JP3720757B2 - Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same. - Google Patents

Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same. Download PDF

Info

Publication number
JP3720757B2
JP3720757B2 JP2001364773A JP2001364773A JP3720757B2 JP 3720757 B2 JP3720757 B2 JP 3720757B2 JP 2001364773 A JP2001364773 A JP 2001364773A JP 2001364773 A JP2001364773 A JP 2001364773A JP 3720757 B2 JP3720757 B2 JP 3720757B2
Authority
JP
Japan
Prior art keywords
sintered body
ceramic sintered
plate
ceramic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364773A
Other languages
Japanese (ja)
Other versions
JP2003165779A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001364773A priority Critical patent/JP3720757B2/en
Publication of JP2003165779A publication Critical patent/JP2003165779A/en
Application granted granted Critical
Publication of JP3720757B2 publication Critical patent/JP3720757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、板状セラミック焼結体とそれより小さな外形を有する他のセラミック焼結体又は金属を接合するためのセラミック接合装置とこれを用いたセラミック接合体の接合方法に関するものである。
【0002】
【従来の技術】
板状セラミック焼結体とそれより小さな外形を有するセラミック焼結体や金属を接合したセラミック接合体は、さまざまな分野で使用されており、例えば、半導体製造装置では、半導体ウエハーを保持するためのセラミックヒーターやセラミック製静電チャックの如きウエハ支持部材に筒状支持体を拡散接合したものが用いられている。この筒状支持体はウエハ支持部材を真空処理室内に設置するためのもので、ウエハ支持部材を形成する板状セラミック焼結体と同種のセラミック焼結体あるいは熱膨張係数が近似した金属により形成されていた。
【0003】
そして、このような板状セラミック焼結体と、他のセラミック焼結体又は金属を接合する方法としては、例えば、特開平6−241662号公報に開示されたセラミック接合装置を用いることが提案されている。
【0004】
このセラミック接合装置は、図3に示すように、被接合物Wを収容する炉体32と、被接合物Wの接合部に荷重を加える加圧軸40と、この加圧軸40を駆動させる加圧機構41と、加圧軸40からの力を被接合物Wの接合部に均等にかけるための加圧用冶具43とから構成されており、上記炉体32は、金属製容器33内の底面に配置された被接合物Wを載せるカーボン製の台座37と、この台座37上の被接合物Wを包囲するカーボン製の断熱カバー34と、この断熱カバー34内の側面近傍に配置された発熱体35とを具備したもので、ガス排気封入装置38により上記容器33内のガスを排出したり、ガスを充填するとともに、電源装置36より通電して発熱体35を発熱させることで炉体32内を加熱するようになっていた。なお、39は敷板である。
【0005】
また、加圧軸40は金属製容器33の上部壁に設けられたシールガイド42の貫通穴に気密に挿通されており、加圧軸40は油圧シリンダー等の加圧機構41によって駆動させ、被接合物Wを押圧するようになっていた。
【0006】
そして、このセラミック接合装置31により、板状セラミック焼結体とそれより小さな外形を有するセラミック焼結体や金属を接合する場合、上記台座37に敷板39を介して被接合物Wである板状セラミック焼結体を載せるとともに、この板状セラミック焼結体上に接合剤を介して外形の小さなセラミック焼結体又は金属を載せた後、発熱体35によって炉体32内を所定の温度に加熱するとともに、加圧機構41によって加圧軸40を降下させ、加圧用治具43を介して板状セラミック焼結体上におかれたセラミック焼結体又は金属を押圧することにより、板状セラミック焼結体とそれより小さな外形を有するセラミック焼結体や金属を接合するようになっていた。
【0007】
【発明が解決しようとする課題】
ところが、図3に示すようなセラミック接合装置31によって、板状セラミック焼結体とそれより外形の小さなセラミック焼結体や金属を接合すると、板状セラミック焼結体が変形したり、反りが発生することがあり、接合前の寸法精度を保った状態で接合することができないといった課題があった。
【0008】
即ち、焼結されたセラミック焼結体同士や、焼結されたセラミック焼結体と金属とを接合するには、セラミック焼結体が塑性変形する高温にまで加熱する必要があるが、図3に示すセラミック接合装置31は、このような高温状態で板状セラミック焼結体と他のセラミック焼結体又は金属との接合領域のみを加圧する構造であることから、図4に示すように、板状セラミック焼結体の加工用治具43によって押圧される部分が変形し、その外周部が浮き上がって反りが発生するといった課題があった。
【0009】
その為、板状セラミック焼結体がウエハ支持部材のように、高い平面精度が要求され、変形や反りを嫌うものである場合、変形度合いに応じて再度板状セラミック焼結体に研削加工や研磨加工を施さなければならず、加工工程が増えるため、作業が煩雑になるとともに、製造コストが高くなるといった課題があった。
【0010】
また、ウエハ支持部材がセラミックヒーターやセラミック製静電チャックである場合、板状セラミック焼結体中にヒータ用電極や静電吸着用電極が埋設されているのであるが、図3に示すセラミック接合装置31によって接合を行うと、板状セラミック焼結体の変形によってその内部に埋設されているヒータ用電極や静電吸着用電極も変形し、半導体ウエハーを載せる載置面からヒータ用電極や静電吸着用電極までの距離を一定に保てなくなり不良品となるため、製造歩留りが悪いといった課題があった。
【0011】
【課題を解決するための手段】
そこで、上記課題に鑑み、本発明のセラミック接合装置は、板状セラミック焼結体と、この板状セラミック焼結体より小さな外形を有するセラミック焼結体又は金属とからなる被接合物を載せる台座を備えた炉体と、上記板状セラミック焼結体上に載せたセラミック焼結体又は金属との接合面に荷重を加える加圧軸と、加圧軸によって上記板状セラミック焼結体上に載せたセラミック焼結体又は金属を押圧する加圧用治具と、上記加圧軸を駆動させる加圧機構と、上記セラミック焼結体又は金属との接合領域を除く上記板状セラミック焼結体の露出面に荷重を加える重しとから構成したことを特徴とする。
【0012】
また、本発明は上記セラミック接合装置の台座に板状セラミック焼結体を載せるとともに、板状セラミック焼結体上に外形の小さなセラミック焼結体又は金属を載せ、さらに上記セラミック焼結体又は金属上には加圧用治具を、上記セラミック焼結体又は金属との接合領域を除く板状セラミック焼結体の露出面には重しをそれぞれ載せた状態で、炉体内を接合温度に加熱し、次いで上記加圧機構により加圧軸を降下させて加圧用治具を押圧することにより、外形の小さなセラミック焼結体又は金属を板状セラミック焼結体に接合したセラミック接合体を製造するようにしたことを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0014】
図1は本発明のセラミック接合装置を示す概略断面図である。
【0015】
このセラミック接合装置1は、板状セラミック焼結体51と、板状セラミック焼結体51より小さな外形を有するセラミック焼結体や金属からなる被接合物Sを収容する炉体2と、上記板状セラミック焼結体51上に載せたセラミック焼結体又は金属との接合部に荷重を加える加圧軸10と、この加圧軸10によって上記板状セラミック焼結体51上に載せたセラミック焼結体又は金属を押圧する加圧用治具18と、上記加圧軸10を駆動させる加圧機構16と、上記セラミック焼結体又は金属との接合領域を除く板状セラミック焼結体51の露出面に荷重を加える重し21とからなり、上記炉体2は、金属製容器3内の底面に配置した被接合物Sを載せるカーボン製の台座5と、この台座5上の被接合物Sを包囲するカーボン製の断熱カバー4と、この断熱カバー4内の側面近傍に配置する発熱体6とから構成してある。
【0016】
加圧軸10は、金属製容器3の上部壁に設けられたシールガイド9の貫通穴に気密に挿通されており、加圧軸10は油圧シリンダー等の加圧機構16によって駆動させ、被接合物Sに荷重を加えるようになっている。
【0017】
加圧用治具18や重し21は、被接合物Sの加圧領域の形状に合わせてさまざまな形状を採用することができ、図2に示すようなセラミック接合体を製造する場合、加圧用治具18としては、筒状体52のフランジ部53のほぼ全面を押圧する有底筒状体19をしたものが良く、重し21としては、筒状体52との接合領域を除く板状セラミック焼結体51の露出面のほぼ全面を押圧する円筒状体をしたものを用いれば良い。
【0018】
また、加圧軸10を形成する材質としては、2500℃前後の温度にも耐え得るカーボンを好適に用いることができる。ただし、カーボンは硬度がそれ程大きくなく、摺動部分に用いると摩耗し易いことから、図1に示すように、シールガイド9と摺動する軸後端部11を超鋼合金やステンレス鋼(SUS304)等の金属により形成し、発熱体6によって高温に加熱される軸先端部12をカーボンにより形成した接合体を用いることが好ましい。
【0019】
さらに、加圧用治具18を形成する材質としては、加圧軸10と同様に、2500℃前後の温度にも耐え得るカーボンを用いることができるが、被接合物Sとの当接面までカーボンにより形成すると、押圧時にカーボンが被接合物Sに付着して品質低下を招くため、図1に示すように、治具本体19の少なくとも当接面を含む治具先端部20をセラミック焼結体により形成した接合体を用いることが好ましい。
【0020】
また、重し21を形成する材質としては、2500℃前後の温度にも耐え得るとともに、できるだけ比重の大きなものが良く、例えば、アルミナ、窒化珪素、窒化アルミニウム、炭化珪素等を主成分とするセラミック焼結体を用いることができる。
【0021】
なお、7は発熱体6に通電するための電源装置、8は金属製容器3内にガスを供給したり、容器3のガスを排出するためのガス排気封入装置である。
【0022】
次に、図2に示すセラミック接合体を図1に示すセラミック接合装置1により製造するための方法について説明する。
【0023】
まず、台座5上に被接合物Sである板状セラミック焼結体51を載せるとともに、板状セラミック焼結体51上の所定位置に接合剤を介してセラミック焼結体又は金属からなる筒状体52のフランジ部53を当接させて載せる。この時、台座5と板状セラミック焼結体51との間には、セラミック焼結体からなる敷板24を配置して台座5のカーボンが板状セラミック焼結体51に付着することを防止する。
【0024】
そして、筒状体52のフランジ部53を押圧する加圧用冶具18をセットする。また、板状セラミック焼結体51の接合領域を除く露出面には、窒化ホウ素等の離形剤を塗布してセラミック焼結体からなる敷板22を載せ、その上に重し21を載せる。この時、重し21は、筒状体52のフランジ部53を加圧軸10で押圧した際に板状セラミック焼結体51の接合領域を除く露出面が変形することを防止する程度の加圧力があれば良く、例えば、フランジ部53に加える押圧力が5000N以下であれば、10〜300Nの重量を有する重し21を用いれば良い。
【0025】
次に、ガス排気封入装置8により金属製容器3内のガスを排気して真空度100Pa以下に減圧する。そして、金属製容器3内を減圧しながら電源装置7により通電して発熱体6を発熱させ、台座5上に載せた被接合物Sを加熱する。この時、昇温速度は、被接合物Sの外周部と中央部の温度差が200℃以上とならないように、200℃/時間以下の速度で昇温することが好ましい。
【0026】
また、昇温と同時に加圧機構16によって加圧軸10がそれぞれ被接合物Sの加圧面に載せた加圧用治具18に接触する寸前まで降下させる。このようにすることで、加圧軸10の熱容量による炉体2内の温度の変動を防止することができる。
【0027】
次いで、金属製容器3内の温度を、板状セラミック焼結体51が塑性変形する温度にまで加熱した段階で、加圧軸10を加圧用治具18と当接させ、筒状体52のフランジ部53のほぼ全体を押圧する。ここで、発熱体6により加熱する温度を、板状セラミック焼結体51が塑性変形可能な温度としたのは、セラミック焼結体は脆性材料であるため、塑性変形可能な温度より低い温度で加圧すると、板状セラミック焼結体51や他のセラミック焼結体が破損する恐れがあるからである。
【0028】
しかる後、金属製容器3内の温度が所定の接合温度となるまで加熱した段階で、加圧軸10により板状セラミック焼結体51と筒状体52のフランジ部53との接合部における加圧力が1〜5MPaとなるように押圧するとともに、加圧軸10により板状セラミック焼結体51と筒状体52のフランジ部53との接合部に加える荷重をA、重し21により板状セラミック焼結体51の露出面に加える荷重をBとした時、その比率(A/B)が10〜100となるように加圧し、この状態を1〜2時間保持する。
【0029】
ここで、加圧軸10により板状セラミック焼結体51と筒状体52のフランジ部53との接合部に加える圧力を1〜5MPaとしたのは、板状セラミック焼結体51と筒状体52の寸法にもよるが、圧力が1MPa未満となると十分な接合強度を得ることができず、逆に圧力が5MPaを超えると、板状セラミック焼結体が変形してしまうからである。
【0030】
また、加圧軸10により板状セラミック焼結体51と筒状体52のフランジ部53との接合部に加える荷重をA、重し21により板状セラミック焼結体51の露出面に加える荷重をBとした時、その比率(A/B)が10〜100となるように加圧するのは、比率(A/B)を10未満とするようなセラミック焼結体製の重し21を製作することが実用上難しいからであり、逆に比率(A/B)が100を超えると、筒状体52のフランジ部53に加える荷重Aに対して、板状セラミック焼結体51の露出面に加える荷重が小さくなり、重し21による加圧力により板状セラミック焼結体51の変形を防止する効果が小さいからである。
【0031】
さらに、加圧軸10が加圧用治具18と当接してからの下降速度は、板状セラミック焼結体51の材質や厚みにもよるが、窒化アルミニウム等の窒化物やアルミナ製の板状セラミック焼結体で、接合部の板状セラミック焼結体51と筒状体52のフランジ部53を加えた厚みが50mmであれば10mm/s以下とすることが良い。なぜなら、加圧軸10が加圧用治具18と当接してからの下降速度が10mm/sを超えると、板状セラミック焼結体51中に加圧力が急速に伝わり、板状セラミック焼結体51が変形し易くなるからであり、好ましくは2mm/s以下とすることが良い。
【0032】
しかる後、加熱温度を徐々に下げ、塑性変形し難い温度になったところで加圧軸10による加圧を止め、さらに炉体2内の温度が200℃以下になるまで下げることにより板状セラミック焼結体51に筒状体52を接合したセラミック接合体を得ることができる。
【0033】
そして、本発明によれば、加圧軸10により板状セラミック焼結体51と筒状体52との接合部に荷重を加えるとともに、重し21により板状セラミック焼結体51の接合領域以外の露出部に荷重を加えるようにしたことから、従来例と比較して板状セラミック焼結体51の反りを抑えることができるとともに、加圧軸10と重し21により加える荷重を前述した範囲に調整することにより、板状セラミック焼結体51の反りを大幅に防止するとともに、筒状体52と強固に接合することができる。
【0034】
以上、本発明の実施形態について説明したが、本発明は上述した実施形態だけに限定されるものではなく、本発明の要旨を逸脱しない範囲で改良や変更されたものも含むものであることは言う迄もない。
【0035】
【実験例】
(実験例1)
以下、本発明の具体例として、円板状をした板状セラミック焼結体51からなるセラミックヒーターと、円筒状をしたセラミック焼結体からなる筒状体52とを接合したウエハ支持部材を本発明のセラミック接合装置及び接合方法を用いて製造した例について説明する。
【0036】
まず、セラミックヒーターを製作するには、純度99%の窒化アルミニウム粉末に、0.1重量%の炭酸カルシウムを添加した原料粉末100重量%に対してアクリル系バインダーを6重量%添加し、溶剤とともに混合してスラリーを準備し、ドクターブレード法にて窒化アルミニウムのグリーンシートを複数枚作製した。
【0037】
次に、得られた複数枚のグリーンシートを略正方形のシート状に切断し、数枚のグリーンシート間に密着液を介して積み重ね、80℃に加熱しながら3MPaの力で加圧することによりシート同士を圧着させてシート積層体を製作した。
【0038】
そして、シート積層体の表面にスクリーン印刷機を用いてヒータ用電極となる導体ペーストを所定のパターン形状に印刷した後、導体ペーストを覆うように残りの数枚のグリーンシートを積み重ねて熱圧着し、さらにスクリーン印刷機を用いて静電吸着用電極となる導体ペーストを所定のパターン形状に印刷し、導体ペーストを覆うように残りのグリーンシートを積み重ねて熱圧着することによりシート積層体を得た。
【0039】
ただし、シート積層体の厚みは18mm、シート積層体の表面から静電吸着用電極となる導体ペーストが埋設されている深さは凡そ1.0mm、シート積層体の表面からヒータ用電極となる導体ペーストが埋設されている深さは凡そ9mmとなるようにした。
【0040】
次いで、得られたシート積層体に切削加工を施して円盤状に形成した後、窒素雰囲気中で300℃に加熱して脱脂、炭化処理を施した後、さらに350℃の酸素雰囲気中で加熱して炭化量を0.5重量%以下となるように調整し、しかる後、2100℃、4.5MPaの窒素ガス雰囲気中で焼成することにより、静電吸着用電極とヒータ用電極を埋設した板状セラミック焼結体を得た。
【0041】
そして、板状セラミック焼結体51に精密加工を施してその外形を直径300mm、厚み12.5mmとなるようにし、次いで上面に研磨加工を施して載置面を形成するとともに、下面に静電吸着用電極及びヒータ用電極へ通電するための給電端子を接合する穴を穿孔した。そして、筒状体52を接合した後、この穴にFe−Ni−Co製の給電端子を挿入して1000℃の温度でロウ付けすることによりセラミックヒーターを製作した。なお、得られた板状セラミック焼結体51の載置面における平面度を測定したところ10μmであった。
【0042】
一方、筒状体52を製作するには、純度99%の窒化アルミニウム粉末に、0.1重量%の炭酸カルシウムを添加した原料粉末100重量%に対してアクリル系バインダーを6重量%添加し、溶剤とともに混練乾燥して造粒粉を製作した。
【0043】
次に、この造粒粉を心金を有したゴム型中に充填し、80MPaの圧力でラバープレス成形することにより筒状の成形体を製作した後、外形を切削加工にて加工することにより、一端にフランジ部を有する筒状成形体を得た。
【0044】
次いで、板状セラミック焼結体51と同様に、窒素雰囲気中で300℃に加熱して脱脂、炭化処理を施した後、さらに350℃の酸素雰囲気中で加熱して炭化量を0.5重量%以下となるように調整し、しかる後、2100℃、4.5MPaの窒素ガス雰囲気中で焼成することにより焼結させ、セラミック焼結体の外形を精密研削することにより、筒状部の外形が50mm、肉厚が5mm、フランジ部の外形が直径80mm、内径70mm、長さが500mmのフランジ部を有する筒状体52を製作した。
【0045】
そして、得られた板状セラミック焼結体51と筒状体52とを接合するには、図1に示すセラミック接合装置1の台座5上に窒化ホウ素からなる敷板24を介してセラミックヒーターとしての板状セラミック焼結体51の下面を上にして載せるとともに、板状セラミック焼結体51の所定位置に筒状体52のフランジ部を当接させて載せ、さらに上記フランジ部の接合面と反対側の表面上に、加圧用治具である窒化硼素製のリング状をした治具先端部20とカーボン製の有底筒状をした加圧用治具19本体を順次載せるとともに、板状セラミック焼結体51の接合領域を除く露出面上に、重し21である窒化硼素製のリング状をした治具先端部23とカーボン製の筒状をした加圧用治具22本体を順次載せた。なお、板状セラミック焼結体51と筒状体52との接合部には、接合剤として、窒化アルミニウム粉末100重量%に対して炭酸カルシウムを1重量%添加したペーストを塗布した。
【0046】
次に、炉体2内を密閉し、ガス排気導入装置8により炉体2内を減圧し、電源装置7に通電して発熱体6を発熱させることにより被接合物Sである板状セラミック焼結体51及び筒状体52を加熱して水分等を除去した後、1200℃まで200℃/時間の速度で昇温し、1200℃で炉内に100kPaの窒素ガスを導入し、上記窒化アルミニウム質焼結体からなる板状セラミック焼結体51及び筒状体52が容易に塑性変形し出す1800℃の温度で加圧軸10により加圧軸10の下降速度を1mm/sとして加圧した。この時、加圧軸10により板状セラミック焼結体51と筒状セラミック焼結体52との接合面間には約3MPaの圧力が加わるとともに、加圧軸10の荷重は重し21により板状セラミック焼結体51の接合領域を除く露出面に加える荷重の50倍となるようにした。
【0047】
そして、1800℃〜1900℃までは60℃/時間の速度で昇温し、1900℃の温度で1時間保持した。
【0048】
ここで、接合温度を1800℃〜1900℃としたのは、接合温度が1800℃より低いと、接合剤を液化させ、板状セラミック焼結体や筒状体52に拡散させることができず、強固な接合力を得ることができない。また、AlN純度が99%以上である高純度窒化アルミニウム質セラミック焼結体が塑性変形せず、加圧軸10による押圧力によって板状セラミック焼結体51や筒状体52が破損するからであり、逆に、接合温度が1900℃を超えると、AlN純度が99%以上である高純度窒化アルミニウム質セラミック焼結体の塑性変形スピードが大きくなりすぎ、加圧軸10や重し21による押圧力によって板状セラミック焼結体や筒状体の変形を防止することが難しいからである。
【0049】
その後、加圧した状態で温度を200℃/時間の速さで下げ、炉体2内の温度が1600℃となった時点で加圧軸10を加圧用治具18より離して加圧力をゼロとする。そして、200℃/時間の速度で炉体2内の温度を800℃まで温度を下げた後、炉体2内に窒素ガスを供給してそのガス圧を200kPaとし、炉体2内の温度を速く低下させるようにした。そして、炉体2内の温度が200℃以下となった時点で、板状セラミック焼結体51からなるセラミックヒーターとセラミック焼結体からなる筒状体52とが一体的に接合されたセラミック接合体を得た。
【0050】
そして、得られたセラミックヒーターの載置面における平面度を測定したところ200μmと、接合前の平面度に対して20倍程度に留めることができた。
【0051】
また、セラミックヒーターの載置面に、熱電対を取り付けたシリコンウエハを載せて発熱させ、シリコンウエハの表面温度を赤外線温度測定器で測定しながら平均温度が700℃となった時点での熱電対によるシリコンウエハの温度を測定したところ、温度ばらつきは6℃と小さく、ウエハを均一に加熱することができた。
【0052】
これに対し、図4に示す従来のセラミック接合装置を用いて上記セラミックヒーターと筒状体52とを接合したものも製作したところ、接合後のセラミックヒーターの載置面における平面度は500μmと、接合前の平面度に対して50倍も変形していた。
【0053】
また、図3に示す従来のセラミック接合装置を用いて接合したセラミックヒーターの載置面に、熱電対を取り付けたシリコンウエハを載せて発熱させ、シリコンウエハの表面温度を赤外線温度測定器で測定しながら平均温度が700℃となった時点での熱電対によるシリコンウエハの温度を測定したところ、温度ばらつきが20℃もあり、ウエハを均一に加熱することができなかった。
(実験例2)
次に、実験例1で製作した板状セラミック焼結体51と筒状セラミック焼結体52とを図1に示すセラミック接合装置を用いて接合するあたり、加圧軸10により板状セラミック焼結体51と筒状体52のフランジ部53との接合部に加える荷重(A)と、重し21により板状セラミック焼結体の露出面に加える荷重(B)とを異ならせた時の接合後に、セラミックヒーターの載置面における平面度を測定し、接合部のヘリウムリークの有無をヘリウムリークテスターで測定した。
【0054】
結果は表1に示す通りである。
【0055】
【表1】

Figure 0003720757
【0056】
この結果、試料No.1のように加圧軸10により板状セラミック焼結体と筒状支持体のフランジ部との接合部に加える荷重(A)と、重し21が板状セラミック焼結体の露出面に加える荷重(B)との比率(A/B)が10未満となると、セラミックヒーターの載置面の平面度の変化は抑えることができるものの、重しの重量が大きくなり過ぎ、加熱時に板状セラミック焼結体51の周辺部と中央部の温度差が大きくなり昇温中に板状セラミック焼結体が割れた。
【0057】
これに対し、試料No.2から12のように加圧軸10により板状セラミック焼結体51と筒状体52のフランジ部53との接合部に加える荷重(A)と、重しにより板状セラミック焼結体51の露出面に加える荷重(B)との比率(A/B)を10〜100とすれば、板状セラミック焼結体51を大きく変形させることがなく、また、セラミックヒーターの載置面の平面度を小さくすることができることが分かる。
【0058】
さらに、試料No.14のように加圧軸10の下降速度が大きいと板状セラミック焼結体51が破損した。従って、加圧軸10の下降速度を10mm/s以下とすることで板状セラミック焼結体の破損することなく反り量を低減できることが分かった。
【0059】
【発明の効果】
以上のように、本発明のセラミック接合装置によれば、板状セラミック焼結体と、この板状セラミック焼結体より小さな外形を有するセラミック焼結体又は金属とからなる被接合物を載せる台座を備えた炉体と、上記板状セラミック焼結体上に載せたセラミック焼結体又は金属との接合面に荷重を加える加圧軸と、加圧軸によって上記板状セラミック焼結体上に載せたセラミック焼結体又は金属を押圧する加圧用治具と、上記加圧軸を駆動させる加圧機構と、上記セラミック焼結体又は金属との接合領域を除く上記板状セラミック焼結体の露出面に荷重を加える重しとから構成したことによって、大きな外形を有する板状セラミック焼結体に反りを発生させたり、変形させたりすることなく、小さな外形を有する他のセラミック焼結体又は金属を強固に接合することができる。
【0060】
また、本発明は、上記セラミック接合装置の台座に板状セラミック焼結体を載せるとともに、板状セラミック焼結体上に外形の小さなセラミック焼結体又は金属を載せ、さらに上記セラミック焼結体又は金属上には加圧用治具を、上記セラミック焼結体又は金属との接合領域を除く板状セラミック焼結体の露出面には重しをそれぞれ載せ、重しの自重で上記露出面を押圧し、この状態で炉体内を接合温度に加熱した後、上記加圧機構により加圧軸を降下させて加圧用治具を押圧し、接合部に加える加圧力を1〜5MPaとするとともに、その時の荷重をA、上記接合領域を除く板状セラミック焼結体の露出面に加える荷重をBとした時、その比率(A/B)が10〜100となるようにし、板状セラミック焼結体に小さな外形を有するセラミック焼結体又は金属を接合するようにしたことによって、板状セラミック焼結体に反りを発生させたり、変形させたりすることなく、他のセラミック焼結体又は金属と強固に接合することができる。
【図面の簡単な説明】
【図1】本発明のセラミック接合装置を示す概略断面図である。
【図2】本発明のセラミック接合装置で接合するセラミック接合体の構造を示す図で、(a)はその断面図、(b)はその底面図である。
【図3】従来のセラミック接合装置を示す概略断面図である。
【図4】図3のセラミック接合装置による被接合物の接合状態を示す拡大断面図である。
【符号の説明】
1:セラミック接合装置
2:炉体
3:金属製容器
4:断熱カバー
5:台座
6:発熱体
7:電源装置
8:ガス排気封入装置
9:シールガイド
10:加圧軸
16:加圧機構
18:加圧用治具
21:重し
24:敷板
31:セラミック接合装置
32:炉体
33:金属製容器
34:断熱カバー
35:発熱体
36:電源装置
37:台座
38:ガス排気封入装置
39:敷板
40:加圧軸
41:加圧機構
42:シールガイド
43:加圧用治具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic joining apparatus for joining a plate-like ceramic sintered body and another ceramic sintered body or metal having a smaller outer shape, and a method for joining a ceramic joined body using the same.
[0002]
[Prior art]
A plate-like ceramic sintered body, a ceramic sintered body having a smaller external shape, and a ceramic joined body joined with a metal are used in various fields. For example, in a semiconductor manufacturing apparatus, a semiconductor wafer is used to hold a semiconductor wafer. A wafer support member such as a ceramic heater or a ceramic electrostatic chuck is used in which a cylindrical support is diffusion bonded. This cylindrical support is for installing the wafer support member in the vacuum processing chamber. It is made of a ceramic sintered body of the same type as the plate-like ceramic sintered body that forms the wafer support member or a metal with a similar thermal expansion coefficient. It had been.
[0003]
As a method for joining such a plate-like ceramic sintered body and another ceramic sintered body or metal, for example, it is proposed to use a ceramic joining apparatus disclosed in Japanese Patent Application Laid-Open No. 6-241661. ing.
[0004]
As shown in FIG. 3, the ceramic bonding apparatus is configured to drive a furnace body 32 that accommodates a workpiece W, a pressure shaft 40 that applies a load to a bonded portion of the workpiece W, and the pressure shaft 40. The pressurizing mechanism 41 and a pressurizing jig 43 for applying a force from the pressurizing shaft 40 evenly to the joint portion of the workpiece W are configured. The furnace body 32 is provided in the metal container 33. A carbon pedestal 37 on which the work piece W placed on the bottom surface is placed, a carbon heat insulation cover 34 surrounding the work piece W on the pedestal 37, and a side face in the heat insulation cover 34 are arranged near the side surface. The furnace body is configured to discharge the gas in the container 33 by the gas exhaust sealing device 38 or to fill the gas, and to energize the heat generator 35 by energizing the power source device 36. The inside of 32 was heated. Reference numeral 39 denotes a floor board.
[0005]
The pressure shaft 40 is airtightly inserted into a through hole of a seal guide 42 provided on the upper wall of the metal container 33. The pressure shaft 40 is driven by a pressure mechanism 41 such as a hydraulic cylinder to be covered. The bonded product W was pressed.
[0006]
And when this ceramic joining apparatus 31 joins a plate-shaped ceramic sintered body and a ceramic sintered body or metal having a smaller outer shape, a plate-shaped object W to be joined to the pedestal 37 via a floor plate 39. A ceramic sintered body is placed and a ceramic sintered body or metal having a small outer shape is placed on the plate-like ceramic sintered body via a bonding agent, and then the inside of the furnace body 32 is heated to a predetermined temperature by the heating element 35. At the same time, the pressing shaft 40 is lowered by the pressing mechanism 41 and the ceramic sintered body or the metal placed on the plate-like ceramic sintered body is pressed via the pressing jig 43, so that the plate ceramic A sintered body and a ceramic sintered body or metal having a smaller external shape are joined.
[0007]
[Problems to be solved by the invention]
However, when a plate-like ceramic sintered body and a ceramic sintered body or metal having a smaller outer shape are joined by a ceramic joining apparatus 31 as shown in FIG. 3, the plate-like ceramic sintered body is deformed or warped. There is a problem that it is not possible to perform the bonding while maintaining the dimensional accuracy before the bonding.
[0008]
That is, in order to join the sintered ceramic sintered bodies or between the sintered ceramic sintered bodies and the metal, it is necessary to heat to a high temperature at which the ceramic sintered bodies are plastically deformed. Since the ceramic joining apparatus 31 shown in FIG. 4 has a structure that pressurizes only the joining region between the plate-like ceramic sintered body and another ceramic sintered body or metal in such a high temperature state, as shown in FIG. The part pressed by the processing jig 43 of the plate-like ceramic sintered body is deformed, and there is a problem that the outer peripheral part is lifted and warpage occurs.
[0009]
Therefore, if the plate-like ceramic sintered body is required to have high planar accuracy like a wafer support member and does not like deformation or warping, the plate-like ceramic sintered body can be ground again according to the degree of deformation. Since polishing must be performed and the number of processing steps increases, there are problems that the operation becomes complicated and the manufacturing cost increases.
[0010]
Further, when the wafer support member is a ceramic heater or a ceramic electrostatic chuck, the heater electrode and the electrostatic adsorption electrode are embedded in the plate-shaped ceramic sintered body. When the bonding is performed by the apparatus 31, the heater electrode and the electrostatic adsorption electrode embedded therein are also deformed due to the deformation of the plate-shaped ceramic sintered body, and the heater electrode and the static electricity are transferred from the mounting surface on which the semiconductor wafer is placed. The distance to the electrode for electroadsorption cannot be kept constant, resulting in a defective product, resulting in a problem of poor production yield.
[0011]
[Means for Solving the Problems]
Therefore, in view of the above problems, a ceramic joining apparatus of the present invention is a pedestal on which a plate-shaped ceramic sintered body and a workpiece made of a ceramic sintered body or metal having an outer shape smaller than the plate-shaped ceramic sintered body are placed. A pressure shaft for applying a load to the joint surface of the ceramic sintered body or metal placed on the plate-shaped ceramic sintered body, and the plate-shaped ceramic sintered body by the pressure shaft. A pressing jig for pressing the ceramic sintered body or metal placed thereon, a pressurizing mechanism for driving the pressing shaft, and the plate-like ceramic sintered body excluding the joining region of the ceramic sintered body or metal. It is characterized by comprising a weight for applying a load to the exposed surface.
[0012]
In addition, the present invention places a plate-like ceramic sintered body on the pedestal of the ceramic joining apparatus, places a ceramic sintered body or metal having a small outer shape on the plate-like ceramic sintered body, and further, the ceramic sintered body or metal The furnace is heated to the bonding temperature with a pressing jig on top and a weight placed on the exposed surface of the plate-like ceramic sintered body excluding the ceramic sintered body or metal bonding region. Then, the pressing shaft is lowered by the pressing mechanism and the pressing jig is pressed to manufacture a ceramic sintered body having a small outer shape or a ceramic bonded body in which a metal is bonded to the plate-shaped ceramic sintered body. It is characterized by that.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0014]
FIG. 1 is a schematic sectional view showing a ceramic bonding apparatus of the present invention.
[0015]
The ceramic bonding apparatus 1 includes a plate-shaped ceramic sintered body 51, a furnace body 2 that accommodates a ceramic sintered body having an outer shape smaller than that of the plate-shaped ceramic sintered body 51 and an object to be bonded S made of metal, and the plate A pressure shaft 10 for applying a load to the ceramic sintered body placed on the ceramic sintered body 51 or a joint with the metal, and a ceramic ceramic placed on the plate-like ceramic sintered body 51 by the pressure shaft 10. Exposing the pressurizing jig 18 for pressing the bonded body or metal, the pressurizing mechanism 16 for driving the pressurizing shaft 10, and the plate-like ceramic sintered body 51 excluding the joining region of the ceramic sintered body or metal. The furnace body 2 includes a carbon base 5 on which a workpiece S placed on the bottom surface in the metal container 3 is placed, and a workpiece S on the base 5. Insulating carbon cover that surrounds And 4, are composed of a heating element 6 for placement in the vicinity of the side surface of the heat insulating cover 4.
[0016]
The pressure shaft 10 is hermetically inserted through a through hole of a seal guide 9 provided on the upper wall of the metal container 3. The pressure shaft 10 is driven by a pressure mechanism 16 such as a hydraulic cylinder to be joined. A load is applied to the object S.
[0017]
The pressurizing jig 18 and the weight 21 can adopt various shapes in accordance with the shape of the pressurizing region of the workpiece S. When manufacturing a ceramic joined body as shown in FIG. The jig 18 is preferably a bottomed cylindrical body 19 that presses almost the entire surface of the flange portion 53 of the cylindrical body 52, and the weight 21 is a plate shape excluding the joining region with the cylindrical body 52. A cylindrical body that presses almost the entire exposed surface of the ceramic sintered body 51 may be used.
[0018]
Further, as the material for forming the pressure shaft 10, carbon that can withstand temperatures of about 2500 ° C. can be suitably used. However, since carbon is not so hard and is easily worn when used in a sliding portion, as shown in FIG. 1, the shaft rear end portion 11 that slides with the seal guide 9 is made of super steel alloy or stainless steel (SUS304). It is preferable to use a joined body in which the shaft tip 12 formed of a metal such as) is heated to a high temperature by the heating element 6 and formed of carbon.
[0019]
Further, as the material for forming the pressurizing jig 18, carbon that can withstand temperatures of about 2500 ° C. can be used as in the pressurizing shaft 10, but the carbon up to the contact surface with the workpiece S can be used. 1, carbon adheres to the workpiece S during pressing and causes quality degradation. Therefore, as shown in FIG. 1, the jig tip 20 including at least the abutting surface of the jig body 19 is made of a ceramic sintered body. It is preferable to use a joined body formed by the above.
[0020]
The material for forming the weight 21 is preferably a material that can withstand a temperature of around 2500 ° C. and has a specific gravity as large as possible. For example, a ceramic mainly composed of alumina, silicon nitride, aluminum nitride, silicon carbide, or the like. A sintered body can be used.
[0021]
Reference numeral 7 denotes a power supply device for energizing the heating element 6, and 8 denotes a gas exhaust sealing device for supplying gas into the metal container 3 or discharging the gas in the container 3.
[0022]
Next, a method for manufacturing the ceramic joined body shown in FIG. 2 by the ceramic joining apparatus 1 shown in FIG. 1 will be described.
[0023]
First, the plate-shaped ceramic sintered body 51 as the article to be bonded S is placed on the pedestal 5, and a cylindrical shape made of the ceramic sintered body or metal is placed at a predetermined position on the plate-shaped ceramic sintered body 51 via a bonding agent. The flange portion 53 of the body 52 is placed in contact with it. At this time, a floor plate 24 made of a ceramic sintered body is disposed between the base 5 and the plate-like ceramic sintered body 51 to prevent the carbon of the base 5 from adhering to the plate-like ceramic sintered body 51. .
[0024]
Then, the pressing jig 18 that presses the flange portion 53 of the cylindrical body 52 is set. Further, on the exposed surface excluding the joining region of the plate-like ceramic sintered body 51, a release agent such as boron nitride is applied and a floor plate 22 made of the ceramic sintered body is placed, and a weight 21 is placed thereon. At this time, the weight 21 is applied to such an extent that the exposed surface excluding the joining region of the plate-like ceramic sintered body 51 is not deformed when the flange portion 53 of the cylindrical body 52 is pressed by the pressure shaft 10. For example, when the pressing force applied to the flange portion 53 is 5000 N or less, a weight 21 having a weight of 10 to 300 N may be used.
[0025]
Next, the gas in the metal container 3 is exhausted by the gas exhaust sealing device 8 and the pressure is reduced to 100 Pa or less. Then, the power source device 7 is energized while the inside of the metal container 3 is depressurized to cause the heating element 6 to generate heat, and the workpiece S placed on the pedestal 5 is heated. At this time, it is preferable that the temperature increase rate is increased at a rate of 200 ° C./hour or less so that the temperature difference between the outer peripheral portion and the central portion of the article S is not 200 ° C. or more.
[0026]
At the same time as the temperature rises, the pressurizing mechanism 16 lowers the pressurizing shaft 10 to the point just before contacting the pressurizing jig 18 placed on the pressurizing surface of the workpiece S. By doing in this way, the fluctuation | variation of the temperature in the furnace body 2 by the heat capacity of the pressurizing shaft 10 can be prevented.
[0027]
Next, when the temperature in the metal container 3 is heated to a temperature at which the plate-shaped ceramic sintered body 51 is plastically deformed, the pressing shaft 10 is brought into contact with the pressing jig 18 to The entire flange portion 53 is pressed. Here, the temperature heated by the heating element 6 is set to a temperature at which the plate-like ceramic sintered body 51 can be plastically deformed, because the ceramic sintered body is a brittle material, and is lower than the temperature at which plastic deformation is possible. This is because if the pressure is applied, the plate-like ceramic sintered body 51 and other ceramic sintered bodies may be damaged.
[0028]
Thereafter, when the temperature in the metal container 3 is heated to a predetermined joining temperature, the pressurizing shaft 10 applies heat at the joining portion between the plate-shaped ceramic sintered body 51 and the flange portion 53 of the cylindrical body 52. While pressing the pressure so as to be 1 to 5 MPa, the load applied to the joint between the plate-shaped ceramic sintered body 51 and the flange portion 53 of the cylindrical body 52 by the pressing shaft 10 is A, and the plate is formed by the weight 21. When the load applied to the exposed surface of the ceramic sintered body 51 is B, pressurization is performed so that the ratio (A / B) is 10 to 100, and this state is maintained for 1 to 2 hours.
[0029]
Here, the pressure applied to the joint between the plate-shaped ceramic sintered body 51 and the flange portion 53 of the cylindrical body 52 by the pressure shaft 10 is set to 1 to 5 MPa because the plate-shaped ceramic sintered body 51 and the cylindrical shape are formed. Although it depends on the size of the body 52, sufficient bonding strength cannot be obtained when the pressure is less than 1 MPa, and conversely, when the pressure exceeds 5 MPa, the plate-like ceramic sintered body is deformed.
[0030]
Further, the load applied to the joint between the plate-shaped ceramic sintered body 51 and the flange portion 53 of the cylindrical body 52 by the pressure shaft 10 is A, and the load applied to the exposed surface of the plate-shaped ceramic sintered body 51 by the weight 21. When pressure is set to B, pressurization is performed so that the ratio (A / B) is 10 to 100. A weight 21 made of a ceramic sintered body with a ratio (A / B) of less than 10 is manufactured. If the ratio (A / B) exceeds 100, the exposed surface of the plate-shaped ceramic sintered body 51 with respect to the load A applied to the flange portion 53 of the cylindrical body 52. This is because the effect of preventing the deformation of the plate-shaped ceramic sintered body 51 by the pressure applied by the weight 21 is small.
[0031]
Further, the descending speed after the pressing shaft 10 comes into contact with the pressing jig 18 depends on the material and thickness of the plate-like ceramic sintered body 51, but is made of a nitride such as aluminum nitride or an alumina plate. If the thickness of the ceramic sintered body including the plate-shaped ceramic sintered body 51 at the joint and the flange portion 53 of the cylindrical body 52 is 50 mm, the thickness is preferably 10 mm / s or less. This is because, when the descending speed after the pressing shaft 10 contacts the pressing jig 18 exceeds 10 mm / s, the applied pressure is rapidly transmitted into the plate-like ceramic sintered body 51, and the plate-like ceramic sintered body. This is because 51 is easily deformed, and is preferably 2 mm / s or less.
[0032]
Thereafter, the heating temperature is gradually lowered, and when the temperature becomes difficult to be plastically deformed, the pressurization by the pressurizing shaft 10 is stopped, and further, the temperature in the furnace body 2 is lowered to 200 ° C. or lower to lower the plate-like ceramics. A ceramic joined body in which the tubular body 52 is joined to the bonded body 51 can be obtained.
[0033]
And according to this invention, while applying a load to the junction part of the plate-shaped ceramic sintered body 51 and the cylindrical body 52 with the pressurization axis | shaft 10, other than the joining area | region of the plate-shaped ceramic sintered body 51 with the weight 21 Since the load is applied to the exposed portion of the sheet, the warpage of the plate-shaped ceramic sintered body 51 can be suppressed as compared with the conventional example, and the load applied by the pressure shaft 10 and the weight 21 is within the above-described range. By adjusting to, warpage of the plate-shaped ceramic sintered body 51 can be largely prevented and the cylindrical body 52 can be firmly joined.
[0034]
As mentioned above, although embodiment of this invention was described, this invention is not limited only to embodiment mentioned above, It cannot be overemphasized that what was improved and changed in the range which does not deviate from the summary of this invention is included. Nor.
[0035]
[Experimental example]
(Experimental example 1)
Hereinafter, as a specific example of the present invention, a wafer support member in which a ceramic heater made of a disk-shaped ceramic sintered body 51 and a cylindrical body 52 made of a cylindrical ceramic sintered body are joined together will be described. An example manufactured using the ceramic bonding apparatus and the bonding method of the invention will be described.
[0036]
First, a ceramic heater is manufactured by adding 6% by weight of an acrylic binder to 100% by weight of raw material powder obtained by adding 0.1% by weight of calcium carbonate to 99% pure aluminum nitride powder, together with a solvent. A slurry was prepared by mixing, and a plurality of aluminum nitride green sheets were prepared by a doctor blade method.
[0037]
Next, the obtained plurality of green sheets are cut into a substantially square sheet shape, stacked through a close contact liquid between several green sheets, and pressed at a pressure of 3 MPa while being heated to 80 ° C. The sheet laminate was manufactured by pressure bonding them.
[0038]
Then, after printing the conductor paste to be the heater electrode on the surface of the sheet laminate in a predetermined pattern using a screen printer, the remaining several green sheets are stacked and thermocompression bonded so as to cover the conductor paste. Furthermore, a sheet paste was obtained by printing a conductor paste as an electrode for electrostatic attraction using a screen printer in a predetermined pattern shape, and stacking the remaining green sheets so as to cover the conductor paste and thermocompression bonding. .
[0039]
However, the thickness of the sheet laminate is 18 mm, the depth at which the conductor paste serving as an electrode for electrostatic adsorption is embedded from the surface of the sheet laminate is approximately 1.0 mm, and the conductor serving as the heater electrode from the surface of the sheet laminate. The depth at which the paste was embedded was about 9 mm.
[0040]
Next, the obtained sheet laminate was cut into a disk shape, heated to 300 ° C. in a nitrogen atmosphere, degreased and carbonized, and further heated in an oxygen atmosphere at 350 ° C. Then, the carbonization amount is adjusted to 0.5 wt% or less, and then fired in a nitrogen gas atmosphere at 2100 ° C. and 4.5 MPa to embed the electrostatic adsorption electrode and the heater electrode. A ceramic sintered body was obtained.
[0041]
Then, precision processing is performed on the plate-shaped ceramic sintered body 51 so that the outer shape has a diameter of 300 mm and a thickness of 12.5 mm, and then the upper surface is polished to form a mounting surface, and the lower surface is electrostatically charged. Holes for joining power supply terminals for energizing the adsorption electrode and the heater electrode were drilled. And after joining the cylindrical body 52, the power supply terminal made from Fe-Ni-Co was inserted in this hole, and the ceramic heater was manufactured by brazing at the temperature of 1000 degreeC. In addition, it was 10 micrometers when the flatness in the mounting surface of the obtained plate-shaped ceramic sintered compact 51 was measured.
[0042]
On the other hand, in order to manufacture the cylindrical body 52, 6% by weight of an acrylic binder is added to 100% by weight of a raw material powder obtained by adding 0.1% by weight of calcium carbonate to 99% pure aluminum nitride powder, A granulated powder was produced by kneading and drying together with a solvent.
[0043]
Next, the granulated powder is filled into a rubber mold having a mandrel, and a cylindrical molded body is manufactured by rubber press molding at a pressure of 80 MPa, and then the outer shape is processed by cutting. A cylindrical molded body having a flange portion at one end was obtained.
[0044]
Next, similarly to the plate-like ceramic sintered body 51, after degreasing and carbonizing by heating to 300 ° C. in a nitrogen atmosphere, heating is further performed in an oxygen atmosphere at 350 ° C. to reduce the carbonization amount to 0.5 weight. %, And then sintered by firing in a nitrogen gas atmosphere at 2100 ° C. and 4.5 MPa, and the outer shape of the ceramic sintered body is precisely ground to obtain the outer shape of the cylindrical portion. A cylindrical body 52 having a flange portion of 50 mm, a wall thickness of 5 mm, a flange portion having an outer diameter of 80 mm, an inner diameter of 70 mm, and a length of 500 mm was manufactured.
[0045]
And in order to join the obtained plate-like ceramic sintered body 51 and the cylindrical body 52, a ceramic heater as a ceramic heater is provided on the base 5 of the ceramic joining apparatus 1 shown in FIG. The plate-shaped ceramic sintered body 51 is placed with the lower surface facing upward, the flange portion of the cylindrical body 52 is placed in contact with a predetermined position of the plate-like ceramic sintered body 51, and further opposite to the joint surface of the flange portion. A ring-shaped jig tip 20 made of boron nitride, which is a pressurizing jig, and a pressurizing jig 19 main body made of carbon with a bottomed cylindrical shape are sequentially placed on the surface on the side, and a plate-like ceramic is fired. On the exposed surface excluding the bonded region of the bonded body 51, a boron nitride ring-shaped jig tip 23, which is a weight 21, and a carbon cylindrical pressure jig 22 main body were sequentially placed. In addition, the paste which added 1 weight% of calcium carbonate with respect to 100 weight% of aluminum nitride powder was apply | coated to the junction part of the plate-shaped ceramic sintered compact 51 and the cylindrical body 52 as a bonding agent.
[0046]
Next, the inside of the furnace body 2 is hermetically sealed, the inside of the furnace body 2 is depressurized by the gas exhaust introduction device 8, and the power source device 7 is energized to cause the heating element 6 to generate heat, thereby heating the plate-like ceramic as the workpiece S After heating the ligated body 51 and the cylindrical body 52 to remove moisture and the like, the temperature is increased to 1200 ° C. at a rate of 200 ° C./hour, 100 kPa of nitrogen gas is introduced into the furnace at 1200 ° C., and the aluminum nitride The plate-like ceramic sintered body 51 and the cylindrical body 52 made of a sintered material are easily pressed by a pressure shaft 10 at a temperature of 1800 ° C. at which the pressure shaft 10 descends to 1 mm / s. . At this time, a pressure of about 3 MPa is applied between the joining surfaces of the plate-shaped ceramic sintered body 51 and the cylindrical ceramic sintered body 52 by the pressure shaft 10, and the load of the pressure shaft 10 is weighted by the weight 21. 50 times the load applied to the exposed surface excluding the bonded region of the ceramic sintered body 51.
[0047]
The temperature was raised from 1800 ° C. to 1900 ° C. at a rate of 60 ° C./hour and held at a temperature of 1900 ° C. for 1 hour.
[0048]
Here, the bonding temperature is set to 1800 ° C. to 1900 ° C. If the bonding temperature is lower than 1800 ° C., the bonding agent cannot be liquefied and diffused into the plate-like ceramic sintered body or the cylindrical body 52. A strong bonding force cannot be obtained. In addition, since the high purity aluminum nitride ceramic sintered body having an AlN purity of 99% or more is not plastically deformed, the plate-like ceramic sintered body 51 and the cylindrical body 52 are damaged by the pressing force of the pressing shaft 10. On the other hand, when the joining temperature exceeds 1900 ° C., the plastic deformation speed of the high-purity aluminum nitride ceramic sintered body having an AlN purity of 99% or more becomes too high, and the pressing shaft 10 or the weight 21 pushes it. This is because it is difficult to prevent deformation of the plate-like ceramic sintered body and the cylindrical body due to pressure.
[0049]
Thereafter, the temperature is lowered at a rate of 200 ° C./hour in a pressurized state, and when the temperature in the furnace body 2 reaches 1600 ° C., the pressure shaft 10 is separated from the pressurizing jig 18 so that the applied pressure is zero. And Then, after the temperature in the furnace body 2 is lowered to 800 ° C. at a rate of 200 ° C./hour, nitrogen gas is supplied into the furnace body 2 to make the gas pressure 200 kPa, and the temperature in the furnace body 2 is changed to Decrease quickly. Then, when the temperature in the furnace body 2 becomes 200 ° C. or lower, the ceramic joint in which the ceramic heater made of the plate-like ceramic sintered body 51 and the cylindrical body 52 made of the ceramic sintered body are integrally joined. Got the body.
[0050]
And when the flatness in the mounting surface of the obtained ceramic heater was measured, it was able to be kept to 200 micrometers and about 20 times with respect to the flatness before joining.
[0051]
In addition, a silicon wafer with a thermocouple attached is placed on the ceramic heater mounting surface to generate heat, and the thermocouple at the time when the average temperature reaches 700 ° C. while measuring the surface temperature of the silicon wafer with an infrared temperature measuring instrument. When the temperature of the silicon wafer was measured, the temperature variation was as small as 6 ° C., and the wafer could be heated uniformly.
[0052]
On the other hand, when the ceramic heater and the cylindrical body 52 were joined using the conventional ceramic joining apparatus shown in FIG. 4, the flatness on the mounting surface of the ceramic heater after joining was 500 μm, It was deformed 50 times with respect to the flatness before joining.
[0053]
In addition, a silicon wafer with a thermocouple attached is placed on the surface of the ceramic heater bonded using the conventional ceramic bonding apparatus shown in FIG. 3 to generate heat, and the surface temperature of the silicon wafer is measured with an infrared thermometer. However, when the temperature of the silicon wafer was measured with a thermocouple when the average temperature reached 700 ° C., the temperature variation was 20 ° C., and the wafer could not be heated uniformly.
(Experimental example 2)
Next, when the plate-shaped ceramic sintered body 51 and the cylindrical ceramic sintered body 52 manufactured in Experimental Example 1 are bonded using the ceramic bonding apparatus shown in FIG. Joining when the load (A) applied to the joint between the body 51 and the flange 53 of the cylindrical body 52 is different from the load (B) applied to the exposed surface of the plate-like ceramic sintered body by the weight 21 Later, the flatness on the mounting surface of the ceramic heater was measured, and the presence or absence of helium leak at the joint was measured with a helium leak tester.
[0054]
The results are as shown in Table 1.
[0055]
[Table 1]
Figure 0003720757
[0056]
As a result, the load (A) applied to the joint between the plate-shaped ceramic sintered body and the flange portion of the cylindrical support by the pressure shaft 10 as in sample No. 1 and the weight 21 are sintered in the plate-shaped ceramic. If the ratio (A / B) to the load (B) applied to the exposed surface of the body is less than 10, the change in flatness of the mounting surface of the ceramic heater can be suppressed, but the weight of the weight becomes too large. During heating, the temperature difference between the peripheral portion and the central portion of the plate-shaped ceramic sintered body 51 was increased, and the plate-shaped ceramic sintered body was cracked during the temperature rise.
[0057]
On the other hand, as shown in Sample Nos. 2 to 12, the load (A) applied to the joint portion between the plate-like ceramic sintered body 51 and the flange portion 53 of the cylindrical body 52 by the pressure shaft 10 and the weight are added to the plate. If the ratio (A / B) to the load (B) applied to the exposed surface of the sheet ceramic sintered body 51 is 10 to 100, the plate-shaped ceramic sintered body 51 is not greatly deformed, and the ceramic heater It can be seen that the flatness of the mounting surface can be reduced.
[0058]
Furthermore, sample no. As shown in FIG. 14, when the descending speed of the pressure shaft 10 is large, the plate-like ceramic sintered body 51 is damaged. Therefore, it has been found that the amount of warpage can be reduced without damaging the plate-shaped ceramic sintered body by setting the descending speed of the pressing shaft 10 to 10 mm / s or less.
[0059]
【The invention's effect】
As described above, according to the ceramic bonding apparatus of the present invention, a base on which a plate-shaped ceramic sintered body and an object to be bonded comprising a ceramic sintered body or metal having a smaller outer shape than the plate-shaped ceramic sintered body are placed. A pressure shaft for applying a load to the joint surface of the ceramic sintered body or metal placed on the plate-shaped ceramic sintered body, and the plate-shaped ceramic sintered body by the pressure shaft. A pressing jig for pressing the ceramic sintered body or metal placed thereon, a pressurizing mechanism for driving the pressing shaft, and the plate-like ceramic sintered body excluding the joining region of the ceramic sintered body or metal. By comprising a weight for applying a load to the exposed surface, other ceramic sintered bodies having a small outer shape without causing warpage or deformation in a plate-shaped ceramic sintered body having a large outer shape, or Money It can be firmly bonded to.
[0060]
In addition, the present invention places a plate-shaped ceramic sintered body on the pedestal of the ceramic joining apparatus, places a ceramic sintered body or metal having a small outer shape on the plate-shaped ceramic sintered body, and further, the ceramic sintered body or A pressure jig is placed on the metal, and a weight is placed on the exposed surface of the ceramic sintered body or the plate-like ceramic sintered body excluding the joining region with the metal, and the exposed surface is pressed by its own weight. In this state, after heating the furnace body to the joining temperature, the pressurizing shaft is lowered by the pressurizing mechanism to press the pressurizing jig, and the pressure applied to the joint is set to 1 to 5 MPa. When the load applied to the exposed surface of the plate-like ceramic sintered body excluding the joining region is B, the ratio (A / B) is 10 to 100, and the plate-like ceramic sintered body With a small outer shape By joining the ceramic sintered body or metal, it is possible to firmly join other ceramic sintered bodies or metals without causing warpage or deformation of the plate-shaped ceramic sintered body. it can.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a ceramic bonding apparatus of the present invention.
2A and 2B are diagrams showing a structure of a ceramic joined body to be joined by the ceramic joining apparatus of the present invention, wherein FIG. 2A is a cross-sectional view thereof, and FIG.
FIG. 3 is a schematic cross-sectional view showing a conventional ceramic bonding apparatus.
4 is an enlarged cross-sectional view showing a joined state of objects to be joined by the ceramic joining apparatus of FIG. 3;
[Explanation of symbols]
1: Ceramic bonding equipment
2: Furnace body
3: Metal container
4: Insulation cover
5: Pedestal
6: Heating element
7: Power supply
8: Gas exhaust sealing device
9: Seal guide
10: Pressurizing shaft
16: Pressurization mechanism
18: Jig for pressurization
21: Weight
24: floorboard
31: Ceramic bonding equipment
32: Furnace body
33: Metal container
34: Insulation cover
35: Heating element
36: Power supply
37: Pedestal
38: Gas exhaust sealing device
39: floorboard
40: Pressurizing shaft
41: Pressurization mechanism
42: Seal guide
43: Jig for pressurization

Claims (3)

板状セラミック焼結体と、該板状セラミック焼結体より小さな外形を有するセラミック焼結体又は金属とからなる被接合物を載せる台座を備えた炉体と、上記板状セラミック焼結体上に載せたセラミック焼結体又は金属との接合面に荷重を加える加圧軸と、該加圧軸によって上記板状セラミック焼結体上に載せたセラミック焼結体又は金属を押圧する加圧用治具と、上記加圧軸を駆動させる加圧機構と、上記セラミック焼結体又は金属との接合領域を除く上記板状セラミック焼結体の露出面に荷重を加える重しとを有することを特徴とするセラミック接合装置。A furnace body including a plate-like ceramic sintered body, and a pedestal on which an object to be joined made of a ceramic sintered body or metal having an outer shape smaller than the plate-like ceramic sintered body is mounted, and the plate-like ceramic sintered body A pressure shaft for applying a load to the joint surface of the ceramic sintered body or metal placed on the plate, and a pressure treatment for pressing the ceramic sintered body or metal placed on the plate-like ceramic sintered body by the pressure shaft. And a pressure mechanism for driving the pressure shaft, and a weight for applying a load to the exposed surface of the plate-like ceramic sintered body excluding a bonding region with the ceramic sintered body or metal. Ceramic bonding equipment. 請求項1に記載のセラミック接合装置の台座に板状セラミック焼結体を載せるとともに、該板状セラミック焼結体上に外形の小さなセラミック焼結体又は金属を載せ、さらに上記セラミック焼結体又は金属上には加圧用治具を、上記セラミック焼結体又は金属との接合領域を除く板状セラミック焼結体の露出面には重しをそれぞれ載せた状態で、炉体内を接合温度に加熱し、次いで上記加圧機構により加圧軸を降下させて加圧用治具を押圧することにより、外形の小さなセラミック焼結体又は金属を板状セラミック焼結体に接合するようにしたことを特徴とするセラミック接合体の製造方法。A plate-shaped ceramic sintered body is placed on the pedestal of the ceramic bonding apparatus according to claim 1, a ceramic sintered body or metal having a small outer shape is placed on the plate-like ceramic sintered body, and the ceramic sintered body or The furnace is heated to the bonding temperature with a pressure jig placed on the metal and a weight placed on the exposed surface of the ceramic sintered body or the plate-like ceramic sintered body excluding the joining region with the metal. Then, the pressurizing shaft is lowered by the pressurizing mechanism and the pressurizing jig is pressed to join the ceramic sintered body or metal having a small outer shape to the plate-shaped ceramic sintered body. A method for producing a ceramic joined body. 上記加圧用治具を押圧する際の加圧軸の下降速度を10mm/s以下としたことを特徴とする請求項2に記載のセラミック接合体の製造方法。The method for manufacturing a ceramic joined body according to claim 2, wherein a lowering speed of the pressing shaft when pressing the pressing jig is set to 10 mm / s or less.
JP2001364773A 2001-11-29 2001-11-29 Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same. Expired - Fee Related JP3720757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364773A JP3720757B2 (en) 2001-11-29 2001-11-29 Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364773A JP3720757B2 (en) 2001-11-29 2001-11-29 Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.

Publications (2)

Publication Number Publication Date
JP2003165779A JP2003165779A (en) 2003-06-10
JP3720757B2 true JP3720757B2 (en) 2005-11-30

Family

ID=19174909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364773A Expired - Fee Related JP3720757B2 (en) 2001-11-29 2001-11-29 Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.

Country Status (1)

Country Link
JP (1) JP3720757B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662725B2 (en) * 2004-02-25 2011-03-30 日本碍子株式会社 Substrate heating apparatus and manufacturing method thereof
JP4739774B2 (en) * 2005-02-22 2011-08-03 日本碍子株式会社 Ceramic sintered body joining apparatus and ceramic sintered body joining method
JP4567486B2 (en) * 2005-02-24 2010-10-20 日本碍子株式会社 Ceramic sintered body joining apparatus and ceramic sintered body joining method
WO2008044560A1 (en) * 2006-10-05 2008-04-17 Ngk Insulators, Ltd. Holding jig for joining, joining device, and method of manufacturing joined body
JP6007730B2 (en) * 2012-11-05 2016-10-12 三菱マテリアル株式会社 Method and apparatus for producing porous composite metal body
JP6875805B2 (en) * 2016-08-25 2021-05-26 日本特殊陶業株式会社 Substrate support member with shaft and its manufacturing method
JPWO2023140147A1 (en) * 2022-01-18 2023-07-27

Also Published As

Publication number Publication date
JP2003165779A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
CN107958837B (en) Member for semiconductor manufacturing apparatus and method for manufacturing the same
JP3758979B2 (en) Electrostatic chuck and processing apparatus
JP4467453B2 (en) Ceramic member and manufacturing method thereof
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP5396353B2 (en) Electrostatic chuck and manufacturing method thereof
JP3155802U (en) Wafer mounting device
US7800029B2 (en) Heating device
EP2402298A1 (en) Ceramic-metal junction and method of fabricating same
JP2005210077A (en) Electrostatic chuck and manufacturing method therefor, and alumina sintered member and manufacturing method therefor
KR100978395B1 (en) Electrode-built-in susceptor and a manufacturing method therefor
JP4624836B2 (en) Manufacturing method of bonded wafer and wafer holding jig used therefor
JP2006005095A (en) Substrate heater and its manufacturing process
KR100553444B1 (en) Susceptors and the methods of manufacturing them
JP4614868B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
KR100634182B1 (en) Substrate heater and fabrication method for the same
JP3720757B2 (en) Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.
JP4651240B2 (en) Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.
JP3685962B2 (en) Susceptor and manufacturing method thereof
JP2001308165A (en) Susceptor and its manufacturing method
JP3746935B2 (en) Susceptor and manufacturing method thereof
JP2003080375A (en) Manufacturing method of semiconductor wafer supporting member joined body and semiconductor wafer supporting member joined body
JP2017183609A (en) Substrate holding device and manufacturing method therefor
JP2004146568A (en) Ceramic heater for semiconductor manufacturing device
JP3389484B2 (en) Aluminum nitride bonded structure and method of manufacturing the same
JP2003124296A (en) Susceptor and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees