JP2002255682A - Apparatus for producing semiconductor single crystal and method of producing semiconductor single crystal using the same - Google Patents

Apparatus for producing semiconductor single crystal and method of producing semiconductor single crystal using the same

Info

Publication number
JP2002255682A
JP2002255682A JP2001054948A JP2001054948A JP2002255682A JP 2002255682 A JP2002255682 A JP 2002255682A JP 2001054948 A JP2001054948 A JP 2001054948A JP 2001054948 A JP2001054948 A JP 2001054948A JP 2002255682 A JP2002255682 A JP 2002255682A
Authority
JP
Japan
Prior art keywords
single crystal
cooling fluid
cylinder
semiconductor single
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001054948A
Other languages
Japanese (ja)
Other versions
JP3952356B2 (en
Inventor
Koji Mizuishi
孝司 水石
Koji Kitagawa
幸司 北川
Ryoji Hoshi
亮二 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001054948A priority Critical patent/JP3952356B2/en
Publication of JP2002255682A publication Critical patent/JP2002255682A/en
Application granted granted Critical
Publication of JP3952356B2 publication Critical patent/JP3952356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for producing a semiconductor single crystal, having uniform quality over whole crystal and having small dispersion by forming a uniform and stable cooling atmosphere. SOLUTION: In the apparatus for producing the semiconductor single crystal, a forced cooling tube 11 for circulating a cooling fluid W is arranged above a raw melt so as to surround the semiconductor single crystal 3 being pulled from the raw melt stared in a crucible, and the single crystal is grown by a Czochralski method while removing radiant heat from the semiconductor single crystal 3 by the forced cooling tube 11. When the cooling fluid W is circulated through the forced cooling tube 11, the cooling fluid W is introduced to the lower part, close to the raw melt 4, of the forced cooling tube 11, and then circulated through the tube from the lower part of the tube toward the upper end part of the tube while being urged to flow in the peripheral direction by a peripheral direction circulation correction part 33 provided inside the forced cooling tube 11 in circulating the cooling fluid W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、チョクラルスキー
法(以下、CZ法と称する。)により半導体単結晶を育
成するための単結晶製造装置及びそれを用いた半導体単
結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing apparatus for growing a semiconductor single crystal by the Czochralski method (hereinafter, referred to as CZ method) and a method for manufacturing a semiconductor single crystal using the same.

【0002】[0002]

【従来の技術】従来、CZ法により育成されたシリコン
単結晶はシリコン半導体ウェーハに加工され、半導体素
子の基板として数多く使用されている。CZ法によるシ
リコン単結晶の製造においては、特開平3−97688
号公報や特開昭57−40119号公報等に示されてい
るように、ルツボに収容された原料融液から引き上げら
れたシリコン単結晶の輻射熱を除去し、成長速度の高速
化を図るため、原料融液の直上に育成した単結晶を取り
囲むように、円筒状あるいは円錐状の部材を配設して、
シリコン単結晶の引上げを行なう方法が多く用いられて
いる。
2. Description of the Related Art Conventionally, a silicon single crystal grown by the CZ method has been processed into a silicon semiconductor wafer and used in many cases as a substrate of a semiconductor device. In the production of a silicon single crystal by the CZ method, see Japanese Patent Application Laid-Open No. 3-97688.
As disclosed in Japanese Unexamined Patent Application Publication No. 57-40119 and Japanese Patent Application Laid-Open No. 57-40119, in order to remove the radiant heat of the silicon single crystal pulled up from the raw material melt contained in the crucible and to increase the growth rate, A cylindrical or conical member is arranged so as to surround the single crystal grown directly above the raw material melt,
A method of pulling a silicon single crystal is often used.

【0003】特に、育成結晶を囲繞するように配置され
る円筒形状を有する冷却筒は、融液面上方から下流され
る不活性ガスの整流作用が大きく、原料融液からの蒸発
物を効率よく炉外へと排出し、蒸発物等による育成結晶
の有転位化を防止できることから、シリコン単結晶の製
造装置では広く採用されている装置構成である。そし
て、これら円筒形状をした冷却筒や円錐形状の遮熱スク
リーンは、1400℃以上にもなる高温の原料融液の直
上に配置され、育成結晶からの輻射熱を効率よく吸収
し、さらには原料融液を加熱する加熱ヒータや原料融液
からの輻射熱を遮る必要があることから、その多くが黒
鉛材や熱伝導率の高いステンレスやモリブデンといった
高融点金属で作られているのが一般的である。
[0003] In particular, a cooling cylinder having a cylindrical shape arranged so as to surround a grown crystal has a large rectifying effect on the inert gas downstream from above the melt surface, and efficiently removes evaporates from the raw material melt. Since the crystal is discharged outside the furnace and dislocations of the grown crystal due to evaporates or the like can be prevented, the apparatus configuration is widely used in a silicon single crystal manufacturing apparatus. These cylindrical cooling cylinders and conical heat shield screens are arranged directly above the high-temperature raw material melt at 1400 ° C. or higher, efficiently absorbing radiant heat from the grown crystal, and Since it is necessary to block the radiant heat from the heater and the raw material melt to heat the liquid, most of them are generally made of graphite materials and high melting metals such as stainless steel and molybdenum with high thermal conductivity. .

【0004】しかし、例えば特開平3−97688号公
報に示されているような黒鉛材で作られた冷却筒では、
引き上げた単結晶を取り囲むように冷却筒を配置したこ
とにより、育成結晶の冷却効果は高まるものの、単結晶
からの輻射熱を積極的に吸収するものではないために、
結晶の成長速度を高めるには自ずと限界があった。特
に、直径が200mmを超えるような大型のシリコン単
結晶を育成する場合には、育成結晶そのものの熱容量も
大きくなることから、より効率の高い冷却方法が求めら
れている。
However, for example, in a cooling cylinder made of a graphite material as disclosed in JP-A-3-97688,
By arranging the cooling cylinder so as to surround the pulled single crystal, the cooling effect of the grown crystal is increased, but because it does not actively absorb the radiant heat from the single crystal,
There was naturally a limit to increasing the crystal growth rate. In particular, when growing a large silicon single crystal having a diameter of more than 200 mm, the heat capacity of the grown crystal itself becomes large, so a more efficient cooling method is required.

【0005】そこで、最近ではこの問題を解決するため
の一つの方法として、特開昭61−68389号公報や
特開平4−317491号公報、或は特願平12−21
241号に示されるような、上述の冷却筒や遮熱スクリ
ーンに水等の冷却流体を流通し、積極的に育成結晶から
もたらされる輻射熱を吸収して、育成炉外部へと熱を移
送することにより、単結晶の冷却効率を可能な限り高め
た強制冷却筒を備えたシリコン単結晶の製造装置も開発
されてきている。
Therefore, recently, as one method for solving this problem, Japanese Patent Application Laid-Open Nos. 61-68389 and 4-317149, or Japanese Patent Application No. 12-21 is disclosed.
As shown in No. 241, a cooling fluid such as water is circulated through the above-described cooling cylinder or heat shielding screen to actively absorb radiant heat generated from the grown crystal and transfer heat to the outside of the growing furnace. Accordingly, an apparatus for producing a silicon single crystal having a forced cooling cylinder in which the cooling efficiency of the single crystal is increased as much as possible has been developed.

【0006】[0006]

【発明が解決しようとする課題】一般に、上述した冷却
流体を流通し育成結晶からの輻射熱を炉外へと移送する
冷却機構を備えた強制冷却筒では、冷却流体を流通させ
る経路は強制冷却筒の壁を二重構造として隙間を作り、
その隙間に冷却流体を流すジャケット方式のものと、強
制冷却筒の壁にシームレスパイプ等を溶接して、パイプ
に冷却流体を流通することによって強制冷却筒を冷却す
る方法が良く知られている。
In general, in a forced cooling cylinder provided with a cooling mechanism for flowing the cooling fluid and transferring the radiant heat from the grown crystal to the outside of the furnace, the path for flowing the cooling fluid is generally a forced cooling cylinder. Make a gap with the wall of the double structure,
A well-known jacket type in which a cooling fluid flows through the gap, and a method of cooling a forced cooling cylinder by welding a seamless pipe or the like to the wall of the forced cooling cylinder and flowing the cooling fluid through the pipe are well known.

【0007】しかし、冷却筒壁を二重構造としたジャケ
ット方式のものでは、冷却流体を強制冷却筒に流通させ
る際に、冷却筒内で冷却流体のショートカットが起こり
やすく、強制冷却筒の高温となる部位で冷却流体に滞留
が生じ、部分的に高温となる場所ができやすくなる問題
がある。これは、単結晶の冷却効率を悪化させ、また、
強制冷却筒の過昇温による損傷などにもつながる。
However, in the case of the jacket type having the cooling cylinder wall having a double structure, when the cooling fluid is allowed to flow through the forced cooling cylinder, a short-cut of the cooling fluid easily occurs in the cooling cylinder, and the high temperature of the forced cooling cylinder is reduced. There is a problem in that the cooling fluid stays at a certain part, and a part where the temperature becomes high is easily formed. This deteriorates the cooling efficiency of the single crystal, and
It also leads to damage due to overheating of the forced cooling cylinder.

【0008】一方、パイプ方式の冷却構造のものでは、
強制冷却筒の冷却パイプを溶接した部分とそうでない部
分に温度ムラができやすくなり、強制冷却筒全体に渡っ
て均一な冷却効果を得ることが難しい等の問題もある。
また、冷却パイプから接合部への熱伝導が関与するため
ジャケット方式ほどの冷却効率は期待できず、冷却効果
の不足やムラ等を生じやすい問題がある。
On the other hand, in the case of a pipe-type cooling structure,
There is also a problem that temperature unevenness tends to occur between a portion where the cooling pipe of the forced cooling cylinder is welded and a portion where the cooling pipe is not welded, and it is difficult to obtain a uniform cooling effect over the entire forced cooling cylinder.
In addition, since heat conduction from the cooling pipe to the joint is involved, cooling efficiency as high as that of the jacket method cannot be expected, and there is a problem that the cooling effect tends to be insufficient or uneven.

【0009】本発明の課題は、育成される半導体単結晶
をムラなく高い効率で冷却できるようにし、半導体単結
晶の生産性を高めると同時に、均一で安定した冷却雰囲
気を形成することにより、結晶全体に渡って品質の安定
したバラツキの少ない半導体単結晶を製造できる装置及
びそれを用いた半導体単結晶の製造方法を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor single crystal to be grown that can be cooled with high efficiency without unevenness, to increase the productivity of the semiconductor single crystal, and to form a uniform and stable cooling atmosphere. An object of the present invention is to provide an apparatus capable of manufacturing a semiconductor single crystal having stable quality and a small variation over the whole, and a method of manufacturing a semiconductor single crystal using the same.

【0010】[0010]

【課題を解決するための手段及び作用・効果】上記の課
題を解決するために、本発明の装置は、原料融液の上方
において、ルツボに収容した原料融液から引き上げられ
る半導体単結晶を取り囲む形で、冷却流体を流通させる
強制冷却筒を配置し、強制冷却筒により引き上げた半導
体単結晶からの輻射熱を除去しつつチョクラルスキー法
により単結晶を育成する半導体単結晶製造装置におい
て、強制冷却筒に対し冷却流体を流通する際に、冷却流
体を原料融液に近い強制冷却筒の下端部へ導き、その
後、該強制冷却筒内に設けられた周方向流通矯正部によ
り、筒周方向の流れを促しつつ筒下端部から上端に向け
て冷却流体を流通させるようにしたことを特徴とする。
In order to solve the above-mentioned problems, an apparatus of the present invention surrounds a semiconductor single crystal pulled from a raw material melt contained in a crucible above a raw material melt. In a semiconductor single crystal manufacturing apparatus that forms a single crystal by the Czochralski method while removing a radiant heat from a semiconductor single crystal pulled up by the forced cooling cylinder and arranging a forced cooling cylinder for flowing a cooling fluid in the form, When the cooling fluid flows through the cylinder, the cooling fluid is guided to the lower end portion of the forced cooling cylinder close to the raw material melt, and thereafter, by a circumferential flow correcting portion provided in the forced cooling cylinder, the circumferential direction of the cylinder is reduced. The cooling fluid is circulated from the lower end of the cylinder to the upper end while promoting the flow.

【0011】また、本発明の半導体単結晶の製造方法
は、上記の装置を用い、強制冷却筒により引き上げた半
導体単結晶からの輻射熱を除去しつつチョクラルスキー
法により単結晶を育成することを特徴とする。
Further, a method of manufacturing a semiconductor single crystal according to the present invention comprises growing a single crystal by a Czochralski method while removing radiant heat from a semiconductor single crystal pulled up by a forced cooling cylinder using the above apparatus. Features.

【0012】強制冷却筒に冷却水等の冷却流体を流通さ
せる際に、水の滞留部分が生じると、冷却水が滞留して
いる部分で高温となって強制冷却筒を傷めたり、冷却筒
の温度分布にむらが出て均等な結晶冷却が困難となり、
安定した品質並びに高速で単結晶を引き上げるのが難し
くなったりする。そこで、本発明においては、強制冷却
筒内に設けられた周方向流通矯正部により、筒周方向の
流れを促しつつ筒下端部から上端に向けて冷却流体を流
通させるようにしたので、強制冷却筒の周方向及び軸線
方向の双方において冷却流体を均一に流通させることが
可能となり、ひいては冷却流体の滞留等による強制冷却
筒の過昇温や冷却効率低下を効果的に防止ないし抑制で
きる。また、強制冷却筒の下端側から冷却流体が流通さ
れることから、融液から引き上げられる単結晶の、より
高温となる下側部分に、より低温の(つまり冷却による
熱吸収の進んでいない)冷却流体が供給されるため冷却
効率を高くすることができる。また、単結晶の上側部分
には、下側部分の冷却によりある程度温上昇した冷却流
体が供給されるので、引き上げられる単結晶の軸線方向
の温度勾配が過度に急となることを防止することができ
る。周方向流通矯正部は、冷却流体を筒下端部から上端
に向けてらせん状の経路に沿って導くものとして設けて
おくと、上記の効果を更に高めることができる。
When a cooling fluid such as cooling water is allowed to flow through the forced cooling cylinder, if a water stagnation portion is formed, the temperature of the portion where the cooling water is stagnated becomes high and the forced cooling cylinder is damaged, The temperature distribution becomes uneven and uniform crystal cooling becomes difficult,
It may be difficult to pull a single crystal at a stable quality and at a high speed. Therefore, in the present invention, the cooling fluid is circulated from the lower end to the upper end of the cylinder while promoting the flow in the cylinder circumferential direction by the circumferential flow correcting portion provided in the forced cooling cylinder. The cooling fluid can be uniformly circulated in both the circumferential direction and the axial direction of the cylinder, so that excessive heating and forced cooling of the forced cooling cylinder due to stagnation of the cooling fluid or the like can be effectively prevented or suppressed. Further, since the cooling fluid flows from the lower end side of the forced cooling cylinder, the lower part of the single crystal pulled up from the melt, which becomes higher in temperature, has a lower temperature (that is, heat absorption by cooling has not progressed). Since the cooling fluid is supplied, the cooling efficiency can be increased. Further, since the cooling fluid whose temperature has been raised to some extent by the cooling of the lower portion is supplied to the upper portion of the single crystal, it is possible to prevent the temperature gradient in the axial direction of the single crystal being pulled from becoming excessively steep. it can. The circumferential flow straightening section can further enhance the above-described effect by providing the cooling fluid as a guide that guides the cooling fluid from the lower end of the cylinder to the upper end thereof along a spiral path.

【0013】強制冷却筒は、内筒部材と外筒部材との間
に環状の冷却流体流通隙間を形成し、該流体流通隙間に
連通する冷却流体入口及び冷却流体出口とを設けたジャ
ケット構造を有するものとして構成できる。ジャケット
構造の強制冷却筒は、内筒部材の全面に冷却流体を接触
させることができるため、冷却効率が高い反面、ジャケ
ット内の冷却流体流通隙間において、冷却流体の短絡
(ショートカット)が生じやすくなり、冷却流体の滞留
が特に発生しやすかった。そこで、本発明ではジャケッ
ト構造を採用する場合、周方向流通矯正部を、筒下端部
から上端に向けての冷却流体の流通を許容しつつ、筒軸
線と交差する周方向の仕切り面により冷却流体流通隙間
を仕切る仕切り壁を含むものとして構成する。これによ
り、冷却流体のショートカットひいては冷却流体滞留が
極めて生じ難くなり、冷却ムラの防止及び冷却効率のさ
らなる向上を図ることができる。この場合、ジャケット
構造を有する強制冷却筒の仕切り壁が、冷却流体流通隙
間をらせん状の流通経路に仕切る形態に設けられている
と、効果を一層高めることができる。
The forced cooling cylinder has a jacket structure in which an annular cooling fluid circulation gap is formed between the inner cylinder member and the outer cylinder member, and a cooling fluid inlet and a cooling fluid outlet communicating with the fluid circulation gap are provided. It can be configured as having. The forced cooling cylinder having the jacket structure allows the cooling fluid to come into contact with the entire surface of the inner cylinder member, so that the cooling efficiency is high, but a short circuit (shortcut) of the cooling fluid easily occurs in the cooling fluid circulation gap in the jacket. In particular, stagnation of the cooling fluid was particularly likely to occur. Therefore, in the case where the jacket structure is adopted in the present invention, the circumferential flow correcting portion is provided with a cooling fluid by a circumferential partition surface intersecting with the cylinder axis while allowing the cooling fluid to flow from the lower end to the upper end of the cylinder. It is configured to include a partition wall that partitions the circulation gap. As a result, the short-circuit of the cooling fluid, and furthermore, the stagnation of the cooling fluid is extremely unlikely to occur, and it is possible to prevent cooling unevenness and further improve the cooling efficiency. In this case, if the partition wall of the forced cooling cylinder having the jacket structure is provided in a form that partitions the cooling fluid flow gap into a spiral flow path, the effect can be further enhanced.

【0014】次に、強制冷却筒の各構成部材を接合する
溶接部は、原料融液面並びに原料融液より引き上げられ
た半導体単結晶と対向する面に設けないことが望まし
い。冷却筒を作る際に、冷却筒の構成部材を溶接により
接合するが、この溶接部は単結晶や加熱ヒータ等からの
高温の熱輻射に曝されると劣化しやすくなり、延いては
強制冷却筒の損傷にもつながる。しかしながら、溶接部
を原料融液面並びに原料融液より引き上げられた半導体
単結晶と対向する面に設けないようにすることにより、
例えば、ジャケット構造の冷却筒で、全ての溶接部を冷
却流体流通隙間側に生ずるように構成することで、上記
の不具合を効果的に防止できる。
Next, it is desirable that the welded portion for joining the components of the forced cooling cylinder should not be provided on the surface of the raw material melt and on the surface facing the semiconductor single crystal pulled up from the raw material melt. When making a cooling cylinder, the components of the cooling cylinder are joined by welding, but this welded part tends to deteriorate when exposed to high-temperature heat radiation from a single crystal or a heater, etc. It can also lead to tube damage. However, by not providing the welded portion on the surface of the raw material melt and the surface facing the semiconductor single crystal pulled up from the raw material melt,
For example, the above-described problem can be effectively prevented by configuring the cooling cylinder having the jacket structure so that all the welded portions are formed on the side of the cooling fluid flow gap.

【0015】例えば、従来、原料融液面近くでは140
0℃以上もの高温に曝されるため冷却筒を配置するのは
難しく、原料融液面近くの単結晶の高温部を効果的に冷
却するのは困難なものとみなされていたので、強制冷却
筒の配置位置にも制約があった。しかし、本構造の採用
により該配置位置の自由度が増し、温度分布調整のため
の炉内レイアウト改善やコンパクト化なども容易に行な
うことができる。具体的には、高温に曝される面、例え
ば熱輻射により500℃以上に昇温することが見込まれ
る面に溶接部を設けないことで、強制冷却筒の耐久性と
信頼性の向上を図ることができる。また、炉内のより高
温部分(原料融液面に更に近い位置)に、強制冷却筒を
配置(延長)することができる。これによって、単結晶
からの輻射熱の除去効果が高まる。また、強制冷却筒の
内面(結晶と対向する面に溶接部を持たないので、内表
面の凹凸が無くなり不活性ガスの整流作用が妨げられな
くなる利点も生ずる。なお、原料融液面並びに原料融液
より引き上げられた半導体単結晶と位置的には対向して
いても、十分遠方にあるため上記温度以上に昇温する懸
念が生じない部位には、本発明の主旨において当然、溶
接部が設けられることを妨げるものではない。従って、
本明細書では、このような部位は、請求項でいう「原料
融液面並びに原料融液より引き上げられた半導体単結晶
と対向する面」に属するものとはみなさない。
[0015] For example, conventionally, 140 mm is near the surface of the raw material melt.
It was difficult to arrange a cooling cylinder because it was exposed to a high temperature of 0 ° C or more, and it was considered that it was difficult to effectively cool the high temperature portion of the single crystal near the raw material melt surface. There were also restrictions on the position of the cylinder. However, by adopting this structure, the degree of freedom of the arrangement position is increased, and it is possible to easily improve the furnace layout for adjusting the temperature distribution and make the furnace compact. Specifically, by not providing a welded portion on a surface exposed to a high temperature, for example, a surface expected to be heated to 500 ° C. or more by thermal radiation, the durability and reliability of the forced cooling cylinder are improved. be able to. In addition, a forced cooling cylinder can be disposed (extended) at a higher temperature portion (position closer to the surface of the raw material melt) in the furnace. This enhances the effect of removing radiant heat from the single crystal. Also, since there is no welded portion on the inner surface of the forced cooling cylinder (the surface facing the crystal, there is an advantage that the unevenness of the inner surface is eliminated and the rectifying action of the inert gas is not hindered. Even if the semiconductor single crystal pulled up from the liquid is physically opposed to the semiconductor single crystal, a welded portion is naturally provided in a portion where there is no concern that the temperature rises above the temperature because it is sufficiently far away in the spirit of the present invention. It does not prevent you from being
In the present specification, such a portion is not considered to belong to the “surface of the raw material melt and the surface facing the semiconductor single crystal pulled from the raw material melt” in the claims.

【0016】また、強制冷却筒内部を流通する冷却流体
の温度を測定するために、該強制冷却筒の内部に1箇所
以上、温度センサを取り付けることができる。これによ
って強制冷却筒の内部温度をモニタでき、過昇温等の発
生を早期に発見できるようになる。この場合、温度セン
サは、融液に最も近く、過昇温等の特に生じやすい、強
制冷却筒の下端部を流れる冷却流体の温度を測定する位
置に少なくとも取り付けされていることが望ましい。
Further, in order to measure the temperature of the cooling fluid flowing inside the forced cooling cylinder, one or more temperature sensors can be mounted inside the forced cooling cylinder. As a result, the internal temperature of the forced cooling cylinder can be monitored, and the occurrence of excessive temperature rise or the like can be detected at an early stage. In this case, it is desirable that the temperature sensor be installed at least at a position closest to the melt and at which the temperature of the cooling fluid flowing through the lower end of the forced cooling cylinder, which is particularly likely to cause excessive temperature rise, is measured.

【0017】また、さらに進んでは、強制冷却筒に流通
する冷却流体の温度を温度センサにより測定するととも
に、冷却流体の温度が所定の温度となるように該冷却流
体の流通量及び/又は(例えばヒータ等により)温度を
調整して単結晶を育成することも可能である。例えば温
度センサによる測定により冷却流体の異常昇温が認めら
れた場合は、冷却流体の流通量を増加させて冷却能力を
増強し、正常な温度を維持することが可能となる。ま
た、冷却流体の流通量及び/又は温度調整により、より
安定した冷却雰囲気を形成することができ、より品質の
揃った単結晶の育成が可能となる。
Further, further, the temperature of the cooling fluid flowing through the forced cooling cylinder is measured by a temperature sensor, and the flow rate of the cooling fluid and / or (for example, It is also possible to grow the single crystal by adjusting the temperature (with a heater or the like). For example, when abnormal temperature rise of the cooling fluid is recognized by the measurement with the temperature sensor, the cooling capacity can be increased by increasing the flow rate of the cooling fluid, and the normal temperature can be maintained. Further, by adjusting the flow rate and / or temperature of the cooling fluid, a more stable cooling atmosphere can be formed, and a single crystal with more uniform quality can be grown.

【0018】[0018]

【発明の実施の形態】以下に、本発明の実施の形態を、
CZ法によるシリコン半導体単結晶製造に適用した場合
を例にとり、図面を参照しながら説明する。なお、本発
明はこれらシリコン単結晶の成長のみに限定されるもの
ではなく、例えば、本発明の装置は化合物半導体等の他
の単結晶育成においても利用可能なものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
An example in which the invention is applied to the production of a silicon semiconductor single crystal by the CZ method will be described with reference to the drawings. The present invention is not limited to the growth of silicon single crystals only. For example, the apparatus of the present invention can be used for growing other single crystals such as compound semiconductors.

【0019】図1は、本発明に係る半導体単結晶製造装
置(以下、単に単結晶製造装置ともいう)の一例を示す
概略構成の断面図である。該単結晶製造装置20は、一
般的な単結晶製造装置と同様、原料、例えば原料融液4
を収容するルツボ5,6、多結晶シリコン原料を加熱・
溶融するためのヒータ7などがメインチャンバ1内に格
納され、メインチャンバ1上に連設された引上げチャン
バ2の上部には、育成された単結晶を引き上げる引き上
げ機構(図示せず)が設けられている。
FIG. 1 is a schematic sectional view showing an example of a semiconductor single crystal manufacturing apparatus according to the present invention (hereinafter also referred to simply as a single crystal manufacturing apparatus). The single crystal manufacturing apparatus 20 includes a raw material, for example, a raw material melt 4 as in a general single crystal manufacturing apparatus.
Crucibles 5 and 6 containing polycrystalline silicon and heating
A heater 7 for melting is stored in the main chamber 1, and a pulling mechanism (not shown) for pulling a grown single crystal is provided above the pulling chamber 2 connected to the main chamber 1. ing.

【0020】引上げチャンバ2の上部に取り付けられた
引き上げ機構からは、引上げワイヤ16が巻き出されて
おり、その先端には、種結晶17を取り付けるための種
ホルダ18が接続され、種ホルダ18の先に取り付けら
れた種結晶17を原料融液4に浸漬し、引上げワイヤ1
6を引き上げ機構によって巻き取ることで種結晶17の
下方にシリコン半導体単結晶(以下、単に単結晶ともい
いう)3を形成する。
A pulling wire 16 is wound out of a pulling mechanism mounted on the upper portion of the pulling chamber 2, and a seed holder 18 for mounting a seed crystal 17 is connected to the tip of the pulling wire 16. The seed crystal 17 attached earlier is immersed in the raw material melt 4 and the pulling wire 1
The silicon semiconductor single crystal (hereinafter, also simply referred to as a single crystal) 3 is formed below the seed crystal 17 by winding the 6 by a pulling mechanism.

【0021】なお、上記ルツボ5,6は、原料融液4を
直接収容する石英ルツボ5が内側、該石英ルツボ5を支
持するための黒鉛ルツボ6が外側に配された構造となっ
ている。ルツボ5,6は、単結晶製造装置20の下部に
取り付けられた回転駆動機構(図示せず)によって回転
昇降動自在なルツボ回転軸19に指示されており、単結
晶製造装置中の融液面の変化によって結晶品質が変わる
ことのないよう、融液面を一定位置に保つため、結晶と
逆方向に回転させながら単結晶3の引き上げに応じて融
液が減少した分だけルツボを上昇させている。
The crucibles 5 and 6 have a structure in which a quartz crucible 5 for directly accommodating the raw material melt 4 is provided inside, and a graphite crucible 6 for supporting the quartz crucible 5 is provided outside. The crucibles 5 and 6 are instructed by a crucible rotation shaft 19 that can rotate and move up and down by a rotation drive mechanism (not shown) attached to a lower portion of the single crystal manufacturing apparatus 20. In order to keep the melt surface at a constant position so that the crystal quality does not change due to the change in the crystal, the crucible is raised by an amount corresponding to the decrease in the melt as the single crystal 3 is pulled while rotating in the opposite direction to the crystal. I have.

【0022】また、ルツボ5,6を取り囲むように加熱
ヒータ7が配置されており、この加熱ヒータ7の外側に
は、ヒータ7からの熱がメインチャンバに直接輻射され
るのを防止するための断熱部材8が周囲を取り囲むよう
に設けられている。また、チャンバ1,2内部には、炉
内に発生した不純物を炉外に排出する等を目的とし、引
上げチャンバ2上部に設けられたガス導入口10からア
ルゴンガス等の不活性ガスが導入され、引き上げ中の単
結晶3、融液4上部を通過してチャンバ1,2内部を流
通し、ガス流通口9から排出される。なお、メインチャ
ンバ1及び引上げチャンバ2は、ステンレス等の耐熱
性、熱伝導性に優れた金属により形成されており、冷却
管(図示せず)を通して水冷されている。
Further, a heater 7 is arranged so as to surround the crucibles 5 and 6, and outside the heater 7 is provided to prevent heat from the heater 7 from being directly radiated to the main chamber. A heat insulating member 8 is provided so as to surround the periphery. In addition, an inert gas such as an argon gas is introduced into the chambers 1 and 2 from a gas inlet 10 provided in the upper part of the pulling chamber 2 for the purpose of discharging impurities generated in the furnace outside the furnace. After passing through the upper portion of the single crystal 3 and the melt 4 being pulled, the gas flows through the inside of the chambers 1 and 2, and is discharged from the gas flow port 9. The main chamber 1 and the pulling chamber 2 are made of a metal having excellent heat resistance and heat conductivity such as stainless steel, and are water-cooled through a cooling pipe (not shown).

【0023】次に、単結晶製造装置20では、強制冷却
筒11が、引上げ中の単結晶3を取り囲むように前記メ
インチャンバ1の少なくとも天井部から原料溶液表面に
向かって延伸する形態で設けられている。該強制冷却筒
11内には、冷却流体導入路形成部をなす導入管12か
ら冷却流体Wが導入され、該冷却流体は、強制冷却筒1
1内を循環して強制冷却筒11を強制冷却した後、冷却
流体出口30(図2)から外部に排出される。なお、冷
却流体Wとしては、従来から冷却流体として使用されて
いる液体あるいは気体を使用することができるが、冷却
特性のほか、取り扱い性、コスト面等からも水を使用す
るのが好適である。また、これら強制冷却筒11内に流
す冷却流体の流量や温度を必要に応じて調節すれば、強
制冷却筒11の除去熱量を変化させることができるの
で、これにより単結晶成長速度にあわせた所望の冷却雰
囲気を作り出すことが可能である。これについては後述
する。
Next, in the single crystal production apparatus 20, the forced cooling cylinder 11 is provided so as to extend from at least the ceiling of the main chamber 1 toward the surface of the raw material solution so as to surround the single crystal 3 being pulled. ing. A cooling fluid W is introduced into the forced cooling cylinder 11 from an introduction pipe 12 forming a cooling fluid introduction passage forming part.
After circulating through the inside 1 to forcibly cool the forced cooling cylinder 11, the cooling fluid is discharged from the cooling fluid outlet 30 (FIG. 2) to the outside. In addition, as the cooling fluid W, a liquid or a gas conventionally used as a cooling fluid can be used, but it is preferable to use water from the viewpoint of handling properties, cost, etc., in addition to the cooling properties. . In addition, if the flow rate and temperature of the cooling fluid flowing through the forced cooling cylinder 11 are adjusted as necessary, the amount of heat removed from the forced cooling cylinder 11 can be changed. It is possible to create a cooling atmosphere. This will be described later.

【0024】強制冷却筒11(後述する内筒部材35、
外筒部材32及び仕切り壁部33;図2参照)の材質と
しては、耐熱性があり、熱伝導性に優れたものであれば
特に限定されないが、具体的には、鉄(例えばステンレ
ス鋼(SUS304等))、ニッケル、銅、チタン、モ
リブデン、タングステン、もしくはこれらの金属を含む
合金から作製することができる。また、前記金属もしく
は合金をチタン、モリブデン、タングステン、もしくは
白金族金属で被覆して構成してもよい。このような金属
あるいは合金を使用することにより、強制冷却筒11の
耐熱性が非常に優れたものとなり、熱伝導性も非常に高
くなるので、単結晶棒から放熱された熱を吸収したあ
と、強制冷却筒11内部を循環する水等の冷却流体に効
率よく伝え、結晶周囲の温度を低下させるので、単結晶
の冷却速度を向上させることができる。
The forced cooling cylinder 11 (an inner cylinder member 35 described later,
The material of the outer cylinder member 32 and the partition wall portion 33; see FIG. 2 is not particularly limited as long as it has heat resistance and is excellent in heat conductivity. SUS304)), nickel, copper, titanium, molybdenum, tungsten, or an alloy containing these metals. The metal or alloy may be covered with titanium, molybdenum, tungsten, or a platinum group metal. By using such a metal or alloy, the heat resistance of the forced cooling cylinder 11 becomes very excellent and the thermal conductivity also becomes very high, so that after absorbing the heat radiated from the single crystal rod, Since the cooling fluid such as water circulating in the forced cooling cylinder 11 is efficiently transmitted to lower the temperature around the crystal, the cooling rate of the single crystal can be improved.

【0025】また、単結晶製造装置20には、強制冷却
筒11より下方に延伸し、円筒または下方に向かって縮
径された形状の冷却補助部材13を有している。本実施
形態では、強制冷却筒11の下端部から原料融液面近傍
に延伸する円筒状の冷却補助部材13が設けられてい
る。冷却補助部材13は、引き上げられた直後の、高温
の単結晶3の周囲を囲んでおり、ヒータ7あるいは融液
4等からの輻射熱を遮って単結晶3を冷却する効果を有
する。また、強制冷却筒11が融液面の直上まで近づく
ことが防がれ安全性が確保されるとともに、融液上方か
ら結晶近傍を下流する不活性ガスの整流効果が発揮され
る。
Further, the single crystal production apparatus 20 has a cooling auxiliary member 13 which extends downward from the forced cooling cylinder 11 and has a cylindrical or reduced diameter. In the present embodiment, a cylindrical cooling auxiliary member 13 extending from the lower end of the forced cooling cylinder 11 to the vicinity of the raw material melt surface is provided. The cooling auxiliary member 13 surrounds the periphery of the high temperature single crystal 3 immediately after being pulled up, and has an effect of cooling the single crystal 3 by blocking radiant heat from the heater 7 or the melt 4 or the like. In addition, the forced cooling cylinder 11 is prevented from approaching directly above the melt surface, ensuring safety, and has a rectifying effect on the inert gas downstream from above the melt to near the crystal.

【0026】上記冷却補助部材13の材質としては、耐
熱性に非常に優れるとともに、高い熱伝導性を有するも
のが好ましく、具体的には、黒鉛、モリブデン、または
タングステンとするのがよい。特に黒鉛は、ヒータや融
液等からの輻射熱を効率よく遮蔽し、熱伝導率も比較的
高いので好適である。また、表面を保護被膜(例えば熱
分解炭素被膜あるいは炭化ケイ素被膜等)で被覆したも
のを使用してもよい。このようにすれば、冷却補助部材
への蒸発物の付着による悪影響が軽減され耐久性が向上
するとともに、冷却補助部材の不純物汚染もより抑制で
きる。
As the material of the cooling auxiliary member 13, a material having very excellent heat resistance and high thermal conductivity is preferable, and specifically, graphite, molybdenum or tungsten is preferable. Particularly, graphite is suitable because it efficiently shields radiant heat from a heater, a melt, and the like, and has relatively high thermal conductivity. Further, a material whose surface is coated with a protective film (for example, a pyrolytic carbon film or a silicon carbide film) may be used. In this way, adverse effects due to the attachment of the evaporant to the cooling auxiliary member are reduced, durability is improved, and impurity contamination of the cooling auxiliary member can be further suppressed.

【0027】上記のように耐熱性に優れるとともに熱伝
導率の高い材質からなる冷却補助部材13を使用するこ
とで、冷却補助部材13に吸収された熱は強制冷却筒1
1へと伝わり、さらに強制冷却筒11内を循環する冷却
流体を通じて外部へ排出される。そして、強制冷却筒1
1と冷却補助部材13を組み合わせて設けることによ
り、融液4から成長した直後の非常に高温の単結晶3
が、まず冷却補助部材13によってヒータ7等からの輻
射熱が遮られて効果的に冷却され、さらに引き上げられ
ることで強制冷却筒11と相対し、少なくともメインチ
ャンバ1の天井部まで強制冷却筒11により冷却される
ので、結晶の広範囲にわたって効率よく冷却される。そ
のため、結晶からの流出熱量を確実に除去し、冷却効果
を最大限に発揮するので、結晶を非常に速い成長速度で
引き上げることが可能となる。
By using the cooling auxiliary member 13 made of a material having excellent heat resistance and high thermal conductivity as described above, the heat absorbed by the cooling auxiliary member 13 is
1 and further discharged outside through a cooling fluid circulating in the forced cooling cylinder 11. And forced cooling cylinder 1
1 and the cooling auxiliary member 13 are provided in combination, so that the very high temperature single crystal 3
However, first, the radiant heat from the heater 7 or the like is blocked by the cooling auxiliary member 13 to be effectively cooled, and further raised to be opposed to the forced cooling cylinder 11 and at least to the ceiling of the main chamber 1 by the forced cooling cylinder 11. Since it is cooled, it is efficiently cooled over a wide range of the crystal. Therefore, the amount of heat flowing out of the crystal is reliably removed and the cooling effect is maximized, so that the crystal can be pulled at a very high growth rate.

【0028】以下、強制冷却筒11における本発明の特
徴に関して、以下に詳述する。図2に強制冷却筒11の
構造の詳細を示しており、(a)は縦断面図、(b)は
横断面図である。その構造上の特徴は、冷却流体Wを流
通する際に、冷却流体Wを原料融液に近い強制冷却筒1
1の下端部へ導き、その後、該強制冷却筒11内に設け
られた周方向流通矯正部33により、筒周方向の流れを
促しつつ筒下端部から上端に向けて冷却流体Wを流通さ
せるようにした点にある。
Hereinafter, features of the present invention in the forced cooling cylinder 11 will be described in detail. 2A and 2B show details of the structure of the forced cooling cylinder 11, in which FIG. 2A is a longitudinal sectional view and FIG. 2B is a transverse sectional view. Its structural feature is that when flowing the cooling fluid W, the cooling fluid W is forced into a forced cooling cylinder 1 close to the raw material melt.
1, and then the cooling fluid W is circulated from the lower end of the cylinder toward the upper end of the forced cooling cylinder 11 while promoting the flow in the circumferential direction of the cylinder by the circumferential flow correcting section 33 provided in the forced cooling cylinder 11. It is in the point which was made.

【0029】本実施形態において強制冷却筒11は、円
筒状の内筒部材31と、これと同心的に配置された円筒
状の外筒部材32との間に、環状の冷却流体流通隙間C
Lが形成され、該媒体流通隙間CLに連通する冷却流体
入口36及び冷却流体出口30とを設けたウォータージ
ャケット構造を有している。そして、周方向流通矯正部
33は、筒下端部から上端に向けての冷却流体Wの流通
を許容しつつ、筒軸線と交差する周方向の仕切り面によ
り冷却流体流通隙間CLを仕切る仕切り壁(以下、仕切
り壁33と記載する)からなる。
In the present embodiment, the forced cooling cylinder 11 has an annular cooling fluid flow gap C between a cylindrical inner cylinder member 31 and a cylindrical outer cylinder member 32 arranged concentrically therewith.
L is formed, and has a water jacket structure provided with a cooling fluid inlet 36 and a cooling fluid outlet 30 communicating with the medium flow gap CL. The circumferential flow correcting portion 33 allows the flow of the cooling fluid W from the lower end to the upper end of the cylinder, while partitioning the cooling fluid flow gap CL by a circumferential partition surface intersecting with the cylinder axis. Hereinafter, the partition wall 33 will be described).

【0030】ジャケット構造を有する上記強制冷却筒1
1の仕切り壁33は、図3に示すように、冷却流体流通
隙間CLをらせん状の流通経路34に仕切る形態に設け
られている。図1に示すように、強制冷却筒11はメイ
ンチャンバ1の天井部に配置されており、より具体的に
は、引上チャンバ2とメインチャンバ1とにまたがる形
態にて配置されている。そして、導入管12による強制
冷却筒11への冷却流体の供給経路の接続位置は、導入
管12が融液4や引き上げられた単結晶3の輻射熱に直
接さらされないよう強制冷却筒11の上端部、本実施形
態では、引上チャンバ2の下端部であって導入管12が
引上チャンバ2の外に配置されるように設定されてい
る。
The forced cooling cylinder 1 having a jacket structure
As shown in FIG. 3, the first partition wall 33 is provided in a form that partitions the cooling fluid flow gap CL into a spiral flow path 34. As shown in FIG. 1, the forced cooling cylinder 11 is arranged on the ceiling of the main chamber 1, and more specifically, is arranged so as to straddle the lifting chamber 2 and the main chamber 1. The connection position of the supply path of the cooling fluid to the forced cooling cylinder 11 by the introduction pipe 12 is set at the upper end of the forced cooling cylinder 11 so that the introduction pipe 12 is not directly exposed to the radiant heat of the melt 4 or the pulled single crystal 3. In the present embodiment, the lower end portion of the lifting chamber 2 and the introduction tube 12 are set outside the lifting chamber 2.

【0031】図4(a)に示すように、仕切り壁33
は、幅方向の片側の縁が内筒部材31の外周面に対しフ
ィレット状の溶接部Yにより結合・一体化されている。
この溶接部Yは冷却流体流通隙間CL側に面していて、
引き上げられた高温の単結晶3や、融液4(図1)と対
向する面(以下、熱暴露面という)には露出していな
い。他方、これと反対の縁は、外筒部材32の内周面と
密着しているが、図4(b)に示すように、仕切り壁3
3を挟んで隣接する上下の流通経路34間において、冷
却流体Wの漏洩がそれほど大きくならないのであれば、
外筒部材32の内周面と仕切り壁33との間に多少の隙
間が開いていても差し支えない。
As shown in FIG. 4A, the partition wall 33
The edge of one side in the width direction is joined and integrated with the outer peripheral surface of the inner cylindrical member 31 by a fillet-shaped welded portion Y.
This welded portion Y faces the cooling fluid flow gap CL side,
It is not exposed on the surface facing the pulled-up high-temperature single crystal 3 or the melt 4 (FIG. 1) (hereinafter referred to as a heat-exposed surface). On the other hand, the opposite edge is in close contact with the inner peripheral surface of the outer tubular member 32, but as shown in FIG.
If the leakage of the cooling fluid W does not become so large between the upper and lower flow paths 34 adjacent to each other with 3 interposed therebetween,
Some clearance may be provided between the inner peripheral surface of the outer cylinder member 32 and the partition wall 33.

【0032】他方、図2(a)に示すように、冷却流体
流通隙間CLの底を塞ぐ環状の底面形成部材31bも、
内筒部材31の下端面に対し、冷却流体流通隙間CLに
面するフィレット状の溶接部Yにより接合されている。
すなわち、仕切り壁33の溶接部も含め、強制冷却筒1
1には、熱暴露面に溶接部が形成されていない構造が実
現されている。
On the other hand, as shown in FIG. 2A, an annular bottom surface forming member 31b for closing the bottom of the cooling fluid flow gap CL is also provided.
The lower end surface of the inner cylindrical member 31 is joined by a fillet-shaped welded portion Y facing the cooling fluid flow gap CL.
That is, the forced cooling cylinder 1 including the welded portion of the partition wall 33
In No. 1, a structure in which no weld is formed on the heat-exposed surface is realized.

【0033】図2に示すように、導入管12からの冷却
流体は、例えば内筒部材35内に形成された流下通路部
35内を流下した後、内筒部材35の下端部に開口する
冷却流体入口36から媒体流通隙間CLに流入するよう
になっている。そして、図5(b)に示すように、仕切
り壁33によりらせん状に形成された流通経路34内を
周回しながら筒上部に向けて上昇し、外筒部材32の上
端部に形成された冷却流体出口30から強制冷却筒11
の外に排出される。図5(a)は、強制冷却筒11内に
流入した冷却流体が流通経路34内を移動する際の、筒
軸線方向及び周方向位置の推移を示すものである。最初
において、周方向の一定位置にて流下通路部35内を
筒軸線O(図2参照)の方向に流下した後、一定勾配の
仕切り壁33に沿った周回を重ねる毎に筒軸線方向に連
続的に上昇してゆく様子(図5)を模式的に概念的に
表している。なお、図2(b)において、符号30b
は、冷却流体出口30に向けて冷却流体Wをガイドする
ガイド仕切り壁である。
As shown in FIG. 2, the cooling fluid from the introduction pipe 12 flows down, for example, through a downflow passage 35 formed in the inner cylinder member 35, and then opens at the lower end of the inner cylinder member 35. The fluid flows into the medium flow gap CL from the fluid inlet 36. Then, as shown in FIG. 5 (b), it rises toward the upper part of the cylinder while circulating in the spiral flow path 34 formed by the partition wall 33, and cools at the upper end of the outer cylinder member 32. From the fluid outlet 30 to the forced cooling cylinder 11
Is discharged outside. FIG. 5A shows the transition of the position in the cylinder axis direction and the circumferential direction when the cooling fluid flowing into the forced cooling cylinder 11 moves in the circulation path 34. First, after flowing down in the flow-down passage portion 35 in the direction of the cylinder axis O (see FIG. 2) at a certain position in the circumferential direction, each time the lapping along the partition wall 33 with a constant gradient is repeated, the flow continues in the cylinder axis direction. FIG. 5 schematically and conceptually shows how the image gradually rises (FIG. 5). In addition, in FIG.
Is a guide partition wall for guiding the cooling fluid W toward the cooling fluid outlet 30.

【0034】なお、仕切り壁33の配設の便宜を図るた
めに、図5(c)のように構成することも可能である。
すなわち、軸線方向位置がそれぞれ固定された複数枚の
フィン状のセグメント40を一定間隔で配設し、各セグ
メント40を挟んで隣接する空間を、該セグメント40
の周方向の一部を切り欠く形で連通させ、さらに、隣り
合うセグメント40,40同士を、上記切欠位置にて連
結壁41により順次接続する。これにより、セグメント
40と連結壁41とにより形成された階段状の流通経路
34を形成することができる。図5’に示すように、
冷却流体Wは、周回を重ねる毎に筒軸線方向に段階的に
上昇してゆくこととなる。なお、符号133は、冷却流
体入口36から流入する冷却流体Wの逆流を阻止する仕
切り壁である。
In order to facilitate the arrangement of the partition wall 33, the partition wall 33 may be configured as shown in FIG.
That is, a plurality of fin-shaped segments 40 each having a fixed axial position are arranged at regular intervals, and the space adjacent to each segment 40 is defined by the segment 40.
Are connected to each other in the form of a cutout in the circumferential direction, and the adjacent segments 40 are successively connected to each other by the connecting wall 41 at the cutout position. Thereby, the step-like flow path 34 formed by the segment 40 and the connecting wall 41 can be formed. As shown in FIG.
The cooling fluid W gradually rises in the axial direction of the cylinder every time the circulation is repeated. Reference numeral 133 denotes a partition wall for preventing the cooling fluid W flowing from the cooling fluid inlet 36 from flowing backward.

【0035】上記のようなジャケット構造の強制冷却筒
11は、内筒部材31の全面に冷却流体Wを接触させる
ことができるため、冷却効率が高い。そして、本発明で
は、らせん状の仕切り壁33により冷却流体流通隙間C
Lにて仕切ることにより、冷却流体Wの短絡(ショート
カット)を効果的に防止でき、ひいてはそのらせん形態
の流通経路34に沿う形で、強制冷却筒11の周方向及
び軸線方向の双方において冷却流体を均一に流通させる
ことができる。その結果、冷却ムラの防止及び冷却効率
の向上を図ることができる。
In the forced cooling cylinder 11 having the jacket structure as described above, the cooling fluid W can be brought into contact with the entire surface of the inner cylinder member 31, so that the cooling efficiency is high. Further, in the present invention, the cooling fluid flow gap C is formed by the spiral partition wall 33.
By partitioning at L, short-circuiting (short-cut) of the cooling fluid W can be effectively prevented, and thus the cooling fluid in both the circumferential direction and the axial direction of the forced cooling cylinder 11 along the spiral-shaped flow path 34. Can be distributed uniformly. As a result, it is possible to prevent cooling unevenness and improve cooling efficiency.

【0036】なお、図6(理解を容易にするために、流
通経路34は直線状に展開して描いている)に示すよう
に、冷却流体出口30から流出した冷却媒体Wは、戻り
管路51を経て流通経路34に戻すことにより、循環流
を形成することができる。この循環流は、循環経路上に
配置された送液手段としてのポンプ52により形成する
ことができる。また、戻り管路51上にて放熱手段をな
すクーリングタワー60により、昇温した冷却流体を冷
却することができる。
As shown in FIG. 6 (for ease of understanding, the flow path 34 is linearly developed and drawn), the cooling medium W flowing out of the cooling fluid outlet 30 is returned to the return line. By returning to the distribution channel 34 via 51, a circulating flow can be formed. This circulating flow can be formed by a pump 52 as a liquid sending means disposed on the circulating path. Further, the cooling fluid whose temperature has been raised can be cooled by the cooling tower 60 serving as a radiator on the return pipe line 51.

【0037】次に、図2に戻り、強制冷却筒11の内部
を流通する冷却流体Wの温度を、該強制冷却筒11の内
部、具体的には冷却流体流通隙間CLに設けた温度セン
サ57により測定することができる。強制冷却筒11に
過昇温等を生じた場合、上記温度センサ57によりこれ
をすぐに検出することができる。過昇温を生じやすいの
は、融液4に面した強制冷却筒11の下端部であるか
ら、これに対応する冷却流体流通隙間CLの下端位置に
温度センサ57を配置しておけば、過昇温を一層検出し
やすくなる。ただし、図中に一点鎖線で示すように、冷
却流体流通隙間CLの軸線方向中間位置や上端部など、
複数個の温度センサ57を分散して配置しておき、各々
温度検出を行なうようにすれば、より鋭敏な過昇温検出
を行なうことができるほか、強制冷却筒11内の温度分
布も知ることができるので、冷却ムラ等の発生をモニタ
することも可能となる。なお、温度センサとしては、熱
電対の他、サーミスタなど公知のものを使用できる。
Next, returning to FIG. 2, the temperature of the cooling fluid W flowing inside the forced cooling cylinder 11 is measured by a temperature sensor 57 provided inside the forced cooling cylinder 11, specifically, in the cooling fluid flow gap CL. Can be measured. When an excessive temperature rise or the like occurs in the forced cooling cylinder 11, the temperature can be immediately detected by the temperature sensor 57. Since the excessive temperature rise is likely to occur at the lower end of the forced cooling cylinder 11 facing the melt 4, if the temperature sensor 57 is arranged at the lower end of the corresponding cooling fluid flow gap CL, the excessive temperature rise will occur. It becomes easier to detect the temperature rise. However, as shown by a dashed line in the figure, the cooling fluid circulation gap CL has an axial middle position or an upper end portion.
If a plurality of temperature sensors 57 are arranged in a distributed manner and each temperature is detected, it is possible to perform a more sensitive overheating detection and to know the temperature distribution in the forced cooling cylinder 11. Therefore, it is also possible to monitor the occurrence of uneven cooling or the like. As the temperature sensor, a known sensor such as a thermistor can be used in addition to the thermocouple.

【0038】また、図6に示すように、温度センサ57
の温度検出信号をコンピュータ等で構成された制御部5
0によりモニタし、予め定められた目標値から検出温度
が外れた場合に、予め設けられた温度調整機構を制御部
50により自動制御して、温度センサ57の検出温度が
前記目標値に近づくように冷却流体の温度を調整するこ
とができる。この中でも特に有用な態様として、冷却流
体の過昇温が検出された場合、これを適正温度域に低下
させる制御形態を例示することができる。図6に示す実
施形態では、温度センサ57が過昇温を検出したとき、
制御部50は、強制冷却筒11内を流れる冷却流体Wの
流量を増大させて冷却を促進するように動作する。具体
的には、冷却流体Wの循環主経路MCから分岐する形で
バイパス経路53を設けておき、循環主経路MCとバイ
パス経路53との流量分配比率を、バルブ54により調
整するようにしている。なお、ここでは、循環主経路M
Cとバイパス経路53とのそれぞれにバルブ54,54
を設け、それらバルブ54,54の開き量及び/又は開
き時間の調整により、流量分配比率を調整するようにし
ているが、これに限られるものではない。
Further, as shown in FIG.
Control unit 5 constituted by a computer or the like
0, and if the detected temperature deviates from a predetermined target value, the control unit 50 automatically controls a temperature adjusting mechanism provided in advance so that the detected temperature of the temperature sensor 57 approaches the target value. The temperature of the cooling fluid can be adjusted. As a particularly useful aspect among them, a control mode in which when an excessive temperature rise of the cooling fluid is detected, the temperature is reduced to an appropriate temperature range can be exemplified. In the embodiment shown in FIG. 6, when the temperature sensor 57 detects an excessive temperature rise,
The control unit 50 operates to increase the flow rate of the cooling fluid W flowing in the forced cooling cylinder 11 to promote cooling. Specifically, a bypass path 53 is provided in a form branched from the main circulation path MC of the cooling fluid W, and the flow distribution ratio between the main circulation path MC and the bypass path 53 is adjusted by the valve 54. . Here, the main circulation path M
C and the bypass path 53 respectively
Is provided to adjust the flow rate distribution ratio by adjusting the opening amount and / or opening time of the valves 54, 54, but the present invention is not limited to this.

【0039】なお、冷却流体の温度は、流量調整以外に
も、例えばヒータによる強制過熱により調整することも
可能である.この場合、ヒータ加熱と流量調整とを組み
合わせることももちろん可能である。例えば、より微妙
で迅速な温度調整が必要な場合は、流量調整とは別に、
又は流量調整に加え、ヒータ加熱を採用したほうが都合
のよい場合がある。また、過昇温の場合には冷却流体の
流量増加が有効であるが、逆に強制冷却筒の温度が下が
りすぎた場合は、流量減少のみでは対応しきれない場合
もある。
The temperature of the cooling fluid can be adjusted by, for example, forced overheating by a heater, in addition to the flow rate adjustment. In this case, it is of course possible to combine heater heating and flow rate adjustment. For example, if a more subtle and quick temperature adjustment is required, besides the flow adjustment,
Alternatively, it may be more convenient to employ heater heating in addition to flow rate adjustment. In the case of excessive temperature rise, it is effective to increase the flow rate of the cooling fluid. On the other hand, when the temperature of the forced cooling cylinder is too low, it may not be possible to cope with the decrease in the flow rate alone.

【0040】図7は、流通経路34内にヒータ56を設
けた例であり、電源55により該ヒータ56を発熱させ
ることができる。制御部50は、温度センサ57の温度
検出値が目標温度に近づくように、電源55のヒータ5
6に対する通電出力を加減する。この実施形態では、バ
ルブ54の作動調整により流量調整も併用する形となっ
ているが、これは省略してもよい。また、ヒータ56
は、流通経路34の略全長にわたって配置されている
が、流通経路34の、冷却流体の加熱に適した一部区間
にのみヒータ56を設けてもよい。例えば、強制冷却筒
11の下端部付近の温度が問題になる場合は、温度セン
サ57と同様、該部分に対応する区間にのみ(つまり、
流通経路34の入口36に近い側の端部付近にのみ)、
ヒータ56を設けるようにしてもよい。
FIG. 7 shows an example in which a heater 56 is provided in the flow path 34, and the heater 56 can be heated by the power supply 55. The control unit 50 controls the heater 5 of the power supply 55 so that the temperature detection value of the temperature sensor 57 approaches the target temperature.
6 to adjust the power output. In this embodiment, the flow rate is also adjusted by adjusting the operation of the valve 54, but this may be omitted. Also, the heater 56
Is disposed over substantially the entire length of the flow path 34, but the heater 56 may be provided only in a part of the flow path 34 suitable for heating the cooling fluid. For example, when the temperature near the lower end portion of the forced cooling cylinder 11 becomes a problem, similarly to the temperature sensor 57, only in the section corresponding to the portion (that is,
Only near the end near the inlet 36 of the distribution channel 34),
A heater 56 may be provided.

【0041】また、ヒータ56による冷却流体Wの加熱
は流通経路34外にて行なうようにしてもよい。例えば
図8は、流通経路34の上流側に温度調整室34aを設
け、該温度調整室34a内にヒータ56を配置して、そ
の発熱により冷却流体Wの温度を予備調整してから流通
経路34内に導くようにしている。
The heating of the cooling fluid W by the heater 56 may be performed outside the flow path 34. For example, FIG. 8 shows a case in which a temperature adjustment chamber 34a is provided on the upstream side of the flow path 34, a heater 56 is disposed in the temperature adjustment chamber 34a, and the temperature of the cooling fluid W is preliminarily adjusted by the heat generated from the temperature. I try to lead inside.

【0042】さらに、冷却筒の温度分布にむらが生じた
場合、これを解消するために局所的な温度調整をきめ細
かく行ないたい場合もありうる。そこで、図9に示すよ
うに、流通経路34に沿ってヒータ56を分散配置し、
各々独立に出力制御できるようにしておけば、このよう
な対応も簡単に行なうことができる。この場合、流通経
路34に沿って温度センサ57を分散配置しておき、温
度検出値の目標値からのずれが大きくなった温度センサ
57の位置に応じて、予め定められた位置のヒータ56
の出力を選択的に調整するようにする。
Further, when the temperature distribution of the cooling cylinder becomes uneven, there may be a case where it is desired to finely adjust the local temperature in order to eliminate the unevenness. Therefore, as shown in FIG. 9, the heaters 56 are dispersedly arranged along the circulation path 34,
If the output can be controlled independently of each other, such a response can be easily performed. In this case, the temperature sensors 57 are distributed and arranged along the circulation route 34, and the heater 56 at a predetermined position is determined in accordance with the position of the temperature sensor 57 at which the deviation of the detected temperature value from the target value becomes large.
Output is selectively adjusted.

【0043】なお、本発明は以上説明した実施形態に限
定されるものではなく、請求項に記載された概念を逸脱
しない範囲において、種々の改良あるいは変形を付加す
ることができ、これらも当然、本発明の技術的範囲に属
するものである。例えば、図10(a)に示すように、
ジャケット構造を採用せず、らせん状に巻きまわした金
属製の冷却管113を、例えば内筒部材111aの外周
面に溶接固着した構造の強制冷却筒111を採用するこ
とも可能である。この場合、冷却管113に対し、冷却
筒111の下端側の入り口部112から冷却流体を導入
し、上端側の出口部114から排出させるようにする。
The present invention is not limited to the embodiments described above, and various improvements or modifications can be made without departing from the concept described in the claims. It belongs to the technical scope of the present invention. For example, as shown in FIG.
Instead of employing a jacket structure, a forced cooling cylinder 111 having a structure in which a spirally wound metal cooling pipe 113 is fixedly welded to the outer peripheral surface of the inner cylindrical member 111a, for example, may be employed. In this case, the cooling fluid is introduced into the cooling pipe 113 from the inlet 112 on the lower end of the cooling cylinder 111 and discharged from the outlet 114 on the upper end.

【0044】他方、ジャケット構造を採用する場合、流
通経路34は必ずしもらせん状を呈しているものに限定
されない。図10(b)は、その一例を示すものであ
り、互いに分離した鍔状の仕切り壁143を、強制冷却
筒11の軸線方向に所定間隔で配置し、仕切り壁143
に流通孔143a(あるいは、外筒部材32と仕切り壁
143の外縁との間に形成した狭い隙間であってもよ
い)を形成ようにしている。隣接する仕切り壁143,
143間に環状の空間を形成することで周方向の流体流
れが促進され、かつ軸線方向に仕切り壁143が断続的
に配置しているので、ショートカット等も抑制される。
On the other hand, when the jacket structure is adopted, the circulation path 34 is not necessarily limited to a spiral path. FIG. 10B shows an example of such a case, in which flange-shaped partition walls 143 separated from each other are arranged at predetermined intervals in the axial direction of the forced cooling cylinder 11.
A flow hole 143 a (or a narrow gap formed between the outer cylinder member 32 and the outer edge of the partition wall 143) may be formed in the hole. Adjacent partition wall 143,
By forming an annular space between 143, fluid flow in the circumferential direction is promoted, and since the partition wall 143 is intermittently arranged in the axial direction, shortcuts and the like are also suppressed.

【0045】[0045]

【実施例】以下、本発明の効果を確認するために行なっ
た実験の結果について説明する。単結晶の育成は、図1
に示す装置を用いて行なった。具体的には、口径60c
mの石英製ルツボにシリコン単結晶の原料である多結晶
シリコンを150kg充填しヒータを加熱して融解した
後に、一定径を有する結晶定径部の直径が200mmの
シリコン単結晶を引き上げた。なお、図2に示すよう
に、強制冷却筒11の下端部に取り付けた温度センサ5
7により、結晶引き上げ中における冷却水温度をモニタ
した。なお、温度センサの検出目標温度は30℃とし
た。その結果を図11に示す。すなわち、本発明の装置
の採用により、単結晶育成中は温度バラツキが5℃以下
と安定した状態で冷却水温度が推移し、略一定の冷却効
果が得られていることがわかる。特に、単結晶定径部の
育成中は温度変化が殆んど無く、安定した雰囲気で結晶
成長が行われていることがわかる。
The results of experiments conducted to confirm the effects of the present invention will be described below. See Figure 1 for single crystal growth.
This was performed using the apparatus shown in FIG. Specifically, caliber 60c
After filling 150 kg of polycrystalline silicon, which is a raw material of silicon single crystal, into a quartz crucible having a diameter of m and melting it by heating a heater, a silicon single crystal having a constant diameter with a constant diameter of 200 mm was pulled up. As shown in FIG. 2, the temperature sensor 5 attached to the lower end of the forced cooling cylinder 11
7, the cooling water temperature during the crystal pulling was monitored. Note that the detection target temperature of the temperature sensor was 30 ° C. The result is shown in FIG. In other words, it can be seen that, by employing the apparatus of the present invention, the temperature of the cooling water changes while the temperature variation is stable at 5 ° C. or less during the growth of the single crystal, and a substantially constant cooling effect is obtained. In particular, it can be seen that there is almost no temperature change during the growth of the single crystal constant diameter portion, and the crystal is grown in a stable atmosphere.

【0046】また、図12は、軸線方向に適宜の間隔に
て配置した温度センサにより測定した、定径部引き上げ
時と略同一条件下での冷却筒の内面軸線方向(縦方向)
の温度分布を示すものである。実線が本発明の装置を用
いた場合であり、破線は、仕切り壁部を排除したジャケ
ット構造の強制冷却筒を使用した比較例である。これに
よると、本発明の装置を用いた場合、比較例よりも軸線
方向全域に渡って温度が低く、均一で良好な冷却効果が
得られていることがわかる。また、軸線方向における温
度勾配も、本発明の装置のほうが緩やかになっている。
FIG. 12 shows the axial direction (longitudinal direction) of the inner surface of the cooling cylinder under substantially the same conditions as when the constant-diameter portion is pulled up, measured by temperature sensors arranged at appropriate intervals in the axial direction.
FIG. The solid line is a case where the apparatus of the present invention is used, and the broken line is a comparative example using a forced cooling cylinder having a jacket structure without a partition wall. According to this, when the apparatus of the present invention is used, the temperature is lower over the entire area in the axial direction than in the comparative example, and a uniform and good cooling effect is obtained. The temperature gradient in the axial direction is also gentler in the apparatus of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体単結晶製造装置の一例を示
す断面模式図。
FIG. 1 is a schematic sectional view showing an example of a semiconductor single crystal manufacturing apparatus according to the present invention.

【図2】図1の装置における強制冷却筒の詳細構造の一
例を示す縦断面図及び横断面図。
FIG. 2 is a longitudinal sectional view and a transverse sectional view showing an example of a detailed structure of a forced cooling cylinder in the apparatus of FIG.

【図3】図2の強制冷却筒の内部構造を示す斜視図。FIG. 3 is a perspective view showing an internal structure of a forced cooling cylinder of FIG. 2;

【図4】仕切り壁と内筒部材及び外筒部材との関係を、
変形例とともに示す図。
FIG. 4 shows a relationship between a partition wall and an inner cylinder member and an outer cylinder member.
The figure shown with a modification.

【図5】図2の強制冷却筒及びその変形例の強制冷却筒
の作用説明図。
FIG. 5 is an operation explanatory view of the forced cooling cylinder of FIG. 2 and a forced cooling cylinder of a modified example thereof.

【図6】強制冷却筒の温度調整を、冷却流体の流量調整
により制御可能とした装置の一例を概念的に示す図。
FIG. 6 is a diagram conceptually showing an example of an apparatus in which temperature adjustment of a forced cooling cylinder can be controlled by adjusting a flow rate of a cooling fluid.

【図7】強制冷却筒の温度調整を、ヒータ発熱量により
制御可能とした装置の一例を概念的に示す図。
FIG. 7 is a diagram conceptually illustrating an example of an apparatus in which temperature adjustment of a forced cooling cylinder can be controlled by a heat generation amount of a heater.

【図8】図7の装置における、ヒータの配置形態の変形
例を示す図。
FIG. 8 is a diagram showing a modification of the arrangement of heaters in the apparatus shown in FIG. 7;

【図9】同じく別の変形例を示す図。FIG. 9 is a diagram showing another modified example.

【図10】強制冷却筒のいくつかの変形例を示す断面模
式図。
FIG. 10 is a schematic sectional view showing some modified examples of the forced cooling cylinder.

【図11】実施例にて行なった実験における、冷却流体
の温度変化推移の測定結果を示すグラフ。
FIG. 11 is a graph showing a measurement result of a change in temperature change of a cooling fluid in an experiment performed in an example.

【図12】実施例にて行なった実験における、強制冷却
筒内面の縦方向温度分布の測定結果を、比較例と対比し
て示すグラフ。
FIG. 12 is a graph showing a measurement result of a vertical temperature distribution on the inner surface of a forced cooling cylinder in an experiment performed in an example, in comparison with a comparative example.

【符号の説明】[Explanation of symbols]

3 半導体単結晶 4 原料融液 5,6 ルツボ 11 強制冷却筒 20 半導体単結晶製造装置 30 冷却流体出口 31 内筒部材 32 外筒部材 33 仕切り壁(周方向流通矯正部) 36 冷却流体入口 Y 溶接部 57 温度センサ Reference Signs List 3 semiconductor single crystal 4 raw material melt 5, 6 crucible 11 forced cooling cylinder 20 semiconductor single crystal manufacturing device 30 cooling fluid outlet 31 inner cylinder member 32 outer cylinder member 33 partition wall (circumferential flow correcting part) 36 cooling fluid inlet Y welding Part 57 Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星 亮二 福島県西白河郡西郷村大字小田倉字大平 150番地 信越半導体株式会社半導体白河 研究所内 Fターム(参考) 4G077 AA02 BA04 CF10 EG15 EG25 FE11 HA12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryoji Hoshi 150 Odakura Osaikura, Nishigo-mura, Nishishirakawa-gun, Fukushima Prefecture F-term in Shin-Etsu Semiconductor Co., Ltd. Semiconductor Shirakawa Research Laboratory 4G077 AA02 BA04 CF10 EG15 EG25 FE11 HA12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 原料融液の上方において、ルツボに収容
した原料融液から引き上げられる半導体単結晶を取り囲
む形で、冷却流体を流通させる強制冷却筒を配置し、強
制冷却筒により引き上げた半導体単結晶からの輻射熱を
除去しつつチョクラルスキー法により単結晶を育成する
半導体単結晶製造装置において、 前記強制冷却筒に対し冷却流体を流通する際に、冷却流
体を原料融液に近い強制冷却筒の下端部へ導き、その
後、該強制冷却筒内に設けられた周方向流通矯正部によ
り、筒周方向の流れを促しつつ筒下端部から上端に向け
て前記冷却流体を流通させるようにしたことを特徴とす
る半導体単結晶製造装置。
1. A forced cooling cylinder for circulating a cooling fluid is disposed above a raw material melt so as to surround a semiconductor single crystal pulled up from the raw material melt contained in a crucible, and the semiconductor single crystal pulled up by the forced cooling cylinder is disposed. In a semiconductor single crystal manufacturing apparatus for growing a single crystal by the Czochralski method while removing radiant heat from a crystal, when flowing a cooling fluid through the forced cooling cylinder, the cooling fluid is forced into a forced cooling cylinder close to a raw material melt. To the lower end portion, and thereafter, the cooling fluid is allowed to flow from the lower end portion of the cylinder toward the upper end while promoting the flow in the circumferential direction of the cylinder by a circumferential flow correcting portion provided in the forced cooling cylinder. An apparatus for manufacturing a semiconductor single crystal, comprising:
【請求項2】 前記強制冷却筒は、内筒部材と外筒部材
との間に環状の冷却流体流通隙間を形成し、該冷却流体
流通隙間に連通する冷却流体入口及び冷却流体出口とを
設けたジャケット構造を有してなり、前記周方向流通矯
正部は、筒下端部から上端に向けての前記冷却流体の流
通を許容しつつ、筒軸線と交差する周方向の仕切面によ
り前記冷却流体流通隙間を仕切る仕切り壁を含むことを
特徴とする請求項1記載の半導体単結晶製造装置。
2. The forced cooling cylinder has an annular cooling fluid circulation gap formed between an inner cylinder member and an outer cylinder member, and has a cooling fluid inlet and a cooling fluid outlet communicating with the cooling fluid circulation gap. The circumferential flow straightening section has a circumferential partitioning surface that intersects the cylinder axis while allowing the cooling fluid to flow from the lower end to the upper end. 2. The semiconductor single crystal manufacturing apparatus according to claim 1, further comprising a partition wall for partitioning the flow gap.
【請求項3】 前記周方向流通矯正部は、前記冷却流体
を前記筒下端部から上端に向けてらせん状の経路に沿っ
て導くものとして設けられることを特徴とする請求項1
又は2に記載の半導体単結晶製造装置。
3. The device according to claim 1, wherein the circumferential flow straightening unit is provided to guide the cooling fluid from a lower end of the cylinder to an upper end thereof along a spiral path.
Or the semiconductor single crystal manufacturing apparatus according to 2.
【請求項4】 前記ジャケット構造を有する前記強制冷
却筒の前記仕切り壁が、前記冷却流体流通隙間をらせん
状の流通経路に仕切る形態に設けられている請求項3記
載の半導体単結晶製造装置。
4. The semiconductor single crystal manufacturing apparatus according to claim 3, wherein the partition wall of the forced cooling cylinder having the jacket structure is provided so as to partition the cooling fluid flow gap into a spiral flow path.
【請求項5】 前記強制冷却筒の各構成部材を接合する
溶接部を、原料融液面並びに原料融液より引き上げられ
た半導体単結晶と対向する面に設けないことを特徴とす
る請求項1ないし4のいずれか1項に記載の半導体単結
晶製造装置。
5. The method according to claim 1, wherein a welded portion for joining each component of the forced cooling cylinder is not provided on the surface of the raw material melt and the surface facing the semiconductor single crystal pulled up from the raw material melt. 5. The apparatus for producing a semiconductor single crystal according to any one of items 4 to 4.
【請求項6】 前記強制冷却筒内部を流通する前記冷却
流体の温度を測定するために、該強制冷却筒の内部に1
箇所以上、温度センサを取り付けたことを特徴とする請
求項1ないし5のいずれか1項に記載の半導体単結晶製
造装置。
6. In order to measure the temperature of the cooling fluid flowing through the inside of the forced cooling cylinder, the inside of the forced cooling cylinder is
The semiconductor single crystal manufacturing apparatus according to any one of claims 1 to 5, wherein a temperature sensor is attached at more than one place.
【請求項7】 前記温度センサは、前記強制冷却筒の下
端部を流れる冷却流体の温度を測定する位置に少なくと
も取り付けられていることを特徴とする請求項6記載の
半導体単結晶製造装置。
7. The semiconductor single crystal manufacturing apparatus according to claim 6, wherein said temperature sensor is attached at least at a position for measuring a temperature of a cooling fluid flowing through a lower end portion of said forced cooling cylinder.
【請求項8】 請求項1ないし7のいずれか1項に記載
の半導体単結晶製造装置を用い、前記強制冷却筒により
引き上げた半導体単結晶からの輻射熱を除去しつつチョ
クラルスキー法により単結晶を育成することを特徴とす
る半導体単結晶の製造方法。
8. A single crystal using a Czochralski method while removing radiant heat from the semiconductor single crystal pulled up by the forced cooling cylinder, using the semiconductor single crystal manufacturing apparatus according to claim 1. A method for producing a semiconductor single crystal, comprising:
【請求項9】 前記強制冷却筒に流通する冷却流体の温
度を前記温度センサにより測定するとともに、前記冷却
流体の温度が所定の温度となるように該冷却流体の流通
量及び/又は温度を調整して前記単結晶を育成すること
を特徴とする請求項8に記載の半導体単結晶の製造方
法。
9. The temperature of the cooling fluid flowing through the forced cooling cylinder is measured by the temperature sensor, and the flow rate and / or temperature of the cooling fluid is adjusted so that the temperature of the cooling fluid becomes a predetermined temperature. The method for producing a semiconductor single crystal according to claim 8, wherein the single crystal is grown.
JP2001054948A 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same Expired - Fee Related JP3952356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054948A JP3952356B2 (en) 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054948A JP3952356B2 (en) 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2002255682A true JP2002255682A (en) 2002-09-11
JP3952356B2 JP3952356B2 (en) 2007-08-01

Family

ID=18915208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054948A Expired - Fee Related JP3952356B2 (en) 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3952356B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035838A1 (en) * 2003-10-10 2005-04-21 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal, single crystal and single crystal production apparatus
JP2009249243A (en) * 2008-04-08 2009-10-29 Sumco Corp Single crystal pulling apparatus
KR100964356B1 (en) 2009-09-28 2010-06-17 퀄리플로나라테크 주식회사 Silicon ingot grower and body for vacuum chamber of silicon ingot grower
US20190055666A1 (en) * 2017-08-18 2019-02-21 Sk Siltron Co., Ltd. Silicon single crystal ingot cooling tube and silicon single crystal ingot growth apparatus having the same
CN110735179A (en) * 2018-07-20 2020-01-31 上海新昇半导体科技有限公司 cooling device applied to single crystal furnace and single crystal furnace
CN114381795A (en) * 2021-12-29 2022-04-22 宁夏申和新材料科技有限公司 Water-cooled screen device of czochralski crystal growing furnace and single crystal growing furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610816B1 (en) 2019-02-18 2019-11-27 信越半導体株式会社 Silicon single crystal pulling device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035838A1 (en) * 2003-10-10 2005-04-21 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal, single crystal and single crystal production apparatus
JP2005112692A (en) * 2003-10-10 2005-04-28 Shin Etsu Handotai Co Ltd Manufacturing method of single crystal and single crystal, and manufacturing unit of single crystal
JP4569090B2 (en) * 2003-10-10 2010-10-27 信越半導体株式会社 Single crystal manufacturing method, single crystal, and single crystal manufacturing apparatus
JP2009249243A (en) * 2008-04-08 2009-10-29 Sumco Corp Single crystal pulling apparatus
KR100964356B1 (en) 2009-09-28 2010-06-17 퀄리플로나라테크 주식회사 Silicon ingot grower and body for vacuum chamber of silicon ingot grower
WO2011037317A2 (en) * 2009-09-28 2011-03-31 퀄리플로나라테크(주) Apparatus for growing silicon ingots, and body for the vacuum chamber of the apparatus for growing silicon ingots
WO2011037317A3 (en) * 2009-09-28 2011-06-16 퀄리플로나라테크(주) Apparatus for growing silicon ingots, and body for the vacuum chamber of the apparatus for growing silicon ingots
US20190055666A1 (en) * 2017-08-18 2019-02-21 Sk Siltron Co., Ltd. Silicon single crystal ingot cooling tube and silicon single crystal ingot growth apparatus having the same
CN110735179A (en) * 2018-07-20 2020-01-31 上海新昇半导体科技有限公司 cooling device applied to single crystal furnace and single crystal furnace
CN114381795A (en) * 2021-12-29 2022-04-22 宁夏申和新材料科技有限公司 Water-cooled screen device of czochralski crystal growing furnace and single crystal growing furnace

Also Published As

Publication number Publication date
JP3952356B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
US6632280B2 (en) Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
US9217208B2 (en) Apparatus for producing single crystal
JP7295252B2 (en) Semiconductor crystal growth equipment
CN110735179A (en) cooling device applied to single crystal furnace and single crystal furnace
KR101385997B1 (en) Apparatus for producing single crystal and method for producing single crystal
JP3952356B2 (en) Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same
TWI835330B (en) A thermal field control device for crystal pulling furnace and crystal pulling furnace
JP3709494B2 (en) Heat shielding member of silicon single crystal pulling device
JP4788029B2 (en) Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same
JP7059967B2 (en) Single crystal growth device and single crystal growth method
JP6777908B1 (en) Single crystal growth device, how to use the single crystal growth device, and single crystal growth method
JP5181171B2 (en) Semiconductor single crystal manufacturing method
JP3428625B2 (en) Apparatus and method for pulling silicon single crystal
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
KR0130180B1 (en) Device for pulling up single crysta l
JP2000007496A (en) Single crystal pulling-up equipment and single crystal pulling-up method using the same
JP2004067441A (en) Apparatus for growing single crystal
JPH06211589A (en) Semiconductor single crystal rod producing device
JP3587231B2 (en) Silicon single crystal pulling device
JP5051044B2 (en) Method for growing silicon single crystal
JPWO2020156213A5 (en)
JP4304608B2 (en) Heat shielding member of silicon single crystal pulling device
JPH06199590A (en) Device for producing semiconductor single crystal rod
KR101292223B1 (en) Silicon single crystal cooling cylinder and silicon single crystal growth apparatus including the same
WO2021157183A1 (en) Single crystal production method and single crystal pulling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3952356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees