JP2002256142A - Polylactate resin composition with controlled degradability and method for degradation - Google Patents

Polylactate resin composition with controlled degradability and method for degradation

Info

Publication number
JP2002256142A
JP2002256142A JP2001056964A JP2001056964A JP2002256142A JP 2002256142 A JP2002256142 A JP 2002256142A JP 2001056964 A JP2001056964 A JP 2001056964A JP 2001056964 A JP2001056964 A JP 2001056964A JP 2002256142 A JP2002256142 A JP 2002256142A
Authority
JP
Japan
Prior art keywords
resin composition
molecular weight
polylactic acid
acid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001056964A
Other languages
Japanese (ja)
Inventor
Takuya Sakaki
卓也 榊
Takuma Yano
拓磨 矢野
Munehiro Miyake
宗博 三宅
Hiroshi Nishimura
弘 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2001056964A priority Critical patent/JP2002256142A/en
Publication of JP2002256142A publication Critical patent/JP2002256142A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biodegradable resin composition which can be degraded more rapidly in the natural environment or in an accelerated degradation apparatus and to provide a method for degrading the resin composition. SOLUTION: The polylactate resin composition contains 99.99-95 pts.mass polylactate polymer and 0.01-5 pts.mass organic carboxylic acid compound and/or organic carboxylate compound. The method comprises allowing an organic carboxylic acid compound and/or an organic carboxylate compound to act on a polylactate polymer as a biodegradable resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然環境もしくは
分解促進装置の中でより高速に分解する生分解性樹脂組
成物に関するものである。また、有機カルボン酸化合物
及び/又は有機カルボン酸塩化合物を作用させることに
よる、生分解性樹脂の分解処理方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a biodegradable resin composition which decomposes faster in a natural environment or in a decomposition promoting device. The present invention also relates to a method for decomposing a biodegradable resin by reacting an organic carboxylic acid compound and / or an organic carboxylate compound.

【0002】[0002]

【従来の技術】従来、各種の食品、飲料品、薬品、雑貨
用品などの液状物や粉粒物、固形物の包装用資材、農業
用資材、建築用資材など、幅広い分野において、紙、プ
ラスチックフィルム、アルミ箔等が用いられている。特
に、プラスチックフィルムは、強度、耐水性、成型性、
透明性、コストなどに優れた性能を有し、袋や熱成型さ
れた容器として、多くの用途で使用されている。現在、
これらの用途に使用されているプラスチックとしては、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩
化ビニル、ポリエチレンテレフタレートなどがある。し
かし、上記のようなプラスチックからなるフィルムは、
自然環境下では生分解又は加水分解しないか、または分
解速度が極めて遅いために、使用後、埋設処理された場
合は土中に残存したり、投棄された場合は景観を損ねた
り、生物の生活環境を破壊することがある。また、焼却
処理された場合でもダイオキシンのような有害なガスを
生じたり、焼却カロリーが高いために焼却炉を劣化させ
たりするという問題点があった。
2. Description of the Related Art Conventionally, paper, plastics, etc. have been used in a wide range of fields, such as packaging materials for liquids, powders and granules, solids such as various foods, beverages, medicines, miscellaneous goods, agricultural materials, and building materials. Films, aluminum foils and the like are used. In particular, plastic films have strength, water resistance, moldability,
It has excellent properties such as transparency and cost, and is used in many applications as bags and thermoformed containers. Current,
Plastics used in these applications include:
Examples include polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate. However, films made of plastic as described above
It does not biodegrade or hydrolyze in the natural environment, or its decomposition rate is extremely slow.If it is buried after use, it will remain in the soil. May destroy the environment. In addition, even when incinerated, there is a problem in that harmful gases such as dioxin are generated, and the incinerator is deteriorated due to high calorie incineration.

【0003】このような環境保全に対する社会的要求の
高まりに伴い、微生物によって酵素分解されたり、水の
作用で加水分解される生分解性樹脂が注目を集めてい
る。生分解性樹脂の具体例としては、ポリブチレンサク
シネート、ポリブチレンサクシネートアジペート、ポリ
カプロラクトン、ポリ乳酸などの脂肪族ポリエステル、
又はブタンジオール/アジピン酸/テレフタル酸共重合
体などの脂肪族/芳香族共重合ポリエステルなどが挙げ
られる。
[0003] With the increasing social demands for environmental preservation, biodegradable resins that are enzymatically decomposed by microorganisms or hydrolyzed by the action of water have attracted attention. Specific examples of the biodegradable resin, polybutylene succinate, polybutylene succinate adipate, polycaprolactone, aliphatic polyesters such as polylactic acid,
Or an aliphatic / aromatic copolymerized polyester such as a butanediol / adipic / terephthalic acid copolymer.

【0004】上記の生分解性樹脂の中でも、モノマーが
自然界に広く分布し、動植物や人畜に対して無害なポリ
乳酸は、融点が170℃付近に、ガラス転移点が60℃
付近にあり、十分な耐熱性を有するとともに、比較的安
価であることから、実用性に優れた生分解性樹脂として
期待されている。
Among the above biodegradable resins, polylactic acid in which monomers are widely distributed in nature and which is harmless to animals, plants and humans has a melting point of around 170 ° C. and a glass transition point of 60 ° C.
Since it is near, has sufficient heat resistance, and is relatively inexpensive, it is expected as a biodegradable resin excellent in practicality.

【0005】このような現状から、上記用途に適用する
ために各種のポリ乳酸樹脂組成物が開発されている。特
に包装資材用途や農業資材用途に用いる際には、様々な
エンドユーザーが取り扱うことになるため、使用後の廃
棄時には速やかに分解することが期待される。しかし、
実際にはポリ乳酸は市販のコンポスト装置や乾燥処理装
置のような分解促進装置で処理を行ったり、土中に鋤き
込みを行った際には、必ずしも満足できる速度では分解
しなかった。
[0005] Under such circumstances, various polylactic acid resin compositions have been developed for use in the above applications. In particular, when used for packaging materials and agricultural materials, various end-users handle the materials, so it is expected that they will be rapidly decomposed when disposed after use. But,
In fact, polylactic acid did not always decompose at a satisfactory rate when it was treated with a decomposition accelerating device such as a commercially available composting device or a drying treatment device, or when plowed into soil.

【0006】高分子量のポリ乳酸は自然界には元々存在
しなかったこともあり、高分子量体を酵素分解する菌体
は自然界には一般的に存在しない。ポリ乳酸の分解機構
は2つの段階に分かれており、第一段階は加水分解で、
重量平均分子量6万ないしは数平均分子量2万程度まで
分解したところで初めて、第二段階の微生物による酵素
分解が始まる。このため、いかにして加水分解速度を高
めるかが生分解速度全体を左右する。
[0006] Since high molecular weight polylactic acid did not originally exist in nature, bacteria that enzymatically decompose high molecular weight compounds do not generally exist in nature. The decomposition mechanism of polylactic acid is divided into two stages, the first stage is hydrolysis,
Only when the weight-average molecular weight is degraded to about 60,000 or about 20,000, the second-stage microbial enzymatic degradation starts. Therefore, how to increase the hydrolysis rate affects the overall biodegradation rate.

