JP4567486B2 - Ceramic sintered body joining apparatus and ceramic sintered body joining method - Google Patents

Ceramic sintered body joining apparatus and ceramic sintered body joining method Download PDF

Info

Publication number
JP4567486B2
JP4567486B2 JP2005049377A JP2005049377A JP4567486B2 JP 4567486 B2 JP4567486 B2 JP 4567486B2 JP 2005049377 A JP2005049377 A JP 2005049377A JP 2005049377 A JP2005049377 A JP 2005049377A JP 4567486 B2 JP4567486 B2 JP 4567486B2
Authority
JP
Japan
Prior art keywords
sintered body
ceramic sintered
plate
difference
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005049377A
Other languages
Japanese (ja)
Other versions
JP2006232613A (en
Inventor
哲久 阿部
和宏 ▲のぼり▼
弘人 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005049377A priority Critical patent/JP4567486B2/en
Publication of JP2006232613A publication Critical patent/JP2006232613A/en
Application granted granted Critical
Publication of JP4567486B2 publication Critical patent/JP4567486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、板状の第1のセラミック焼結体と、円筒状部及び鍔部を有する第2のセラミック焼結体とを接合する装置又は方法に関する。   The present invention relates to an apparatus or a method for joining a plate-like first ceramic sintered body and a second ceramic sintered body having a cylindrical part and a flange part.

板状のセラミック焼結体と、円筒状部及び鍔部を有するセラミック焼結体とを接合したセラミック接合体は、さまざまな分野で使用されており、例えば、半導体製造装置では、半導体ウエハを保持しかつ電熱線ヒータが埋設されている板状のセラミック焼結体に、電熱線ヒータに電気を供給するための電線を通す円筒状のセラミック焼結体を接合したものが使用されている。   A ceramic joined body obtained by joining a plate-like ceramic sintered body and a ceramic sintered body having a cylindrical portion and a flange portion is used in various fields. For example, a semiconductor manufacturing apparatus holds a semiconductor wafer. In addition, a plate-shaped ceramic sintered body in which a heating wire heater is embedded is joined to a cylindrical ceramic sintered body through which an electric wire for supplying electricity to the heating wire heater is passed.

このような、板状セラミックスと円筒状セラミックスとを接合する装置及び方法が開示されている(例えば、特許文献1参照。)。
特開2003−165779号公報
An apparatus and a method for joining such plate-shaped ceramics and cylindrical ceramics are disclosed (for example, see Patent Document 1).
JP 2003-165777 A

しかしながら、従来の接合装置及び方法では、板状の第1のセラミック焼結体と円筒上部及び鍔部を有する第2のセラミック焼結体との接合において熱間プレスが用いられるが、この際クリープ変形等によって第1のセラミック焼結体が0.3〜0.8mm程度反ってしまうことがあった。   However, in the conventional joining apparatus and method, a hot press is used for joining the plate-like first ceramic sintered body and the second ceramic sintered body having the upper part of the cylinder and the flange portion. The first ceramic sintered body may warp by about 0.3 to 0.8 mm due to deformation or the like.

本発明は、上記課題に鑑みてなされたものであり、第1のセラミック焼結体と第2のセラミック焼結体とを熱間プレスを用いて接合する際に、第1のセラミック焼結体のクリープ変形量を制御可能な技術を提供することを目的とする。   This invention is made | formed in view of the said subject, and when joining the 1st ceramic sintered compact and the 2nd ceramic sintered compact using a hot press, the 1st ceramic sintered compact An object of the present invention is to provide a technique capable of controlling the amount of creep deformation of a sheet.

本発明は、上記課題を解決するためになされたものであり、その第1の特徴は、円盤状の第1のセラミック焼結体と、円筒状部及び鍔部を有する第2のセラミック焼結体とを接合する装置であって、(1)第1のセラミック焼結体を載置可能でかつ中心部に凸部又は凹部を有する載置手段と、(2)第1のセラミック焼結体の上に載置された第2のセラミック焼結体を包囲可能で、かつ鍔部に圧力を伝達可能な第1の圧力伝達手段と、(3)第1の圧力伝達手段に、第1のセラミック焼結体と第2のセラミック焼結体との接触面の圧力が上昇する方向に圧力を加える第1の加圧手段と、(4)第1のセラミック焼結体と第2のセラミック焼結体との接合面を加熱可能な加熱手段とを備えることにある。   The present invention has been made in order to solve the above-mentioned problems. The first feature of the present invention is that a first ceramic sintered body having a disk shape, a second ceramic sintered body having a cylindrical portion and a flange portion. An apparatus for joining a body, (1) a mounting means capable of mounting a first ceramic sintered body and having a convex portion or a concave portion in the center, and (2) a first ceramic sintered body A first pressure transmission means capable of enclosing the second ceramic sintered body placed thereon and capable of transmitting pressure to the flange; and (3) the first pressure transmission means, A first pressurizing means for applying pressure in a direction in which the pressure at the contact surface between the ceramic sintered body and the second ceramic sintered body increases; and (4) the first ceramic sintered body and the second ceramic sintered body. There exists in providing the heating means which can heat a joint surface with a bonded body.

加圧手段は、油圧シリンダなどのメカニカルな加圧手段でも良いが、低圧制御が容易な重鎮などの非メカニカルな加圧手段が好ましい。重鎮は、高融点で耐熱性に優れ、高比重であるタングステンやモリブデンなどの金属等からなるものが好ましい。また、メカニカルな方式でも低圧制御可能であれば問題無い。   The pressurizing unit may be a mechanical pressurizing unit such as a hydraulic cylinder, but a non-mechanical pressurizing unit such as a heavy press that can easily control the low pressure is preferable. The heavy metal is preferably made of a metal such as tungsten or molybdenum having a high melting point, excellent heat resistance, and high specific gravity. Further, there is no problem if low pressure control is possible even with a mechanical method.

本発明の第2の特徴は、第1の特徴を備え、鍔部の周囲の第1のセラミック焼結体に、第1のセラミック焼結体が載置手段の凸部又は凹部以外の領域に接近する方向、第1のセラミック焼結体と載置手段の凸部又は凹部以外の領域との接触面積が増加する方向又は第1のセラミック焼結体と載置手段の凸部又は凹部以外の領域との接触面の圧力が上昇する方向に圧力を加える第2の加圧手段を、さらに備えることにある。   The second feature of the present invention includes the first feature, wherein the first ceramic sintered body is disposed in a region other than the convex portion or the concave portion of the mounting means. Direction of approach, direction in which the contact area between the first ceramic sintered body and the region other than the convex portion or concave portion of the mounting means increases, or other than the convex portion or concave portion of the first ceramic sintered body and the mounting means A second pressurizing unit that applies pressure in a direction in which the pressure of the contact surface with the region increases is further provided.

第1の特徴によれば、円盤状の第1のセラミック焼結体と円筒状部及び鍔部を有する第2のセラミック焼結体とを熱間プレスによって接合する際に、凸部を備える載置手段を使用すれば、第1のセラミック焼結体の周辺部が下がる方向に曲げモーメントが発生し、凹部を備える載置手段を使用すれば、第1のセラミック焼結体の周辺部が上がる方向に曲げモーメントが発生する。かかる曲げモーメントを利用することによって、第1のセラミック焼結体のクリープ変形量を制御し、第1のセラミック焼結体の反りを修正することができる。   According to the first feature, when the disk-shaped first ceramic sintered body and the second ceramic sintered body having the cylindrical portion and the flange portion are joined by hot pressing, the mounting provided with the convex portion. If the mounting means is used, a bending moment is generated in the direction in which the peripheral portion of the first ceramic sintered body is lowered, and if the mounting means having a recess is used, the peripheral portion of the first ceramic sintered body is raised. A bending moment is generated in the direction. By utilizing such a bending moment, it is possible to control the amount of creep deformation of the first ceramic sintered body and correct the warp of the first ceramic sintered body.

第2の特徴によれば、第2の加圧手段を用いることによって、第1のセラミック焼結体の反りをより効果的に修正することができる。   According to the 2nd characteristic, the curvature of the 1st ceramic sintered compact can be corrected more effectively by using the 2nd pressurizing means.

以下、図面を参照しながら本発明の実施形態、実施例を説明するが、本発明はこれらの実施の形態、実施例に限定されるものではない。   Hereinafter, embodiments and examples of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments and examples.

図1に実施例1のセラミック焼結体接合装置を示す。図1に示すように、セラミック焼結体接合装置100は、直径d1が340mmである円盤状の1次プレート(第1のセラミック焼結体)101と、円筒状部及び直径d2が80mmである鍔部を有するシャフト(第2のセラミック焼結体)102とを接合する装置であって、
(1)1次プレートを載置可能でかつ直径がd3で高さがh1の凸部を有する敷板(載置手段)103と、
(2)シャフト102を包囲可能で、かつシャフトのフランジ(鍔部)102aに荷重を伝達可能な荷重筒(第1の圧力伝達手段)105と、
(3)荷重筒105に荷重を加える重鎮(第1の加圧手段)106と、
(4)重鎮106と荷重筒105との間に配置され、重鎮106の荷重を荷重筒105に伝達可能なパンチ107と、
(5)フランジ102aの周囲の一次プレート101に荷重を加える重鎮(第2の加圧手段)121と、
(6)重鎮121とフランジ102aの周囲の一次プレート101との間に配置され、重鎮121の荷重を一次プレート101に伝達可能な圧力伝達プレート122と、
(7)1次プレート101の平面部とフランジ102aとの接合面を加熱可能なヒータ(加熱手段)108とを備える。
FIG. 1 shows a ceramic sintered body joining apparatus of Example 1. As shown in FIG. 1, the sintered ceramic joining device 100 includes a disc-shaped primary plate (first ceramic sintered body) 101 having a diameter d1 of 340 mm, a cylindrical portion, and a diameter d2 of 80 mm. An apparatus for joining a shaft (second ceramic sintered body) 102 having a flange part,
(1) A floor plate (mounting means) 103 capable of mounting a primary plate and having a convex portion having a diameter d3 and a height h1;
(2) a load cylinder (first pressure transmission means) 105 that can surround the shaft 102 and can transmit a load to the flange (flange) 102a of the shaft;
(3) heavy load (first pressurizing means) 106 for applying a load to the load cylinder 105;
(4) a punch 107 disposed between the heavyweight 106 and the load cylinder 105 and capable of transmitting the load of the heavyweight 106 to the load cylinder 105;
(5) heavy load (second pressurizing means) 121 for applying a load to the primary plate 101 around the flange 102a;
(6) a pressure transmission plate 122 disposed between the heavyweight 121 and the primary plate 101 around the flange 102a, and capable of transmitting the load of the heavyweight 121 to the primary plate 101;
(7) A heater (heating means) 108 capable of heating the joint surface between the flat portion of the primary plate 101 and the flange 102a is provided.

実施例1のセラミック焼結体接合装置100は、ヒータ108に通電する電源装置109と、金属製容器110と、金属製容器110内にガスを供給したり、容器110のガスを排出したりするためのガス排気封入装置111と、金属製容器110の内側に成形断熱材112をさらに備える。   The ceramic sintered body joining apparatus 100 according to the first embodiment supplies power to the heater 108, the metal container 110, and gas in the metal container 110, and exhausts the gas in the container 110. And a molded heat insulating material 112 are further provided inside the metal container 110.

非炭素系材料からなる敷板103、荷重筒105、パンチ107、及び圧力伝達プレート122を用いることが好ましい。これらを非炭素系材料とすることによって炭素系ガスの発生を防止し、炭素系ガスの発生によって引き起こされるセラミック焼結体表面の変色を抑制することができる。また、圧力伝達プレート122は、重鎮121が1次プレート101に接着されてしまうことを回避しうる。   It is preferable to use a floor plate 103 made of a non-carbon material, a load cylinder 105, a punch 107, and a pressure transmission plate 122. By using these as non-carbon materials, generation of carbon-based gas can be prevented, and discoloration of the ceramic sintered body surface caused by the generation of carbon-based gas can be suppressed. Further, the pressure transmission plate 122 can avoid that the heavy load 121 is adhered to the primary plate 101.

さらに、敷板103、荷重筒105、及び圧力伝達プレート122を内包可能で、かつ非炭素系材料からなる鞘(箱)を使用することがより好ましい。この場合、ヒータ108は鞘の外に配置される。このような鞘を使用することによって、炭素系ガスがセラミック焼結体の表面に触れることをより確実に防止でき、セラミック焼結体表面の変色をより確実に防止できる。   Furthermore, it is more preferable to use a sheath (box) made of a non-carbon material that can contain the floor plate 103, the load cylinder 105, and the pressure transmission plate 122. In this case, the heater 108 is disposed outside the sheath. By using such a sheath, it is possible to more reliably prevent the carbon-based gas from touching the surface of the ceramic sintered body, and more reliably prevent discoloration of the surface of the ceramic sintered body.

なお、非炭素系材料としては、例えば窒化ホウ素(BN)、窒化アルミニウム(AlN)、窒化ケイ素(Si)などが使用できる。 As the non-carbon material, for example, boron nitride (BN), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), or the like can be used.

<1次プレートの作成>
まず、1次プレートの作成について説明する。イットリアを5重量%添加したAlN原料にMoコイル状発熱体を埋設し、プレス成形して直径350mm、厚さ50mmの成形体を作成した。この成形体を0.5kg/cmG(49kPa)の窒素雰囲気下において、最高温度1910℃(2183K)、最高温度キープ時間6時間、圧力200kg/cm(1.96×10Pa)でホットプレス焼成した。平面研削盤、円筒研削盤を用いて焼成体から1次プレートを作成した。
<Creation of primary plate>
First, creation of the primary plate will be described. A Mo coil-like heating element was embedded in an AlN raw material to which 5% by weight of yttria was added, and press-molded to prepare a molded body having a diameter of 350 mm and a thickness of 50 mm. This molded body was subjected to a maximum temperature of 1910 ° C. (2183 K), a maximum temperature keeping time of 6 hours, and a pressure of 200 kg / cm 2 (1.96 × 10 7 Pa) in a nitrogen atmosphere of 0.5 kg / cm 2 G (49 kPa). Hot press baked. A primary plate was prepared from the fired body using a surface grinder and a cylindrical grinder.

<シャフトの作成>
次に、シャフトの作成について説明する。イットリアを5重量%添加したAlN原料を、中芯をセットしたゴム型内に充填し、圧力5トンでCIP(冷間静水圧プレス)成形し、焼成時の収縮率分を割り掛けた寸法となるように乾式加工し、0.5kg/cmG(49kPa)の窒素雰囲気下において焼成して、内径59mm、外径80mm、長さ170mmのシャフトを得た。
<Creation of shaft>
Next, the creation of the shaft will be described. AlN raw material added with 5% by weight of yttria is filled in a rubber mold with a core set, CIP (cold isostatic press) molding is performed at a pressure of 5 tons, and the shrinkage ratio during firing is assigned. This was dry-processed and fired in a nitrogen atmosphere of 0.5 kg / cm 2 G (49 kPa) to obtain a shaft having an inner diameter of 59 mm, an outer diameter of 80 mm, and a length of 170 mm.

<1次プレートとシャフトの接合>
このようにして作成した1次プレートとシャフトとの接合界面に硝酸イットリウムを塗布し、1次プレートとシャフトの接合箇所の位置決めをおこない、100℃(373K)の乾燥機で1時間乾燥した。
<Bonding of primary plate and shaft>
The yttrium nitrate was applied to the joint interface between the primary plate and the shaft thus prepared, the joint between the primary plate and the shaft was positioned, and dried for 1 hour with a dryer at 100 ° C. (373 K).

次に、図1に示す状態となるように、1次プレート101、シャフト102等を金属製容器110内にセットし、ガス排気封入装置111により容器110内のガスを排気後、窒素を封入して窒素0.5kg/cm・Gとする。また、重鎮106は、フランジ102aにかかる荷重が0.6kg/cmとなる重さとし、重鎮121は、1次プレート101にかかる荷重が0.01kg/cmとなる重さとする。電源装置109により通電してヒータ108を発熱させ、1次プレート101とシャフト102との接合面を加熱する。 Next, as shown in FIG. 1, the primary plate 101, the shaft 102, etc. are set in the metal container 110, and after exhausting the gas in the container 110 by the gas exhaust sealing device 111, nitrogen is sealed. The nitrogen is 0.5 kg / cm 2 · G. Further, stalwarts 106 heavy Satoshi load applied to the flange 102a is 0.6 kg / cm 2, stalwarts 121 weigh the load applied to the primary plate 101 is 0.01 kg / cm 2. The power supply device 109 is energized to cause the heater 108 to generate heat, and the joint surface between the primary plate 101 and the shaft 102 is heated.

<ヒートスケジュール>
図2に、ヒータのヒートスケジュールを示す。同図に示すように、0.5kg/cmG(49kPa)の窒素雰囲気下で、室温から150℃/hrで温度を上げ、250℃に達したらそのまま1時間保持し、その後再び150℃/hrで温度を上げ、1200℃に達したら、400℃/hrで温度を上げ、1800〜1900℃に達したらそのまま1時間保持し、その後200℃/hrで温度を下げ、1200℃に達したら、400℃/hrで温度を下げ、50℃に達したら終了する。
<Heat schedule>
FIG. 2 shows the heat schedule of the heater. As shown in the figure, in a nitrogen atmosphere of 0.5 kg / cm 2 G (49 kPa), the temperature is increased from room temperature to 150 ° C./hr, and when it reaches 250 ° C., the temperature is maintained for 1 hour, and then again 150 ° C. / Increase the temperature in hr, reach 1200 ° C, increase the temperature at 400 ° C / hr, hold it for 1 hour when it reaches 1800-1900 ° C, then lower the temperature at 200 ° C / hr and reach 1200 ° C, The temperature is lowered at 400 ° C./hr, and the process ends when the temperature reaches 50 ° C.

<膜厚測定ポイント>
図3に膜厚測定ポイントを示す。同図に示すように、中心点P1と、半径70mmの円周を均等に分割する8つの点P2〜P9と、半径140mmの円周を均等に分割する9つの点P10〜P18を膜厚測定ポイントとする。
<Thickness measurement point>
FIG. 3 shows film thickness measurement points. As shown in the figure, the film thickness is measured at the center point P1, eight points P2 to P9 that equally divide the circumference with a radius of 70 mm, and nine points P10 to P18 that equally divide the circumference with a radius of 140 mm. Points.

表1に実施例1における測定値を示す。膜厚の測定には渦電流式膜厚測定器(製造会社:フィッシャー製、型番:MP−3C EA−9付き)を使用した。なお、敷板103の凸部の直径d3は120mm、高さh1は0.1mmとした。

Figure 0004567486
Table 1 shows the measured values in Example 1. An eddy current film thickness measuring device (manufactured by Fischer, model number: MP-3C with EA-9) was used for measuring the film thickness. In addition, the diameter d3 of the convex part of the floor plate 103 was 120 mm, and the height h1 was 0.1 mm.
Figure 0004567486

1次膜厚T1は、シャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離(単位はmm)を示し、
1次差分T2は、ポイントPxの1次膜厚T1からポイントP1の1次膜厚T1を引いた値(単位はmm)を示し、
2次膜厚T3は、シャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離(単位はmm)を示し、
2次差分T4は、ポイントPxの2次膜厚T2からポイントP1の2次膜厚T3を引いた値(単位はmm)を示し、
変化量T5は、ポイントPxの2次膜厚T4からポイントPxの1次膜厚T2を引いた値(単位はmm)を示す。
The primary film thickness T1 indicates the distance (unit: mm) from the surface of the plate before joining the shaft to the electrode mesh embedded in the plate.
The primary difference T2 indicates a value (unit: mm) obtained by subtracting the primary film thickness T1 at the point P1 from the primary film thickness T1 at the point Px.
The secondary film thickness T3 indicates the distance (unit: mm) from the surface of the plate after shaft joining to the electrode mesh embedded in the plate,
The secondary difference T4 indicates a value (unit: mm) obtained by subtracting the secondary film thickness T3 at the point P1 from the secondary film thickness T2 at the point Px.
The change amount T5 indicates a value (unit: mm) obtained by subtracting the primary film thickness T2 at the point Px from the secondary film thickness T4 at the point Px.

表1に示すように、
1次差分T2:最大値 0.100mm、最小値−0.035mm、
2次差分T4:最大値 0.04mm、 最小値−0.060mm、
1次差分T2の最大値と最小値の差:0.135mm、
2次差分T4の最大値と最小値の差:0.100mm、であった。1次差分T2の最大値と最小値の差は、シャフト接合前の膜厚バラツキの大きさを示し、2次差分T4の最大値と最小値の差は、シャフト接合後の膜厚バラツキの大きさを示す。表1に示すように、実施例1においてシャフト接合後の膜厚バラツキが小さくなっている。
As shown in Table 1,
Primary difference T2: maximum value 0.100mm, minimum value -0.035mm,
Secondary difference T4: maximum value 0.04mm, minimum value -0.060mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.135 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.100 mm. The difference between the maximum value and the minimum value of the primary difference T2 indicates the film thickness variation before the shaft joining, and the difference between the maximum value and the minimum value of the secondary difference T4 is the film thickness variation after the shaft joining. It shows. As shown in Table 1, in Example 1, the film thickness variation after shaft joining is small.

また、表1に示すように、半径Rが70mmのポイントP2〜P9に限定すると
1次差分T2:最大値 0.05mm、最小値−0.035mm、
2次差分T4:最大値 0.01mm、最小値−0.060mm、
1次差分T2の最大値と最小値の差:0.085mm、
2次差分T4の最大値と最小値の差:0.070mm、であった。
Further, as shown in Table 1, when the radius R is limited to the points P2 to P9 having 70 mm, the primary difference T2: maximum value 0.05 mm, minimum value −0.035 mm,
Secondary difference T4: maximum value 0.01 mm, minimum value −0.060 mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.085 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.070 mm.

さらに、半径Rが140mmのポイントP10〜P18に限定すると
1次差分T2:最大値 0.100mm、最小値 0.015mm、
2次差分T4:最大値 0.040mm、最小値−0.060mm、
1次差分T2の最大値と最小値の差:0.085mm、
2次差分T4の最大値と最小値の差:0.100mm、であった。
Furthermore, if the radius R is limited to points P10 to P18 having a radius of 140 mm, the primary difference T2 is a maximum value of 0.100 mm, a minimum value of 0.015 mm,
Secondary difference T4: maximum value 0.040 mm, minimum value −0.060 mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.085 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.100 mm.

図4(A)は実施例1におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、図4(B)は実施例1におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。図4(A)及び(B)に示されているように、シャフト接合前に比べて、シャフト接合後は膜厚バラツキが小さくなっている。   4A is a diagram in which the distance from the plate surface before shaft joining in Example 1 to the electrode mesh embedded in the plate is plotted, and FIG. 4B is the diagram after shaft joining in Example 1. FIG. It is the figure which plotted the distance from the plate surface to the electrode mesh embed | buried in the inside of a plate. As shown in FIGS. 4A and 4B, the film thickness variation after the shaft joining is smaller than before the shaft joining.

実施例2では、敷板103の凸部の直径d3は140mm、高さh1は0.2mmとした。その他は実施例1と同様である。表2に実施例2における測定値を示す。

Figure 0004567486
In Example 2, the diameter d3 of the convex portion of the floor plate 103 was 140 mm, and the height h1 was 0.2 mm. Others are the same as in the first embodiment. Table 2 shows the measured values in Example 2.
Figure 0004567486

表2に示すように、
1次差分T2:最大値 0.370mm、最小値 0.000mm、
2次差分T4:最大値 0.196mm、最小値 0.000mm、
1次差分T2の最大値と最小値の差:0.370mm、
2次差分T4の最大値と最小値の差:0.196mm、であった。表2に示すように、実施例2においてもシャフト接合後の膜厚バラツキが小さくなっている。
As shown in Table 2,
Primary difference T2: maximum value 0.370mm, minimum value 0.000mm,
Secondary difference T4: maximum value 0.196 mm, minimum value 0.000 mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.370 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.196 mm. As shown in Table 2, also in Example 2, the film thickness variation after shaft joining is small.

また、表2に示すように、半径Rが70mmのポイントP2〜P9に限定すると
1次差分T2:最大値 0.190mm、最小値 0.06mm、
2次差分T4:最大値 0.136mm、最小値 0.02mm、
1次差分T2の最大値と最小値の差:0.130mm、
2次差分T4の最大値と最小値の差:0.116mm、であった。
Further, as shown in Table 2, when the radius R is limited to the points P2 to P9 having 70 mm, the primary difference T2: maximum value 0.190 mm, minimum value 0.06 mm,
Secondary difference T4: maximum value 0.136 mm, minimum value 0.02 mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.130 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.116 mm.

さらに、半径Rが140mmのポイントP10〜P18に限定すると
1次差分T2:最大値 0.370mm、最小値 0.270mm、
2次差分T4:最大値 0.196mm、最小値 0.086mm、
1次差分T2の最大値と最小値の差:0.100mm、
2次差分T4の最大値と最小値の差:0.110mm、であった。
Furthermore, if the radius R is limited to points P10 to P18 having a radius of 140 mm, the primary difference T2 is a maximum value of 0.370 mm, a minimum value of 0.270 mm,
Secondary difference T4: maximum value 0.196 mm, minimum value 0.086 mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.100 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.110 mm.

図5(A)は実施例2におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、図5(B)は実施例2におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。図5(A)及び(B)に示されているように、シャフト接合前に比べて、シャフト接合後は膜厚バラツキが小さくなっている。   FIG. 5A is a diagram plotting the distance from the plate surface before shaft joining in Example 2 to the electrode mesh embedded in the plate, and FIG. 5B is the diagram after shaft joining in Example 2. It is the figure which plotted the distance from the plate surface to the electrode mesh embed | buried in the inside of a plate. As shown in FIGS. 5A and 5B, the film thickness variation is smaller after the shaft joining than before the shaft joining.

図6に実施例3のセラミック焼結体接合装置を示す。図6に示すように、実施例3では、凸部を有する敷板103の代わりに凹部を有する敷板104を使用する。凹部の直径d4は180mm、深さh2は0.1mmとした。その他は実施例1と同様である。表3に実施例3における測定値を示す。

Figure 0004567486
FIG. 6 shows a ceramic sintered body joining apparatus of Example 3. As shown in FIG. 6, in Example 3, a floor plate 104 having a concave portion is used instead of the floor plate 103 having a convex portion. The diameter d4 of the recess was 180 mm, and the depth h2 was 0.1 mm. Others are the same as in the first embodiment. Table 3 shows the measured values in Example 3.
Figure 0004567486

表3に示すように、
1次差分T2:最大値 0.0mm、最小値−0.165mm、
2次差分T4:最大値 0.0mm、最小値−0.12mm、
1次差分T2の最大値と最小値の差:0.165mm、
2次差分T4の最大値と最小値の差:0.12mm、であった。表3に示すように、実施例3においてもシャフト接合後の膜厚バラツキが小さくなっている。
As shown in Table 3,
Primary difference T2: maximum value 0.0mm, minimum value -0.165mm,
Secondary difference T4: maximum value 0.0mm, minimum value -0.12mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.165 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.12 mm. As shown in Table 3, also in Example 3, the film thickness variation after the shaft joining is small.

また、表3に示すように、半径Rが70mmのポイントP2〜P9に限定すると
1次差分T2:最大値−0.035mm、最小値−0.1mm、
2次差分T4:最大値 0.0mm、最小値−0.07mm、
1次差分T2の最大値と最小値の差:0.065mm、
2次差分T4の最大値と最小値の差:0.07mm、であった。
Further, as shown in Table 3, when the radius R is limited to the points P2 to P9 having 70 mm, the primary difference T2: maximum value −0.035 mm, minimum value −0.1 mm,
Secondary difference T4: maximum value 0.0 mm, minimum value −0.07 mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.065 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.07 mm.

さらに、半径Rが140mmのポイントP10〜P18に限定すると
1次差分T2:最大値−0.065mm、最小値−0.165mm、
2次差分T4:最大値 0.0mm、最小値−0.12mm、
1次差分T2の最大値と最小値の差:0.1mm、
2次差分T4の最大値と最小値の差:0.12mm、であった。
Further, if the radius R is limited to points P10 to P18 having a radius of 140 mm, the primary difference T2 is the maximum value -0.065 mm, the minimum value -0.165 mm,
Secondary difference T4: maximum value 0.0mm, minimum value -0.12mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.1 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.12 mm.

図7(A)は実施例3におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、図7(B)は実施例3におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。図7(A)及び(B)に示すように、シャフト接合前に比べて、シャフト接合後は膜厚バラツキが小さくなっている。   FIG. 7A is a diagram in which the distance from the plate surface before shaft joining in Example 3 to the electrode mesh embedded in the plate is plotted, and FIG. 7B is a diagram after shaft joining in Example 3. It is the figure which plotted the distance from the plate surface to the electrode mesh embed | buried in the inside of a plate. As shown in FIGS. 7A and 7B, the film thickness variation after the shaft joining is smaller than that before the shaft joining.

上記の如く、実施例3においては、中央が高く周囲が低いプレートを、凹部を有する敷板を用いることによって、シャフト接合時に反りを修正することができる。   As described above, in Example 3, warpage can be corrected at the time of shaft joining by using a plate having a concave portion and a plate having a high center and a low periphery.

実施例4では、凸部を有する敷板103を使用する。凸部の直径d3は140mm、高さh1は0.2mmとした。また、図8に示すような分割可能な重鎮121a〜121dを使用する。実施例4では、修正が必要なポイントP9,P17及びP18上にのみ重鎮121aを載置する。その他は実施例1と同様である。表4に実施例4における測定値を示す。

Figure 0004567486
In the fourth embodiment, a floor plate 103 having a convex portion is used. The diameter d3 of the convex portion was 140 mm, and the height h1 was 0.2 mm. In addition, splittable heavyweights 121a to 121d as shown in FIG. 8 are used. In the fourth embodiment, the heavy load 121a is placed only on the points P9, P17, and P18 that need to be corrected. Others are the same as in the first embodiment. Table 4 shows the measured values in Example 4.
Figure 0004567486

表4に示すように、
1次差分T2:最大値 0.225mm、最小値−0.035mm、
2次差分T4:最大値 0.040mm、最小値−0.060mm、
1次差分T2の最大値と最小値の差:0.260mm、
2次差分T4の最大値と最小値の差:0.100mm、であった。部分的にプレートが反っている実施例4においても、表4に示すように、シャフト接合後の膜厚バラツキが小さくなっている。
As shown in Table 4,
Primary difference T2: maximum value 0.225mm, minimum value -0.035mm,
Secondary difference T4: maximum value 0.040 mm, minimum value −0.060 mm,
The difference between the maximum value and the minimum value of the primary difference T2: 0.260 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.100 mm. Also in Example 4 where the plate is partially warped, as shown in Table 4, the film thickness variation after the shaft joining is small.

また、表4に示すように、半径Rが70mmのポイントP2〜P9に限定すると
1次差分T2:最大値 0.05mm、最小値−0.035mm、
2次差分T4:最大値 0.01mm、最小値−0.060mm、
1次差分T2の最大値と最小値の差:0.085mm、
2次差分T4の最大値と最小値の差:0.070mm、であった。
Further, as shown in Table 4, when the radius R is limited to the points P2 to P9 having 70 mm, the primary difference T2 is the maximum value 0.05 mm, the minimum value −0.035 mm,
Secondary difference T4: maximum value 0.01 mm, minimum value −0.060 mm,
Difference between the maximum value and the minimum value of the primary difference T2: 0.085 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.070 mm.

さらに、半径Rが140mmのポイントP10〜P18に限定すると
1次差分T2:最大値 0.225mm、最小値 0.015mm、
2次差分T4:最大値 0.040mm、最小値−0.060mm、
1次差分T2の最大値と最小値の差:0.210mm、
2次差分T4の最大値と最小値の差:0.100mm、であった。
Further, if the radius R is limited to the points P10 to P18 having a radius of 140 mm, the primary difference T2 is a maximum value of 0.225 mm, a minimum value of 0.015 mm,
Secondary difference T4: maximum value 0.040 mm, minimum value −0.060 mm,
The difference between the maximum value and the minimum value of the primary difference T2: 0.210 mm,
The difference between the maximum value and the minimum value of the secondary difference T4 was 0.100 mm.

図9(A)は実施例4におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、図9(B)は実施例4におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。図9(A)及び(B)に示すように、シャフト接合前は半径R=140mmの円周上に、T4が0〜0.1mmであるポイントが多数存在し、T4が0.1〜0.2mmであるポイントが存在せず、T4が0.2mmを超えるポイントが2点存在する。しかし、シャフト接合後は半径R=140mmの円周上の全てのT4が−0.06mmから0.04mmまでの間に存在するようになっている。   FIG. 9A is a diagram plotting the distance from the plate surface before shaft joining in Example 4 to the electrode mesh embedded in the plate, and FIG. 9B is the diagram after shaft joining in Example 4. It is the figure which plotted the distance from the plate surface to the electrode mesh embed | buried in the inside of a plate. As shown in FIGS. 9 (A) and 9 (B), before the shaft is joined, there are many points where T4 is 0 to 0.1 mm on the circumference of radius R = 140 mm, and T4 is 0.1 to 0. There are no 2 mm points, and there are 2 points where T4 exceeds 0.2 mm. However, after the shaft is joined, all T4 on the circumference having a radius R = 140 mm exists between −0.06 mm and 0.04 mm.

上記の如く、実施例4においては、一部が大きく反り上がっているプレートを、その大きく反り上がっている部分にだけ重鎮を載置することによって、シャフト接合時に反りを部分的に修正することができる。   As described above, in the fourth embodiment, the warp can be partially corrected at the time of joining the shafts by placing a heavy part of the plate that is largely warped upward only on the part that is greatly warped. it can.

実施例1のセラミック焼結体接合装置を示す模式図である。1 is a schematic diagram showing a ceramic sintered body joining apparatus of Example 1. FIG. ヒートスケジュールを示すグラフである。It is a graph which shows a heat schedule. 膜厚測定ポイントを示す図である。It is a figure which shows a film thickness measurement point. (A)は実施例1におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、(B)は実施例1におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。(A) is the figure which plotted the distance from the plate surface before the shaft joining in Example 1 to the electrode mesh embed | buried in the inside of a plate, (B) is a plate from the plate surface after the shaft joining in Example 1 to a plate It is the figure which plotted the distance to the electrode mesh embed | buried inside. (A)は実施例2におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、(B)は実施例2におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。(A) is the figure which plotted the distance from the plate surface before the shaft joining in Example 2 to the electrode mesh embed | buried in the inside of a plate, (B) is a plate from the plate surface after the shaft joining in Example 2 to a plate It is the figure which plotted the distance to the electrode mesh embed | buried inside. 実施例3のセラミック焼結体接合装置を示す模式図である。6 is a schematic diagram illustrating a ceramic sintered body joining apparatus of Example 3. FIG. (A)は実施例3におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、(B)は実施例3におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。(A) is the figure which plotted the distance from the plate surface before the shaft joining in Example 3 to the electrode mesh embed | buried in the inside of a plate, (B) is a plate from the plate surface after the shaft joining in Example 3 to a plate It is the figure which plotted the distance to the electrode mesh embed | buried inside. 実施例4の分割可能な重鎮を示す図である。It is a figure which shows the separable heavyweight of Example 4. FIG. (A)は実施例4におけるシャフト接合前のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図であり、(B)は実施例4におけるシャフト接合後のプレート表面からプレート内部に埋設されている電極メッシュまでの距離をプロットした図である。(A) is the figure which plotted the distance from the plate surface before the shaft joining in Example 4 to the electrode mesh embed | buried in the inside of a plate, (B) is a plate from the plate surface after the shaft joining in Example 4 to a plate It is the figure which plotted the distance to the electrode mesh embed | buried inside.

符号の説明Explanation of symbols

100…セラミック焼結体接合装置、
101…1次プレート(第1のセラミック焼結体)、
102…シャフト(第2のセラミック焼結体)、
103,104…敷板(載置手段)、105…荷重筒(第1の圧力伝達手段)、
106…重鎮(第1の加圧手段)、
107…パンチ、
108…ヒータ(加熱手段)、109…電源装置、
110…金属製容器、111…ガス排気封入装置、
121…重鎮(第2の加圧手段)、
122…圧力伝達プレート。
100 ... Ceramic sintered body joining device,
101 ... Primary plate (first ceramic sintered body),
102 ... shaft (second ceramic sintered body),
103, 104 ... floor plate (placement means), 105 ... load cylinder (first pressure transmission means),
106 ... heavyweight (first pressurizing means),
107 ... punch,
108 ... heater (heating means), 109 ... power supply,
110 ... Metal container, 111 ... Gas exhaust sealing device,
121... Heavyweight (second pressurizing means)
122 ... Pressure transmission plate.

Claims (4)

円盤状の第1のセラミック焼結体と、円筒状部及び鍔部を有する第2のセラミック焼結体とを接合する装置であって、
前記第1のセラミック焼結体を載置可能でかつ中心部に凸部又は凹部を有する載置手段と、
前記第1のセラミック焼結体の上に載置された前記第2のセラミック焼結体を包囲可能で、かつ前記鍔部に圧力を伝達可能な第1の圧力伝達手段と、
前記第1の圧力伝達手段に、前記第1のセラミック焼結体と前記第2のセラミック焼結体との接触面の圧力が上昇する方向に圧力を加える第1の加圧手段と、
前記第1のセラミック焼結体と前記第2のセラミック焼結体との接合面を加熱可能な加熱手段と、を備えるセラミック焼結体接合装置。
An apparatus for joining a disk-shaped first ceramic sintered body and a second ceramic sintered body having a cylindrical part and a flange part,
A mounting means capable of mounting the first ceramic sintered body and having a convex portion or a concave portion in the center;
First pressure transmitting means capable of surrounding the second ceramic sintered body placed on the first ceramic sintered body and transmitting pressure to the flange;
First pressure means for applying pressure to the first pressure transmission means in a direction in which the pressure at the contact surface between the first ceramic sintered body and the second ceramic sintered body increases;
A ceramic sintered body joining apparatus comprising: heating means capable of heating a joining surface between the first ceramic sintered body and the second ceramic sintered body.
前記鍔部の周囲の前記第1のセラミック焼結体に、前記第1のセラミック焼結体が前記載置手段の前記凸部又は凹部以外の領域に接近する方向、前記第1のセラミック焼結体と前記載置手段の前記凸部又は凹部以外の領域との接触面積が増加する方向又は前記第1のセラミック焼結体と前記載置手段の前記凸部又は凹部以外の領域との接触面の圧力が上昇する方向に圧力を加える第2の加圧手段を、さらに備える請求項1に記載のセラミック焼結体接合装置。   A direction in which the first ceramic sintered body approaches the region other than the convex portion or the concave portion of the placing means, the first ceramic sintered body, Direction in which the contact area between the body and the region other than the convex portion or the concave portion of the placing means increases, or the contact surface between the first ceramic sintered body and the region other than the convex portion or the concave portion of the placing means The ceramic sintered body joining apparatus according to claim 1, further comprising a second pressurizing unit that applies pressure in a direction in which the pressure increases. 円盤状の第1のセラミック焼結体と、円筒状部及び鍔部を有する第2のセラミック焼結体とを接合する方法であって、
中心部に凸部又は凹部を有する載置手段上に前記第1のセラミック焼結体を載置し、前記第1のセラミック焼結体上に前記第2のセラミック焼結体を載置する工程と、
前記第1のセラミック焼結体と前記第2のセラミック焼結体との接合面を加熱しつつ、前記第1のセラミック焼結体と前記第2のセラミック焼結体との接触面の圧力が上昇する方向に加圧する工程と、を含むセラミック焼結体接合方法。
A method of joining a disk-shaped first ceramic sintered body and a second ceramic sintered body having a cylindrical part and a flange part,
A step of placing the first ceramic sintered body on a placing means having a convex portion or a recessed portion in the center, and placing the second ceramic sintered body on the first ceramic sintered body. When,
The pressure of the contact surface between the first ceramic sintered body and the second ceramic sintered body is increased while heating the joint surface between the first ceramic sintered body and the second ceramic sintered body. Pressurizing in a rising direction, and bonding the sintered ceramic body.
前記第1のセラミック焼結体と前記第2のセラミック焼結体との接合面を加熱する間に、前記鍔部の周囲の前記第1のセラミック焼結体に、前記第1のセラミック焼結体が前記載置手段の前記凸部又は凹部以外の領域に接近する方向、前記第1のセラミック焼結体と前記載置手段の前記凸部又は凹部以外の領域との接触面積が増加する方向又は前記第1のセラミック焼結体と前記載置手段の前記凸部又は凹部以外の領域との接触面の圧力が上昇する方向に圧力を加える、請求項3に記載のセラミック焼結体接合方法。   While heating the joint surface between the first ceramic sintered body and the second ceramic sintered body, the first ceramic sintered body around the flange is applied to the first ceramic sintered body. The direction in which the body approaches the region other than the convex portion or the concave portion of the placing means, the direction in which the contact area between the first ceramic sintered body and the region other than the convex portion or the concave portion of the placing means increases. The method for joining ceramic sintered bodies according to claim 3, wherein pressure is applied in a direction in which the pressure of the contact surface between the first ceramic sintered body and the region other than the convex portion or concave portion of the placing means increases. .
JP2005049377A 2005-02-24 2005-02-24 Ceramic sintered body joining apparatus and ceramic sintered body joining method Active JP4567486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049377A JP4567486B2 (en) 2005-02-24 2005-02-24 Ceramic sintered body joining apparatus and ceramic sintered body joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049377A JP4567486B2 (en) 2005-02-24 2005-02-24 Ceramic sintered body joining apparatus and ceramic sintered body joining method

Publications (2)

Publication Number Publication Date
JP2006232613A JP2006232613A (en) 2006-09-07
JP4567486B2 true JP4567486B2 (en) 2010-10-20

Family

ID=37040676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049377A Active JP4567486B2 (en) 2005-02-24 2005-02-24 Ceramic sintered body joining apparatus and ceramic sintered body joining method

Country Status (1)

Country Link
JP (1) JP4567486B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114355A (en) * 1998-09-30 2000-04-21 Kyocera Corp Joint structure body of plate-like ceramic body and cylindrical ceramic body, and heating device using the joint structure body
JP2003073177A (en) * 2001-08-31 2003-03-12 Kyocera Corp Ceramic compact bonding device and method of manufacturing ceramic bonded compact
JP2003165779A (en) * 2001-11-29 2003-06-10 Kyocera Corp Ceramic joining device and manufacturing method for joined ceramic article using the same
JP2004331497A (en) * 1997-01-30 2004-11-25 Ngk Insulators Ltd Joined body of aluminum nitride-based ceramic substrate and method of manufacturing the same
JP2004345952A (en) * 1997-01-30 2004-12-09 Ngk Insulators Ltd Bonding agent for base material of aluminum nitride-based ceramic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331497A (en) * 1997-01-30 2004-11-25 Ngk Insulators Ltd Joined body of aluminum nitride-based ceramic substrate and method of manufacturing the same
JP2004345952A (en) * 1997-01-30 2004-12-09 Ngk Insulators Ltd Bonding agent for base material of aluminum nitride-based ceramic
JP2000114355A (en) * 1998-09-30 2000-04-21 Kyocera Corp Joint structure body of plate-like ceramic body and cylindrical ceramic body, and heating device using the joint structure body
JP2003073177A (en) * 2001-08-31 2003-03-12 Kyocera Corp Ceramic compact bonding device and method of manufacturing ceramic bonded compact
JP2003165779A (en) * 2001-11-29 2003-06-10 Kyocera Corp Ceramic joining device and manufacturing method for joined ceramic article using the same

Also Published As

Publication number Publication date
JP2006232613A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
KR100672802B1 (en) Substrate heating apparatus and manufacturing method for the same
JP5992388B2 (en) Ceramic heater
JP5426892B2 (en) Substrate heating device
US7800029B2 (en) Heating device
JP2001274230A (en) Wafer holder for semiconductor manufacturing device
KR100634182B1 (en) Substrate heater and fabrication method for the same
KR100551643B1 (en) Ceramic susceptor
JP4637316B2 (en) Ceramic heater having cylindrical body and heating device using the same
JP4567486B2 (en) Ceramic sintered body joining apparatus and ceramic sintered body joining method
JP4739774B2 (en) Ceramic sintered body joining apparatus and ceramic sintered body joining method
JP4703442B2 (en) Substrate heating device
JP2004146568A (en) Ceramic heater for semiconductor manufacturing device
JP3720757B2 (en) Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.
JP5087416B2 (en) Ceramic heater and manufacturing method thereof
JP3568194B2 (en) Ceramic heater for semiconductor heat treatment
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP6875805B2 (en) Substrate support member with shaft and its manufacturing method
JP4651240B2 (en) Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same.
JP6370062B2 (en) Aluminum nitride joined body and manufacturing method thereof
US6306325B1 (en) Method of manufacturing ceramic sintered bodies
JP2662360B2 (en) Manufacturing method of ceramic heater and ceramic heater
JP2002176096A (en) Manufacturing method of ceramics member for semiconductor treating equipment
JP2018182280A (en) Ceramic member
JP2020029391A (en) Method for producing ceramic sintered body and jig
JP2007088498A (en) Ceramic heater for semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3