JP2002261157A - Electrostatic chuck and treating device - Google Patents

Electrostatic chuck and treating device

Info

Publication number
JP2002261157A
JP2002261157A JP2001053173A JP2001053173A JP2002261157A JP 2002261157 A JP2002261157 A JP 2002261157A JP 2001053173 A JP2001053173 A JP 2001053173A JP 2001053173 A JP2001053173 A JP 2001053173A JP 2002261157 A JP2002261157 A JP 2002261157A
Authority
JP
Japan
Prior art keywords
mounting surface
outer peripheral
electrostatic chuck
less
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001053173A
Other languages
Japanese (ja)
Other versions
JP3758979B2 (en
Inventor
Masashi Sakagami
勝伺 坂上
Shoji Kosaka
祥二 高坂
Ichio Kiyofuji
市男 清藤
Junji Oe
純司 大江
Masaki Terasono
正喜 寺園
Yasushi Uda
靖 右田
Naohiro Azuma
直大 東
Hitoshi Atari
仁 阿多利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001053173A priority Critical patent/JP3758979B2/en
Priority to US10/090,438 priority patent/US6643115B2/en
Publication of JP2002261157A publication Critical patent/JP2002261157A/en
Application granted granted Critical
Publication of JP3758979B2 publication Critical patent/JP3758979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/23Chucks or sockets with magnetic or electrostatic means

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck having detachment response and small gas leakage and a treating device using it while the uniform heating and high attraction force of a substrate are maintained. SOLUTION: In the electrostatic chuck provided with a ceramic dielectric layer 2, a mounting face 3 provided on the surface of the ceramic dielectric layer 2 and holding an object to be held, and a holding electrode 4 provided so as to be opposed to the mounting face and the surface of the contrary side, the mounting face 3 is separated into a mounting face outer peripheral area 3b and a mounting face center area 3a by a gas jetting groove 5, surface roughness Ra is 0.6-1.5 μm in the mounting face center area 3a, 0.7 μm or less in the mounting face outer peripheral area 3b, the surface roughness of the mounting face outer peripheral area 3b is smaller than that of the mounting face center area 3a, and the height of the mounting face outer peripheral area 3b is 0.6 μm or higher than that of the mounting face center area 3a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、静電チャックに関
し、特に、エッチング、CVD、スパッタリング等の半
導体製造工程において、ウエハを静電的に吸着保持して
行う処理や搬送等に好適に用いられる静電チャック及び
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck, and more particularly, to an electrostatic chuck, which is suitably used for processing, transport, and the like in which a wafer is electrostatically attracted and held in a semiconductor manufacturing process such as etching, CVD, and sputtering. The present invention relates to an electrostatic chuck and a processing device.

【0002】[0002]

【従来技術】液晶を含む半導体デバイスの製造に用いる
半導体製造用装置において、ウエハ等の基板を成膜、エ
ッチング又は露光等により加工したり、搬送するために
は、基板を保持する必要がある。特に、静電的に基板を
保持する静電チャックは、真空中や腐食性ガス雰囲気で
の使用が可能であり、半導体の製造に適しているため、
多用されている。
2. Description of the Related Art In a semiconductor manufacturing apparatus used for manufacturing a semiconductor device including a liquid crystal, it is necessary to hold a substrate such as a wafer in order to process or transport the substrate by film formation, etching or exposure. In particular, an electrostatic chuck that electrostatically holds a substrate can be used in a vacuum or in a corrosive gas atmosphere, and is suitable for manufacturing semiconductors.
It is heavily used.

【0003】しかし、真空中で処理を行うプラズマ処理
装置においては、ウエハとそのウエハを載置する静電チ
ャック表面との間が真空状態になり、ウエハと静電チャ
ック間の熱伝達が悪くなるため、プラズマ処理中のイオ
ン照射によってウエハが局部的に加熱され、ウエハ温度
が不均一になり、その結果、不良が発生するという問題
があった。
However, in a plasma processing apparatus that performs processing in a vacuum, the space between the wafer and the surface of the electrostatic chuck on which the wafer is placed is in a vacuum state, and heat transfer between the wafer and the electrostatic chuck deteriorates. Therefore, there is a problem that the wafer is locally heated by the ion irradiation during the plasma processing, the wafer temperature becomes non-uniform, and as a result, a defect occurs.

【0004】そこで、静電チャックのウエハ載置面の中
心から外周部に向けて放射状に多くの溝を形成し、この
溝に熱伝導の媒体としてガスを導入することによって、
ウエハの温度上昇を防止するとともに、ウエハの面内に
おける温度のばらつきを小さくすることが特開平2−1
19131号公報で提案されている。
Therefore, a number of grooves are formed radially from the center of the wafer mounting surface of the electrostatic chuck to the outer peripheral portion, and gas is introduced into the grooves as a medium for heat conduction.
Japanese Patent Laid-Open No. 2-1 has disclosed a method of preventing a temperature rise of a wafer and reducing a temperature variation in a wafer surface.
19131.

【0005】また、静電チャックのウエハ載置面の表面
粗さを0.3μm以下と小さくし、ウエハと静電チャッ
クの接触面積を増やして熱伝達を改善し、基板の均熱性
を向上させることが特開平6−112302号公報で提
案されている。
In addition, the surface roughness of the wafer mounting surface of the electrostatic chuck is reduced to 0.3 μm or less, the contact area between the wafer and the electrostatic chuck is increased, heat transfer is improved, and the uniformity of the substrate is improved. This has been proposed in JP-A-6-112302.

【0006】さらに、ウエハ載置面がガス噴出溝によっ
て載置面中心領域と載置面外周領域とに分離し、前記載
置面外周領域の表面粗さが前記載置面中心領域よりも小
さく、且つ表面粗さを0.2〜0.5μmにすること
で、ウエハ表面での温度均一性を高めた静電チャックが
特開平8−55905号公報に記載されている。
Further, the wafer mounting surface is separated into a mounting surface central region and a mounting surface outer peripheral region by a gas ejection groove, and the surface roughness of the mounting surface outer peripheral region is smaller than the mounting surface central region. Japanese Patent Application Laid-Open No. 8-55905 discloses an electrostatic chuck in which the temperature uniformity on the wafer surface is improved by setting the surface roughness to 0.2 to 0.5 μm.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
2−119131号公報に記載の静電チャックは、中心
から放射状の溝が多数設けられているため、中心部では
溝間の間隔が狭く均熱性が高いものの、外周部では溝間
の間隔が大きくなり、部位によって温度が変化するた
め、均熱性が不十分であるという問題があった。
However, in the electrostatic chuck described in Japanese Patent Application Laid-Open No. 2-119131, a large number of radial grooves are provided from the center. However, since the distance between the grooves is large in the outer peripheral portion and the temperature changes depending on the portion, there is a problem that the heat uniformity is insufficient.

【0008】また、特開平6−112302号公報に記
載の静電チャックは、ウエハ載置面の表面粗さが小さ
く、基板の均熱性が向上するものの、吸着力が高すぎる
ために、印加電圧を切った時に残留吸着が発生し、被保
持物の離脱応答性が悪くなり、スループットを小さくし
て、生産性が低いという問題があった。
In the electrostatic chuck described in Japanese Patent Application Laid-Open No. 6-112302, the surface roughness of the wafer mounting surface is small, and the uniformity of the substrate is improved. However, there is a problem in that residual adsorption occurs when cutting is performed, the detachment response of the held object is deteriorated, the throughput is reduced, and the productivity is low.

【0009】さらに、特開平8−55905号公報に記
載した静電チャックは、上記の離脱応答性の問題に加え
て、不良率が高くなるという問題があった。即ち、この
静電チャックの表面粗さが小さいため温度均一性は高く
なるものの、温度上昇によってウエハが反るため、基板
の外周エッジに近いガス孔を設けたガス噴出溝からガス
のリークが発生し、プラズマ処理の均一性及び再現性に
悪影響を及ぼし、不良率が高くなるという問題があっ
た。
Further, the electrostatic chuck described in Japanese Patent Application Laid-Open No. 8-55905 has a problem that the defect rate is high in addition to the problem of the detachment responsiveness described above. That is, although the temperature uniformity is high because the surface roughness of the electrostatic chuck is small, the wafer warps due to the temperature rise, and gas leaks from the gas ejection grooves provided with gas holes near the outer peripheral edge of the substrate. However, there is a problem that the uniformity and reproducibility of the plasma processing are adversely affected, and the defective rate increases.

【0010】このように、従来の静電チャックは、均熱
性、吸着力及び離脱応答性の全ての特性に優れるものが
得られておらず、その結果、半導体製造工程においてス
ループットを低下したり、不良率を高めるという問題が
あった。
[0010] As described above, the conventional electrostatic chuck has not been able to obtain a material excellent in all of the characteristics of heat uniformity, suction force, and detachment response. As a result, the throughput is reduced in the semiconductor manufacturing process, There was a problem of increasing the defect rate.

【0011】従って、本発明は、基板の均熱性と高い吸
着力を維持しながら、離脱応答性とガスリークの少ない
静電チャック及びそれを用いた処理装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrostatic chuck with less detachment response and less gas leak while maintaining the uniform temperature of the substrate and a high attraction force, and a processing apparatus using the same.

【0012】[0012]

【課題を解決するための手段】本発明は、載置面外周領
域と載置面中心領域の表面粗さ及び位置(高さ)を制御
することにより、基板の均熱性と高い吸着力を維持しな
がら、離脱応答性とガスリークを改善できるという知見
に基づくものである。
SUMMARY OF THE INVENTION The present invention controls the surface roughness and the position (height) of the outer peripheral region of the mounting surface and the central region of the mounting surface to maintain the uniform temperature of the substrate and high suction power. Meanwhile, it is based on the finding that the departure response and gas leak can be improved.

【0013】即ち、本発明の静電チャックは、セラミッ
ク誘電体層と、該セラミック誘電体層の表面に設けら
れ、被保持物を保持するための載置面と、該載置面と反
対側の表面に対向するように設けられた保持電極とを具
備してなる静電チャックにおいて、前記載置面がガス噴
出溝によって載置面外周領域と載置面中心領域とに分離
され、表面粗さRaが、前記載置面中心領域で0.6〜
1.5μm、前記載置面外周領域で0.7μm以下であ
るとともに、前記載置面外周領域の表面粗さが前記載置
面中心領域の表面粗さよりも小さく、且つ前記載置面外
周領域の高さが、前記載置面中心領域の高さより0.6
μm以上高いことを特徴とするものである。
That is, an electrostatic chuck according to the present invention comprises a ceramic dielectric layer, a mounting surface provided on a surface of the ceramic dielectric layer, for holding an object to be held, and an opposite side to the mounting surface. A holding electrode provided so as to face the surface of the surface, the mounting surface is separated into a mounting surface outer peripheral region and a mounting surface central region by a gas ejection groove, and the surface roughness is reduced. The Ra is 0.6 to 0.6 in the center area of the placement surface described above.
1.5 μm, 0.7 μm or less in the mounting surface outer peripheral region, the surface roughness of the mounting surface outer peripheral region is smaller than the surface roughness of the mounting surface central region, and the mounting surface outer peripheral region. Height is 0.6 higher than the height of the placement surface center area.
It is characterized by being higher than μm.

【0014】このように、載置面中心領域の表面粗さR
aを0.6〜1.5μmと大きくするとともに、載置面
外周領域と載置面中心領域との水平レベルに0.6μm
以上の高低差を設けたため、ガスが被保持物と載置面中
心領域との間隙に入り、均熱性を向上することができ
る。
As described above, the surface roughness R in the center area of the mounting surface
a is increased to 0.6 to 1.5 μm, and the horizontal level between the mounting surface outer peripheral region and the mounting surface center region is 0.6 μm.
Since the above-described height difference is provided, the gas enters the gap between the object to be held and the central area of the mounting surface, and the heat uniformity can be improved.

【0015】また、この高低差の形成により、温度上昇
によってウエハ等の被保持物(以下、単にウエハと言
う)が反りを生じたとしても、その変形を吸収してウエ
ハ端部が載置面から離れることがなくなるため、載置面
外周領域からのガスのリークを防ぐと同時に、載置面外
周領域の表面粗さを0.7μm以下としたため、載置面
外周領域において高い吸着力を得ることができる。
Further, even if an object to be held (hereinafter simply referred to as a wafer) such as a wafer is warped due to a rise in temperature due to the formation of the height difference, the deformation is absorbed and the end of the wafer is placed on the mounting surface. And prevents the gas from leaking from the outer peripheral region of the mounting surface. At the same time, the surface roughness of the outer peripheral region of the mounting surface is set to 0.7 μm or less, so that a high suction force is obtained in the outer peripheral region of the mounting surface. be able to.

【0016】そして、載置面の表面粗さは吸着力及び残
留吸着力に大きな影響を及ぼすことを知見し、載置面外
周領域を小さな表面粗さ、載置面中心領域を比較的大き
な表面粗さにすることにより、十分な吸着力と迅速な離
脱応答性を実現することができた。即ち、表面粗さが載
置面中心領域で大きく、載置面外周領域で小さいため、
ウエハと静電チャックとの接触面積が小さくなり、その
結果、載置面外周領域では大きな吸着力を示すものの、
載置面中心領域では吸着力が抑制され、被保持物の離脱
応答性が改善されるのである。
It has been found that the surface roughness of the mounting surface has a large effect on the attraction force and the residual attraction force, and the outer peripheral region of the mounting surface has a small surface roughness and the central region of the mounting surface has a relatively large surface. By making the surface rough, it was possible to realize sufficient adsorption force and quick desorption response. That is, since the surface roughness is large in the mounting surface center region and small in the mounting surface outer peripheral region,
Although the contact area between the wafer and the electrostatic chuck is reduced, as a result, although a large suction force is exhibited in the outer peripheral area of the mounting surface,
In the central area of the mounting surface, the attraction force is suppressed, and the detachment responsiveness of the held object is improved.

【0017】特に、前記載置面外周領域及び前記載置面
中心領域の最大表面粗さRmaxが、2μm以下であるこ
とが好ましい。これにより、局部的なガスリークを防止
でき、被保持物の均熱性、吸着力の低下及び離脱応答性
をさらに改善できる。
[0017] In particular, the maximum surface roughness R max of the mounting surface outer peripheral region and the mounting surface central region, is preferably 2μm or less. As a result, local gas leakage can be prevented, and the heat uniformity of the held object, a decrease in the adsorbing power, and the detachment response can be further improved.

【0018】また、前記載置面の周端部から前記ガス噴
出溝の外周までの距離が、10mm以下であることが好
ましい。これにより、載置面外周領域を狭くすると共に
載置面中心領域を広くし、ガスによるウエハの均熱領域
を拡大し、外周領域のデッドスペースを狭くできるた
め、1枚の基板から得られる半導体チップの数が増え、
生産性を向上できる。
Preferably, a distance from a peripheral end of the mounting surface to an outer periphery of the gas ejection groove is 10 mm or less. As a result, the outer peripheral area of the mounting surface can be made narrower, the central area of the mounting surface can be made wider, the area where the gas is uniformly heated by gas can be expanded, and the dead space in the outer peripheral area can be made narrower. The number of chips increased,
Productivity can be improved.

【0019】さらに、前記セラミック誘電体層の密度が
98%以上、最大気孔径が2μm以下であることが好ま
しく、これにより、載置面の表面粗さを制御することが
容易になるとともに、被処理物との摩擦によって発生す
るパーティクルを減少させることができる。
Further, it is preferable that the density of the ceramic dielectric layer is 98% or more and the maximum pore diameter is 2 μm or less. This makes it easy to control the surface roughness of the mounting surface, Particles generated by friction with the processed object can be reduced.

【0020】さらにまた、前記セラミック誘電体層の5
0℃の体積固有抵抗が107〜101 2Ωcmであること
が好ましく、これにより小さな印加電圧でジョンソン−
ラーベック力に基づく高い吸着力を得ることができる。
Furthermore, the ceramic dielectric layer 5
Preferably 0 ℃ the volume resistivity is 10 7 ~10 1 2 Ωcm, thereby Johnson small applied voltage -
It is possible to obtain a high adsorption force based on the Rabbeck force.

【0021】また、前記セラミック誘電体層が窒化アル
ミニウムを主成分とすることが好ましく、これにより、
フッ素や塩素等を含む腐食性ガスやプラズマによる腐食
に強く、製品寿命を延ばすことができる。
It is preferable that the ceramic dielectric layer contains aluminum nitride as a main component.
It is resistant to corrosion by corrosive gas or plasma containing fluorine, chlorine, etc., and can extend the product life.

【0022】さらに、本発明の処理装置は、本発明の静
電チャックが内部に設けられてなることを特徴とするも
ので、生産性を高め、低コストで信頼性の処理を実現で
きる。
Further, the processing apparatus of the present invention is characterized in that the electrostatic chuck of the present invention is provided in the inside thereof, so that it is possible to increase the productivity and realize the processing at low cost and reliability.

【0023】[0023]

【発明の実施の形態】本発明の静電チャックを、図1〜
4を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An electrostatic chuck according to the present invention is shown in FIGS.
4 will be described.

【0024】図1(a)によれば、本発明の静電チャッ
ク1は、セラミック誘電体層2と、該セラミック誘電体
層2の表面に設けられた載置面3と、該載置面3と反対
の表面に設けられた電極4とを具備している。なお、セ
ラミック誘電体層2は、載置面3と電極4とで挟持され
るように設けられている。なお、図示してないが、電極
4に電圧を供給するための接続配線を含むことは言うま
でもない。
Referring to FIG. 1A, an electrostatic chuck 1 according to the present invention comprises a ceramic dielectric layer 2, a mounting surface 3 provided on the surface of the ceramic dielectric layer 2, and a mounting surface. 3 and an electrode 4 provided on the opposite surface. Note that the ceramic dielectric layer 2 is provided so as to be sandwiched between the mounting surface 3 and the electrode 4. Although not shown, it is needless to say that a connection wiring for supplying a voltage to the electrode 4 is included.

【0025】また、載置面3は、Siウエハ等の被保持
物を搭載するための部位であり、ガス噴出溝5によって
載置面中心領域3a及び載置面外周領域3bとに分割さ
れている。この載置面中心領域3aは、図1(a)にお
ける1対のガス噴出溝5の間にある載置面3の一部に相
当するものであり、また、載置面外周領域3bは、ガス
噴出溝5より外側の部位を言う。
The mounting surface 3 is a portion for mounting an object to be held such as a Si wafer, and is divided into a mounting surface central region 3a and a mounting surface outer peripheral region 3b by a gas ejection groove 5. I have. The mounting surface center region 3a corresponds to a part of the mounting surface 3 between the pair of gas ejection grooves 5 in FIG. 1A, and the mounting surface outer peripheral region 3b A portion outside the gas ejection groove 5.

【0026】ガス噴出溝5にはガス孔6が接続してお
り、このガス孔6を通してガスがガス噴出溝5に供給さ
れる。図1(a)には、ガス孔6がセラミック誘電体層
2を貫通するように設けられているが、ガス孔6は、セ
ラミック誘電体層2の側面にガス供給口を設けても差し
支えない。
A gas hole 6 is connected to the gas ejection groove 5, and gas is supplied to the gas ejection groove 5 through the gas hole 6. In FIG. 1A, the gas holes 6 are provided so as to penetrate the ceramic dielectric layer 2. However, the gas holes 6 may be provided with gas supply ports on the side surfaces of the ceramic dielectric layer 2. .

【0027】図1(b)は、図1(a)の右側のガス噴
出溝5付近の拡大断面図である。この図1(b)によれ
ば、載置面中心領域3aの表面粗さRa(i)が0.6〜
1.5μm、載置面外周領域3bの表面粗さRa(O)
0.7μm以下であり、且つRa( O)がRa(i)よりも小さ
いことが重要である。Ra(i)を0.6〜1.5μmに設
定することにより、ウエハと載置面中心領域3aとの隙
間に存在するガスの熱伝導によって載置面中心領域3a
に位置するウエハの均熱性を高めることができ、エッチ
ング、CVD又はスパッタ等の工程においてウエハの広
範な領域に渡って均一な処理を行うことができ、かつ良
好な離脱応答性を得ることができる。特に、Ra(i)は、
0.7〜1.2μm、更には0.8〜1μmであること
が、均熱性と離脱応答性のために好ましい。
FIG. 1B is an enlarged sectional view of the vicinity of the gas ejection groove 5 on the right side of FIG. 1A. According to FIG. 1B, the surface roughness Ra (i) of the mounting surface center region 3a is 0.6 to 0.6.
It is important that the mounting surface outer peripheral region 3b has a surface roughness Ra (O) of 0.7 μm or less, and Ra ( O) is smaller than Ra (i) . By setting Ra (i) to 0.6 to 1.5 [mu] m, the heat transfer of the gas existing in the gap between the wafer and the mounting surface center region 3a causes the mounting surface center region 3a.
, The uniform processing over a wide area of the wafer can be performed in a process such as etching, CVD or sputtering, and a good departure response can be obtained. . In particular, Ra (i) is
It is preferably from 0.7 to 1.2 μm, more preferably from 0.8 to 1 μm, for heat uniformity and detachment response.

【0028】Ra(i)が0.6μmより小さいと、吸着に
関与する電荷量が多くなり、その結果、ウエハを保持す
る吸着力が必要以上に高すぎてしまい、保持のために電
極に印加していた電圧を停止したとき、大量に存在する
電荷の除去に時間がかかり、吸着が維持される残留吸着
が発生するため、離脱応答性が悪くなり、スループット
を低下させる。逆に、Ra(i)が1.5μmを越えると、
ガスの流れが大きくなってウエハの温度ばらつきが発生
してウエハ温度が不均一になり、エッチング、CVD、
スパッタ等の工程で不良が発生しやすくなる。
If R a (i) is smaller than 0.6 μm, the amount of charge involved in the adsorption increases, and as a result, the adsorbing force for holding the wafer becomes excessively high. When the applied voltage is stopped, it takes a long time to remove a large amount of electric charges, and residual adsorption occurs in which adsorption is maintained. Therefore, desorption response is deteriorated and throughput is reduced. Conversely, when Ra (i) exceeds 1.5 μm,
The gas flow becomes large, the temperature of the wafer fluctuates, and the temperature of the wafer becomes non-uniform.
Defects are likely to occur in processes such as sputtering.

【0029】また、ガス噴出溝5から導入されたガス
は、載置面中心領域3aとウエハとの隙間に供給される
とともに、載置面外周領域3bとウエハとの隙間を通っ
てウエハ周端部に達し、静電チャック外に放出される
が、Ra(O)が0.7μmより大きいと、載置面外周領域
3bとウエハとの隙間からガスが外部へ放出されやすく
なるためにリーク量が増大し、吸着力が急激に低下して
しまうので、安定した吸着力を得られない。
The gas introduced from the gas ejection groove 5 is supplied to the gap between the mounting surface center region 3a and the wafer, and passes through the gap between the mounting surface outer peripheral region 3b and the wafer. Portion, and is discharged out of the electrostatic chuck. However, if Ra (O) is larger than 0.7 μm, gas is likely to be discharged to the outside from a gap between the mounting surface outer peripheral region 3b and the wafer, so that a leak is caused. Since the amount increases and the adsorbing power rapidly decreases, a stable adsorbing power cannot be obtained.

【0030】特に、Ra(O)は0.6μm以下、更には
0.5μm以下であることが、高い吸着力とリーク防止
のために好ましい。なお、Ra(O)の下限値は、特に制限
されないが、表面粗さを小さくするためのコストを考慮
すると、0.05μm、特に0.1μm、更には0.2
μmが好ましい。
In particular, Ra (O) is preferably 0.6 μm or less, more preferably 0.5 μm or less, in order to attain a high attraction force and to prevent leakage. The lower limit of Ra (O) is not particularly limited, but considering the cost for reducing the surface roughness, 0.05 μm, particularly 0.1 μm, and more preferably 0.2 μm.
μm is preferred.

【0031】また、Ra(O)をRa(i)よりも小さくするこ
とによって、面積の広い載置面中心領域3aにおける吸
着力を必要十分な強さに保ちながら、残留吸着力を小さ
くできる。即ち、表面粗さが大きくなると吸着に関与す
る表面積が減少し、吸着力に関与する電荷量が少なくな
るため、載置面中心領域3aにおける吸着力が載置面外
周領域3bに比べて小さくなるものの、上記の範囲に設
定すれば、処理を行うために十分な吸着力を維持でき
る。
Further, by making Ra (O) smaller than Ra (i) , the residual suction force can be reduced while maintaining the suction force in the central area 3a of the mounting surface having a large area at a necessary and sufficient strength. it can. In other words, when the surface roughness increases, the surface area involved in the adsorption decreases, and the amount of charge involved in the adsorption force decreases. Therefore, the adsorption force in the central area 3a of the mounting surface becomes smaller than that in the outer peripheral area 3b of the mounting surface. However, if it is set in the above range, it is possible to maintain a sufficient attraction force for performing the treatment.

【0032】また、面積の小さな載置面外周領域3bに
おける表面粗さRa(O)をRa(i)よりも小さくし、吸着力
を大きくすることによって、載置面外周領域3bから外
部へ流出するガス量を抑制し、安定した吸着力を得るこ
とができる。このガス流出量が大きくなると、ウエハを
載置面外周領域3bから引き離す力が吸着力より大きく
なってしまい、ウエハが載置面外周領域3bから離れ、
その結果、吸着力が低下する。この場合には、たとえR
a(O)及びRa(i)をそれぞれ上記の値に設定したとして
も、Ra(O)がRa(i)より大きい場合、載置面外周領域3
bの吸着力が低下し、ウエハ全体の吸着力が低下してし
まう。
Further, the surface roughness Ra (O) in the mounting surface outer peripheral region 3b having a small area is made smaller than Ra (i) and the attraction force is increased, so that the mounting surface outer peripheral region 3b can be moved from the mounting surface outer peripheral region 3b to the outside. The amount of gas flowing out to the exhaust gas can be suppressed, and a stable adsorption force can be obtained. When the gas outflow amount increases, the force separating the wafer from the mounting surface outer peripheral region 3b becomes larger than the suction force, and the wafer separates from the mounting surface outer peripheral region 3b,
As a result, the attraction force decreases. In this case, even if R
Even if a (O) and Ra (i) are set to the above values, if Ra (O) is larger than Ra (i) , the mounting surface outer peripheral region 3
The suction force of b decreases, and the suction force of the entire wafer decreases.

【0033】従って、載置面中心領域3aの表面粗さR
a(i)を0.6〜1.5μm、載置面外周領域3bの表面
粗さRa(O)を0.7μm以下、且つRa(O)がRa(i)より
も小さく設定することが重要である。
Therefore, the surface roughness R of the mounting surface center region 3a
a (i) is set to 0.6 to 1.5 μm, the surface roughness Ra (O) of the mounting surface outer peripheral region 3b is set to 0.7 μm or less, and Ra (O) is set to be smaller than Ra (i). It is important to.

【0034】ここで、表面粗さRaは表面の平均的な凹
凸状態を示し、具体的には日本工業規格B0601によ
る中心線平均粗さを接触法により測定する。例えば、東
京精密製のハンデイサーフ装置等を使用し、溝中心部と
溝外周部をランダムに5箇所選び、それぞれ少なくとも
20点の中心線平均粗さの平均値を測定する。
Here, the surface roughness Ra indicates the average unevenness of the surface. Specifically, the center line average roughness according to Japanese Industrial Standard B0601 is measured by a contact method. For example, using a handy surfing device manufactured by Tokyo Seimitsu Co., Ltd., the center of the groove and the outer periphery of the groove are randomly selected at five points, and the average value of the center line average roughness of at least 20 points is measured.

【0035】また、本発明によれば、前記載置面外周領
域3bの高さが、前記載置面中心領域3aの高さより
0.6μm以上高いことが重要である。この高低差が
0.6μmより小さいと、その高低差が表面粗さの誤差
範囲になってしまい、この高低差を設けた効果が無くな
ってしまう。つまり、表面粗さを制御してガスによる均
熱性の改善を図っても、上記高低差が0.6μm未満で
は静電チャックと被保持物面の温度差が30℃以上にな
り、ウエハとセラミック誘電体との熱膨脹差により、ウ
エハが基板の外周方向に凸状の反りが発生してしまい、
ウエハの端部が反り上がり、ガスリークが発生して急激
な吸着力低下を引き起こす。これはウエハサイズが大き
い場合に顕著になる。
According to the present invention, it is important that the height of the outer peripheral region 3b of the mounting surface is 0.6 μm or more higher than the height of the central region 3a of the mounting surface. If the height difference is smaller than 0.6 μm, the height difference becomes an error range of the surface roughness, and the effect of providing the height difference is lost. In other words, even if the surface roughness is controlled to improve the thermal uniformity by the gas, if the height difference is less than 0.6 μm, the temperature difference between the electrostatic chuck and the held object surface becomes 30 ° C. or more, and the wafer and ceramic Due to the difference in thermal expansion with the dielectric, the wafer is warped convexly in the outer peripheral direction of the substrate,
The end of the wafer warps, causing gas leak and causing a sharp decrease in the attraction force. This becomes remarkable when the wafer size is large.

【0036】従って、図1(b)において、前記載置面
外周領域3bが前記載置面中心領域3aよりも水平レベ
ルが高く、その高低差dが0.6μm以上であることが
必要であり、この高低差dが0.6μm以上で、且つR
a(i)が0.6〜1.5μmと大きいため、ウエハと載置
面中心領域3aとの間に間隙が発生し、ガスの熱伝導に
よりウエハの温度が均一になる。
Therefore, in FIG. 1 (b), it is necessary that the outer peripheral region 3b described above has a higher horizontal level than the central region 3a described above, and that the height difference d is 0.6 μm or more. The height difference d is 0.6 μm or more, and R
Since a (i) is as large as 0.6 to 1.5 μm, a gap is generated between the wafer and the mounting surface center region 3a, and the temperature of the wafer becomes uniform due to heat conduction of the gas.

【0037】さらに、Ra(O)が0.7μm以下と小さ
く、且つ載置面外周領域3bが載置面中心領域3aより
も高い位置にあるため、外周部において高い吸着力が得
られ、ガスリークを防止することができる。その結果、
均一で再現性の極めて高い処理を行うことができる。
Furthermore, since Ra (O) is as small as 0.7 μm or less and the outer peripheral region 3b of the mounting surface is located higher than the central region 3a of the mounting surface, a high suction force is obtained at the outer peripheral portion. Gas leaks can be prevented. as a result,
Uniform and highly reproducible processing can be performed.

【0038】そして、表面粗さの制御により、載置面中
心領域3aの吸着力が、載置面外周領域3bの吸着力に
比べて小さいため、載置面中心領域3aにおいて印加電
圧を停止した後の残留吸着は発生しにくく、たとえ載置
面外周領域3bにおいて残留吸着が起こっても、載置面
外周領域3bの面積が載置面中心領域3aの面積に対し
てはるかに小さいため、離脱性に大きな影響を及ぼさ
ず、高い離脱応答性を得ることができる。
Then, the applied voltage was stopped in the central area 3a of the mounting surface because the attractive force of the central area 3a of the mounting surface was smaller than the attractive force of the outer peripheral area 3b of the mounting surface by controlling the surface roughness. Subsequent residual adsorption is unlikely to occur. Even if residual adsorption occurs in the mounting surface outer peripheral region 3b, the area of the mounting surface outer peripheral region 3b is much smaller than the area of the mounting surface central region 3a. High withdrawal responsiveness can be obtained without significantly affecting the sex.

【0039】高低差dは、ウエハの大きさにもよるが、
特に1μm以上、さらには3μm以上、より好適には5
μm以上が好ましい。また、この高低差dを大きくし過
ぎると中心部に大きな窪みがあるのと等価になるため、
ウエハが大きく変形して割れたり、ウエハの離脱時にウ
エハの振動が大きくなり、位置ずれが発生するという問
題が発生することがある。従って、高低差dの上限値
は、ウエハの大きさにも依存するが、10μm以下であ
ることが好ましい。
The height difference d depends on the size of the wafer.
In particular, 1 μm or more, further 3 μm or more, more preferably 5 μm
μm or more is preferred. Also, if this height difference d is too large, it becomes equivalent to a large depression in the center,
The wafer may be greatly deformed and cracked, or the vibration of the wafer may increase when the wafer is detached, which may cause a problem of displacement. Therefore, the upper limit of the height difference d depends on the size of the wafer, but is preferably 10 μm or less.

【0040】また、本発明によれば、載置面中心領域3
a及び載置面外周領域3bの最大表面粗さRmaxが2μ
m以下、特に1.5μm以下、さらには1.2μm以下
であることが好ましい。Rmaxが2μmを越えると局所
的に大きな傷や加工不良がある場合があり、載置面外周
領域3bにおいてはガスリークの原因となる。
According to the present invention, the mounting surface center region 3
maximum surface roughness R max of a and placing surface outer peripheral region 3b is 2μ
m or less, particularly preferably 1.5 μm or less, and more preferably 1.2 μm or less. R max is might locally large scratch or processing defects exceeds 2 [mu] m, causing gas leak in placing surface outer peripheral region 3b.

【0041】また、載置面中心領域3aにおいては、R
maxが2μmを越えると局所的に大きな傷や加工不良の
部位を流れるガスの流れが生じ、部分的にウエハが浮き
上がるるため、吸着力が安定しなくなる。また、ウエハ
におけるガスの流れる部位と流れない部位との間で温度
差が発生するため、ウエハの処理にばらつきが発生し、
不良発生率が増加する。従って、Rmaxは2μm以下が
好ましい。
Further, in the mounting surface center region 3a, R
If max exceeds 2 μm, a large flow of gas flowing locally through a site with a large flaw or processing failure occurs, and the wafer is partially lifted, so that the suction force becomes unstable. Further, since a temperature difference is generated between a portion of the wafer where gas flows and a portion where gas does not flow, variation occurs in processing of the wafer,
The failure rate increases. Therefore, R max is preferably 2 μm or less.

【0042】ここで、最大表面粗さRmaxは表面凹凸状
態の極大値を示す。例えば、日本工業規格B0601に
よる接触法に基づき、東京精密製のハンデイサーフ装置
等を使用し、溝中心部と溝外周部をランダムに5箇所選
び、それぞれ少なくとも20点の最大高さを測定すれば
よい。
[0042] Here, the maximum surface roughness R max denotes the maximum value of surface irregularity. For example, based on the contact method according to Japanese Industrial Standard B0601, using a handy surf device made by Tokyo Seimitsu, etc., randomly select five places of the groove center part and the groove outer part, and measure the maximum height of at least 20 points each. Good.

【0043】さらに、載置面3の周端部8からガス噴出
溝の外周9までの距離wが、10mm以下、特に8mm
以下、さらには6mm以下であることが好ましい。ガス
噴出溝6に導入されたガスは、ウエハと載置面外周領域
3bとの間隙を通過して、静電チャックが設けられてい
る処理装置内に放出され、付帯の真空装置によって除去
されるが、載置面3の周端部8、即ち載置面外周領域3
bの最外周からガス噴出溝の外周9までの距離が、10
mmを越え、ガス噴出溝が中心部へ入り込んで来ると、
ガスが通過しにくくなり、吸着力が不安定になることが
ある。また、wが大きくなれば、載置面外周領域3bの
面積が大きくなり、ウエハ全体の吸着力が増加し、印加
電圧を停止したときの残留吸着力が大きくなって離脱応
答性が悪くなる傾向がある。
Further, the distance w from the peripheral end 8 of the mounting surface 3 to the outer periphery 9 of the gas ejection groove is 10 mm or less, particularly 8 mm.
Hereafter, it is more preferably 6 mm or less. The gas introduced into the gas ejection groove 6 passes through the gap between the wafer and the mounting surface outer peripheral region 3b, is released into the processing device provided with the electrostatic chuck, and is removed by the accompanying vacuum device. Is the peripheral end portion 8 of the mounting surface 3, that is, the mounting surface outer peripheral region 3.
The distance from the outermost circumference of b to the outer circumference 9 of the gas ejection groove is 10
mm, and when the gas ejection groove enters the center,
It may be difficult for gas to pass through, and the adsorptive power may be unstable. Also, when w increases, the area of the mounting surface outer peripheral region 3b increases, the suction force of the entire wafer increases, the residual suction force when the applied voltage is stopped increases, and the detachment response tends to deteriorate. There is.

【0044】さらに、前記セラミック誘電体層2の密度
が98%以上、特に99%以上、最大気孔径が2μm以
下、特に1μm以下であることが好ましい。表面に存在
する気孔の大きさが2μm未満と小さく、表面に存在す
る気孔の数も少ないため、R a(O)及びRa(i)を容易に小
さくし、最大表面粗さRmaxを2μm以下に制御するこ
とが容易になる。
Further, the density of the ceramic dielectric layer 2
Is 98% or more, especially 99% or more, and the maximum pore diameter is 2 μm or less.
Below, it is particularly preferable that it is 1 μm or less. Exists on the surface
Pore size is less than 2μm and exists on the surface
The number of pores is small, so R a (O)And Ra (i)Easily small
Compression, maximum surface roughness RmaxShould be controlled to 2 μm or less.
And easier.

【0045】さらにまた、前記セラミック誘電体層2の
50℃の体積固有抵抗が107〜1012Ωcmであるこ
とが好ましく、特に、108〜1011Ωcmが好まし
い。体積固有抵抗が107Ωcmより低いと、セラミッ
ク誘電体層2から被保持物へのもれ電流が大きくなり、
ウエハ等の保持物にダメージを与える傾向がある。ま
た、体積固有抵抗が1012Ωcmより高いと、ジョンソ
ン−ラーベック吸着力が低下し、十分な吸着力を得られ
ないことがある。
The ceramic dielectric layer 2 preferably has a volume resistivity at 50 ° C. of 10 7 to 10 12 Ωcm, particularly preferably 10 8 to 10 11 Ωcm. If the volume resistivity is lower than 10 7 Ωcm, the leakage current from the ceramic dielectric layer 2 to the object to be held increases,
There is a tendency to damage holding objects such as wafers. On the other hand, if the volume resistivity is higher than 10 12 Ωcm, the Johnson-Rahbek adsorption force may decrease, and a sufficient adsorption force may not be obtained.

【0046】また、前記セラミック誘電体層2が窒化ア
ルミニウム(AlN)を主成分とすることが好ましい。
AlNは、フッ素や塩素等を含む腐食性ガスやプラズマ
による腐食に強く、パーテイクルの発生を抑制し、製品
寿命を延ばすことができる。特に、AlNの含有する金
属不純物は2重量%以下、特に1重量%以下、更には
0.5重量%以下であることが好ましい。
Preferably, the ceramic dielectric layer 2 contains aluminum nitride (AlN) as a main component.
AlN is resistant to corrosion caused by corrosive gas or plasma containing fluorine, chlorine, or the like, can suppress generation of particles, and can prolong product life. In particular, the metal impurities contained in AlN are preferably 2% by weight or less, particularly preferably 1% by weight or less, and more preferably 0.5% by weight or less.

【0047】さらに、窒化アルミニウムからなる上記静
電チャック1の電極4を構成する金属としては、W、M
o、Pt、Au、Ag、Ni、TiN、WC、W2C、
TiC、TiB2、B4C等を用いる事ができるが、載置
面3を有する基板の内部に電極4を形成する場合は(以
下電極内蔵と略する。)、導電率とセラミックスの焼成
温度が高いことを考慮すると、W、WC、Moが好まし
い。また、載置面3の裏面に電極4を形成する場合に
は、上記金属のいずれでもよい。
Further, as the metal constituting the electrode 4 of the electrostatic chuck 1 made of aluminum nitride, W, M
o, Pt, Au, Ag, Ni, TiN, WC, W 2 C,
TiC, TiB 2 , B 4 C, or the like can be used. However, when the electrode 4 is formed inside the substrate having the mounting surface 3 (hereinafter referred to as “electrode built-in”), the conductivity and the firing temperature of the ceramics are set. Is high, W, WC, and Mo are preferable. When the electrode 4 is formed on the back surface of the mounting surface 3, any of the above metals may be used.

【0048】また、電極4の相対密度は90%以上特に
95%以上、さらには97%以上であることが好まし
い。このことにより、電極4に大きな気孔の発生を抑制
でき、その結果、吸着力の面内分布を均一化しやすくな
る。
The relative density of the electrode 4 is preferably at least 90%, especially at least 95%, more preferably at least 97%. As a result, generation of large pores in the electrode 4 can be suppressed, and as a result, the in-plane distribution of the attraction force can be easily made uniform.

【0049】また、図2は本発明の他の静電チャックの
例である。本発明の静電チャック11は、セラミック誘
電体層12と、該セラミック誘電体層12の表面に設け
られた載置面13と、該載置面13と反対の表面に設け
られた電極14とを具備している。なお、図示してない
が、電極14に電圧を供給するための接続配線を含むこ
とは言うまでもない。
FIG. 2 shows another example of the electrostatic chuck of the present invention. The electrostatic chuck 11 of the present invention includes a ceramic dielectric layer 12, a mounting surface 13 provided on the surface of the ceramic dielectric layer 12, and an electrode 14 provided on a surface opposite to the mounting surface 13. Is provided. Although not shown, it goes without saying that a connection line for supplying a voltage to the electrode 14 is included.

【0050】また、載置面13は、Siウエハ等の被保
持物(以下、単にウエハと言う)を搭載するための部位
であり、ガス噴出溝15によって載置面中心領域13a
及び載置面外周領域13bとに分割されている。そし
て、このガス噴出溝15にガス孔16が接続しており、
このガス孔16を通してガスが供給される。
The mounting surface 13 is a portion for mounting an object to be held (hereinafter, simply referred to as a wafer) such as a Si wafer.
And a mounting surface outer peripheral region 13b. A gas hole 16 is connected to the gas ejection groove 15,
Gas is supplied through the gas holes 16.

【0051】また、電極14は、セラミック誘電体12
と基体18とによって挟持されてなり、且つセラミック
誘電体12及び基体18は一体的に形成されている。こ
れらは、強固に接着していれば問題はないが、残留応力
を小さくするためにセラミック誘電体12と基体18と
を同一物質とすることが好ましい。従って、電極14
は、セラミックスの内部に埋設された状態で形成されて
いる。このように、内部に電極14が設けられた場合、
被保持物の近傍に発生するプラズマによる腐食を避ける
ことができ、断線やショートの危険も少ないことから、
信頼性の高い静電チャックを実現することができる。
The electrode 14 is formed of the ceramic dielectric 12.
And the base 18, and the ceramic dielectric 12 and the base 18 are integrally formed. There is no problem as long as they are firmly bonded, but it is preferable that the ceramic dielectric 12 and the base 18 are made of the same material in order to reduce residual stress. Therefore, the electrode 14
Is formed in a state buried inside the ceramic. Thus, when the electrode 14 is provided inside,
Corrosion due to plasma generated near the object to be held can be avoided, and there is little danger of disconnection or short circuit.
A highly reliable electrostatic chuck can be realized.

【0052】また、図3は、本発明の静電チャックの他
の例を示したものであり、架台30の上に単一電極を用
いた静電チャック21の概略断面構造を示している。即
ち、セラミック誘電体層22の一方の表面に、載置面中
心領域23a及び載置面外周領域23bとからなる載置
面23が形成され、他方の表面には電極24が形成され
ている。また、載置面23にはガス噴出溝25が設けら
れ、ガス噴出溝25に外部からガスを導入するためのガ
ス孔26が接続されている。さらに、上記の構造体は、
金属製の架台30の表面に、接着層31を介して結合さ
れて静電チャック21が形成されている。
FIG. 3 shows another example of the electrostatic chuck of the present invention, and shows a schematic cross-sectional structure of an electrostatic chuck 21 using a single electrode on a gantry 30. That is, on one surface of the ceramic dielectric layer 22, a mounting surface 23 including a mounting surface central region 23a and a mounting surface outer peripheral region 23b is formed, and an electrode 24 is formed on the other surface. Further, a gas ejection groove 25 is provided on the mounting surface 23, and a gas hole 26 for introducing a gas from outside is connected to the gas ejection groove 25. Further, the above structure
An electrostatic chuck 21 is formed on a surface of a metal gantry 30 by being bonded via an adhesive layer 31.

【0053】なお、図示していないが、外部から電極2
4に電圧を供給するための接続配線が設けられているこ
とは言うまでもない。そして、載置面23上のウエハ等
の被保持物32と電極24との間に電圧を印加すると、
被保持物32は、載置面23に静電的に吸着される。
Although not shown, the electrode 2 is externally provided.
Needless to say, connection wiring for supplying a voltage to 4 is provided. When a voltage is applied between the electrode 24 and the held object 32 such as a wafer on the mounting surface 23,
The held object 32 is electrostatically attracted to the mounting surface 23.

【0054】また、ロウ材や金属を用いた接合では、接
着層に応力が集中してクラックや反りが発生することが
あるため、、接着層が有機接着層であることが好まし
い。静電チャック21の反りを緩和し、外周からのガス
リークを抑制させ、吸着力を高めることができる。特
に、有機接着層31は、温度差による被保持物32のそ
りを緩和できる柔らかいシリコン、エポキシ又はウレタ
ン等の有機接着剤からなることが好ましい。
In the case of joining using a brazing material or metal, stress may concentrate on the adhesive layer and cracks or warpage may occur. Therefore, the adhesive layer is preferably an organic adhesive layer. Warpage of the electrostatic chuck 21 can be reduced, gas leakage from the outer periphery can be suppressed, and the attraction force can be increased. In particular, it is preferable that the organic adhesive layer 31 be made of an organic adhesive such as soft silicon, epoxy, or urethane that can reduce the warpage of the held object 32 due to a temperature difference.

【0055】さらに、図4は、本発明の静電チャックの
他の例を示したものであり、架台50の上に複数の電極
を用いた静電チャック41の概略断面構造を示してい
る。即ち、セラミック誘電体層42の一方の表面に、載
置面中心領域43a及び載置面外周領域43bとからな
る載置面43が形成され、他方の表面には一対の電極4
4a、44bが形成されている。
FIG. 4 shows another example of the electrostatic chuck of the present invention, and shows a schematic sectional structure of an electrostatic chuck 41 using a plurality of electrodes on a pedestal 50. That is, on one surface of the ceramic dielectric layer 42, a mounting surface 43 composed of a mounting surface central region 43a and a mounting surface outer peripheral region 43b is formed, and a pair of electrodes 4 is formed on the other surface.
4a and 44b are formed.

【0056】また、載置面43にはガス噴出溝45が設
けられ、ガス噴出溝45に外部からガスを導入するため
のガス孔46が接続されている。さらに、電極44は、
基体48表面に一体的に形成されている。つまり、一対
の電極44はセラミック誘電体層42と基体48によっ
て挟持された状態にあり、セラミック誘電体層42と基
体48とが同一物質(セラミックス)の場合、該セラミ
ックス内部に電極が埋設されている。
Further, a gas ejection groove 45 is provided on the mounting surface 43, and a gas hole 46 for introducing a gas from outside is connected to the gas ejection groove 45. Further, the electrode 44
It is integrally formed on the surface of the base 48. In other words, the pair of electrodes 44 is sandwiched between the ceramic dielectric layer 42 and the base 48, and when the ceramic dielectric layer 42 and the base 48 are made of the same material (ceramic), the electrodes are embedded in the ceramic. I have.

【0057】上記構造体は、金属製の架台50に、接着
層51を介して結合され、静電チャック41が形成され
ている。なお、図示してないが、外部から電極44に電
圧を供給するための接続配線が設けられていることは言
うまでもない。そして、電極44a及び44bとの間に
電圧を印加すると、載置面43上のウエハ等の被保持物
52は、載置面43に静電的に吸着される。
The above structure is joined to a metal frame 50 via an adhesive layer 51 to form an electrostatic chuck 41. Although not shown, it goes without saying that connection wiring for supplying a voltage to the electrode 44 from the outside is provided. Then, when a voltage is applied between the electrodes 44a and 44b, the held object 52 such as a wafer on the mounting surface 43 is electrostatically attracted to the mounting surface 43.

【0058】なお、処理装置によってはプラズマを発生
する容器内で用いられる場合があり、その場合には、被
保持物(32、52等)の近傍にプラズマを発生させる
ために、基体(18、48等)の内部または裏面にプラ
ズマ電極が設けられてなることが好ましい。これによ
り、装置構造の簡略化や小型化に大きく寄与できるとと
もに、プラズマの制御が容易になる。
In some cases, the processing apparatus is used in a container that generates plasma. In this case, the base (18, 52) is used to generate plasma near the object (32, 52, etc.). 48 or the like is preferably provided with a plasma electrode inside or on the back surface. This greatly contributes to simplification and downsizing of the device structure, and facilitates plasma control.

【0059】以上のように構成された静電チャックは、
基板の均熱性と高い吸着力を維持しながら、離脱応答性
とガスリークの少なく、均熱性、吸着力及び離脱応答性
の全ての特性に優れるという特徴を有し、エッチング、
CVD、スパッタリング等の半導体製造工程における、
ウエハ等の基板を静電的に吸着保持して行う処理や搬送
等に好適に応用でき、その結果スループットが大きくな
る。
The electrostatic chuck configured as described above
While maintaining the uniformity and high adsorption power of the substrate, it has the characteristics that it has excellent desorption responsiveness and less gas leakage, and is excellent in all properties of thermal uniformity, adsorption force and desorption responsiveness.
In semiconductor manufacturing processes such as CVD and sputtering,
The present invention can be suitably applied to a process such as carrying a substrate such as a wafer by electrostatic attraction and holding, a transfer, and the like, thereby increasing a throughput.

【0060】次に、本発明の静電チャックの製造方法
を、セラミック誘電体層としてAlN焼結体を用いて図
2の静電チャックを作製する場合を例にとって説明す
る。
Next, the method of manufacturing the electrostatic chuck according to the present invention will be described with reference to an example in which the electrostatic chuck shown in FIG. 2 is manufactured using an AlN sintered body as the ceramic dielectric layer.

【0061】まず、出発原料としてAlN粉末を用意す
る。このAlN粉末は、還元窒化法、又は直接窒化法の
いずれの製造方法で作製した粉末でも良く、特に純度9
9%以上、平均粒子径が3μm以下が高純度焼結体を得
るために好ましい。この原料中に含まれる金属不純物
は、吸着力に影響のない範囲で含まれていても差し支え
ないが、耐腐食性に優れた高純度焼結体を得るために、
Al以外の金属が2重量%以下、特に1重量%以下、さ
らには0.5重量%以下にすることが好ましい。
First, an AlN powder is prepared as a starting material. This AlN powder may be a powder produced by any of the production methods of the reduction nitridation method and the direct nitridation method.
9% or more and an average particle diameter of 3 μm or less are preferable for obtaining a high-purity sintered body. Metal impurities contained in this raw material may be contained in a range that does not affect the adsorption power, but in order to obtain a high-purity sintered body with excellent corrosion resistance,
The content of metals other than Al is preferably 2% by weight or less, particularly 1% by weight or less, and more preferably 0.5% by weight or less.

【0062】なお、炭素は焼結性に影響するため、1重
量%以下、特に0.5重量%以下、更には0.3重量%
以下であることが好ましい。また、焼結体の酸素量は、
3重量%以下、特に2重量%以下、更には1重量%以下
であることが好ましい。これにより、耐腐食性に優れた
高純度焼結体を得ることができる。
Since carbon affects the sinterability, it is 1% by weight or less, particularly 0.5% by weight or less, and more preferably 0.3% by weight or less.
The following is preferred. The oxygen content of the sintered body is
It is preferably at most 3% by weight, particularly preferably at most 2% by weight, further preferably at most 1% by weight. Thus, a high-purity sintered body having excellent corrosion resistance can be obtained.

【0063】上記の窒化アルミニウム粉末を、成形し、
内部に電極を設けた所望の形状にする。成形は、金型プ
レス、CIP、テープ成形、鋳込み等の成型方法を用い
てもよい。成形体は、所望により、成形の時に必要なバ
インダー成分を除去した後、仮焼を行うことができる。
The above aluminum nitride powder is molded,
It has a desired shape with electrodes provided inside. Molding may be performed by a molding method such as die pressing, CIP, tape molding, casting, or the like. The molded body can be calcined, if necessary, after removing necessary binder components at the time of molding.

【0064】電極の形成は、電極内蔵の場合は、例え
ば、相対密度差が5%以下の一対の成形体及び/又は仮
焼体を用意し、一方に印刷法によりWやMo等の金属及
び/又はTiN等の金属化合物とセラミック焼結体の主
成分と、有機バインダ、溶剤とを混合してなるペースト
を塗布して電極を形成した後、電極を挟むように重ねれ
ばよい。また、他の方法としてテープ成形体上に電極を
印刷し、仮焼後に一対のプレス仮焼体間に挿入してもよ
い。
The electrodes are formed by, for example, preparing a pair of compacts and / or calcined bodies having a relative density difference of 5% or less when the electrodes are built-in, and using a printing method such as metal such as W or Mo on one side. After forming an electrode by applying a paste obtained by mixing a metal compound such as TiN and the main component of the ceramic sintered body, an organic binder, and a solvent, the electrodes may be stacked so as to sandwich the electrodes. As another method, an electrode may be printed on a tape molded body, and after calcining, may be inserted between a pair of pressed calcined bodies.

【0065】この時、金型プレスで成形し、仮焼したプ
レス仮焼体とテープ仮焼体との相対密度差を10%以
下、特に5%以下にしておくことが好ましい。これによ
り、剥離やクラックの発生を効果的に抑制することがで
きる。
At this time, it is preferable that the difference in the relative density between the calcined pressed calcined body and the calcined tape formed by the die press and calcined is 10% or less, particularly 5% or less. Thereby, the occurrence of peeling and cracks can be effectively suppressed.

【0066】また、電極の形成の際には、あらかじめ焼
成後の収縮を確認し、焼結後に電極厚みが7μm以上に
形成されるように、形成時の電極厚みを決めることが望
ましい。例えば、電極形成用ペーストの組成、濃度、粘
度やプレス圧等にもよるが、電極厚みが10μm以上、
特に20μm以上、さらには30μm以上に形成してお
くことが好ましい。
When the electrodes are formed, it is desirable to check the shrinkage after firing in advance and to determine the electrode thickness at the time of formation so that the electrode thickness after sintering is 7 μm or more. For example, depending on the composition, concentration, viscosity and pressing pressure of the electrode forming paste, the electrode thickness is 10 μm or more,
In particular, it is preferable to form it to have a thickness of at least 20 μm, more preferably at least 30 μm.

【0067】なお、電極ペーストを塗布する成形体又は
仮焼体の平面度を200μm以下、特に100μm以
下、更には50μm以下にすることが好ましい。これに
より、前記載置面から前記電極までの平均距離のばらつ
きを制御することが容易となる。
The flatness of the compact or calcined body to which the electrode paste is applied is preferably 200 μm or less, particularly 100 μm or less, and more preferably 50 μm or less. Thereby, it becomes easy to control the variation of the average distance from the placement surface to the electrode.

【0068】次に、内部に電極を設けた成形体からなる
構造体を焼成するが、焼成の前に所望によりバインダー
成分を除去してもよい。また、焼成はホットプレス法、
常圧焼成法、ガス圧焼成を用いることができる。場合に
よってはHIPや熱処理を施しても良い。
Next, the structure composed of the molded body having the electrodes provided therein is fired. Before the firing, the binder component may be removed as required. In addition, baking is a hot press method,
A normal pressure firing method and a gas pressure firing method can be used. In some cases, HIP or heat treatment may be performed.

【0069】焼成は、ホットプレス法を例として説明す
る。まず、上記の構造体をホットプレス装置のカーボン
型に装填し、構造体の強度未満の圧力を加えてから昇温
することが重要である。圧力を加えないと昇温により収
縮や変形が生じ、また、圧力が構造体強度以上では、加
圧で試料が割れ、電極形成部の断線や大きな変形が起こ
るため、これを防ぐことができる。
The sintering will be described by taking a hot press method as an example. First, it is important to load the above structure into a carbon mold of a hot press apparatus, apply a pressure less than the strength of the structure, and then raise the temperature. If pressure is not applied, shrinkage or deformation occurs due to temperature rise. If the pressure is higher than the strength of the structure, the sample is cracked by pressurization, and disconnection or large deformation of the electrode formation portion occurs, which can be prevented.

【0070】次に、焼成温度未満の温度で保持すること
が好ましい。この温度保持工程は、構造体の温度を均一
にする効果を有し、保持温度は1400〜1800℃と
収縮開始温度に近いことが好ましい。また、保持時の圧
力は、構造体の強度未満の圧力、特に0.1〜3MPa
に設定することが好ましい。また、上記温度保持は、構
造体の温度を均一にするため、20分以上、特に1時間
以上が好ましい。
Next, it is preferable to maintain the temperature at a temperature lower than the firing temperature. This temperature holding step has an effect of making the temperature of the structure uniform, and the holding temperature is preferably 1400 to 1800 ° C., which is close to the shrinkage starting temperature. The pressure during holding is a pressure lower than the strength of the structure, particularly 0.1 to 3 MPa.
It is preferable to set The temperature is preferably maintained for 20 minutes or more, particularly for 1 hour or more, in order to make the temperature of the structure uniform.

【0071】上記温度保持工程を終了した後、再度昇温
を開始し、収縮開始温度から±100℃の温度範囲にお
いて加圧圧力を構造体の強度以上の圧力に設定する。こ
の圧力は、電極の変形を矯正しながら一次元の収縮を行
わせ、電極を平坦に保つことができる。上記の加圧開始
温度は、特に、収縮開始温度から±50℃の温度範囲で
あることが好ましい。なお、上記温度保持が終了した時
点で昇温を再開すると同時に、加圧を行ってもよい。
After the completion of the temperature holding step, the temperature is raised again, and the pressurizing pressure is set to a pressure higher than the strength of the structure within a temperature range of ± 100 ° C. from the shrinkage starting temperature. This pressure allows one-dimensional contraction to be performed while correcting the deformation of the electrode, thereby keeping the electrode flat. The above-mentioned pressurization start temperature is preferably in a temperature range of ± 50 ° C. from the shrinkage start temperature. It should be noted that pressurization may be performed at the same time when the temperature increase is restarted at the time when the temperature holding is completed.

【0072】ここで、収縮開始温度とは、一定の昇温速
度における寸法収縮曲線において、未収縮時の直線の外
挿線と、収縮時の曲線の接線の外挿線との交点を示す。
Here, the shrinkage start temperature indicates the intersection of the extrapolation line of the straight line without contraction and the extrapolation line of the tangent line of the contraction curve in the dimensional contraction curve at a constant heating rate.

【0073】そして、2000〜2250℃の温度で焼
成し、電極を内蔵したセラミック焼結体を得ることがで
きる。この焼成は、上記の温度で20分以上、特に1時
間以上保持することが好ましく、これにより、緻密体を
安定して得ることができる。
Then, firing is performed at a temperature of 2000 to 2250 ° C. to obtain a ceramic sintered body having a built-in electrode. This calcination is preferably carried out at the above-mentioned temperature for at least 20 minutes, particularly at least 1 hour, whereby a dense body can be stably obtained.

【0074】さらに、構造体の収縮量の90%が収縮し
た時点以降で焼成圧力より高い圧力を加えて、さらに電
極の変形を矯正することが好ましい。これにより、焼結
体表面から電極までの距離のばらつきを更に小さくする
ことができる。
Further, it is preferable to apply a pressure higher than the firing pressure after the point at which 90% of the contraction amount of the structure has contracted to further correct the deformation of the electrode. Thereby, the variation in the distance from the surface of the sintered body to the electrode can be further reduced.

【0075】また、焼成圧力は0.1MPa以上である
ことが、相対密度99%以上を達成するために好まし
い。なお、圧力をかけるスピードは、特に限定されな
い。
The firing pressure is preferably 0.1 MPa or more in order to achieve a relative density of 99% or more. The speed at which the pressure is applied is not particularly limited.

【0076】従って、例えば、初期圧力として0.1〜
0.2MPaを印加し、1750℃で1時間保持後、昇
温を再開し、1800℃で0.5MPaの圧力を加え、
2150℃で4時間の焼成を行う。また、所望により焼
成後に、例えば2200℃で1MPa以上の圧力を加
え、30分保持してもよい。
Therefore, for example, an initial pressure of 0.1 to
After applying 0.2 MPa and maintaining the temperature at 1750 ° C. for 1 hour, the temperature was raised again, and a pressure of 0.5 MPa was applied at 1800 ° C.
The firing is performed at 2150 ° C. for 4 hours. After firing, if desired, for example, a pressure of 1 MPa or more may be applied at 2200 ° C. and held for 30 minutes.

【0077】なお、セラミック焼結体が窒化アルミニウ
ム結晶相を主体とする場合、局部的な変形や部位による
収縮量の相異、あるいは焼結助剤の不均一分散による応
力変形を防ぐため、Al以外の金属の含有量が1重量%
以下であることが好ましい。
In the case where the ceramic sintered body is mainly composed of the aluminum nitride crystal phase, in order to prevent local deformation and a difference in shrinkage due to a portion, or stress deformation due to uneven dispersion of the sintering aid, Al 1% by weight of metals other than
The following is preferred.

【0078】本発明にかかる載置面の形成について報告
する。まず、載置面を有するセラミック基板を所望の形
状に加工する。例えば、研削加工、ドリル加工によって
ガス孔及びガス噴出溝を形成した後、ロータリー加工や
研削加工によって、載置面中心領域及び載置面外周領域
を、平均表面粗さRa0.6〜1.5μm、最大表面粗
さRmax2μm以下に仕上げる。この際に、載置面外周
領域の高さは、載置面中心領域の高さより10〜100
μm程度高くしておくことが好ましい。
The formation of the mounting surface according to the present invention will be described. First, a ceramic substrate having a mounting surface is processed into a desired shape. For example, after forming a gas hole and a gas ejection groove by grinding and drilling, the central area of the mounting surface and the outer peripheral area of the mounting surface are reduced by an average surface roughness Ra 0.6 to 1 by rotary processing and grinding. Finish to a thickness of 0.5 μm and a maximum surface roughness R max of 2 μm or less. At this time, the height of the mounting surface outer peripheral region is 10 to 100 times higher than the height of the mounting surface central region.
It is preferable to make the height higher by about μm.

【0079】次に、載置面外周領域を平均表面粗さRa
0.7μm以下、最大表面粗さRmaxが2μm以下にロ
ータリーやラップ加工によって仕上げ、載置面外周領域
を載置面中心領域よりも0.6μm以上になるように調
整する。
Next, the outer peripheral area of the mounting surface is defined as the average surface roughness Ra.
Finish by rotary or lapping to 0.7 μm or less and maximum surface roughness R max to 2 μm or less, and adjust the outer peripheral area of the mounting surface to be 0.6 μm or more than the central area of the mounting surface.

【0080】最後に、上記の加工を終了したものを載置
面と反対側を有機層によって架台に接着させる。接着層
は、イミド樹脂、エポキシ樹脂、シリコーン樹脂、フェ
ノール樹脂といった柔らかい樹脂が用いられる。また、
この中に、適宜に金属やセラミックを粉末やバルクとし
て混入して接着強度を高めても良い。なお、接着後に載
置面の加工を行っても良い。
Lastly, the substrate after the above-mentioned processing is bonded to the gantry by the organic layer on the side opposite to the mounting surface. For the adhesive layer, a soft resin such as an imide resin, an epoxy resin, a silicone resin, or a phenol resin is used. Also,
In this, a metal or ceramic may be appropriately mixed as a powder or a bulk to increase the adhesive strength. The mounting surface may be processed after bonding.

【0081】また、本発明の処理装置は、特に液晶を含
む半導体の製造用装置として好適に用いられる。即ち、
そのような製造工程において、本発明の静電チャックの
載置面にウエハ等の被保持物を固定し、搬送、エッチン
グ、成膜等の処理を効率よく行うことができ、生産性が
高く、低コストで信頼性の高い半導体を実現できる。
The processing apparatus of the present invention is suitably used particularly as an apparatus for manufacturing a semiconductor containing a liquid crystal. That is,
In such a manufacturing process, an object to be held such as a wafer is fixed to the mounting surface of the electrostatic chuck of the present invention, and transport, etching, processing such as film formation can be performed efficiently, and productivity is high. A highly reliable semiconductor can be realized at low cost.

【0082】[0082]

【実施例】原料として平均粒子径1μmの還元窒化法の
窒化アルミニウム粉末を用いた。また、所望により平均
粒子径1μmの炭素粉末及び平均粒子径1μmのAl2
3粉末を添加し、Al以外の金属が1重量%以下にな
るように混合した。
EXAMPLE An aluminum nitride powder having an average particle diameter of 1 .mu.m by a reduction nitriding method was used as a raw material. If desired, carbon powder having an average particle diameter of 1 μm and Al 2 having an average particle diameter of 1 μm may be used.
O 3 powder was added and mixed so that metals other than Al became 1% by weight or less.

【0083】この混合粉末にエタノールとバインダを加
えて混合し、成形用粉末を作製した。これをプレス成形
により直径300mm、厚み6mmの円板に成形した。
また、測定用試料として直径80mm、厚み4mmの形
状に成形した。WCとAlNと有機バインダからなるペ
ーストを用いて電極を形成した。電極を挟むように一対
の円板を重ね、さらにプレス加工を行い、この成形体を
脱脂して構造体とした。この構造体をAlN鉢内に入
れ、焼成炉内で焼成した。焼成は、予め収縮開始温度付
近の1750℃で1時間保持した後、2150℃で4時
間焼成した。
Ethanol and a binder were added to this mixed powder and mixed to obtain a molding powder. This was formed into a disk having a diameter of 300 mm and a thickness of 6 mm by press molding.
Further, it was formed into a shape having a diameter of 80 mm and a thickness of 4 mm as a measurement sample. An electrode was formed using a paste composed of WC, AlN, and an organic binder. A pair of disks were stacked so as to sandwich the electrode, and further pressed, and the formed body was degreased to obtain a structure. This structure was placed in an AlN bowl and fired in a firing furnace. The calcination was carried out in advance at 1750 ° C. near the shrinkage starting temperature for 1 hour, and then calcined at 2150 ° C. for 4 hours.

【0084】得られた焼結体の最大気孔径は、焼結体を
鏡面状態に研磨し、1000倍の走査型電子顕微鏡写真
により各々1試料につき10箇所の破面を観察し、最大
気孔径を測定した。
The maximum pore diameter of the obtained sintered body was determined by polishing the sintered body to a mirror surface state, observing 10 fractured surfaces for each sample by a scanning electron microscope photograph of 1000 times, and measuring the maximum pore diameter. Was measured.

【0085】また、焼結体の相対密度は、まずアルキメ
デス法から嵩密度をもとめた後、焼結体を粉砕してJI
SR1620に基づいたHe置換法で得られた真密度と
比較して算出した。
The relative density of the sintered body was determined by first determining the bulk density by the Archimedes method, then grinding the sintered body
It was calculated by comparing with the true density obtained by the He substitution method based on SR1620.

【0086】体積固有抵抗は、JIS C2141に準
拠した3端子法により、50℃で測定した。
The volume resistivity was measured at 50 ° C. by a three-terminal method based on JIS C2141.

【0087】次に、上記円板の焼結体の外径加工を行
い、300mmとした。また、ドリル加工によりガス孔
及びガス噴出溝を形成し、載置面の周端部からガス噴出
溝の外周までの距離wを表1のようになるようにした。
載置面は、ロータリー加工や研削加工によって、あらか
じめ、表1に示すRa(i)及びRmaxになるように載置面
全面を仕上げた。この際に、溝から外周までの載置面外
周領域の高さは、溝から中心にいたる載置面中心領域の
高さより20μm程度高くした。その後、溝から外周ま
での載置面外周領域を平均表面粗さRa(O)及び最大表面
粗さRmaxを表1に示す値になるようにロータリーやラ
ップ加工によって仕上げた。また、載置面中心領域と載
置面外周領域との高低差dを表1の値になるように調整
した。
Next, the outer diameter of the sintered body of the disc was processed to 300 mm. Further, gas holes and gas ejection grooves were formed by drilling, and the distance w from the peripheral end of the mounting surface to the outer periphery of the gas ejection grooves was as shown in Table 1.
The entire mounting surface of the mounting surface was previously finished by rotary processing or grinding processing so that Ra (i) and Rmax shown in Table 1 were obtained. At this time, the height of the mounting surface outer peripheral region from the groove to the outer periphery was higher by about 20 μm than the height of the mounting surface central region from the groove to the center. Thereafter, the outer peripheral area of the mounting surface from the groove to the outer periphery was finished by rotary or lapping so that the average surface roughness Ra (O) and the maximum surface roughness Rmax became the values shown in Table 1. In addition, the height difference d between the central area of the mounting surface and the outer peripheral area of the mounting surface was adjusted to be the value shown in Table 1.

【0088】そして、アルミニウム製架台と上記焼結体
をエポキシ樹脂接着剤を用いて接合し、図4に示した構
造を有する静電チャックを作製した。
Then, the aluminum base and the above-mentioned sintered body were joined using an epoxy resin adhesive to produce an electrostatic chuck having a structure shown in FIG.

【0089】また、基板の均熱性は、あらかじめ、基板
の内外部を10箇所以上においてプラズマが発生する表
面やガスの導入孔付近の載置面知覚に熱電対を挿入して
おき、プラズマ発生時やガス導入時の載置面の温度をモ
ニターリングしながら、ばらつきを測定した。
The thermal uniformity of the substrate is determined in advance by inserting a thermocouple into a surface where plasma is generated at 10 or more locations inside and outside the substrate and a mounting surface near a gas introduction hole. The variation was measured while monitoring the temperature of the mounting surface during gas introduction and gas introduction.

【0090】吸着力は、載置面に1インチ角のシリコン
片を載せ、50℃で500V(双極電圧250V)を印
加し、印加から30秒後にシリコン片を静電チャックか
ら引き離すために要した力を吸着力として測定した。ま
た、電圧印加から180秒後に、電圧の印加を停止し、
電荷が2KPa以下まで低下するのに要した時間を測定
し、この除電時間を離脱応答性の値とした。
The suction force was required for placing a 1-inch square silicon piece on the mounting surface, applying 500 V (bipolar voltage 250 V) at 50 ° C., and separating the silicon piece from the electrostatic chuck 30 seconds after the application. The force was measured as the adsorption force. Also, after 180 seconds from the voltage application, the application of the voltage is stopped,
The time required for the charge to decrease to 2 KPa or less was measured, and the charge elimination time was defined as a value of the detachment response.

【0091】ガスリークは、真空装置を10Paに設定
し、静電チャックの溝に流れるガス流量を流量計で測定
した。結果を表1に示した。
The gas leak was measured by setting the vacuum apparatus to 10 Pa and measuring the flow rate of gas flowing through the groove of the electrostatic chuck with a flow meter. The results are shown in Table 1.

【0092】[0092]

【表1】 [Table 1]

【0093】本発明の試料No.2〜6、8〜11、1
3〜16及び18〜33は、吸着力が300MPa以上
と大きく、ガスリークは15sccm以下、離脱応答性
は25sec以下、基板の面内ばらつきも25℃以下と
小さかった。
Sample No. of the present invention 2-6, 8-11, 1
In Nos. 3 to 16 and 18 to 33, the adsorption force was as large as 300 MPa or more, the gas leak was 15 sccm or less, the desorption response was 25 sec or less, and the in-plane variation of the substrate was as small as 25 ° C. or less.

【0094】一方、載置面外周領域と載置面中心領域が
同じ高さで、dが0のである本発明の範囲外の試料N
o.17は、離脱応答性は0.5secと良好なもの
の、吸着力が80MPaと非常に低いものだった。ま
た、ガスリークは120sccmと大きかった。
On the other hand, a sample N outside the range of the present invention, in which the outer peripheral area of the mounting surface and the central area of the mounting surface have the same height and d is 0, is out of the range of the present invention.
In o.17, the desorption response was as good as 0.5 sec, but the adsorption force was as very low as 80 MPa. The gas leak was as large as 120 sccm.

【0095】また、表面粗さRaが、載置面外周領域と
載置面中心領域で同じである本発明の範囲外の試料N
o.12は、離脱応答性は0.5secと良好なもの
の、吸着力が150MPaと小さいものだった。また、
ガスリークは70sccmと大きかった。
[0095] The surface roughness R a is, samples outside the scope of the present invention is the same in mounting surface outer peripheral region and the mounting surface central region N
o. In No. 12, the detachment response was as good as 0.5 sec, but the adsorption force was as small as 150 MPa. Also,
The gas leak was as large as 70 sccm.

【0096】さらに、載置面外周領域の表面粗さR
aが、載置面中心領域の表面粗さRaより大きい本発明の
範囲外の試料No.1は、面粗さが小さいため、吸着力
は600MPaと高く、ガスリークは0.5sccmと
小さいいものの、離脱応答性が180sccmと悪かっ
た。
Further, the surface roughness R of the outer peripheral area of the mounting surface
a is outside the range of the surface roughness R a greater than the present invention of placing surface central region Sample No. Sample No. 1 had a low surface roughness, so the adsorption power was as high as 600 MPa and the gas leak was as small as 0.5 sccm, but the desorption response was as poor as 180 sccm.

【0097】さらにまた、載置面中心領域の平均表面粗
さRaが2μmと大きい本発明の範囲外の試料No.7
は、離脱応答性は0.5secと良好なものの、吸着力
が200MPaと低いものだった。
Further, the sample No. having a large average surface roughness Ra of 2 μm in the center area of the mounting surface, which is outside the range of the present invention. 7
Had a good desorption response of 0.5 sec, but a low adsorption power of 200 MPa.

【0098】[0098]

【発明の効果】本発明は、載置面外周領域及び載置面中
心領域のRaを制御するとともに、載置面の表面に高低
差を形成することにより、基板の均熱性と高い吸着力を
維持しながら、離脱応答性とガスリークの少ない静電チ
ャックを実現できる。
As described above, the present invention controls the Ra of the outer peripheral area of the mounting surface and the center area of the mounting surface, and forms a difference in height on the surface of the mounting surface, so that the heat uniformity of the substrate and the high suction power can be obtained. , And an electrostatic chuck with less detachment response and less gas leak can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電チャックの構造を示すもので、
(a)は概略断面図、(b)はガス噴出溝付近の拡大概
略断面図である。
FIG. 1 shows a structure of an electrostatic chuck of the present invention.
(A) is a schematic sectional view, (b) is an enlarged schematic sectional view near the gas ejection groove.

【図2】本発明の静電チャックの他の構造を示す断面図
である。
FIG. 2 is a sectional view showing another structure of the electrostatic chuck of the present invention.

【図3】本発明の静電チャックのさらに他の構造を示す
断面図である。
FIG. 3 is a sectional view showing still another structure of the electrostatic chuck of the present invention.

【図4】本発明の静電チャックのさらに他の構造を示す
断面図である。
FIG. 4 is a sectional view showing still another structure of the electrostatic chuck of the present invention.

【符号の説明】[Explanation of symbols]

1、11、21、41・・・静電チャック 2、12、22、42・・・セラミック誘電体層 3、13、23、43・・・載置面 3a、13a、23a、43a・・・載置面中心領域 3b、13b、23b、43b・・・載置面外周領域 4、14、24、44a、44b・・・電極 5、15、25、45・・・ガス噴出溝 6、16、26、46・・・ガス孔 7、17・・・ガス噴出溝底部 8・・・載置面の周端部 9・・・ガス噴出溝の外周 18、48・・・基体 31、51・・・接着層 32、52・・・被保持物 d・・・高低差 w・・・載置面外周領域幅 1, 11, 21, 41 ... electrostatic chuck 2, 12, 22, 42 ... ceramic dielectric layer 3, 13, 23, 43 ... mounting surface 3a, 13a, 23a, 43a ... Mounting surface central region 3b, 13b, 23b, 43b ... mounting surface outer peripheral region 4, 14, 24, 44a, 44b ... electrode 5, 15, 25, 45 ... gas ejection groove 6, 16, 26, 46 ... gas holes 7, 17 ... bottom of gas ejection groove 8 ... peripheral end of mounting surface 9 ... outer periphery of gas ejection groove 18, 48 ... base 31, 51 ...・ Adhesive layer 32, 52 ・ ・ ・ Object to be held d ・ ・ ・ Difference in height w ・ ・ ・ Width of mounting surface outer peripheral area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大江 純司 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 (72)発明者 寺園 正喜 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 (72)発明者 右田 靖 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 (72)発明者 東 直大 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 (72)発明者 阿多利 仁 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 Fターム(参考) 3C007 AS24 DS01 FS10 NS13 5F031 CA02 HA02 HA16 HA40 MA28 MA29 MA32  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Junji Oe 1-1, Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Co., Ltd. Kagoshima Kokubu Plant (72) Inventor Masaki Terazono 1-1, Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Inside the Kagoshima Kokubu Plant (72) Inventor Yasushi Yasuda 1-1, Yamashita-cho, Kokubu-shi, Kagoshima Prefecture Kyocera Corporation Kagoshima Kokubu Plant (72) Inventor Hitoshi Ata No. 1-1 Yamashita-cho, Kokubu City, Kagoshima Prefecture Kyocera Corporation Kagoshima Kokubu Plant F-term (reference) 3C007 AS24 DS01 FS10 NS13 5F031 CA02 HA02 HA16 HA40 MA28 MA29 MA32

