en
Publication of JP2007238398A publication Critical patent/JP2007238398A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soda-lime based glass composition in which the content of total iron oxide is restricted so as to obtain a high transmittance and which does not contain CeO<SB>2</SB>so as to reduce the change in the transmittance when it is irradiated with ultraviolet rays. <P>SOLUTION: The soda-lime based glass composition is characterized in that the content of total iron oxide (T-Fe<SB>2</SB>O<SB>3</SB>) expressed in terms of Fe<SB>2</SB>O<SB>3</SB>is 0.04 mass% at the maximum, the ratio of FeO, expressed in terms of Fe<SB>2</SB>O<SB>3</SB>, to the total iron oxide is 5-20%, the content of total antimony oxide expressed in terms of Sb<SB>2</SB>O<SB>3</SB>is >0.05 to 0.5 mass%, and cerium oxide is not substantially contained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高い透過率を有するソーダ石灰系ガラス組成物に関し、特に紫外線が照射されたときの透過率変化の少ないソーダ石灰系ガラス組成物に関する。   The present invention relates to a soda-lime-based glass composition having a high transmittance, and more particularly to a soda-lime-based glass composition having a small transmittance change when irradiated with ultraviolet rays.

太陽電池パネルのカバーガラスでは、発電効率の高いものが求められている。また基板ガラスとしては、太陽光における高いエネルギー変換感度を有する波長域での光の透過率が高いガラスが求められている。   A solar cell panel cover glass is required to have high power generation efficiency. Further, as the substrate glass, a glass having a high light transmittance in a wavelength region having high energy conversion sensitivity in sunlight is required.

このような目的のガラスとしては、純度の高い原料を用いることによって、鉄分を通常のソーダ石灰系ガラスよりも極めて少なくした透過率の高いガラス、いわゆる白板ガラスが用いられている。   As the glass for such purpose, so-called white plate glass, which is a glass having high transmittance in which iron content is extremely less than that of ordinary soda-lime glass by using a high-purity raw material, is used.

本発明者は、例えば特開2000−143284号公報や特開2003−95691号公報において、高透過ガラスを提案している。   The present inventor has proposed a high transmission glass in, for example, Japanese Patent Application Laid-Open No. 2000-143284 and Japanese Patent Application Laid-Open No. 2003-95951.

ガラス中に含まれる酸化鉄は、FeOとFe23の形で存在する。FeOは波長1100nm付近に吸収のピークを有し、Fe23は波長400nm付近に吸収を有する。そのため、ガラス中に含まれる酸化鉄の含有量のみならず、Fe2+とFe3+との比率も、透過率にとって重要である。 Iron oxide contained in the glass exists in the form of FeO and Fe 2 O 3 . FeO has an absorption peak in the vicinity of a wavelength of 1100 nm, and Fe 2 O 3 has an absorption in the vicinity of a wavelength of 400 nm. Therefore, not only the content of iron oxide contained in the glass but also the ratio of Fe 2+ to Fe 3+ is important for the transmittance.

さらには、太陽光、とりわけ紫外線の照射によって、ガラスの透過率が低下することも好ましくない。   Furthermore, it is not preferable that the transmittance of the glass is lowered by irradiation with sunlight, particularly ultraviolet rays.

ところで、蛍光ランプ用のガラス組成物においては、耐ソラリゼーション性がよく検討されている。例えば、特開平6−92677号公報や特開2002−137935号公報、特開2003−171141号公報には、ソラリゼーションが起こりにくい蛍光ランプ用のソーダ石灰系(ソーダライム)ガラス組成物が開示されている。   By the way, in the glass composition for fluorescent lamps, the solarization resistance is well studied. For example, JP-A-6-92677, JP-A-2002-137935, and JP-A-2003-171141 disclose soda-lime (soda-lime) glass compositions for fluorescent lamps that are less prone to solarization. Yes.

また別の観点から、蛍光ランプ用ガラスに、Fe23やSb23を含有するガラス組成物が示されている。例えば、特開平11−224649号公報や特開2000−290038号公報、特開2000−315477号公報、特開2001−243914号公報などである。 From another viewpoint, a glass composition containing Fe 2 O 3 or Sb 2 O 3 is shown in a fluorescent lamp glass. For example, JP-A-11-224649, JP-A-2000-290038, JP-A-2000-315477, JP-A-2001-243914, and the like.

一方、特開平8−290939号公報には、ソーダライムガラスに比べて体積抵抗率が高く、化学耐久性に優れた基板用ガラスが開示されている。
特開2000−143284号公報 特開2003−95691号公報 特開平6−92677号公報 特開2002−137935号公報 特開2003−171141号公報 特開平11−224649号公報 特開2000−290038号公報 特開2000−315477号公報 特開2001−243914号公報 特開平8−290939号公報
On the other hand, JP-A-8-290939 discloses a glass for a substrate having a higher volume resistivity than that of soda lime glass and excellent in chemical durability.
JP 2000-143284 A JP 2003-95791 A JP-A-6-92677 JP 2002-137935 A JP 2003-171141 A Japanese Patent Laid-Open No. 11-224649 JP 2000-290038 A JP 2000-315477 A JP 2001-243914 A JP-A-8-290939

ところで、上述した白板ガラスにおいても、工業原料からの鉄分の混入が不可避である。この鉄分がFeOの形で存在すると、波長1100nm付近をピークとする吸収の影響が、800nmより短い波長の可視光線域にも現れる。そこで、このような微量の鉄分を含む高透過ガラスにおいても、Fe2+とFe3+との比率を制御する必要がある。つまり、Fe23に換算した全酸化鉄のうち、Fe23に換算したFeOの割合(いわゆる鉄比)を低く抑えて、Fe2+による吸収の影響を小さくするとよい。 By the way, also in the white plate glass mentioned above, mixing of the iron content from an industrial raw material is unavoidable. When this iron content exists in the form of FeO, the influence of absorption having a peak near the wavelength of 1100 nm also appears in the visible light region having a wavelength shorter than 800 nm. Therefore, it is necessary to control the ratio of Fe 2+ and Fe 3+ even in such a highly transmissive glass containing a small amount of iron. That is, of the total iron oxide terms of Fe 2 O 3, and suppressing the ratio of FeO in terms of Fe 2 O 3 (so-called iron ratio), it is preferable to reduce the influence of absorption due to Fe 2+.

本発明者による特開2000−143284号公報や特開2003−95691号公報にて開示した高透過ガラスでは、鉄比の調整に酸化セリウムを用いている。ガラス中に酸化セリウムを含むと、紫外線が照射されるとソラリゼーションにより透過率の低下を起こすので、含まないことが好ましい。   In the high transmission glass disclosed in Japanese Patent Application Laid-Open Nos. 2000-143284 and 2003-95691 by the present inventors, cerium oxide is used for adjusting the iron ratio. When cerium oxide is contained in the glass, the transmittance is lowered by solarization when irradiated with ultraviolet rays.

上述した蛍光ランプ用ガラス組成物のうち、特開2002−137935号公報や特開2001−243914号公報に開示されたものは、CeO2を必須で含む。 Among the glass compositions for fluorescent lamps described above, those disclosed in JP-A Nos. 2002-137935 and 2001-243914 essentially contain CeO 2 .

特開平6−92677号公報では、TiO2とCeO2のいずれかを必須で含む。その実施例2では、CeO2を含まず、重量百分率で、K2Oを9.9%含み、Li2Oを0.5%含み、Sb23を0.8%含むが、SO3は含んでいない。 In JP-A-6-92677, either TiO 2 or CeO 2 is essential. In Example 2 thereof, free of CeO 2, in weight percentage, includes K 2 O 9.9% of Li 2 O containing 0.5%, although the Sb 2 O 3 containing 0.8% SO 3 Does not contain.

特開平11−224649号公報や特開2000−290038号公報では、CeO2は必須成分ではないが、含むことを許容している。
特開平11−224649号公報では、ソラリゼーション抑制のために、CeO2やTiO2を含ませている。その実施例4や比較例1のガラス組成物では、重量百分率で、Na2Oを6.0%含み、Sb23を0.5%含むが、Fe23やSO3は含んでいない。
In Japanese Patent Application Laid-Open Nos. 11-224649 and 2000-290038, CeO 2 is not an essential component but is allowed to be included.
In Japanese Patent Application Laid-Open No. 11-224649, CeO 2 and TiO 2 are included in order to suppress solarization. The glass compositions of Example 4 and Comparative Example 1 contain 6.0% Na 2 O and 0.5% Sb 2 O 3 by weight percentage, but contain Fe 2 O 3 and SO 3 . Not in.

特開2000−290038号公報では、紫外線吸収のためにCeO2を含ませている。その比較例15では、P25を重量%で0.3%含み、Sb23を0.5%含み、Fe23を0.05%含むが、SO3は含んでいない。 In Japanese Unexamined Patent Publication No. 2000-290038, CeO 2 is included for ultraviolet absorption. In the Comparative Example 15, containing 0.3% of P 2 O 5 by weight%, the Sb 2 O 3 containing 0.5% including Fe 2 O 3 0.05%, SO 3 does not include.

特開2000−315477号公報や特開平8−290939号公報では、酸化セリウムに関する言及はない。
特開2000−315477号公報では、Fe23とSb23とを消泡のために添加している。その実施例1では、重量百分率で、Sb23を0.5%含み、Fe23を0.05%含み、SO3を0.2%含み、さらに、Na2Oを8.0%含み、K2Oを5.2%含み、Li2Oを1.4%含み、CaOを2.0%含む。
In Japanese Patent Laid-Open No. 2000-315477 and Japanese Patent Laid-Open No. 8-290939, there is no mention of cerium oxide.
In JP 2000-315477 A, Fe 2 O 3 and Sb 2 O 3 are added for defoaming. In the first embodiment, in weight percentage, the Sb 2 O 3 containing 0.5% includes Fe 2 O 3 0.05% include SO 3 0.2% In addition, a Na 2 O 8.0 %, K 2 O 5.2%, Li 2 O 1.4% and CaO 2.0%.

特開平8−290939号公報では、Sb23を清澄剤として含ませている。その実施例1〜5では、Na2Oを3.0〜6.0%含み、K2Oを5.0〜7.0%含んでいる。しかし、Fe23やSO3は含んでいない。 In JP-A-8-290939, Sb 2 O 3 is included as a fining agent. Examples 1 to 5 contain 3.0 to 6.0% Na 2 O and 5.0 to 7.0% K 2 O. However, it does not contain Fe 2 O 3 or SO 3 .

特開2003−171141号公報に示されたガラス組成物では、CeO2を含まないことを特徴の一つとしている。また、Sb23を清澄剤や酸化剤として含ませており、Fe23の含有量を0.02未満に制限している。請求項3に示された具体的な組成範囲において、Na2Oを3〜10%含み、Li2Oを0.5〜3%含み、CaOを0〜5%含むとしている。また、SO3は含んでいない。 One feature of the glass composition disclosed in Japanese Patent Application Laid-Open No. 2003-171141 is that it does not contain CeO 2 . Moreover, by including the Sb 2 O 3 as a fining agent and oxidizing agent, limiting the content of Fe 2 O 3 less than 0.02. In a specific composition range indicated in claim 3, comprising 3-10% of Na 2 O, comprises Li 2 O 0.5 to 3%, are to contain CaO 0 to 5%. Also, SO 3 is not included.

本発明は、ソーダ石灰系ガラス組成物において、高い透過率を得るために、全酸化鉄の含有量を制限し、紫外線が照射されたときの透過率変化を少なくするために、CeO2を含まないガラス組成物の提供を目的とする。 In the soda-lime-based glass composition, the present invention includes CeO 2 in order to limit the content of total iron oxide in order to obtain high transmittance and to reduce the change in transmittance when irradiated with ultraviolet rays. The object is to provide a glass composition that does not.

上述した課題を達成するために、本発明のソーダ石灰系ガラス組成物では、まず全酸化鉄の含有量を制限した。さらに、不可避的に含まれる酸化鉄において、鉄比を低く抑えるために、ガラス組成物に酸化剤として酸化アンチモンを加える。こうして鉄比を所定の範囲とする。しかし、CeO2は含ませない。 In order to achieve the above-described problem, in the soda-lime-based glass composition of the present invention, the content of total iron oxide is first limited. Furthermore, antimony oxide is added as an oxidizing agent to the glass composition in order to keep the iron ratio low in the iron oxide inevitably contained. Thus, the iron ratio is set within a predetermined range. However, CeO 2 is not included.

すなわち、本発明は、ソーダ石灰系ガラス組成物であって、
Fe23に換算した全酸化鉄(T−Fe23)が多くとも0.04質量%含まれ、前記全酸化鉄うち、Fe23に換算したFeOの割合が前記全酸化鉄の5〜20%であり、Sb23に換算した全酸化アンチモンが0.05質量%を超えて0.5質量%まで含まれ、酸化セリウムを実質的に含有しないことを特徴とする。
That is, the present invention is a soda-lime glass composition,
Total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) contains at most 0.04 mass%, the one total iron oxide, FeO ratio is the total iron oxide of which in terms of Fe 2 O 3 The total antimony oxide converted to Sb 2 O 3 is contained in an amount of more than 0.05% to 0.5% by mass, and is substantially free of cerium oxide.

さらに、前記ソーダ石灰系ガラス組成物が、質量%で表示して、
65 ≦ SiO2 ≦ 80、
0 ≦ Al23 ≦ 5、
0 ≦ B23 ≦ 5、
0 ≦ Li2O ≦ 5、
5 < Na2O ≦ 18、
0 ≦ K2O ≦ 10、
10 ≦ (Li2O+Na2O+K2O) ≦ 20、
0 ≦ MgO ≦ 10、
5 < CaO ≦ 15、
0 ≦ (SrO+BaO+ZnO) ≦ 5、
5 ≦ (MgO+CaO+SrO+BaO) ≦ 15、
0 ≦ TiO2 < 0.5、
0 ≦ ZrO2 ≦ 5、
0.05 ≦ SO3 ≦ 0.5、
を含んでなる。
Furthermore, the soda-lime-based glass composition is expressed in mass%,
65 ≦ SiO 2 ≦ 80,
0 ≦ Al 2 O 3 ≦ 5,
0 ≦ B 2 O 3 ≦ 5,
0 ≦ Li 2 O ≦ 5,
5 <Na 2 O ≦ 18,
0 ≦ K 2 O ≦ 10,
10 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 20,
0 ≦ MgO ≦ 10,
5 <CaO ≦ 15,
0 ≦ (SrO + BaO + ZnO) ≦ 5,
5 ≦ (MgO + CaO + SrO + BaO) ≦ 15,
0 ≦ TiO 2 <0.5,
0 ≦ ZrO 2 ≦ 5,
0.05 ≦ SO 3 ≦ 0.5,
Comprising.

(ソーダ石灰系ガラス)
以下に、ソーダ石灰系ガラスにおける各成分について説明する。なお、各含有率は、質量%表示である。
(Soda-lime glass)
Below, each component in soda-lime-type glass is demonstrated. In addition, each content rate is a mass% display.

(SiO2
SiO2はガラスの骨格を形成する主成分である。SiO2が65%未満ではガラスの耐久性が低下し、80%を超えるとガラスの溶解が困難になる。
(SiO 2 )
SiO 2 is a main component that forms a glass skeleton. If the SiO 2 content is less than 65%, the durability of the glass decreases. If it exceeds 80%, it becomes difficult to melt the glass.

(Al23
Al23はガラスの耐久性を向上させる成分であるが、5%を超えるとガラスの溶解が困難になる。好ましくは0.1〜2.5%の範囲である。
(Al 2 O 3 )
Al 2 O 3 is a component that improves the durability of the glass, but if it exceeds 5%, it becomes difficult to melt the glass. Preferably it is 0.1 to 2.5% of range.

(B23
23はガラスの耐久性向上のため、あるいは溶解助剤としても使用される成分である。B23が5%を超えると、B23の揮発等による成形時の不都合が生じるので5%を上限とする。また、B23は、レンガの侵食によって窯の寿命を短くすることがあるので、含有させないことが望ましい。
(B 2 O 3 )
B 2 O 3 is a component used for improving the durability of the glass or as a dissolution aid. If B 2 O 3 exceeds 5%, inconvenience at the time of molding due to volatilization of B 2 O 3 occurs, so 5% is made the upper limit. Further, B 2 O 3 is desirably not contained because brick erosion may shorten the life of the kiln.

(Na2O)
Na2Oはガラスの溶解促進剤として用いられる。Na2Oが5%以下では、溶解促進効果が乏しく、Na2Oが18%を超えると、ガラスの耐久性が低下する。
(Na 2 O)
Na 2 O is used as a glass melting accelerator. When Na 2 O is 5% or less, the effect of promoting the dissolution is poor, and when Na 2 O exceeds 18%, the durability of the glass is lowered.

(Li2O)
Li2Oは、必須成分ではないが、Na2Oと同様にガラスの溶解促進剤として用いられ、また熱膨張係数,低温粘性を調整するのに有効な成分である。Li2OはNa2Oに比して原料が高価であるため、5%を超えるのは好ましくない。
(Li 2 O)
Li 2 O is not an essential component, but is used as a glass melting accelerator in the same manner as Na 2 O, and is an effective component for adjusting the thermal expansion coefficient and low temperature viscosity. Since Li 2 O is more expensive than Na 2 O, it is not preferable to exceed 5%.

(K2O)
2Oは、必須成分ではないが、Li2O,Na2Oと同様に、ガラスの溶解促進剤として用いられる。K2OはNa2Oに比して原料が高価であるため、10%を超えるのは好ましくない。
(K 2 O)
K 2 O is not an essential component, but is used as a glass melting accelerator in the same manner as Li 2 O and Na 2 O. Since K 2 O is more expensive than Na 2 O, it is not preferable to exceed 10%.

(Li2O+Na2O+K2O)
Li2O,Na2OおよびK2Oの合計が、10%未満では溶解促進効果が乏しく、20%を超えるとガラスの耐久性が低下する。Li2O,Na2OおよびK2Oの合計は、13%超とすることが望ましい。
(Li 2 O + Na 2 O + K 2 O)
If the total of Li 2 O, Na 2 O and K 2 O is less than 10%, the dissolution promoting effect is poor, and if it exceeds 20%, the durability of the glass is lowered. The total amount of Li 2 O, Na 2 O and K 2 O is preferably more than 13%.

(MgO)
MgOは、必須成分ではないが、ガラスの耐久性を向上させるとともに、成形時の失透温度、粘度を調整するのに用いられる。MgOが10%を超えると、失透温度が上昇する。MgOは、2%以上とすることが望ましい。
(MgO)
MgO is not an essential component, but is used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. When MgO exceeds 10%, the devitrification temperature rises. MgO is preferably 2% or more.

(CaO)
CaOは、MgOと同様に、ガラスの耐久性を向上させるとともに、成形時の失透温度、粘度を調整するのに用いられる必須成分である。CaOが5%以下では溶解性が悪化する。また、15%を超えると失透温度が上昇する。
(CaO)
Like MgO, CaO is an essential component used to improve the durability of glass and adjust the devitrification temperature and viscosity during molding. If CaO is 5% or less, the solubility is deteriorated. On the other hand, if it exceeds 15%, the devitrification temperature rises.

(MgO+CaO)
MgOとCaOの合計が、5%以下ではガラスの耐久性が低下する。一方、15%を超えると失透温度が上昇する。MgOとCaOの合計が少ない、例えば10%以下の場合、溶解性の悪化やガラス融液の粘度の上昇を補うために、Na2Oを多めとする必要がある。その結果、コストの上昇やガラスの化学的耐久性の低下をもたらすので、MgOとCaOの合計は10%超が望ましい。
(MgO + CaO)
If the total of MgO and CaO is 5% or less, the durability of the glass is lowered. On the other hand, when it exceeds 15%, the devitrification temperature rises. When the total amount of MgO and CaO is small, for example, 10% or less, it is necessary to increase the amount of Na 2 O in order to compensate for deterioration in solubility and increase in the viscosity of the glass melt. As a result, the cost is increased and the chemical durability of the glass is decreased. Therefore, the total of MgO and CaO is preferably more than 10%.

(SrO+BaO)
SrO,BaOは、共に必須成分ではないが、同様にガラスの成形時の失透温度、粘度を調整するのに用いられる。ただし、含有量が多くなると膨張係数が大きくなりすぎるため、その合計量が5%を超えるのは好ましくない。また、SrO,BaOは、MgO,CaOに比して原料が非常に高価であり、含有させないのが好ましい。
(SrO + BaO)
SrO and BaO are not essential components, but are similarly used to adjust the devitrification temperature and viscosity at the time of forming the glass. However, since the expansion coefficient becomes too large when the content increases, it is not preferable that the total amount exceeds 5%. Moreover, SrO and BaO are very expensive as compared with MgO and CaO, and are preferably not included.

(MgO+CaO+SrO+BaO+ZnO)
MgO,CaO,SrO,BaO,ZnOの合計が、5%以下ではガラスの耐久性が低下する。一方、15%を超えると失透温度が上昇したり、あるいは熱膨張係数が大きくなりすぎるたりする。合計が少ない、例えば10%以下の場合、溶解性の悪化やガラス融液の粘度の上昇を補うために、Na2Oを多めとする必要がある。その結果、コストの上昇やガラスの化学的耐久性の低下をもたらすので、合計は10%超が望ましい。
(MgO + CaO + SrO + BaO + ZnO)
If the total of MgO, CaO, SrO, BaO, and ZnO is 5% or less, the durability of the glass is lowered. On the other hand, if it exceeds 15%, the devitrification temperature rises or the thermal expansion coefficient becomes too large. When the total is small, for example, 10% or less, it is necessary to increase the amount of Na 2 O in order to compensate for deterioration in solubility and increase in viscosity of the glass melt. As a result, the cost is increased and the chemical durability of the glass is decreased. Therefore, the total is preferably more than 10%.

(TiO2
TiO2は、必須成分ではないが、本発明が目的とする光学特性を損なわない範囲で、紫外線吸収能を高めるためなどの目的に適当量加えることができる。量が多くなり過ぎるとガラスが黄色味を帯び易くなり、また500〜600nm付近の透過率が低下する。このため、その含有量は0.5%未満の範囲で低く抑えることが望ましい。また、0.1%未満とすることが望ましく、0.05%以下とすることがさらに望ましい。
(TiO 2 )
Although TiO 2 is not an essential component, it can be added in an appropriate amount for the purpose of enhancing the ultraviolet absorbing ability within the range not impairing the optical characteristics of the present invention. If the amount is too large, the glass tends to be yellowish, and the transmittance near 500 to 600 nm is lowered. For this reason, it is desirable to keep the content low within a range of less than 0.5%. Further, it is preferably less than 0.1%, and more preferably 0.05% or less.

(ZrO2
ZrO2は、必須成分ではないが、ガラスの耐久性を向上させるとともに、成形時の失透温度を調整するのに有効な成分である。5%を超えると、逆に失透しやすくなる。また、ZrO2は原料が高価であり、1%未満とすることが望ましい。
(ZrO 2)
ZrO 2 is not an essential component, but is an effective component for improving the durability of the glass and adjusting the devitrification temperature during molding. If it exceeds 5%, devitrification tends to occur. ZrO 2 is an expensive raw material and is preferably less than 1%.

(SO3
SO3はガラスの清澄を促進する成分である。0.05%未満では通常の溶融方法では清澄効果が不十分となり、その望ましい範囲は0.1%以上である。一方、0.3%を超えると、その分解により生成するSO2が泡としてガラス中に残留したり、リボイルにより泡を発生し易くなる。
(SO 3 )
SO 3 is a component that promotes clarification of glass. If it is less than 0.05%, the clarification effect is insufficient with a normal melting method, and its desirable range is 0.1% or more. On the other hand, when it exceeds 0.3%, SO 2 produced by the decomposition thereof remains in the glass as bubbles, or bubbles are easily generated by reboil.

(全酸化鉄(T−Fe23))
酸化鉄は、主に原料の不純物として含まれる成分である。目的とする高い透過率を得るためには、全酸化鉄(T−Fe23)が0.05%以下であることが必要であり、0.02%以下であることが望ましい。また、Fe23に換算したFeOの割合は、全酸化鉄の20%以下である必要がある。Fe23に換算したFeOの割合が20%より大きいと、FeOの吸収が強くなり、波長800〜1000nmの光の透過率が低くなる。Fe23に換算したFeOの割合は、T−Fe23の15%以下であることが望ましい。なお、全酸化鉄に対するFe23に換算したFeO割合である鉄比を、FeO比ということがある。
(Total iron oxide (T-Fe 2 O 3 ))
Iron oxide is a component mainly contained as an impurity of the raw material. In order to obtain the desired high transmittance, the total iron oxide (T-Fe 2 O 3 ) needs to be 0.05% or less, and desirably 0.02% or less. Further, the ratio of FeO converted to Fe 2 O 3 needs to be 20% or less of the total iron oxide. When the ratio of FeO converted to Fe 2 O 3 is larger than 20%, the absorption of FeO becomes strong and the transmittance of light having a wavelength of 800 to 1000 nm is lowered. Ratio of FeO which in terms of Fe 2 O 3 is preferably 15% or less of the T-Fe 2 O 3. Incidentally, the iron ratio is FeO ratio in terms of Fe 2 O 3 to the total iron oxide, it may be referred to FeO ratio.

(酸化アンチモン)
酸化アンチモンは、全酸化鉄中のFeOの割合(FeO比)を調整するのに有効な成分である。その含有率が0.05%未満では、FeO比を調整する能力が不足し、目的とする割合に調整することが困難になる。また、含有率が多くなると短波長域の透過率が低くなり、また原料が高価なため、0.5%以下とすることが望ましい。また、0.4%未満とすることがさらに望ましい。
(Antimony oxide)
Antimony oxide is an effective component for adjusting the proportion of FeO in the total iron oxide (FeO ratio). If the content is less than 0.05%, the ability to adjust the FeO ratio is insufficient, and it becomes difficult to adjust to the target ratio. Moreover, since the transmittance | permeability of a short wavelength region will become low and the raw material will be expensive when content rate increases, it is desirable to set it as 0.5% or less. Further, it is more desirable to set it to less than 0.4%.

ところで、本ガラス組成物は種々の方法で成形することができるが、安価かつ多量に平坦な板状に成形する場合にはフロート法が最も適している。一般的にフロート法で成形する場合、ガラス中に0.5%を超える程度の比較的多量の酸化アンチモンを含有すると、フロートバス中の還元雰囲気に接することによって酸化アンチモンが還元されて金属の粒子を形成され、ガラス板の表面が白濁することが知られている。   By the way, although this glass composition can be shape | molded by various methods, when it shape | molds in flat plate shape cheaply and in large quantities, the float glass method is the most suitable. In general, when forming by the float process, when a relatively large amount of antimony oxide exceeding 0.5% is contained in the glass, the antimony oxide is reduced by contacting with the reducing atmosphere in the float bath, so that metal particles It is known that the surface of the glass plate becomes cloudy.

しかし、本発明では、酸化アンチモン含有率を少なく規定しているので、このような問題は生じにくい。なお、条件によっては、このような現象を生ずる虞もあるので、酸化アンチモン含有量は0.3%以下とすることが最も望ましい。   However, in the present invention, since the content of antimony oxide is specified to be small, such a problem is unlikely to occur. Note that, depending on the conditions, such a phenomenon may occur, so that the content of antimony oxide is most preferably 0.3% or less.

酸化アンチモンは、三酸化アンチモン(Sb23),五酸化アンチモン(Sb25)のどちらでも原料混合物に加えることができる。三酸化アンチモン(Sb23)を使用する場合には、そのFeOの割合を調整する能力をより有効に作用させるために、酸化剤として硝酸塩,硫酸塩を同時に加える必要がある。そのようにして原料に加えた場合には、三酸化アンチモン(Sb23)の方がより有効に、FeO比を調整することができる。 As antimony oxide, either antimony trioxide (Sb 2 O 3 ) or antimony pentoxide (Sb 2 O 5 ) can be added to the raw material mixture. When antimony trioxide (Sb 2 O 3 ) is used, it is necessary to simultaneously add nitrate and sulfate as oxidizing agents in order to make the ability to adjust the FeO ratio more effective. Thus, when added to the raw material, antimony trioxide (Sb 2 O 3 ) can adjust the FeO ratio more effectively.

このようにして溶融したガラスは、種々の方法で成型可能であり、ロールアウト法やフロート法により、板状に成形することができる。 The glass thus melted can be molded by various methods, and can be molded into a plate shape by a roll-out method or a float method.

本発明によるソーダ石灰系ガラス組成物は、全酸化鉄の含有率が制限され、酸化アンチモンを含ませることによって鉄比が制御させている。さらに、このガラス組成物は、CeO2を含まないことによって紫外線が照射されたときの透過率変化が小さくなっている。その結果、高い透過率を有するガラス組成物である。 In the soda-lime-based glass composition according to the present invention, the content of total iron oxide is limited, and the iron ratio is controlled by including antimony oxide. Further, since this glass composition does not contain CeO 2 , the change in transmittance when irradiated with ultraviolet rays is small. As a result, the glass composition has a high transmittance.

以下に、実施例・比較例を示して、本発明を詳しく説明する。
表1に示したガラス組成となるように、原料バッチ(以下、バッチと呼ぶ場合がある)をそれぞれ調合した。原料は、通常のガラス製造に用いられるものを使用した。酸化アンチモンについては、実施例3のみ三酸化アンチモン(Sb23)を使用し、他の実施例と比較例4では、五酸化アンチモン(Sb25)を使用とした。なお、三酸化アンチモン(Sb23)の場合、酸化剤として硝酸ナトリウムを併せて使用した。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
Raw material batches (hereinafter sometimes referred to as batches) were prepared so as to have the glass compositions shown in Table 1. The raw materials used were those used for normal glass production. The antimony oxide, using the third embodiment only antimony trioxide (Sb 2 O 3), Comparative Example 4 and other examples, was used antimony pentoxide (Sb 2 O 5). In the case of antimony trioxide (Sb 2 O 3 ), sodium nitrate was also used as an oxidizing agent.

Figure 2007238398
Figure 2007238398

調合したバッチは、白金ルツボの中で熔融および清澄した。まず、このルツボを1600℃に設定した電気炉で、4時間保持してバッチを熔融した。その後、ガラス融液の入ったルツボを炉外に取り出し、いったん室温で放冷固化してガラス体を得た。このガラス体をルツボから取り出して徐冷操作を施した。徐冷操作は、このガラス体を700℃に設定した別の電気炉の中で1時間保持した後、その電気炉の電源を切り、室温まで冷却することによって行なった。この徐冷操作を経たガラス体を試料ガラスとした。   The blended batch was melted and clarified in a platinum crucible. First, the crucible was held in an electric furnace set at 1600 ° C. for 4 hours to melt the batch. Thereafter, the crucible containing the glass melt was taken out of the furnace and allowed to cool and solidify at room temperature to obtain a glass body. The glass body was taken out of the crucible and subjected to a slow cooling operation. The slow cooling operation was performed by holding the glass body in another electric furnace set at 700 ° C. for 1 hour, and then turning off the electric furnace and cooling to room temperature. The glass body that had undergone this slow cooling operation was used as a sample glass.

(ガラス組成の定量)
試料ガラスを粉砕し、蛍光X線分析法(理学電機工業製、RIX3001)により、ガラス組成の定量を行った。なお、ホウ素(B)については、発光分光分析法(島津製作所製、ICPS-1000IV)により定量を行った。
(Quantification of glass composition)
The sample glass was pulverized, and the glass composition was quantified by fluorescent X-ray analysis (manufactured by Rigaku Corporation, RIX3001). Boron (B) was quantified by emission spectroscopy (ICPS-1000IV, manufactured by Shimadzu Corporation).

すべての実施例は、酸化アンチモンを含み、酸化セリウムと酸化ヒ素を含まない。比較例1〜3は、いずれも酸化アンチモンを含まない。比較例4は、酸化アンチモンと酸化セリウムとを共に含む。   All examples contain antimony oxide and no cerium oxide and arsenic oxide. Comparative Examples 1 to 3 do not contain antimony oxide. Comparative Example 4 contains both antimony oxide and cerium oxide.

また、実施例1〜6において、T−Fe23を0.015%と0.020%の2水準とし、さらにFeOの含有率を制御しており、FeO比も異なっている。各実施例・比較例における、全酸化鉄に対するFe23に換算したFeOの含有率とFeO比とを、表2に示した。 Further, in Examples 1-6, the T-Fe 2 O 3 and 2 levels of 0.015% and 0.020% or, has further control the content of FeO, it is also different FeO ratio. Table 2 shows the FeO content and FeO ratio in terms of Fe 2 O 3 with respect to the total iron oxide in each of the examples and comparative examples.

(透過率の測定)
得られた各実施例と各比較例の試料ガラスにおける透過率Tを、分光光度計を用いて測定した。使用した波長は、400nm,550nm,800nm,1000nmである。測定結果を表2に併せて示した。
(Measurement of transmittance)
The transmittance T in the obtained sample glasses of each Example and each Comparative Example was measured using a spectrophotometer. The used wavelengths are 400 nm, 550 nm, 800 nm, and 1000 nm. The measurement results are also shown in Table 2.

Figure 2007238398
Figure 2007238398

次に、各試料ガラスに高圧水銀ランプ(GE製H12T3,750W)からのUV光(主な紫外線波長:296,302,313,365,405nm)を24時間照射した。UV照射後の透過率Tを測定し、その結果を表2に併せて示した。さらに、UV照射前後の透過率の差ΔTを算出し、表2に併せて示した。なお、実施例3と比較例3において、UV照射前後の透過率のグラフを、図1と2にそれぞれ示した   Next, each sample glass was irradiated with UV light (main ultraviolet wavelengths: 296, 302, 313, 365, and 405 nm) from a high-pressure mercury lamp (GE H12T3, 750 W) for 24 hours. The transmittance T after UV irradiation was measured, and the results are also shown in Table 2. Further, the difference ΔT in transmittance before and after UV irradiation was calculated and shown together in Table 2. In Example 3 and Comparative Example 3, the transmittance graphs before and after UV irradiation are shown in FIGS. 1 and 2, respectively.

まず、各実施例において、800nmにおける透過率Tは、いずれも91.2%以上であった。一方、比較例1と2では、800nmにおける透過率Tは、いずれも91%未満であった。   First, in each Example, the transmittance T at 800 nm was 91.2% or more. On the other hand, in Comparative Examples 1 and 2, the transmittance T at 800 nm was less than 91%.

各実施例において、800nmと1000nmにおけるΔTは、いずれも正の値であり、UV照射によって透過率が低下していないことが分かった。一方、比較例3と4では、800nmと1000nmにおけるΔTは、いずれも負の値であり、UV照射によって透過率が低下していることが分かった。   In each example, ΔT at 800 nm and 1000 nm was both positive values, and it was found that the transmittance was not lowered by UV irradiation. On the other hand, in Comparative Examples 3 and 4, ΔT at 800 nm and 1000 nm were both negative values, and it was found that the transmittance was reduced by UV irradiation.

本発明によるソーダ石灰系ガラス組成物は、高い透過率を有し、さらにソーラリゼーションもおこさないので、UV照射による透過率の低下もないので、太陽電池パネルのカバーガラスに、好ましく用いることができる。   Since the soda-lime-based glass composition according to the present invention has high transmittance and does not cause solarization, there is no decrease in transmittance due to UV irradiation. Therefore, it is preferably used for a cover glass of a solar cell panel. it can.

実施例3におけるUV照射前後の透過率のグラフである。6 is a graph of transmittance before and after UV irradiation in Example 3. 比較例3におけるUV照射前後の透過率のグラフである。10 is a graph of transmittance before and after UV irradiation in Comparative Example 3.

Claims (12)

ソーダ石灰系ガラス組成物であって、
酸化鉄を含み、Fe23に換算した全酸化鉄(T−Fe23)が0.04質量%以下であり、前記全酸化鉄うち、Fe23に換算したFeOの割合が前記全酸化鉄の20%以下であり、
Sb23に換算した全酸化アンチモンが0.05質量%を超えて0.5質量%まで含まれ、
酸化ヒ素と酸化セリウムとを実質的に含有しないことを特徴とするソーダ石灰系ガラス組成物。
A soda-lime glass composition,
Include iron oxide, Fe 2 O 3 the total iron oxide in terms of (T-Fe 2 O 3) is not more than 0.04 wt%, the one total iron oxide, the ratio of FeO which in terms of Fe 2 O 3 20% or less of the total iron oxide,
The total antimony oxide converted to Sb 2 O 3 is more than 0.05% by mass and 0.5% by mass,
A soda-lime-based glass composition characterized by substantially not containing arsenic oxide and cerium oxide.
前記ソーダ石灰系ガラス組成物が、質量%で表示して、
65 ≦ SiO2 ≦ 80、
0 ≦ Al23 ≦ 5、
0 ≦ B23 ≦ 5、
0 ≦ Li2O ≦ 5、
5 < Na2O ≦ 18、
0 ≦ K2O ≦ 10、
10 ≦ (Li2O+Na2O+K2O) ≦ 20、
0 ≦ MgO ≦ 10、
5 < CaO ≦ 15、
0 ≦ (SrO+BaO+ZnO) ≦ 5、
5 ≦ (MgO+CaO+SrO+BaO) ≦ 15、
0 ≦ TiO2 < 0.5、
0 ≦ ZrO2 ≦ 5、
0.05 ≦ SO3 ≦ 0.5、
を含んでなる請求項1に記載のソーダ石灰系ガラス組成物。
The soda-lime-based glass composition is expressed in mass%,
65 ≦ SiO 2 ≦ 80,
0 ≦ Al 2 O 3 ≦ 5,
0 ≦ B 2 O 3 ≦ 5,
0 ≦ Li 2 O ≦ 5,
5 <Na 2 O ≦ 18,
0 ≦ K 2 O ≦ 10,
10 ≦ (Li 2 O + Na 2 O + K 2 O) ≦ 20,
0 ≦ MgO ≦ 10,
5 <CaO ≦ 15,
0 ≦ (SrO + BaO + ZnO) ≦ 5,
5 ≦ (MgO + CaO + SrO + BaO) ≦ 15,
0 ≦ TiO 2 <0.5,
0 ≦ ZrO 2 ≦ 5,
0.05 ≦ SO 3 ≦ 0.5,
The soda-lime-based glass composition according to claim 1, comprising:
前記ソーダ石灰系ガラス組成物が、質量%で表示して、
13 < (Li2O+Na2O+K2O) ≦ 20、
2 ≦ MgO ≦ 10、
10 ≦ (MgO+CaO+SrO+BaO+ZnO) ≦ 15、
を含んでなり、
Fe23に換算したFeOの割合が、前記全酸化鉄の15%以下である請求項2に記載のソーダ石灰系ガラス組成物。
The soda-lime-based glass composition is expressed in mass%,
13 <(Li 2 O + Na 2 O + K 2 O) ≦ 20,
2 ≦ MgO ≦ 10,
10 ≦ (MgO + CaO + SrO + BaO + ZnO) ≦ 15,
Comprising
Ratio of FeO which in terms of Fe 2 O 3 is, soda-lime glass composition according to claim 2 wherein 15% or less of the total iron oxide.
前記ソーダ石灰系ガラス組成物が、実質的にB23,SrO,BaO,およびZnOを含有せず、
ZrO2含有量が0.5質量%以下である請求項1〜3のいずれか1項に記載のソーダ石灰系ガラス組成物。
The soda-lime glass composition is substantially free of B 2 O 3 , SrO, BaO, and ZnO;
Soda-lime glass according to any one of claims 1 to 3 ZrO 2 content of 0.5 mass% or less.
Sb23に換算した全酸化アンチモンが0.4質量%未満含まれる請求項1〜4のいずれか1項に記載のソーダ石灰系ガラス組成物。 The soda-lime-based glass composition according to any one of claims 1 to 4, wherein less than 0.4% by mass of total antimony oxide converted to Sb 2 O 3 is contained. 前記Fe23に換算した全酸化鉄が0.02質量%以下である請求項1〜5のいずれか1項に記載のソーダ石灰系ガラス組成物。 The Fe 2 O 3 soda-lime glass composition according to any one of claims 1 to 5, total iron oxide in terms is less than 0.02% by mass. 請求項1〜6いずれか1項に記載のソーダ石灰系ガラス組成物において、
前記ガラス組成物を厚み3mmとしたとき、波長800nmの光の透過率が91%以上であるソーダ石灰系ガラス組成物。
In the soda-lime-based glass composition according to any one of claims 1 to 6,
A soda-lime glass composition having a light transmittance of 91% or more when the glass composition has a thickness of 3 mm.
請求項7に記載のソーダ石灰系ガラス組成物において、
前記透過率が91.5%以上であるソーダ石灰系ガラス組成物。
In the soda-lime-based glass composition according to claim 7,
A soda-lime glass composition having a transmittance of 91.5% or more.
請求項1〜8いずれか1項に記載のソーダ石灰系ガラス組成物において、
前記ガラス組成物を厚み3mmとしたとき、紫外線波長域の光の照射によって波長800と1000nmの透過率が、それぞれ低下していないソーダ石灰系ガラス組成物。
In the soda-lime-based glass composition according to any one of claims 1 to 8,
A soda-lime-based glass composition in which, when the glass composition has a thickness of 3 mm, transmittances at wavelengths of 800 and 1000 nm are not reduced by irradiation with light in the ultraviolet wavelength region.
請求項1〜8いずれか1項に記載のソーダ石灰系ガラス組成物において、
前記ガラス組成物を厚み3mmとしたとき、紫外線波長域の光の照射によって波長400nmの透過率の低下が2%以下であるソーダ石灰系ガラス組成物。
In the soda-lime-based glass composition according to any one of claims 1 to 8,
A soda-lime-based glass composition in which the decrease in transmittance at a wavelength of 400 nm is 2% or less when irradiated with light in the ultraviolet wavelength region when the glass composition has a thickness of 3 mm.
請求項1〜10に記載のガラス組成物がフロート法により板状に成形されたことを特徴とするガラス板。   A glass plate, wherein the glass composition according to claim 1 is formed into a plate shape by a float process. アンチモン酸化物の少なくとも一部を三酸化アンチモンで原料混合物加え、酸化剤として硝酸塩あるいは硫酸塩を同時に原料混合物に加えることを特徴とする、請求項1〜10に記載のガラス組成物の製造方法。   The method for producing a glass composition according to claim 1, wherein at least a part of the antimony oxide is added to the raw material mixture with antimony trioxide, and nitrate or sulfate is simultaneously added to the raw material mixture as an oxidizing agent.
JP2006064993A 2006-03-10 2006-03-10 Soda-lime based glass composition Pending JP2007238398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064993A JP2007238398A (en) 2006-03-10 2006-03-10 Soda-lime based glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064993A JP2007238398A (en) 2006-03-10 2006-03-10 Soda-lime based glass composition

Publications (1)

Publication Number Publication Date
JP2007238398A true JP2007238398A (en) 2007-09-20

Family

ID=38584292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064993A Pending JP2007238398A (en) 2006-03-10 2006-03-10 Soda-lime based glass composition

Country Status (1)

Country Link
JP (1) JP2007238398A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096876A1 (en) * 2007-02-08 2008-08-14 Nippon Sheet Glass Company, Limited Solar cell module, cover glass for crystalline silicon solar cell, and glass substrate for thin film solar cell
WO2009110957A1 (en) * 2008-03-06 2009-09-11 Guardian Industries Corp. Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method
WO2010023419A1 (en) * 2008-09-01 2010-03-04 Saint-Gobain Glass France Process for obtaining glass and glass obtained
EP2195278A1 (en) * 2007-09-21 2010-06-16 Saint-Gobain Glass France Silico-sodo-calcic glass sheet
WO2010056432A3 (en) * 2008-11-17 2010-07-15 Guardian Industries Corp. Photovoltaic device using low iron high transmission class with antimony and reduced alkali content and corresponding method
WO2010114588A1 (en) * 2009-04-03 2010-10-07 Guardian Industries Corp. Low iron high transmission glass with boron oxide for improved optics, durability and refining, and corresponding method
JP2010538962A (en) * 2007-09-21 2010-12-16 サン−ゴバン グラス フランス Silico-sword-calcium glass plate
JP2011522770A (en) * 2008-06-09 2011-08-04 ピルキントン グループ リミテッド Glass plate and glass composition for solar unit
JP2012509246A (en) * 2008-11-21 2012-04-19 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Method for reducing the redox ratio of molten glass and ultra-transparent glass produced therefrom
JP2012519128A (en) * 2009-02-27 2012-08-23 サン−ゴバン グラス フランス Glass plate
WO2013061479A1 (en) 2011-10-24 2013-05-02 セントラル硝子株式会社 Solar cell cover glass and method for producing same
US8664132B2 (en) 2010-09-03 2014-03-04 Ppg Industries Ohio, Inc. High transmittance glass
CN103648997A (en) * 2011-07-04 2014-03-19 旭硝子欧洲玻璃公司 Sheet of float glass having high energy transmission
JP5456316B2 (en) * 2006-09-28 2014-03-26 日本板硝子株式会社 Glass composition and glass article using the same
JP2014508708A (en) * 2011-03-09 2014-04-10 サン−ゴバン グラス フランス Photovoltaic substrate
WO2014057890A1 (en) * 2012-10-09 2014-04-17 旭硝子株式会社 Cover glass for solar cell
US8828898B2 (en) 2010-10-27 2014-09-09 Asahi Glass Company, Limited Glass plate and process for its production
EP2873653A1 (en) * 2013-11-18 2015-05-20 AGC Glass Europe Glass sheet with high transmission of infrared radiation
WO2015172983A1 (en) * 2014-05-12 2015-11-19 Agc Glass Europe Glass sheet having a high transmission in the infrared
WO2016008906A1 (en) * 2014-07-17 2016-01-21 Agc Glass Europe Glass sheet having a high transmission in the infrared
EP3031783A1 (en) * 2014-12-09 2016-06-15 AGC Glass Europe Chemically temperable glass sheet
WO2016091673A1 (en) * 2014-12-09 2016-06-16 Agc Glass Europe Chemically temperable glass sheet
CN105693084A (en) * 2016-02-23 2016-06-22 中国建材桐城新能源材料有限公司 PID (potential induced degradation)-resistant photovoltaic glass
US9394195B2 (en) 2012-04-27 2016-07-19 Asahi Glass Company, Limited Glass plate
EP3103776A1 (en) * 2015-06-08 2016-12-14 AGC Glass Europe Chemically temperable glass sheet
WO2017022508A1 (en) * 2015-08-03 2017-02-09 旭硝子株式会社 Process for producing glass plate, and glass plate
CN107200469A (en) * 2017-06-23 2017-09-26 四川旭虹光电科技有限公司 High light transmittance glass plate
CN112897879A (en) * 2021-02-05 2021-06-04 北京国信同创科技有限责任公司 Medium-wave ultraviolet-transmitting glass and preparation method and application thereof
FR3128707A1 (en) * 2021-11-04 2023-05-05 Arc France Composition of colorless soda-lime glass

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456316B2 (en) * 2006-09-28 2014-03-26 日本板硝子株式会社 Glass composition and glass article using the same
WO2008096876A1 (en) * 2007-02-08 2008-08-14 Nippon Sheet Glass Company, Limited Solar cell module, cover glass for crystalline silicon solar cell, and glass substrate for thin film solar cell
JP2010538962A (en) * 2007-09-21 2010-12-16 サン−ゴバン グラス フランス Silico-sword-calcium glass plate
EP2195278A1 (en) * 2007-09-21 2010-06-16 Saint-Gobain Glass France Silico-sodo-calcic glass sheet
JP2010538963A (en) * 2007-09-21 2010-12-16 サン−ゴバン グラス フランス Silico-sword-calcium glass plate
KR101517257B1 (en) 2007-09-21 2015-05-04 쌩-고벵 글래스 프랑스 Silico-sodo-calcic glass sheet
WO2009110957A1 (en) * 2008-03-06 2009-09-11 Guardian Industries Corp. Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method
US8671717B2 (en) 2008-03-06 2014-03-18 Guardian Industries Corp. Photovoltaic device having low iron high transmission glass with lithium oxide for reducing seed free time and corresponding method
JP2011522770A (en) * 2008-06-09 2011-08-04 ピルキントン グループ リミテッド Glass plate and glass composition for solar unit
WO2010023419A1 (en) * 2008-09-01 2010-03-04 Saint-Gobain Glass France Process for obtaining glass and glass obtained
EA019049B1 (en) * 2008-09-01 2013-12-30 Сэн-Гобэн Гласс Франс Process for obtaining glass and glass obtained
JP2012501285A (en) * 2008-09-01 2012-01-19 サン−ゴバン グラス フランス Method for obtaining glass and glass obtained
US8966941B2 (en) 2008-09-01 2015-03-03 Saint-Gobain Glass France Process for obtaining glass and glass obtained
WO2010056432A3 (en) * 2008-11-17 2010-07-15 Guardian Industries Corp. Photovoltaic device using low iron high transmission class with antimony and reduced alkali content and corresponding method
KR101304664B1 (en) 2008-11-21 2013-09-06 피피지 인더스트리즈 오하이오 인코포레이티드 Method of reducing redox ratio of molten glass and ultra-clear glass made thereby
JP2012509246A (en) * 2008-11-21 2012-04-19 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Method for reducing the redox ratio of molten glass and ultra-transparent glass produced therefrom
EP2396284B1 (en) 2008-11-21 2016-05-18 PPG Industries Ohio, Inc. Method of reducing redox ratio of molten glass for making ultra-clear glass
US20130038940A1 (en) * 2008-11-21 2013-02-14 Ppg Industries Ohio, Inc. Method of reducing redox ratio of molten glass and the glass made thereby
US9133049B2 (en) * 2008-11-21 2015-09-15 Ppg Industries Ohio, Inc. Method of reducing redox ratio of molten glass and the glass made thereby
US8304358B2 (en) 2008-11-21 2012-11-06 Ppg Industries Ohio, Inc. Method of reducing redox ratio of molten glass and the glass made thereby
JP2012519128A (en) * 2009-02-27 2012-08-23 サン−ゴバン グラス フランス Glass plate
US8298972B2 (en) 2009-04-03 2012-10-30 Guardian Industries Corp. Low iron high transmission glass with boron oxide for improved optics, durability and refining, and corresponding method
WO2010114588A1 (en) * 2009-04-03 2010-10-07 Guardian Industries Corp. Low iron high transmission glass with boron oxide for improved optics, durability and refining, and corresponding method
US8664132B2 (en) 2010-09-03 2014-03-04 Ppg Industries Ohio, Inc. High transmittance glass
US9174867B2 (en) 2010-10-27 2015-11-03 Asahi Glass Company, Limited Glass plate and process for its production
JP2016084281A (en) * 2010-10-27 2016-05-19 旭硝子株式会社 Glass plate
US8828898B2 (en) 2010-10-27 2014-09-09 Asahi Glass Company, Limited Glass plate and process for its production
JP2014508708A (en) * 2011-03-09 2014-04-10 サン−ゴバン グラス フランス Photovoltaic substrate
JP2014527499A (en) * 2011-07-04 2014-10-16 エージーシー グラス ユーロップ Float glass plate with high energy transmittance
CN103648997A (en) * 2011-07-04 2014-03-19 旭硝子欧洲玻璃公司 Sheet of float glass having high energy transmission
WO2013061479A1 (en) 2011-10-24 2013-05-02 セントラル硝子株式会社 Solar cell cover glass and method for producing same
US9394195B2 (en) 2012-04-27 2016-07-19 Asahi Glass Company, Limited Glass plate
WO2014057890A1 (en) * 2012-10-09 2014-04-17 旭硝子株式会社 Cover glass for solar cell
EP2873653A1 (en) * 2013-11-18 2015-05-20 AGC Glass Europe Glass sheet with high transmission of infrared radiation
WO2015071456A1 (en) * 2013-11-18 2015-05-21 Agc Glass Europe Glass sheet having a high transmission in the infrared
US10093573B2 (en) 2013-11-18 2018-10-09 Agc Glass Europe Glass sheet having a high transmission in the infrared
WO2015172983A1 (en) * 2014-05-12 2015-11-19 Agc Glass Europe Glass sheet having a high transmission in the infrared
US10275095B2 (en) 2014-05-12 2019-04-30 Agc Glass Europe Glass sheet having a high transmission in the infrared
JP2017515777A (en) * 2014-05-12 2017-06-15 エージーシー グラス ユーロップAgc Glass Europe Glass plate with high transmittance in the infrared region
JP2017526602A (en) * 2014-07-17 2017-09-14 エージーシー グラス ユーロップAgc Glass Europe Glass plate with high transmittance in the infrared region
CN106488888A (en) * 2014-07-17 2017-03-08 旭硝子欧洲玻璃公司 There is the glass plate of the high-transmission rate in infrared ray
US10358377B2 (en) 2014-07-17 2019-07-23 Agc Glass Europe Glass sheet having a high transmission in the infrared
WO2016008906A1 (en) * 2014-07-17 2016-01-21 Agc Glass Europe Glass sheet having a high transmission in the infrared
WO2016091672A1 (en) * 2014-12-09 2016-06-16 Agc Glass Europe Chemically temperable glass sheet
CN107001111A (en) * 2014-12-09 2017-08-01 旭硝子欧洲玻璃公司 The glass plate being chemically tempered
US11718552B2 (en) 2014-12-09 2023-08-08 Agc Glass Europe Chemically temperable glass sheet
WO2016091673A1 (en) * 2014-12-09 2016-06-16 Agc Glass Europe Chemically temperable glass sheet
US20180312430A1 (en) * 2014-12-09 2018-11-01 Agc Glass Europe Chemically temperable glass sheet
US10654750B2 (en) 2014-12-09 2020-05-19 Agc Glass Europe Chemically temperable glass sheet
EP3031783A1 (en) * 2014-12-09 2016-06-15 AGC Glass Europe Chemically temperable glass sheet
EP3103776A1 (en) * 2015-06-08 2016-12-14 AGC Glass Europe Chemically temperable glass sheet
WO2017022508A1 (en) * 2015-08-03 2017-02-09 旭硝子株式会社 Process for producing glass plate, and glass plate
CN105693084B (en) * 2016-02-23 2019-01-08 中国建材桐城新能源材料有限公司 A kind of anti-PID photovoltaic glass
CN105693084A (en) * 2016-02-23 2016-06-22 中国建材桐城新能源材料有限公司 PID (potential induced degradation)-resistant photovoltaic glass
CN107200469A (en) * 2017-06-23 2017-09-26 四川旭虹光电科技有限公司 High light transmittance glass plate
CN112897879A (en) * 2021-02-05 2021-06-04 北京国信同创科技有限责任公司 Medium-wave ultraviolet-transmitting glass and preparation method and application thereof
FR3128707A1 (en) * 2021-11-04 2023-05-05 Arc France Composition of colorless soda-lime glass
WO2023079034A1 (en) * 2021-11-04 2023-05-11 Arc France Colorless soda-lime glass composition

Similar Documents

Publication Publication Date Title
JP2007238398A (en) Soda-lime based glass composition
KR100847618B1 (en) High transmission glass plates and method for manufacturing the same
CN1208273C (en) Palely colored glass having transmittance and method for producing the same
JP5880439B2 (en) Glass plate and method for producing the same
JP5267464B2 (en) Method for producing alkali-free glass
JPWO2011019079A1 (en) High transmission light colored glass and method for producing the same
JPWO2016017558A1 (en) High transmission glass
JP2010100440A (en) Soda lime-based glass composition
JP5445190B2 (en) High transmission glass plate and manufacturing method thereof
WO2017043631A1 (en) Ultraviolet-radiation absorbing glass product
JP2003160354A (en) Highly transparent glass plate and method of manufacturing the highly transparent glass plate
WO2017065160A1 (en) Ultraviolet-absorbing glass article
JP2000143287A (en) Ultraviolet ray and infrared ray absorbing glass
JP2000143284A (en) Light-colored high transmission glass and its production
JP3775734B2 (en) GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME
JP2014088315A (en) Glass composition and glass product using the same
WO2008051357A1 (en) Uv transmissive soda-lime-silica glass
CN114014538B (en) Silicate glass and preparation method and application thereof
US20150008378A1 (en) Colored glass plate and method for its production
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
JP4767456B2 (en) Glass composition for lighting
WO2016039252A1 (en) Ultraviolet-absorbing glass article
JP4688398B2 (en) Glass composition for electric lamp
JP4756429B2 (en) Compact fluorescent lamp glass and manufacturing method thereof.
JP2007217200A (en) Method for producing glass article

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Effective date: 20080411

Free format text: JAPANESE INTERMEDIATE CODE: A7425