【0007】ポリ乳酸の生分解速度を速める方法とし
て、例えば特開平4─168149号公報にはリパーゼ
のような加水分解酵素を配合する方法が提案されている
が、酵素は比較的大きな分子であるため接触部分しか作
用できず、また酵素が高価なためフィルム価格が高くな
り、酵素の熱安定性が低いためフィルムなどの包装、農
業資材を作成する際に一般的な熱成形方法が使えないな
どの問題があった。
As a method for increasing the biodegradation rate of polylactic acid, for example, Japanese Patent Application Laid-Open No. 4-168149 proposes a method of blending a hydrolase such as lipase, but the enzyme is a relatively large molecule. Therefore, only the contact part can work, and the cost of the film is high because the enzyme is expensive, and the thermostability of the enzyme is low, so that general thermoforming methods cannot be used when packaging films and other agricultural materials. There was a problem.

【0008】また、特開平10─219088号公報に
は無機粒子を混合することで生分解速度を加速する方法
が提案されているが、無機粒子を多量に添加しないと効
果が低く、多量に添加した場合は引張強度や耐衝撃強度
などの機械的物性が低下したり成型時の熱安定性が低下
するなど、実用性が低くなるという問題があった。
Japanese Patent Application Laid-Open No. 10-219088 proposes a method of accelerating the biodegradation rate by mixing inorganic particles. However, the effect is low unless a large amount of inorganic particles is added. In such a case, there is a problem that the practicability is lowered, for example, mechanical properties such as tensile strength and impact resistance are lowered, and thermal stability during molding is lowered.

【0009】さらに、特開平10─323810、特開
平11─241008、241009号公報などには天
然資源を元にした成分とブレンドすることで生分解速度
を制御する方法が提案されているが、成型品表面などの
外観が悪化すること、また特に繊維・フィルム・シート
などに成形した際に引張強度や耐衝撃強度などの機械的
物性が低下したり成型時の熱安定性が低下するなど、実
用性が低くなるという問題があった。
Further, Japanese Patent Application Laid-Open Nos. 10-323810, 11-241008 and 241009 propose a method of controlling the rate of biodegradation by blending with a component based on natural resources. Practical use, such as deterioration of the appearance of the product surface, and in particular, when molded into fibers, films, sheets, etc., the mechanical properties such as tensile strength and impact strength are reduced, and the thermal stability during molding is reduced. There is a problem that the property is reduced.

【0010】一方、ポリエチレンテレフタレート(PE
T)などのポリエステル系重合体中のカルボン酸(CO
OH基)濃度を増やすと、COOH基の触媒作用によっ
て重合体の分解速度が増大することが報告されている。
しかし、従来技術では非生分解性樹脂について、非常に
過酷な条件下での長期間に渡るモデル試験の結果が報告
されているのみで、比較的短期間に分解が進行するポリ
エステル系生分解性樹脂において、定量的にCOOH基
濃度が生分解性に影響を及ぼしている程度はほとんど調
べられておらず、また実用的にどのような悪影響を及ぼ
すかは知られていなかった。
On the other hand, polyethylene terephthalate (PE)
Carboxylic acid (CO) in polyester polymers such as T)
It has been reported that when the concentration of (OH group) is increased, the decomposition rate of the polymer is increased by the catalytic action of the COOH group.
However, in the prior art, only the results of long-term model tests under very severe conditions have been reported for non-biodegradable resins. In resin, the extent to which the COOH group concentration quantitatively affects biodegradability has hardly been investigated, and what kind of adverse effects are practically unknown.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解消するものであり、ポリ乳酸の優れた性質
を損なうことなく、かつ廃棄処理時の分解速度を高めた
生分解性樹脂組成物、及び生分解性樹脂の分解処理方法
を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and does not impair the excellent properties of polylactic acid and increases the biodegradability at the time of disposal. It is intended to provide a resin composition and a method for decomposing a biodegradable resin.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を重ねた結果、有機カルボン
酸及び/又は有機カルボン酸塩化合物を、特定量含有し
たポリ乳酸系重合体組成物が、機械的物性や溶融時の熱
安定性を低下させず、また廃棄処理時の分解速度の制御
が容易であることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a polylactic acid-based polymer containing a specific amount of an organic carboxylic acid and / or an organic carboxylate compound. The present inventors have found that the coalesced composition does not decrease the mechanical properties and the thermal stability at the time of melting, and that it is easy to control the decomposition rate at the time of disposal, and have reached the present invention.

【0013】すなわち、本発明の要旨は次の通りであ
る。 (1)ポリ乳酸系重合体99.99〜95質量部に対し
て、有機カルボン酸化合物及び/又は有機カルボン酸塩
化合物を0.01〜5質量部含むポリ乳酸樹脂組成物。 (2)200℃×5分間処理における分子量保持率Aが
下記式を満たす上記(1)記載のポリ乳酸樹脂組成
物。 (分子量保持率A):Mn(A,t)/Mn(A,0)≧0.90 ただし、Mn(A,t)は200℃×5分間処理後の数
平均分子量を表し、Mn(A,0)は処理前の数平均分
子量を表す。 (3)80℃×90%RH環境下で8時間処理後の分子
量保持率Bが下記式を満たす上記(1)又は(2)記
載のポリ乳酸樹脂組成物。 (分子量保持率B):Mn(B,t)/Mn(B,0)≦0.85 ただし、Mn(B,t)は80℃×90%RH環境下で
8時間処理後の数平均分子量を表し、Mn(B,0)は
処理前の数平均分子量を表す。 (4)上記(1)〜(3)のいずれかに記載のポリ乳酸
樹脂組成物を用いた包装用資材。 (5)上記(1)〜(3)のいずれかに記載のポリ乳酸
樹脂組成物を用いた農業用資材。 (6)ポリ乳酸系重合体に対して、有機カルボン酸化合
物及び/又は有機カルボン酸塩化合物を作用させる、生
分解性樹脂の分解処理方法。
That is, the gist of the present invention is as follows. (1) A polylactic acid resin composition containing 0.01 to 5 parts by mass of an organic carboxylic acid compound and / or an organic carboxylate compound per 99.99 to 95 parts by mass of a polylactic acid-based polymer. (2) The polylactic acid resin composition according to (1), wherein the molecular weight retention A in the treatment at 200 ° C. for 5 minutes satisfies the following formula: (Molecular weight retention A): Mn (A, t) / Mn (A, 0) ≧ 0.90 where Mn (A, t) represents a number average molecular weight after treatment at 200 ° C. × 5 minutes, and Mn (A , 0) represents the number average molecular weight before treatment. (3) The polylactic acid resin composition according to the above (1) or (2), wherein the molecular weight retention B after treatment in an environment of 80 ° C. × 90% RH for 8 hours satisfies the following formula: (Molecular Weight Retention B): Mn (B, t) / Mn (B, 0) ≦ 0.85 where Mn (B, t) is the number average molecular weight after treatment at 80 ° C. × 90% RH for 8 hours. And Mn (B, 0) represents the number average molecular weight before the treatment. (4) A packaging material using the polylactic acid resin composition according to any one of (1) to (3). (5) An agricultural material using the polylactic acid resin composition according to any one of (1) to (3). (6) A method for decomposing a biodegradable resin, in which an organic carboxylic acid compound and / or an organic carboxylate compound is allowed to act on a polylactic acid-based polymer.

【0014】[0014]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明のポリ乳酸樹脂組成物は、ポリ乳酸系重合
体99.99〜95質量部に対して、生分解性を高める
ために有機カルボン酸化合物及び/又は有機カルボン酸
塩化合物を0.01〜5質量部含むことが必要である。
さらに、0.5〜1質量部が特に好ましい。これらの化
合物が0.01質量部未満では分解速度を高める効果が
低く、5質量部を超えて添加すると熱安定性や機械的物
性が悪化するため好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The polylactic acid resin composition of the present invention contains an organic carboxylic acid compound and / or an organic carboxylate compound in an amount of 0.01 to 95 parts by mass based on the polylactic acid-based polymer in order to enhance biodegradability. It is necessary to include 5 parts by mass.
Further, 0.5 to 1 part by mass is particularly preferred. If these compounds are less than 0.01 part by mass, the effect of increasing the decomposition rate is low, and if they are added in excess of 5 parts by mass, thermal stability and mechanical properties are undesirably deteriorated.

【0015】特に有機カルボン酸化合物を添加する場合
においては、その添加量の好ましい範囲は、樹脂組成物
中のCOOH基濃度(ポリ乳酸重合体のCOOH基濃度
と有機カルボン酸化合物のCOOH基濃度との和)とポ
リ乳酸重合体の数平均分子量によって表すことができ
る。すなわち、ポリ乳酸系重合体の数平均分子量Mn
と、ポリ乳酸樹脂組成物中に含まれるCOOH基濃度C
(モル/ton)の間で、以下の式が成立する場合
に、分解速度の加速効果が特に高くなり好ましい。した
がって、式を満足するように、有機カルボン酸化合物
を添加することが好ましい。 (分解加速指数D):{C─(2×106g/Mn)}≧3
In particular, when an organic carboxylic acid compound is added, the preferred range of the addition amount is determined by the COOH group concentration (COOH group concentration of the polylactic acid polymer and COOH group concentration of the organic carboxylic acid compound) in the resin composition. And the number average molecular weight of the polylactic acid polymer. That is, the number average molecular weight Mn of the polylactic acid-based polymer
And the COOH group concentration C contained in the polylactic acid resin composition
When the following formula is satisfied between (mol / ton), the effect of accelerating the decomposition rate is particularly high, which is preferable. Therefore, it is preferable to add an organic carboxylic acid compound so as to satisfy the formula. (Decomposition acceleration index D): {C} (2 × 10 6 g / Mn) ≧≧ 3

【0016】さらに生分解性樹脂組成物の性質として
は、成型時には物性変化が少なく、廃棄処理を行う際に
はできるだけすみやかに分解するものが望ましい。成型
時の熱安定性や廃棄処理時の生分解性は、各処理前後の
分子量変化によって確認できる。分子量の測定方法とし
ては、GPC、NMR、浸透圧法、粘度法、光散乱法な
どが挙げられる。本発明のポリ乳酸樹脂組成物は、20
0℃×5分間処理を行った際の処理前後の分子量の比、
すなわち分子量保持率Aが、0.90以上であることが
望ましく、0.95以上が特に望ましい。0.90未満
の場合は、生分解性樹脂組成物を溶融し、フィルム・シ
ート・繊維・不織布などの各種の形態に成型を行う際に
分子量が低下することを意味しており、製品使用前の保
存安定性や、機械的物性が悪化するために望ましくな
い。さらに、本発明のポリ乳酸樹脂組成物は80℃×9
0%RH環境下で8時間処理を行った前後の分子量の
比、分子量保持率Bが0.85以下であることが望まし
く、0.8以下であることが特に望ましい。0.85を
超えると分解促進装置などによる廃棄処理時に、想定さ
れる処理時間内に分解が行えず、例えば分解促進装置内
に未分解の成型物が蓄積されて行くことになって望まし
くない。
Further, as for the properties of the biodegradable resin composition, it is desirable that the properties change little during molding and decompose as quickly as possible during disposal. Thermal stability during molding and biodegradability during disposal can be confirmed by changes in molecular weight before and after each treatment. Examples of the method for measuring the molecular weight include GPC, NMR, osmotic pressure method, viscosity method, light scattering method and the like. The polylactic acid resin composition of the present invention contains 20
The ratio of the molecular weight before and after the treatment when the treatment was performed at 0 ° C. × 5 minutes,
That is, the molecular weight retention A is desirably 0.90 or more, and particularly desirably 0.95 or more. When it is less than 0.90, it means that the molecular weight is reduced when the biodegradable resin composition is melted and molded into various forms such as films, sheets, fibers, and non-woven fabrics. Storage stability and mechanical properties are undesirable. Furthermore, the polylactic acid resin composition of the present invention has a temperature of 80 ° C. × 9.
The ratio of the molecular weight before and after the treatment for 8 hours in a 0% RH environment and the molecular weight retention B are desirably 0.85 or less, and particularly desirably 0.8 or less. If it exceeds 0.85, the decomposition cannot be performed within an assumed processing time at the time of disposal treatment by the decomposition accelerating device or the like, and undecomposed molded products are accumulated in the decomposition accelerating device, which is not desirable.

【0017】また、ポリ乳酸樹脂の保存安定性を特に重
視する場合には、ポリ乳酸樹脂組成物そのものには有機
カルボン酸化合物及び/又は有機カルボン酸塩化合物を
添加せず、ポリ乳酸系重合体の廃棄処理を行いたい時
に、これらの有機カルボン酸化合物及び/又は有機カル
ボン酸塩化合物を作用させることによっても分解速度を
高めることができる。
When the storage stability of the polylactic acid resin is particularly emphasized, the polylactic acid resin composition itself does not contain an organic carboxylic acid compound and / or an organic carboxylic acid salt compound, and the polylactic acid-based polymer is When it is desired to carry out the waste treatment, the decomposition rate can be increased by allowing these organic carboxylic acid compounds and / or organic carboxylate compounds to act.

【0018】ポリ乳酸系重合体に対して有機カルボン酸
化合物及び/又は有機カルボン酸塩化合物を作用させる
方法としては、これらの化合物を直接ポリ乳酸系重合物
の成形体に接触させる、溶液にして付着させる、溶液に
して浸漬させる、おがくずやでんぷんなどに溶液を染み
込ませて成形体に接触させるなどの方法を取ることがで
きる。作用させる量はポリ乳酸系重合体100質量部に
対して、有機カルボン酸化合物及び/又は有機カルボン
酸塩化合物5質量部以上が好ましく、10質量部以上が
さらに好ましく、50質量部以上が特に好ましい。作用
させる方法にもよるが、これらの化合物を作用させる量
が5質量部未満では分解速度を高める効果が低く、望ま
しくない。
As a method of allowing an organic carboxylic acid compound and / or an organic carboxylic acid salt compound to act on a polylactic acid-based polymer, these compounds are brought into direct contact with a molded article of a polylactic acid-based polymer, and then a solution is prepared. A method of adhering, dipping into a solution, soaking the solution in sawdust, starch, or the like, and bringing the solution into contact with a molded body can be used. The amount to act is preferably at least 5 parts by mass, more preferably at least 10 parts by mass, particularly preferably at least 50 parts by mass, based on 100 parts by mass of the polylactic acid-based polymer. . Although depending on the method of acting, if the amount of these compounds acting is less than 5 parts by mass, the effect of increasing the decomposition rate is low, which is not desirable.

【0019】本発明において、有機カルボン酸化合物と
は、末端基がカルボン酸である有機化合物であり、アジ
ピン酸、コハク酸、ステアリン酸、トリカルバリル酸、
セバシン酸などの脂肪族カルボン酸、テレフタル酸、イ
ソフタル酸などの芳香族カルボン酸が挙げられる。また
アジピン酸やテレフタル酸などの脂肪族/芳香族ジカル
ボン酸類とエチレングリコールやブタンジオールなどの
脂肪族ジオール類を縮合して得られる生分解性オリゴマ
ーであってもよい。有機カルボン酸塩化合物とはこれら
有機カルボン酸化合物の金属塩であり、中でも特にナト
リウム塩が効果と熱安定性のバランスから望ましい。
In the present invention, the organic carboxylic acid compound is an organic compound whose terminal group is a carboxylic acid, such as adipic acid, succinic acid, stearic acid, tricarballylic acid,
Examples include aliphatic carboxylic acids such as sebacic acid and aromatic carboxylic acids such as terephthalic acid and isophthalic acid. Further, a biodegradable oligomer obtained by condensing an aliphatic / aromatic dicarboxylic acid such as adipic acid or terephthalic acid with an aliphatic diol such as ethylene glycol or butanediol may be used. The organic carboxylate compound is a metal salt of these organic carboxylic acid compounds, and among them, a sodium salt is particularly desirable in view of the balance between the effect and the thermal stability.

【0020】本発明において、ポリ乳酸系重合体として
は、主成分として、ポリ乳酸または乳酸成分を有するも
のであればよく、ポリ乳酸、乳酸又はラクチドと他のヒ
ドロキシカルボン酸、ジカルボン酸、ジオール、環状ラ
クトンとの共重合体、ブレンド体が挙げられる。これら
には、生分解性に影響を与えない範囲で、ウレタン結
合、アミド結合、エーテル結合などが導入されていても
よい。ポリ乳酸のD/L比率は特に限定されず、D体、
L体、DL体及びこれらの混合のいずれでもよい。ポリ
乳酸の数平均分子量は2万以上、30万以下が望まし
い。2万以下では機械的物性に劣り、30万以上では成
形加工が困難となる。
In the present invention, the polylactic acid-based polymer may be any one having polylactic acid or a lactic acid component as a main component, such as polylactic acid, lactic acid or lactide and other hydroxycarboxylic acids, dicarboxylic acids, diols, and the like. Copolymers and blends with cyclic lactones are mentioned. In these, a urethane bond, an amide bond, an ether bond, or the like may be introduced as long as the biodegradability is not affected. The D / L ratio of the polylactic acid is not particularly limited.
Any of L-form, DL-form and a mixture thereof may be used. The number average molecular weight of polylactic acid is desirably from 20,000 to 300,000. If it is less than 20,000, mechanical properties are inferior, and if it is more than 300,000, molding becomes difficult.

【0021】また、ポリ乳酸の分子量を増大させるため
に少量の鎖長延長剤、例えば、ビスオキサゾリン化合
物、ジイソシアネート化合物、カルボジイミド化合物、
エポキシ化合物、酸無水物などが用いられてもよい。こ
れらの添加時期は重合時のどの段階でもよく、重合後の
成形を目的とした溶融混練時に加えてもよい。
In order to increase the molecular weight of polylactic acid, a small amount of a chain extender such as a bisoxazoline compound, a diisocyanate compound, a carbodiimide compound,
Epoxy compounds, acid anhydrides and the like may be used. These additives may be added at any stage during the polymerization, or may be added during melt-kneading for the purpose of molding after the polymerization.

【0022】ポリ乳酸系重合体には、必要に応じて他の
生分解性樹脂、例えば脂肪族ポリエステル系樹脂、脂肪
族/芳香族系ポリエステル系樹脂や天然資源を元にした
生分解性化合物を添加/共重合してもよい。具体的に
は、乳酸、グリコール酸、ヒドロキシ酪酸、ヒドロキシ
カプロン酸などのヒドロキシカルボン酸類、カプロラク
トン、ブチロラクトン、ラクチド、グリコリドなどの環
状ラクトン類、エチレングリコール、ブタンジオール、
シクロヘキサンジメタノール、ビス−ヒドロキシメチル
ベンゼン、トルエンジオールなどのジオール類、コハク
酸、アジピン酸、スベリン酸、セバシン酸、テレフタル
酸、イソフタル酸、ナフタレンジカルボン酸などのジカ
ルボン酸類、環状酸無水物類、オキシラン類、これらの
重合体、ブレンド体及び共重合体などが挙げられる。ま
た、これらにも、生分解性に影響を与えない範囲で、ウ
レタン結合、アミド結合、エーテル結合などを導入する
ことができる。
If necessary, the polylactic acid-based polymer may contain other biodegradable resins, such as aliphatic polyester-based resins, aliphatic / aromatic polyester-based resins, and biodegradable compounds based on natural resources. It may be added / copolymerized. Specifically, lactic acid, glycolic acid, hydroxybutyric acid, hydroxycarboxylic acids such as hydroxycaproic acid, caprolactone, butyrolactone, lactide, cyclic lactones such as glycolide, ethylene glycol, butanediol,
Diols such as cyclohexanedimethanol, bis-hydroxymethylbenzene, and toluenediol; dicarboxylic acids such as succinic acid, adipic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid; cyclic acid anhydrides; oxirane And their polymers, blends and copolymers. In addition, a urethane bond, an amide bond, an ether bond, or the like can be introduced into these as long as the biodegradability is not affected.

【0023】ポリ乳酸系重合体及び他の生分解性樹脂の
重合方法については、特に限定されないが、縮合重合
法、開環重合法などが挙げられる。また、重合時もしく
は重合直後に、他の重合体、モノマー、オリゴマー成分
などの1種以上の副成分を加え、さらに重合度を高める
方法も可能である。
The method of polymerizing the polylactic acid-based polymer and other biodegradable resin is not particularly limited, and examples thereof include a condensation polymerization method and a ring-opening polymerization method. It is also possible to add one or more subcomponents such as another polymer, monomer, or oligomer component during or immediately after the polymerization to further increase the degree of polymerization.

【0024】本発明のポリ乳酸樹脂組成物の柔軟性を制
御するために、可塑剤を使用してもよい。可塑剤として
は、特に限定されないが、本発明のポリ乳酸樹脂組成物
との相溶性に優れたものが好ましく、具体的には脂肪族
多価カルボン酸エステル誘導体、脂肪族多価アルコール
エステル誘導体、脂肪族オキシ酸エステル誘導体、脂肪
族ポリエーテル誘導体、脂肪族ポリエーテル多価カルボ
ン酸エステル誘導体などから選ばれた単一または複数の
混合物が挙げられる。脂肪族多価カルボン酸エステル誘
導体としては、ジメチルアジペート、ジブチルアジペー
ト、ジイソブチルアジペートなど、脂肪族多価アルコー
ルエステル誘導体としては、トリエチレングリコールジ
アセテート、ポリプロピレングリコールジブチレートな
ど、脂肪族オキシ酸エステル誘導体としては、アセチル
リシノール酸メチル、アセチルトリブチルクエン酸な
ど、脂肪族ポリエーテル誘導体としてはポリエチレング
リコール、ポリプロピレングリコール、エチレングリコ
ールとプロピレングリコールないしブチレングリコール
などの共重合ポリアルキレングリコールなど、脂肪族ポ
リエーテル多価カルボン酸エステル誘導体としては、ジ
ブチルジグリコールサクシネート、ジメチルジグリコー
ルサクシネート、ジブチルジグリコールアジペート、ジ
メチルジグリコールアジペートなどが挙げられる。
In order to control the flexibility of the polylactic acid resin composition of the present invention, a plasticizer may be used. The plasticizer is not particularly limited, but preferably has excellent compatibility with the polylactic acid resin composition of the present invention, and specifically, an aliphatic polycarboxylic acid ester derivative, an aliphatic polyhydric alcohol ester derivative, Single or multiple mixtures selected from aliphatic oxyacid ester derivatives, aliphatic polyether derivatives, aliphatic polyether polycarboxylic acid ester derivatives, and the like. As aliphatic polycarboxylic acid ester derivatives, dimethyl adipate, dibutyl adipate, diisobutyl adipate, etc., as aliphatic polyhydric alcohol ester derivatives, triethylene glycol diacetate, polypropylene glycol dibutyrate, etc., as aliphatic oxyacid ester derivatives Are aliphatic polyether derivatives such as methyl acetyl ricinoleate and acetyl tributyl citric acid; and aliphatic polyether derivatives such as polyethylene glycol, polypropylene glycol, and copolymerized polyalkylene glycol such as ethylene glycol and propylene glycol or butylene glycol. Acid ester derivatives include dibutyl diglycol succinate, dimethyl diglycol succinate, dibutyl diglycol succinate. Pies, dimethyl diglycol adipate.

【0025】本発明のポリ乳酸樹脂組成物には、本発明
の効果を阻害しない範囲で滑剤やアンチブロッキング
剤、紫外線防止剤、光安定剤、防曇剤、防霧剤、帯電防
止剤、難燃剤、着色防止剤、酸化防止剤、加水分解防止
剤、充填剤、顔料などの添加剤を単独もしくは併用する
ことができる。滑剤としては特に限定されないが、脂肪
族カルボン酸アミドが好ましい。このような脂肪族カル
ボン酸アミドとしては、ステアリン酸アミド、オレイン
酸アミド、エルカ酸アミド、ベヘニン酸アミドなどが挙
げられる。無機フィラーとしては、特に限定されない
が、、天然又は合成珪酸塩化合物、酸化チタン、硫酸バ
リウム、リン酸カルシウム、炭酸カルシウム、リン酸ソ
ーダなどが好ましい。珪酸塩化合物としては、カオリナ
イト、ハロイサイト、タルク、スメクタイト、バーミキ
ュライト、マイカなどの層状珪酸塩が挙げられる。これ
らの層状珪酸塩は膨潤性であっても非膨潤性であっても
よく、また表面処理がほどこされていてもよい。
The polylactic acid resin composition of the present invention contains a lubricant, an anti-blocking agent, an ultraviolet ray inhibitor, a light stabilizer, an anti-fogging agent, an anti-fog agent, an antistatic agent, as long as the effects of the present invention are not impaired. Additives such as a flame retardant, a coloring inhibitor, an antioxidant, a hydrolysis inhibitor, a filler and a pigment can be used alone or in combination. The lubricant is not particularly limited, but is preferably an aliphatic carboxylic acid amide. Examples of such an aliphatic carboxylic acid amide include stearic acid amide, oleic acid amide, erucic acid amide, and behenic acid amide. The inorganic filler is not particularly limited, but is preferably a natural or synthetic silicate compound, titanium oxide, barium sulfate, calcium phosphate, calcium carbonate, sodium phosphate and the like. Examples of the silicate compound include layered silicates such as kaolinite, halloysite, talc, smectite, vermiculite, and mica. These layered silicates may be swellable or non-swellable, and may be surface-treated.

【0026】[0026]

【作用】本発明においては、ポリ乳酸系重合体99.9
9〜95質量部に対して有機カルボン酸化合物及び/又
は有機カルボン酸塩化合物を0.01〜5質量部を添加
することで、より高速に分解するように分解性を制御さ
れた生分解性樹脂組成物が得られる。これらの有機カル
ボン酸塩及び/又は有機カルボン酸塩化合物を特定量添
加することで、分解の加速効果と成型時の熱安定性を両
立し、なおかつこれまでの分解速度加速方法で見られた
ように機械的物性を低下させたり成型品外観を悪化させ
ることもない。また、保存安定性を特に重視する場合に
は、ポリ乳酸樹脂組成物そのものには有機カルボン酸化
合物及び/又は有機カルボン酸塩化合物は直接添加せ
ず、廃棄処理を行いたい時にこれらの化合物を作用させ
ることによっても分解速度を高めることができる。
In the present invention, the polylactic acid-based polymer 99.9
By adding 0.01 to 5 parts by mass of an organic carboxylic acid compound and / or an organic carboxylate compound to 9 to 95 parts by mass, biodegradability whose degradability is controlled so as to decompose more rapidly. A resin composition is obtained. By adding a specific amount of these organic carboxylate and / or organic carboxylate compound, it is possible to achieve both the effect of accelerating the decomposition and the thermal stability at the time of molding. Also, it does not lower the mechanical properties or deteriorate the appearance of the molded product. When the storage stability is particularly important, the organic carboxylic acid compound and / or the organic carboxylate compound are not directly added to the polylactic acid resin composition itself, and these compounds act when it is desired to perform a disposal treatment. By doing so, the decomposition rate can be increased.

【0027】[0027]

【実施例】次に、本発明を実施例によりさらに具体的に
説明する。なお、実施例及び比較例において用いた原料
及び各物性値の測定方法は次の通りである。
Next, the present invention will be described more specifically with reference to examples. The raw materials used in the examples and comparative examples and methods for measuring respective physical property values are as follows.

【0028】(1)原料 (a)ポリ乳酸:カーギル・ダウ・ポリマーズ社製、D
体=4% (b)可塑剤:アセチルトリブチルクエン酸(ATB
C、協和発酵社製) (c)滑剤:シリカ(富士デビソン社製、サイリア)、
粒径1.6μm (d)有機カルボン酸:アジピン酸(ナカライテスク社
製)、トリカルバリル酸(1,2,3−プロパントリカ
ルボン酸、東京化成工業社製)、ステアリン酸(ナカラ
イテスク社製)、L─ラクチド(ナカライテスク社製) (e)有機カルボン酸塩:ステアリン酸ナトリウム(ナ
カライテスク社製)
(1) Raw material (a) Polylactic acid: D, manufactured by Cargill Dow Polymers
(B) Plasticizer: acetyl tributyl citric acid (ATB)
C, manufactured by Kyowa Hakko) (c) Lubricant: silica (manufactured by Fuji Devison, Cyria),
Particle size: 1.6 μm (d) Organic carboxylic acid: adipic acid (manufactured by Nacalai Tesque), tricarballylic acid (1,2,3-propanetricarboxylic acid, manufactured by Tokyo Kasei Kogyo), stearic acid (manufactured by Nacalai Tesque) , L─lactide (Nacalai Tesque) (e) Organic carboxylate: sodium stearate (Nacalai Tesque)

【0029】(2)測定法 (a)分子量Mn 島津製作所製、LC−VP型GPCを用いて、移動相に
はTHFを使用し、スチレン換算で数平均分子量を測定
した。 (b)COOH基濃度 試料約0.1gを精密に秤量し、20mlの塩化メチレ
ンを使用して室温で試料を溶解し、指示薬にはフェノー
ルフタレインを使用し、0.1N KOH溶液で滴定を
行った。 (c)分子量保持率A 混練機(東洋精機製作所製、ラボプラストミルR−60
(10−150))を用いて、ポリ乳酸樹脂組成物を2
00℃で5分間溶融混練した後、分子量Mnの測定を行
い、Mn(A,t)を求めた。溶融混練前の分子量Mn
(A,0)に対するMn(A,t)の比(Mn(A,
t)/Mn(A,0))を分子量保持率Aとした。 (d)分子量保持率B タバイエスペック社製、恒温恒湿機SH−220を用い
て、フィルム状の試料片を80℃×90% RH環境下
で8時間処理し、分子量Mnの測定を行いMn(B,
t)を求めた。恒温恒湿処理前の分子量Mn(B,0)
に対するMn(B,t)の比(Mn(B,t)/Mn
(B,0))を分子量保持率Bとした。 (e)引張強度 ASTM D882に準じて測定した。 (f)コンポスト処理試験 コンポスト処理試験機を用いて、60℃一定環境下で1
週間後の試料片の状態を目視で観測した。 ○:試料が小片化した。 ×:試料の外観変化が見られなかった。
(2) Measuring method (a) Molecular weight Mn The number average molecular weight was measured in terms of styrene using LC-VP type GPC manufactured by Shimadzu Corporation using THF as a mobile phase. (B) COOH group concentration About 0.1 g of a sample is precisely weighed, the sample is dissolved at room temperature using 20 ml of methylene chloride, and phenolphthalein is used as an indicator, and titration is performed with a 0.1 N KOH solution. went. (C) Molecular weight retention A kneader (Labo Plastmill R-60 manufactured by Toyo Seiki Seisaku-sho, Ltd.)
Using (10-150)), the polylactic acid resin composition was
After melt-kneading at 00 ° C. for 5 minutes, the molecular weight Mn was measured to determine Mn (A, t). Molecular weight Mn before melt kneading
The ratio of Mn (A, t) to (A, 0) (Mn (A,
t) / Mn (A, 0)) was taken as the molecular weight retention A. (D) Molecular Weight Retention B Using a constant temperature and humidity chamber SH-220 manufactured by Tabai Espec Co., a film-shaped sample piece was treated for 8 hours in an environment of 80 ° C. × 90% RH, and the molecular weight Mn was measured. (B,
t) was determined. Molecular weight Mn (B, 0) before constant temperature and humidity treatment
(Mn (B, t) / Mn)
(B, 0)) was taken as the molecular weight retention B. (E) Tensile strength Measured according to ASTM D882. (F) Compost treatment test Using a compost treatment tester, 1
The state of the sample piece after a week was visually observed. :: The sample was fragmented. X: No change in appearance of the sample was observed.

【0030】実施例1 数平均分子量11万のポリ乳酸85質量部、可塑剤とし
てATBC15質量部、滑剤としてシリカ0.2質量
部、有機カルボン酸化合物としてアジピン酸1質量部を
シリンダー内径30mmの二軸押出機(池貝鉄工社製、
PCM─45)を用いて、温度220℃で溶融混練し
た。続いて、ストランド形状に押し出した後、裁断して
ペレットを得た。次いで、このペレットをシリンダー内
径50mmの押出機(L/D=28、一軸押出機)を用
いて、丸ダイ(200mmφ、リップ間隔1mm)よ
り、温度200℃で溶融押出した後、吹き上げ式のイン
フレーション法により、フィルム厚み50μm、織り幅
450mmのインフレーションフィルムを得た。これら
のフィルムは恒温恒湿機で処理を行い、廃棄処理時を想
定した加水分解性を調べた。得られたフィルムの物性値
を表1に示す。
Example 1 85 parts by mass of polylactic acid having a number average molecular weight of 110,000, 15 parts by mass of ATBC as a plasticizer, 0.2 parts by mass of silica as a lubricant, and 1 part by mass of adipic acid as an organic carboxylic acid compound were prepared by using a cylinder having an inner diameter of 30 mm. Screw extruder (Ikegai Iron Works,
Using PCM # 45), the mixture was melt-kneaded at a temperature of 220 ° C. Subsequently, after being extruded into a strand shape, it was cut to obtain a pellet. Next, the pellets are melt-extruded at a temperature of 200 ° C. from a round die (200 mmφ, lip interval 1 mm) using an extruder (L / D = 28, single screw extruder) having a cylinder inner diameter of 50 mm, and then blow-up inflation. By the method, an inflation film having a film thickness of 50 μm and a weave width of 450 mm was obtained. These films were treated with a thermo-hygrostat, and their hydrolytic properties were examined assuming disposal. Table 1 shows the physical property values of the obtained film.

【0031】実施例2〜4、比較例1〜3 有機カルボン酸化合物/有機カルボン酸塩化合物を表1
のように変えた以外は、樹脂、可塑剤、滑剤は実施例1
と同様にしてインフレーションフィルムを得た。これら
のフィルムは恒温恒湿機で処理を行い、廃棄処理時を想
定した加水分解性を調べた。得られたフィルムの物性値
を表1に示す。
Examples 2-4, Comparative Examples 1-3 Organic carboxylic acid compounds / organic carboxylate compounds are shown in Table 1.
Except that the resin, plasticizer and lubricant were changed as in Example 1.
A blown film was obtained in the same manner as described above. These films were treated with a thermo-hygrostat, and their hydrolytic properties were examined assuming disposal. Table 1 shows the physical property values of the obtained film.

【0032】実施例1〜4において、樹脂組成物は、そ
の分子量保持率Aが0.95以上の高い数値を示してい
るため、熱安定性に優れており、成型時の熱によって分
解するなどの悪影響は見られない。さらにこの樹脂から
得られたフィルムは、機械的物性においても、引張強度
に優れた値を示していた。一方で、廃棄処理時には加水
分解が早く進行することが好ましいため、分子量保持率
Bは低い値を示すことが望ましい。実施例1〜4では分
子量保持率Bは0.85以下であり、コンポスト処理に
おいて高い分解性を示していた。比較例1では、有機カ
ルボン酸及び/又は有機カルボン酸塩化合物が添加され
ておらず、分子量保持率Bは1付近の高い数値を示して
おり、コンポスト処理において分解速度が遅いものであ
った。比較例2では過剰量の有機カルボン酸を添加した
結果、樹脂組成物の熱安定性が低下し、得られたフィル
ムの機械的物性(引張強度)が低いものであった。比較
例3では樹脂組成物の熱安定性が良好ではなく、また、
廃棄処理時の加水分解性も比較例1に比べて改善の程度
が少ない。
In Examples 1 to 4, the resin composition has a high value of the molecular weight retention A of 0.95 or more, so that it has excellent thermal stability and is decomposed by heat during molding. No adverse effects were observed. Furthermore, the film obtained from this resin also showed excellent mechanical properties in terms of tensile strength. On the other hand, it is preferable that hydrolysis progresses quickly at the time of disposal treatment, so that the molecular weight retention B is desirably a low value. In Examples 1 to 4, the molecular weight retention B was 0.85 or less, indicating high degradability in the compost treatment. In Comparative Example 1, the organic carboxylic acid and / or the organic carboxylate compound was not added, the molecular weight retention B was a high value near 1, and the decomposition rate was low in the compost treatment. In Comparative Example 2, as a result of adding an excessive amount of the organic carboxylic acid, the thermal stability of the resin composition was lowered, and the mechanical properties (tensile strength) of the obtained film were low. In Comparative Example 3, the thermal stability of the resin composition was not good, and
The degree of improvement in the hydrolyzability at the time of disposal treatment is smaller than that of Comparative Example 1.

【0033】実施例5 比較例1の試料片(分子量保持率Bは1.05)0.1
gを、濃度5%のトリカルバリル酸水溶液1ml(樹脂
100質量部に対して有機カルボン酸50質量部に相
当)に浸漬し、室温で3分間放置後に引き上げてそのま
ま恒温恒湿機で処理を行った。その結果、試料片の分子
量保持率Bは1.05から0.44に低下し、コンポス
ト処理において分解性の改善がみられた。
Example 5 Sample of Comparative Example 1 (molecular weight retention B is 1.05) 0.1
g was immersed in 1 ml of a 5% aqueous solution of tricarballylic acid (corresponding to 50 parts by mass of organic carboxylic acid with respect to 100 parts by mass of the resin), left at room temperature for 3 minutes, pulled up, and then treated with a thermo-hygrostat. Was. As a result, the molecular weight retention B of the sample dropped from 1.05 to 0.44, and improvement in the decomposability in the compost treatment was observed.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明によれば、廃棄処理時には従来の
ポリ乳酸樹脂組成物よりも改善した分解性が得られると
ともに、成型時の熱安定性や外観、さらにはコストなど
は現状を維持できる実用性に優れた樹脂組成物である。
また、この樹脂組成物は生分解性であるため、野菜包
装、食品包装、新聞・雑誌包装などの包装分野、ゴミ
袋、コンポストバッグ、肥料袋、米袋などの袋類、施設
園芸ハウスの外張り用・内張り用、トンネルハウス用、
マルチ栽培用フィルムなどの農業用フィルム、果実や野
菜類の吊り紐、結束用の紐、梱包バンド、その他工業用
途に適用することが可能となり、ゴミ、廃棄の問題が無
い、地球に優しい実用的な樹脂組成物として極めて有用
である。
According to the present invention, at the time of disposal, an improved decomposability can be obtained as compared with the conventional polylactic acid resin composition, and the heat stability, appearance, and cost during molding can be maintained. It is a resin composition excellent in practicality.
In addition, since this resin composition is biodegradable, it can be used in packaging fields such as vegetable packaging, food packaging, newspaper / magazine packaging, garbage bags, compost bags, fertilizer bags, rice bags and other bags, and lining for greenhouses. For lining, for tunnel house,
It can be applied to agricultural films such as multi-cultivation films, hanging strings for fruits and vegetables, bundling strings, packing bands, and other industrial uses. It is extremely useful as a simple resin composition.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 弘 京都府宇治市宇治樋ノ尻31−3 ユニチカ 株式会社宇治プラスチック工場内 Fターム(参考) 4F301 AA25 CA09 CA23 4J002 CF181 EF056 EF066 EF116 EG017 EG027 EG057 EG107 FD010 FD020 FD170 GA01 GG02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Nishimura 31-3 Uji Hinojiri, Uji City, Kyoto Prefecture Unitika Uji Plastic Factory F-term (reference) 4F301 AA25 CA09 CA23 4J002 CF181 EF056 EF066 EF116 EG017 EG027 EG057 EG107 FD010 FD020 FD170 GA01 GG02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリ乳酸系重合体99.99〜95質量
部に対して、有機カルボン酸化合物及び/又は有機カル
ボン酸塩化合物を0.01〜5質量部含むポリ乳酸樹脂
組成物。
1. A polylactic acid resin composition comprising 0.01 to 5 parts by mass of an organic carboxylic acid compound and / or an organic carboxylate compound per 99.99 to 95 parts by mass of a polylactic acid-based polymer.
【請求項2】 200℃×5分間処理における分子量保
持率Aが下記式を満たす請求項1記載のポリ乳酸樹脂
組成物。 (分子量保持率A):Mn(A,t)/Mn(A,0)≧0.90 ただし、Mn(A,t)は200℃×5分間処理後の数
平均分子量を表し、Mn(A,0)は処理前の数平均分
子量を表す。
2. The polylactic acid resin composition according to claim 1, wherein the molecular weight retention A in the treatment at 200 ° C. for 5 minutes satisfies the following formula. (Molecular weight retention A): Mn (A, t) / Mn (A, 0) ≧ 0.90 where Mn (A, t) represents a number average molecular weight after treatment at 200 ° C. × 5 minutes, and Mn (A , 0) represents the number average molecular weight before treatment.
【請求項3】 80℃×90%RH環境下で8時間処理
後の分子量保持率Bが下記式を満たす請求項1又は2
記載のポリ乳酸樹脂組成物。 (分子量保持率B):Mn(B,t)/Mn(B,0)≦0.85 ただし、Mn(B,t)は80℃×90%RH環境下で
8時間処理後の数平均分子量を表し、Mn(B,0)は
処理前の数平均分子量を表す。
3. The molecular weight retention ratio B after treatment for 8 hours in an environment of 80 ° C. × 90% RH satisfies the following expression.
The polylactic acid resin composition according to the above. (Molecular weight retention B): Mn (B, t) / Mn (B, 0) ≦ 0.85 where Mn (B, t) is the number average molecular weight after 8 hours of treatment at 80 ° C. × 90% RH. And Mn (B, 0) represents the number average molecular weight before the treatment.
【請求項4】 請求項1〜3のいずれかに記載のポリ乳
酸樹脂組成物を用いた包装用資材。
4. A packaging material using the polylactic acid resin composition according to claim 1.
【請求項5】 請求項1〜3のいずれかに記載のポリ乳
酸樹脂組成物を用いた農業用資材。
An agricultural material using the polylactic acid resin composition according to any one of claims 1 to 3.
【請求項6】 ポリ乳酸系重合体に対して、有機カルボ
ン酸化合物及び/又は有機カルボン酸塩化合物を作用さ
せる、生分解性樹脂の分解処理方法。
6. A method for decomposing a biodegradable resin, wherein an organic carboxylic acid compound and / or an organic carboxylate compound is allowed to act on a polylactic acid-based polymer.
JP2001056964A 2001-03-01 2001-03-01 Polylactate resin composition with controlled degradability and method for degradation Pending JP2002256142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001056964A JP2002256142A (en) 2001-03-01 2001-03-01 Polylactate resin composition with controlled degradability and method for degradation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056964A JP2002256142A (en) 2001-03-01 2001-03-01 Polylactate resin composition with controlled degradability and method for degradation

Publications (1)

Publication Number Publication Date
JP2002256142A true JP2002256142A (en) 2002-09-11

Family

ID=18916911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056964A Pending JP2002256142A (en) 2001-03-01 2001-03-01 Polylactate resin composition with controlled degradability and method for degradation

Country Status (1)

Country Link
JP (1) JP2002256142A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190026A (en) * 2002-11-29 2004-07-08 Toray Ind Inc Resin composition and molded article made thereof
JP2006193739A (en) * 2004-12-16 2006-07-27 Toho Chem Ind Co Ltd Modifier for biodegradable resin
KR101027163B1 (en) 2009-12-18 2011-04-05 주식회사 엘지화학 Polylactide resin, preparation method thereof and polylactide resin composition comprising the same
WO2011162534A3 (en) * 2010-06-21 2012-05-03 주식회사 엘지화학 Outstandingly heat resistant polylactide resin and a production method for the same
JP2013504634A (en) * 2009-09-10 2013-02-07 ガラクティック・エス.エー. Stereospecific recycling method for mixtures of PLA-based polymers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827363A (en) * 1994-07-12 1996-01-30 Mitsui Toatsu Chem Inc Lactic acid polymer composition
JPH1036652A (en) * 1996-07-18 1998-02-10 Shimadzu Corp Polylactic acid composition
JP2000117920A (en) * 1998-08-11 2000-04-25 Dainippon Ink & Chem Inc Lactic acid type polymer laminate and molded article
JP2000143781A (en) * 1998-11-13 2000-05-26 Daicel Chem Ind Ltd Aliphatic polyester and its production
JP2001049097A (en) * 1999-08-10 2001-02-20 Mitsui Chemicals Inc Aliphatic polyester resin composition and molding form

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827363A (en) * 1994-07-12 1996-01-30 Mitsui Toatsu Chem Inc Lactic acid polymer composition
JPH1036652A (en) * 1996-07-18 1998-02-10 Shimadzu Corp Polylactic acid composition
JP2000117920A (en) * 1998-08-11 2000-04-25 Dainippon Ink & Chem Inc Lactic acid type polymer laminate and molded article
JP2000143781A (en) * 1998-11-13 2000-05-26 Daicel Chem Ind Ltd Aliphatic polyester and its production
JP2001049097A (en) * 1999-08-10 2001-02-20 Mitsui Chemicals Inc Aliphatic polyester resin composition and molding form

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190026A (en) * 2002-11-29 2004-07-08 Toray Ind Inc Resin composition and molded article made thereof
JP2006193739A (en) * 2004-12-16 2006-07-27 Toho Chem Ind Co Ltd Modifier for biodegradable resin
JP2013504634A (en) * 2009-09-10 2013-02-07 ガラクティック・エス.エー. Stereospecific recycling method for mixtures of PLA-based polymers
KR101027163B1 (en) 2009-12-18 2011-04-05 주식회사 엘지화학 Polylactide resin, preparation method thereof and polylactide resin composition comprising the same
WO2011162534A3 (en) * 2010-06-21 2012-05-03 주식회사 엘지화학 Outstandingly heat resistant polylactide resin and a production method for the same
US8722845B2 (en) 2010-06-21 2014-05-13 Lg Chem, Ltd. Polylactide resin having excellent heat resistance and preparation method thereof
US9115248B2 (en) 2010-06-21 2015-08-25 Lg Chem, Ltd. Polylactide resin having excellent heat resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
Zhong et al. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review
CN110753720B (en) Biodegradable three-layer film
US8026301B2 (en) Biodegradable polymer composition
JP3514736B2 (en) Resin composition, molded article and method for producing the same
US20050244606A1 (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
WO1999045067A1 (en) Polylactic acid composition and film thereof
JPH04335060A (en) Degradable thermoplastic polymer composition
TWI402309B (en) Biodegradable resin composition, and films or sheets made of said composition
KR20140059778A (en) Film
JPH11116788A (en) Polylactic acid resin composition
JP2000273207A (en) Polylactic acid-based film and its production
JP2003147177A (en) Biodegradable sheet, fabricated article using sheet and process for fabricated sheet
JP5007623B2 (en) Freshness preservation material
JPH11241008A (en) Polylactate resin composition
JP4180606B2 (en) Biodegradable sheet, molded body using this sheet, and molding method thereof
JP3984440B2 (en) Resin composition, film and disposal method
JP2002256142A (en) Polylactate resin composition with controlled degradability and method for degradation
JPH11241009A (en) Polylactate resin composition
JP3178692B2 (en) Food packaging film
JP4493993B2 (en) Biodegradable polyester resin composition, molded article and agricultural multi-film
JP2003335933A (en) Injection molded product
US20220325090A1 (en) Composites and uses thereof
JP2003231798A (en) Lactic acid resin composition and sheet product of the same, and bag product
JP2003012834A (en) Biodegradable flexible film
JP2022538354A (en) Biodegradable VCI packaging composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412