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】セラミック誘電体層と、該セラミック誘電
体層の表面に設けられ、被保持物を保持するための載置
面と、該載置面と反対側の表面に対向するように設けら
れた保持電極とを具備してなる静電チャックにおいて、
前記載置面がガス噴出溝によって載置面外周領域と載置
面中心領域とに分離され、表面粗さRaが、前記載置面
中心領域で0.6〜1.5μm、前記載置面外周領域で
0.7μm以下であるとともに、前記載置面外周領域の
表面粗さが前記載置面中心領域の表面粗さよりも小さ
く、且つ前記載置面外周領域の高さが、前記載置面中心
領域の高さより0.6μm以上高いことを特徴とする静
電チャック。
1. A ceramic dielectric layer, a mounting surface provided on a surface of the ceramic dielectric layer for holding an object to be held, and provided so as to face a surface opposite to the mounting surface. An electrostatic chuck comprising:
The mounting surface is separated into a mounting surface outer peripheral region and a mounting surface center region by a gas ejection groove, and the surface roughness Ra is 0.6 to 1.5 μm in the mounting surface center region. The outer peripheral area of the mounting surface is 0.7 μm or less, the surface roughness of the outer peripheral area of the mounting surface is smaller than the surface roughness of the central area of the mounting surface, and the height of the outer peripheral area of the mounting surface is higher than the above. An electrostatic chuck characterized in that the height is at least 0.6 μm higher than the height of the placement surface center region.
【請求項2】前記載置面外周領域及び前記載置面中心領
域の最大表面粗さRma xが、2μm以下であることを特
徴とする請求項1記載の静電チャック。
2. A maximum surface roughness R ma x of the mounting surface outer peripheral region and the mounting surface central region, the electrostatic chuck of claim 1, wherein a is 2μm or less.
【請求項3】前記載置面の周端部から前記ガス噴出溝の
外周までの距離が、10mm以下であることを特徴とす
る請求項1又は2記載の静電チャック。
3. The electrostatic chuck according to claim 1, wherein a distance from a peripheral end of the mounting surface to an outer periphery of the gas ejection groove is 10 mm or less.
【請求項4】前記セラミック誘電体層の密度が98%以
上、最大気孔径が2μm以下であることを特徴とする請
求項1乃至3のうちいずれかに記載の静電チャック。
4. The electrostatic chuck according to claim 1, wherein said ceramic dielectric layer has a density of 98% or more and a maximum pore diameter of 2 μm or less.
【請求項5】前記セラミック誘電体層の50℃の体積固
有抵抗が107〜101 2Ωcmであることを特徴とする
請求項1乃至4のうちいずれかに記載の静電チャック。
5. The electrostatic chuck according to any one of claims 1 to 4, wherein the volume specific resistance of 50 ° C. of the ceramic dielectric layer is 10 7 ~10 1 2 Ωcm.
【請求項6】前記セラミック誘電体層が窒化アルミニウ
ムを主成分とすることを特徴とする請求項1乃至5のう
ちいずれかに記載の静電チャック。
6. The electrostatic chuck according to claim 1, wherein said ceramic dielectric layer contains aluminum nitride as a main component.
【請求項7】被保持物を保持するために、請求項1乃至
6のうちいずれかに記載の静電チャックが設けられてな
ることを特徴とする処理装置。
7. A processing apparatus comprising the electrostatic chuck according to claim 1 for holding an object to be held.
JP2001053173A 2001-02-27 2001-02-27 Electrostatic chuck and processing apparatus Expired - Fee Related JP3758979B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001053173A JP3758979B2 (en) 2001-02-27 2001-02-27 Electrostatic chuck and processing apparatus
US10/090,438 US6643115B2 (en) 2001-02-27 2002-02-27 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053173A JP3758979B2 (en) 2001-02-27 2001-02-27 Electrostatic chuck and processing apparatus

Publications (2)

Publication Number Publication Date
JP2002261157A true JP2002261157A (en) 2002-09-13
JP3758979B2 JP3758979B2 (en) 2006-03-22

Family

ID=18913677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053173A Expired - Fee Related JP3758979B2 (en) 2001-02-27 2001-02-27 Electrostatic chuck and processing apparatus

Country Status (2)

Country Link
US (1) US6643115B2 (en)
JP (1) JP3758979B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038766A2 (en) * 2002-10-23 2004-05-06 Axcelis Technologies, Inc. Electrostatic chuck wafer port and top plate with edge shielding and gas scavenging
JP2005268524A (en) * 2004-03-18 2005-09-29 Canon Inc Substrate holder and aligner using same
JP2006332129A (en) * 2005-05-23 2006-12-07 Tokyo Electron Ltd Electrostatic attraction electrode and treatment device
US7646580B2 (en) 2005-02-24 2010-01-12 Kyocera Corporation Electrostatic chuck and wafer holding member and wafer treatment method
JP2010050396A (en) * 2008-08-25 2010-03-04 Hitachi High-Technologies Corp Plasma processing device
JP2011119326A (en) * 2009-12-01 2011-06-16 Tokyo Electron Ltd Substrate mounting base, method for manufacturing the same, and substrate processing apparatus
JP2012216816A (en) * 2011-03-30 2012-11-08 Ngk Insulators Ltd Method for manufacturing electrostatic chuck, and electrostatic chuck
KR101441858B1 (en) 2005-07-15 2014-09-19 어플라이드 머티어리얼스, 인코포레이티드 Reducing electrostatic charge by roughening the susceptor
JPWO2018020956A1 (en) * 2016-07-25 2019-04-11 京セラ株式会社 Sample holder
WO2022145090A1 (en) * 2020-12-28 2022-07-07 住友大阪セメント株式会社 Ceramic assembly and electrostatic chuck device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224180A (en) * 2002-01-28 2003-08-08 Kyocera Corp Wafer support member
US7151658B2 (en) * 2003-04-22 2006-12-19 Axcelis Technologies, Inc. High-performance electrostatic clamp comprising a resistive layer, micro-grooves, and dielectric layer
US8372205B2 (en) * 2003-05-09 2013-02-12 Applied Materials, Inc. Reducing electrostatic charge by roughening the susceptor
US20040221959A1 (en) * 2003-05-09 2004-11-11 Applied Materials, Inc. Anodized substrate support
US7469165B2 (en) * 2005-09-23 2008-12-23 Tracker Marine L.L.C. Machined part and method of manufacture
US8173228B2 (en) * 2006-01-27 2012-05-08 Applied Materials, Inc. Particle reduction on surfaces of chemical vapor deposition processing apparatus
US20080131622A1 (en) * 2006-12-01 2008-06-05 White John M Plasma reactor substrate mounting surface texturing
JP4786693B2 (en) 2008-09-30 2011-10-05 三菱重工業株式会社 Wafer bonding apparatus and wafer bonding method
JP5670235B2 (en) * 2011-03-24 2015-02-18 コバレントマテリアル株式会社 Electrostatic chuck
JP5458050B2 (en) * 2011-03-30 2014-04-02 日本碍子株式会社 Manufacturing method of electrostatic chuck
WO2016135565A1 (en) 2015-02-23 2016-09-01 M Cubed Technologies, Inc. Film electrode for electrostatic chuck
WO2020017314A1 (en) * 2018-07-19 2020-01-23 ボンドテック株式会社 Substrate bonding device
US11430685B2 (en) * 2019-03-19 2022-08-30 Ngk Insulators, Ltd. Wafer placement apparatus and method of manufacturing the same
JP2021072350A (en) * 2019-10-30 2021-05-06 日本碍子株式会社 Composite sintered body and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153825A (en) * 1993-11-29 1995-06-16 Toto Ltd Electrostatic chuck and treatment method of body to be attracted which uses said chuck
US5548470A (en) * 1994-07-19 1996-08-20 International Business Machines Corporation Characterization, modeling, and design of an electrostatic chuck with improved wafer temperature uniformity
JPH09213777A (en) * 1996-01-31 1997-08-15 Kyocera Corp Electrostatic chuck
US6447937B1 (en) * 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
US6447853B1 (en) * 1998-11-30 2002-09-10 Kawasaki Microelectronics, Inc. Method and apparatus for processing semiconductor substrates
JP2001244320A (en) * 2000-02-25 2001-09-07 Ibiden Co Ltd Ceramic substrate and manufacturing method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038766A3 (en) * 2002-10-23 2004-07-22 Axcelis Tech Inc Electrostatic chuck wafer port and top plate with edge shielding and gas scavenging
WO2004038766A2 (en) * 2002-10-23 2004-05-06 Axcelis Technologies, Inc. Electrostatic chuck wafer port and top plate with edge shielding and gas scavenging
JP2005268524A (en) * 2004-03-18 2005-09-29 Canon Inc Substrate holder and aligner using same
JP4636807B2 (en) * 2004-03-18 2011-02-23 キヤノン株式会社 Substrate holding device and exposure apparatus using the same
US7646580B2 (en) 2005-02-24 2010-01-12 Kyocera Corporation Electrostatic chuck and wafer holding member and wafer treatment method
JP2006332129A (en) * 2005-05-23 2006-12-07 Tokyo Electron Ltd Electrostatic attraction electrode and treatment device
KR101441858B1 (en) 2005-07-15 2014-09-19 어플라이드 머티어리얼스, 인코포레이티드 Reducing electrostatic charge by roughening the susceptor
JP2010050396A (en) * 2008-08-25 2010-03-04 Hitachi High-Technologies Corp Plasma processing device
JP2011119326A (en) * 2009-12-01 2011-06-16 Tokyo Electron Ltd Substrate mounting base, method for manufacturing the same, and substrate processing apparatus
JP2012216816A (en) * 2011-03-30 2012-11-08 Ngk Insulators Ltd Method for manufacturing electrostatic chuck, and electrostatic chuck
US9394206B2 (en) 2011-03-30 2016-07-19 Ngk Insulators, Ltd. Method for producing electrostatic chuck and electrostatic chuck
KR101929053B1 (en) 2011-03-30 2018-12-13 엔지케이 인슐레이터 엘티디 Method for producing electrostatic chuck and electrostatic chuck
JPWO2018020956A1 (en) * 2016-07-25 2019-04-11 京セラ株式会社 Sample holder
KR20210018531A (en) * 2016-07-25 2021-02-17 교세라 가부시키가이샤 Sample holder
US11139194B2 (en) 2016-07-25 2021-10-05 Kyocera Corporation Sample holder
KR102474583B1 (en) * 2016-07-25 2022-12-06 교세라 가부시키가이샤 Sample holder
WO2022145090A1 (en) * 2020-12-28 2022-07-07 住友大阪セメント株式会社 Ceramic assembly and electrostatic chuck device
JPWO2022145090A1 (en) * 2020-12-28 2022-07-07
JP7388575B2 (en) 2020-12-28 2023-11-29 住友大阪セメント株式会社 Ceramic bonded body, electrostatic chuck device

Also Published As

Publication number Publication date
US20020176219A1 (en) 2002-11-28
US6643115B2 (en) 2003-11-04
JP3758979B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP2002261157A (en) Electrostatic chuck and treating device
JP4744855B2 (en) Electrostatic chuck
JP4942364B2 (en) Electrostatic chuck, wafer holding member, and wafer processing method
US7646580B2 (en) Electrostatic chuck and wafer holding member and wafer treatment method
KR101142000B1 (en) Electrostatic chuck
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
KR100681253B1 (en) Support member for wafer
JP4040284B2 (en) Electrode built-in susceptor for plasma generation and manufacturing method thereof
US7948735B2 (en) Electrostatic chuck and method for manufacturing the same
JP2006128603A (en) Ceramic member and manufacturing method therefor
KR20040030803A (en) Ceramic connection body, method of connecting the ceramic bodies, and ceramic structural body
JP4624836B2 (en) Manufacturing method of bonded wafer and wafer holding jig used therefor
JP2001351966A (en) Suscepter and method for manufacturing the suscepter
JP7245296B2 (en) Method for manufacturing parts for semiconductor manufacturing equipment
JP2001308165A (en) Susceptor and its manufacturing method
JP2005057234A (en) Electrostatic chuck
JP3720757B2 (en) Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.
JP2002110772A (en) Electrode built-in ceramic and its manufacturing method
JP2006344999A (en) Susceptor and its manufacturing method
JP3909248B2 (en) Sample heating device
JP4439102B2 (en) Electrostatic chuck
JP6994863B2 (en) Manufacturing method of ceramic parts
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2003017223A (en) Ceramic heater and electrostatic chuck with built-in ceramic heater
JPH10189698A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees