JP3952356B2 - Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same - Google Patents

Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same Download PDF

Info

Publication number
JP3952356B2
JP3952356B2 JP2001054948A JP2001054948A JP3952356B2 JP 3952356 B2 JP3952356 B2 JP 3952356B2 JP 2001054948 A JP2001054948 A JP 2001054948A JP 2001054948 A JP2001054948 A JP 2001054948A JP 3952356 B2 JP3952356 B2 JP 3952356B2
Authority
JP
Japan
Prior art keywords
single crystal
cooling fluid
cylinder
cooling
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001054948A
Other languages
Japanese (ja)
Other versions
JP2002255682A (en
Inventor
孝司 水石
幸司 北川
亮二 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001054948A priority Critical patent/JP3952356B2/en
Publication of JP2002255682A publication Critical patent/JP2002255682A/en
Application granted granted Critical
Publication of JP3952356B2 publication Critical patent/JP3952356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、チョクラルスキー法(以下、CZ法と称する。)により半導体単結晶を育成するための単結晶製造装置及びそれを用いた半導体単結晶の製造方法に関する。
【0002】
【従来の技術】
従来、CZ法により育成されたシリコン単結晶はシリコン半導体ウェーハに加工され、半導体素子の基板として数多く使用されている。CZ法によるシリコン単結晶の製造においては、特開平3−97688号公報や特開昭57−40119号公報等に示されているように、ルツボに収容された原料融液から引き上げられたシリコン単結晶の輻射熱を除去し、成長速度の高速化を図るため、原料融液の直上に育成した単結晶を取り囲むように、円筒状あるいは円錐状の部材を配設して、シリコン単結晶の引上げを行なう方法が多く用いられている。
【0003】
特に、育成結晶を囲繞するように配置される円筒形状を有する冷却筒は、融液面上方から下流される不活性ガスの整流作用が大きく、原料融液からの蒸発物を効率よく炉外へと排出し、蒸発物等による育成結晶の有転位化を防止できることから、シリコン単結晶の製造装置では広く採用されている装置構成である。そして、これら円筒形状をした冷却筒や円錐形状の遮熱スクリーンは、1400℃以上にもなる高温の原料融液の直上に配置され、育成結晶からの輻射熱を効率よく吸収し、さらには原料融液を加熱する加熱ヒータや原料融液からの輻射熱を遮る必要があることから、その多くが黒鉛材や熱伝導率の高いステンレスやモリブデンといった高融点金属で作られているのが一般的である。
【0004】
しかし、例えば特開平3−97688号公報に示されているような黒鉛材で作られた冷却筒では、引き上げた単結晶を取り囲むように冷却筒を配置したことにより、育成結晶の冷却効果は高まるものの、単結晶からの輻射熱を積極的に吸収するものではないために、結晶の成長速度を高めるには自ずと限界があった。特に、直径が200mmを超えるような大型のシリコン単結晶を育成する場合には、育成結晶そのものの熱容量も大きくなることから、より効率の高い冷却方法が求められている。
【0005】
そこで、最近ではこの問題を解決するための一つの方法として、特開昭61−68389号公報や特開平4−317491号公報、或は特願平12−21241号に示されるような、上述の冷却筒や遮熱スクリーンに水等の冷却流体を流通し、積極的に育成結晶からもたらされる輻射熱を吸収して、育成炉外部へと熱を移送することにより、単結晶の冷却効率を可能な限り高めた強制冷却筒を備えたシリコン単結晶の製造装置も開発されてきている。
【0006】
【発明が解決しようとする課題】
一般に、上述した冷却流体を流通し育成結晶からの輻射熱を炉外へと移送する冷却機構を備えた強制冷却筒では、冷却流体を流通させる経路は強制冷却筒の壁を二重構造として隙間を作り、その隙間に冷却流体を流すジャケット方式のものと、強制冷却筒の壁にシームレスパイプ等を溶接して、パイプに冷却流体を流通することによって強制冷却筒を冷却する方法が良く知られている。
【0007】
しかし、冷却筒壁を二重構造としたジャケット方式のものでは、冷却流体を強制冷却筒に流通させる際に、冷却筒内で冷却流体のショートカットが起こりやすく、強制冷却筒の高温となる部位で冷却流体に滞留が生じ、部分的に高温となる場所ができやすくなる問題がある。これは、単結晶の冷却効率を悪化させ、また、強制冷却筒の過昇温による損傷などにもつながる。
【0008】
一方、パイプ方式の冷却構造のものでは、強制冷却筒の冷却パイプを溶接した部分とそうでない部分に温度ムラができやすくなり、強制冷却筒全体に渡って均一な冷却効果を得ることが難しい等の問題もある。また、冷却パイプから接合部への熱伝導が関与するためジャケット方式ほどの冷却効率は期待できず、冷却効果の不足やムラ等を生じやすい問題がある。
【0009】
本発明の課題は、育成される半導体単結晶をムラなく高い効率で冷却できるようにし、半導体単結晶の生産性を高めると同時に、均一で安定した冷却雰囲気を形成することにより、結晶全体に渡って品質の安定したバラツキの少ない半導体単結晶を製造できる装置及びそれを用いた半導体単結晶の製造方法を提供することにある。
【0010】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明の装置は、原料融液の上方において、ルツボに収容した原料融液から引き上げられる半導体単結晶を取り囲む形で、冷却流体を流通させる強制冷却筒を配置し、強制冷却筒により引き上げた半導体単結晶からの輻射熱を除去しつつチョクラルスキー法により単結晶を育成する半導体単結晶製造装置において、強制冷却筒に対し冷却流体を流通する際に、冷却流体を原料融液に近い強制冷却筒の下端部へ導き、その後、該強制冷却筒内に設けられた周方向流通矯正部により、筒周方向の流れを促しつつ筒下端部から上端に向けて冷却流体を流通させるようにしたことを特徴とする。
【0011】
また、本発明の半導体単結晶の製造方法は、上記の装置を用い、強制冷却筒により引き上げた半導体単結晶からの輻射熱を除去しつつチョクラルスキー法により単結晶を育成することを特徴とする。
【0012】
強制冷却筒に冷却水等の冷却流体を流通させる際に、水の滞留部分が生じると、冷却水が滞留している部分で高温となって強制冷却筒を傷めたり、冷却筒の温度分布にむらが出て均等な結晶冷却が困難となり、安定した品質並びに高速で単結晶を引き上げるのが難しくなったりする。そこで、本発明においては、強制冷却筒内に設けられた周方向流通矯正部により、筒周方向の流れを促しつつ筒下端部から上端に向けて冷却流体を流通させるようにしたので、強制冷却筒の周方向及び軸線方向の双方において冷却流体を均一に流通させることが可能となり、ひいては冷却流体の滞留等による強制冷却筒の過昇温や冷却効率低下を効果的に防止ないし抑制できる。また、強制冷却筒の下端側から冷却流体が流通されることから、融液から引き上げられる単結晶の、より高温となる下側部分に、より低温の(つまり冷却による熱吸収の進んでいない)冷却流体が供給されるため冷却効率を高くすることができる。また、単結晶の上側部分には、下側部分の冷却によりある程度温上昇した冷却流体が供給されるので、引き上げられる単結晶の軸線方向の温度勾配が過度に急となることを防止することができる。周方向流通矯正部は、冷却流体を筒下端部から上端に向けてらせん状の経路に沿って導くものとして設けておくと、上記の効果を更に高めることができる。
【0013】
強制冷却筒は、内筒部材と外筒部材との間に環状の冷却流体流通隙間を形成し、該流体流通隙間に連通する冷却流体入口及び冷却流体出口とを設けたジャケット構造を有するものとして構成できる。ジャケット構造の強制冷却筒は、内筒部材の全面に冷却流体を接触させることができるため、冷却効率が高い反面、ジャケット内の冷却流体流通隙間において、冷却流体の短絡(ショートカット)が生じやすくなり、冷却流体の滞留が特に発生しやすかった。そこで、本発明ではジャケット構造を採用する場合、周方向流通矯正部を、筒下端部から上端に向けての冷却流体の流通を許容しつつ、筒軸線と交差する周方向の仕切り面により冷却流体流通隙間を仕切る仕切り壁を含むものとして構成する。これにより、冷却流体のショートカットひいては冷却流体滞留が極めて生じ難くなり、冷却ムラの防止及び冷却効率のさらなる向上を図ることができる。この場合、ジャケット構造を有する強制冷却筒の仕切り壁が、冷却流体流通隙間をらせん状の流通経路に仕切る形態に設けられていると、効果を一層高めることができる。
【0014】
次に、強制冷却筒の各構成部材を接合する溶接部は、原料融液面並びに原料融液より引き上げられた半導体単結晶と対向する面に設けないことが望ましい。冷却筒を作る際に、冷却筒の構成部材を溶接により接合するが、この溶接部は単結晶や加熱ヒータ等からの高温の熱輻射に曝されると劣化しやすくなり、延いては強制冷却筒の損傷にもつながる。しかしながら、溶接部を原料融液面並びに原料融液より引き上げられた半導体単結晶と対向する面に設けないようにすることにより、例えば、ジャケット構造の冷却筒で、全ての溶接部を冷却流体流通隙間側に生ずるように構成することで、上記の不具合を効果的に防止できる。
【0015】
例えば、従来、原料融液面近くでは1400℃以上もの高温に曝されるため冷却筒を配置するのは難しく、原料融液面近くの単結晶の高温部を効果的に冷却するのは困難なものとみなされていたので、強制冷却筒の配置位置にも制約があった。しかし、本構造の採用により該配置位置の自由度が増し、温度分布調整のための炉内レイアウト改善やコンパクト化なども容易に行なうことができる。具体的には、高温に曝される面、例えば熱輻射により500℃以上に昇温することが見込まれる面に溶接部を設けないことで、強制冷却筒の耐久性と信頼性の向上を図ることができる。また、炉内のより高温部分(原料融液面に更に近い位置)に、強制冷却筒を配置(延長)することができる。これによって、単結晶からの輻射熱の除去効果が高まる。また、強制冷却筒の内面(結晶と対向する面に溶接部を持たないので、内表面の凹凸が無くなり不活性ガスの整流作用が妨げられなくなる利点も生ずる。なお、原料融液面並びに原料融液より引き上げられた半導体単結晶と位置的には対向していても、十分遠方にあるため上記温度以上に昇温する懸念が生じない部位には、本発明の主旨において当然、溶接部が設けられることを妨げるものではない。従って、本明細書では、このような部位は、請求項でいう「原料融液面並びに原料融液より引き上げられた半導体単結晶と対向する面」に属するものとはみなさない。
【0016】
また、強制冷却筒内部を流通する冷却流体の温度を測定するために、該強制冷却筒の内部に1箇所以上、温度センサを取り付けることができる。これによって強制冷却筒の内部温度をモニタでき、過昇温等の発生を早期に発見できるようになる。この場合、温度センサは、融液に最も近く、過昇温等の特に生じやすい、強制冷却筒の下端部を流れる冷却流体の温度を測定する位置に少なくとも取り付けされていることが望ましい。
【0017】
また、さらに進んでは、強制冷却筒に流通する冷却流体の温度を温度センサにより測定するとともに、冷却流体の温度が所定の温度となるように該冷却流体の流通量及び/又は(例えばヒータ等により)温度を調整して単結晶を育成することも可能である。例えば温度センサによる測定により冷却流体の異常昇温が認められた場合は、冷却流体の流通量を増加させて冷却能力を増強し、正常な温度を維持することが可能となる。また、冷却流体の流通量及び/又は温度調整により、より安定した冷却雰囲気を形成することができ、より品質の揃った単結晶の育成が可能となる。
【0018】
【発明の実施の形態】
以下に、本発明の実施の形態を、CZ法によるシリコン半導体単結晶製造に適用した場合を例にとり、図面を参照しながら説明する。なお、本発明はこれらシリコン単結晶の成長のみに限定されるものではなく、例えば、本発明の装置は化合物半導体等の他の単結晶育成においても利用可能なものである。
【0019】
図1は、本発明に係る半導体単結晶製造装置(以下、単に単結晶製造装置ともいう)の一例を示す概略構成の断面図である。該単結晶製造装置20は、一般的な単結晶製造装置と同様、原料、例えば原料融液4を収容するルツボ5,6、多結晶シリコン原料を加熱・溶融するためのヒータ7などがメインチャンバ1内に格納され、メインチャンバ1上に連設された引上げチャンバ2の上部には、育成された単結晶を引き上げる引き上げ機構(図示せず)が設けられている。
【0020】
引上げチャンバ2の上部に取り付けられた引き上げ機構からは、引上げワイヤ16が巻き出されており、その先端には、種結晶17を取り付けるための種ホルダ18が接続され、種ホルダ18の先に取り付けられた種結晶17を原料融液4に浸漬し、引上げワイヤ16を引き上げ機構によって巻き取ることで種結晶17の下方にシリコン半導体単結晶(以下、単に単結晶ともいいう)3を形成する。
【0021】
なお、上記ルツボ5,6は、原料融液4を直接収容する石英ルツボ5が内側、該石英ルツボ5を支持するための黒鉛ルツボ6が外側に配された構造となっている。ルツボ5,6は、単結晶製造装置20の下部に取り付けられた回転駆動機構(図示せず)によって回転昇降動自在なルツボ回転軸19に指示されており、単結晶製造装置中の融液面の変化によって結晶品質が変わることのないよう、融液面を一定位置に保つため、結晶と逆方向に回転させながら単結晶3の引き上げに応じて融液が減少した分だけルツボを上昇させている。
【0022】
また、ルツボ5,6を取り囲むように加熱ヒータ7が配置されており、この加熱ヒータ7の外側には、ヒータ7からの熱がメインチャンバに直接輻射されるのを防止するための断熱部材8が周囲を取り囲むように設けられている。また、チャンバ1,2内部には、炉内に発生した不純物を炉外に排出する等を目的とし、引上げチャンバ2上部に設けられたガス導入口10からアルゴンガス等の不活性ガスが導入され、引き上げ中の単結晶3、融液4上部を通過してチャンバ1,2内部を流通し、ガス流通口9から排出される。なお、メインチャンバ1及び引上げチャンバ2は、ステンレス等の耐熱性、熱伝導性に優れた金属により形成されており、冷却管(図示せず)を通して水冷されている。
【0023】
次に、単結晶製造装置20では、強制冷却筒11が、引上げ中の単結晶3を取り囲むように前記メインチャンバ1の少なくとも天井部から原料溶液表面に向かって延伸する形態で設けられている。該強制冷却筒11内には、冷却流体導入路形成部をなす導入管12から冷却流体Wが導入され、該冷却流体は、強制冷却筒11内を循環して強制冷却筒11を強制冷却した後、冷却流体出口30(図2)から外部に排出される。なお、冷却流体Wとしては、従来から冷却流体として使用されている液体あるいは気体を使用することができるが、冷却特性のほか、取り扱い性、コスト面等からも水を使用するのが好適である。また、これら強制冷却筒11内に流す冷却流体の流量や温度を必要に応じて調節すれば、強制冷却筒11の除去熱量を変化させることができるので、これにより単結晶成長速度にあわせた所望の冷却雰囲気を作り出すことが可能である。これについては後述する。
【0024】
強制冷却筒11(後述する内筒部材35、外筒部材32及び仕切り壁部33;図2参照)の材質としては、耐熱性があり、熱伝導性に優れたものであれば特に限定されないが、具体的には、鉄(例えばステンレス鋼(SUS304等))、ニッケル、銅、チタン、モリブデン、タングステン、もしくはこれらの金属を含む合金から作製することができる。また、前記金属もしくは合金をチタン、モリブデン、タングステン、もしくは白金族金属で被覆して構成してもよい。このような金属あるいは合金を使用することにより、強制冷却筒11の耐熱性が非常に優れたものとなり、熱伝導性も非常に高くなるので、単結晶棒から放熱された熱を吸収したあと、強制冷却筒11内部を循環する水等の冷却流体に効率よく伝え、結晶周囲の温度を低下させるので、単結晶の冷却速度を向上させることができる。
【0025】
また、単結晶製造装置20には、強制冷却筒11より下方に延伸し、円筒または下方に向かって縮径された形状の冷却補助部材13を有している。本実施形態では、強制冷却筒11の下端部から原料融液面近傍に延伸する円筒状の冷却補助部材13が設けられている。冷却補助部材13は、引き上げられた直後の、高温の単結晶3の周囲を囲んでおり、ヒータ7あるいは融液4等からの輻射熱を遮って単結晶3を冷却する効果を有する。また、強制冷却筒11が融液面の直上まで近づくことが防がれ安全性が確保されるとともに、融液上方から結晶近傍を下流する不活性ガスの整流効果が発揮される。
【0026】
上記冷却補助部材13の材質としては、耐熱性に非常に優れるとともに、高い熱伝導性を有するものが好ましく、具体的には、黒鉛、モリブデン、またはタングステンとするのがよい。特に黒鉛は、ヒータや融液等からの輻射熱を効率よく遮蔽し、熱伝導率も比較的高いので好適である。また、表面を保護被膜(例えば熱分解炭素被膜あるいは炭化ケイ素被膜等)で被覆したものを使用してもよい。このようにすれば、冷却補助部材への蒸発物の付着による悪影響が軽減され耐久性が向上するとともに、冷却補助部材の不純物汚染もより抑制できる。
【0027】
上記のように耐熱性に優れるとともに熱伝導率の高い材質からなる冷却補助部材13を使用することで、冷却補助部材13に吸収された熱は強制冷却筒11へと伝わり、さらに強制冷却筒11内を循環する冷却流体を通じて外部へ排出される。そして、強制冷却筒11と冷却補助部材13を組み合わせて設けることにより、融液4から成長した直後の非常に高温の単結晶3が、まず冷却補助部材13によってヒータ7等からの輻射熱が遮られて効果的に冷却され、さらに引き上げられることで強制冷却筒11と相対し、少なくともメインチャンバ1の天井部まで強制冷却筒11により冷却されるので、結晶の広範囲にわたって効率よく冷却される。そのため、結晶からの流出熱量を確実に除去し、冷却効果を最大限に発揮するので、結晶を非常に速い成長速度で引き上げることが可能となる。
【0028】
以下、強制冷却筒11における本発明の特徴に関して、以下に詳述する。
図2に強制冷却筒11の構造の詳細を示しており、(a)は縦断面図、(b)は横断面図である。その構造上の特徴は、冷却流体Wを流通する際に、冷却流体Wを原料融液に近い強制冷却筒11の下端部へ導き、その後、該強制冷却筒11内に設けられた周方向流通矯正部33により、筒周方向の流れを促しつつ筒下端部から上端に向けて冷却流体Wを流通させるようにした点にある。
【0029】
本実施形態において強制冷却筒11は、円筒状の内筒部材31と、これと同心的に配置された円筒状の外筒部材32との間に、環状の冷却流体流通隙間CLが形成され、該媒体流通隙間CLに連通する冷却流体入口36及び冷却流体出口30とを設けたウォータージャケット構造を有している。そして、周方向流通矯正部33は、筒下端部から上端に向けての冷却流体Wの流通を許容しつつ、筒軸線と交差する周方向の仕切り面により冷却流体流通隙間CLを仕切る仕切り壁(以下、仕切り壁33と記載する)からなる。
【0030】
ジャケット構造を有する上記強制冷却筒11の仕切り壁33は、図3に示すように、冷却流体流通隙間CLをらせん状の流通経路34に仕切る形態に設けられている。図1に示すように、強制冷却筒11はメインチャンバ1の天井部に配置されており、より具体的には、引上チャンバ2とメインチャンバ1とにまたがる形態にて配置されている。そして、導入管12による強制冷却筒11への冷却流体の供給経路の接続位置は、導入管12が融液4や引き上げられた単結晶3の輻射熱に直接さらされないよう強制冷却筒11の上端部、本実施形態では、引上チャンバ2の下端部であって導入管12が引上チャンバ2の外に配置されるように設定されている。
【0031】
図4(a)に示すように、仕切り壁33は、幅方向の片側の縁が内筒部材31の外周面に対しフィレット状の溶接部Yにより結合・一体化されている。この溶接部Yは冷却流体流通隙間CL側に面していて、引き上げられた高温の単結晶3や、融液4(図1)と対向する面(以下、熱暴露面という)には露出していない。他方、これと反対の縁は、外筒部材32の内周面と密着しているが、図4(b)に示すように、仕切り壁33を挟んで隣接する上下の流通経路34間において、冷却流体Wの漏洩がそれほど大きくならないのであれば、外筒部材32の内周面と仕切り壁33との間に多少の隙間が開いていても差し支えない。
【0032】
他方、図2(a)に示すように、冷却流体流通隙間CLの底を塞ぐ環状の底面形成部材31bも、内筒部材31の下端面に対し、冷却流体流通隙間CLに面するフィレット状の溶接部Yにより接合されている。すなわち、仕切り壁33の溶接部も含め、強制冷却筒11には、熱暴露面に溶接部が形成されていない構造が実現されている。
【0033】
図2に示すように、導入管12からの冷却流体は、例えば内筒部材35内に形成された流下通路部35内を流下した後、内筒部材35の下端部に開口する冷却流体入口36から媒体流通隙間CLに流入するようになっている。そして、図5(b)に示すように、仕切り壁33によりらせん状に形成された流通経路34内を周回しながら筒上部に向けて上昇し、外筒部材32の上端部に形成された冷却流体出口30から強制冷却筒11の外に排出される。図5(a)は、強制冷却筒11内に流入した冷却流体が流通経路34内を移動する際の、筒軸線方向及び周方向位置の推移を示すものである。最初▲1▼において、周方向の一定位置にて流下通路部35内を筒軸線O(図2参照)の方向に流下した後、一定勾配の仕切り壁33に沿った周回を重ねる毎に筒軸線方向に連続的に上昇してゆく様子(図5▲2▼)を模式的に概念的に表している。なお、図2(b)において、符号30bは、冷却流体出口30に向けて冷却流体Wをガイドするガイド仕切り壁である。
【0034】
なお、仕切り壁33の配設の便宜を図るために、図5(c)のように構成することも可能である。すなわち、軸線方向位置がそれぞれ固定された複数枚のフィン状のセグメント40を一定間隔で配設し、各セグメント40を挟んで隣接する空間を、該セグメント40の周方向の一部を切り欠く形で連通させ、さらに、隣り合うセグメント40,40同士を、上記切欠位置にて連結壁41により順次接続する。これにより、セグメント40と連結壁41とにより形成された階段状の流通経路34を形成することができる。図5▲2▼’に示すように、冷却流体Wは、周回を重ねる毎に筒軸線方向に段階的に上昇してゆくこととなる。なお、符号133は、冷却流体入口36から流入する冷却流体Wの逆流を阻止する仕切り壁である。
【0035】
上記のようなジャケット構造の強制冷却筒11は、内筒部材31の全面に冷却流体Wを接触させることができるため、冷却効率が高い。そして、本発明では、らせん状の仕切り壁33により冷却流体流通隙間CLにて仕切ることにより、冷却流体Wの短絡(ショートカット)を効果的に防止でき、ひいてはそのらせん形態の流通経路34に沿う形で、強制冷却筒11の周方向及び軸線方向の双方において冷却流体を均一に流通させることができる。その結果、冷却ムラの防止及び冷却効率の向上を図ることができる。
【0036】
なお、図6(理解を容易にするために、流通経路34は直線状に展開して描いている)に示すように、冷却流体出口30から流出した冷却媒体Wは、戻り管路51を経て流通経路34に戻すことにより、循環流を形成することができる。この循環流は、循環経路上に配置された送液手段としてのポンプ52により形成することができる。また、戻り管路51上にて放熱手段をなすクーリングタワー60により、昇温した冷却流体を冷却することができる。
【0037】
次に、図2に戻り、強制冷却筒11の内部を流通する冷却流体Wの温度を、該強制冷却筒11の内部、具体的には冷却流体流通隙間CLに設けた温度センサ57により測定することができる。強制冷却筒11に過昇温等を生じた場合、上記温度センサ57によりこれをすぐに検出することができる。過昇温を生じやすいのは、融液4に面した強制冷却筒11の下端部であるから、これに対応する冷却流体流通隙間CLの下端位置に温度センサ57を配置しておけば、過昇温を一層検出しやすくなる。ただし、図中に一点鎖線で示すように、冷却流体流通隙間CLの軸線方向中間位置や上端部など、複数個の温度センサ57を分散して配置しておき、各々温度検出を行なうようにすれば、より鋭敏な過昇温検出を行なうことができるほか、強制冷却筒11内の温度分布も知ることができるので、冷却ムラ等の発生をモニタすることも可能となる。なお、温度センサとしては、熱電対の他、サーミスタなど公知のものを使用できる。
【0038】
また、図6に示すように、温度センサ57の温度検出信号をコンピュータ等で構成された制御部50によりモニタし、予め定められた目標値から検出温度が外れた場合に、予め設けられた温度調整機構を制御部50により自動制御して、温度センサ57の検出温度が前記目標値に近づくように冷却流体の温度を調整することができる。この中でも特に有用な態様として、冷却流体の過昇温が検出された場合、これを適正温度域に低下させる制御形態を例示することができる。図6に示す実施形態では、温度センサ57が過昇温を検出したとき、制御部50は、強制冷却筒11内を流れる冷却流体Wの流量を増大させて冷却を促進するように動作する。具体的には、冷却流体Wの循環主経路MCから分岐する形でバイパス経路53を設けておき、循環主経路MCとバイパス経路53との流量分配比率を、バルブ54により調整するようにしている。なお、ここでは、循環主経路MCとバイパス経路53とのそれぞれにバルブ54,54を設け、それらバルブ54,54の開き量及び/又は開き時間の調整により、流量分配比率を調整するようにしているが、これに限られるものではない。
【0039】
なお、冷却流体の温度は、流量調整以外にも、例えばヒータによる強制過熱により調整することも可能である.この場合、ヒータ加熱と流量調整とを組み合わせることももちろん可能である。例えば、より微妙で迅速な温度調整が必要な場合は、流量調整とは別に、又は流量調整に加え、ヒータ加熱を採用したほうが都合のよい場合がある。また、過昇温の場合には冷却流体の流量増加が有効であるが、逆に強制冷却筒の温度が下がりすぎた場合は、流量減少のみでは対応しきれない場合もある。
【0040】
図7は、流通経路34内にヒータ56を設けた例であり、電源55により該ヒータ56を発熱させることができる。制御部50は、温度センサ57の温度検出値が目標温度に近づくように、電源55のヒータ56に対する通電出力を加減する。この実施形態では、バルブ54の作動調整により流量調整も併用する形となっているが、これは省略してもよい。また、ヒータ56は、流通経路34の略全長にわたって配置されているが、流通経路34の、冷却流体の加熱に適した一部区間にのみヒータ56を設けてもよい。例えば、強制冷却筒11の下端部付近の温度が問題になる場合は、温度センサ57と同様、該部分に対応する区間にのみ(つまり、流通経路34の入口36に近い側の端部付近にのみ)、ヒータ56を設けるようにしてもよい。
【0041】
また、ヒータ56による冷却流体Wの加熱は流通経路34外にて行なうようにしてもよい。例えば図8は、流通経路34の上流側に温度調整室34aを設け、該温度調整室34a内にヒータ56を配置して、その発熱により冷却流体Wの温度を予備調整してから流通経路34内に導くようにしている。
【0042】
さらに、冷却筒の温度分布にむらが生じた場合、これを解消するために局所的な温度調整をきめ細かく行ないたい場合もありうる。そこで、図9に示すように、流通経路34に沿ってヒータ56を分散配置し、各々独立に出力制御できるようにしておけば、このような対応も簡単に行なうことができる。この場合、流通経路34に沿って温度センサ57を分散配置しておき、温度検出値の目標値からのずれが大きくなった温度センサ57の位置に応じて、予め定められた位置のヒータ56の出力を選択的に調整するようにする。
【0043】
なお、本発明は以上説明した実施形態に限定されるものではなく、請求項に記載された概念を逸脱しない範囲において、種々の改良あるいは変形を付加することができ、これらも当然、本発明の技術的範囲に属するものである。例えば、図10(a)に示すように、ジャケット構造を採用せず、らせん状に巻きまわした金属製の冷却管113を、例えば内筒部材111aの外周面に溶接固着した構造の強制冷却筒111を採用することも可能である。この場合、冷却管113に対し、冷却筒111の下端側の入り口部112から冷却流体を導入し、上端側の出口部114から排出させるようにする。
【0044】
他方、ジャケット構造を採用する場合、流通経路34は必ずしもらせん状を呈しているものに限定されない。図10(b)は、その一例を示すものであり、互いに分離した鍔状の仕切り壁143を、強制冷却筒11の軸線方向に所定間隔で配置し、仕切り壁143に流通孔143a(あるいは、外筒部材32と仕切り壁143の外縁との間に形成した狭い隙間であってもよい)を形成ようにしている。隣接する仕切り壁143,143間に環状の空間を形成することで周方向の流体流れが促進され、かつ軸線方向に仕切り壁143が断続的に配置しているので、ショートカット等も抑制される。
【0045】
【実施例】
以下、本発明の効果を確認するために行なった実験の結果について説明する。
単結晶の育成は、図1に示す装置を用いて行なった。具体的には、口径60cmの石英製ルツボにシリコン単結晶の原料である多結晶シリコンを150kg充填しヒータを加熱して融解した後に、一定径を有する結晶定径部の直径が200mmのシリコン単結晶を引き上げた。なお、図2に示すように、強制冷却筒11の下端部に取り付けた温度センサ57により、結晶引き上げ中における冷却水温度をモニタした。なお、温度センサの検出目標温度は30℃とした。その結果を図11に示す。すなわち、本発明の装置の採用により、単結晶育成中は温度バラツキが5℃以下と安定した状態で冷却水温度が推移し、略一定の冷却効果が得られていることがわかる。特に、単結晶定径部の育成中は温度変化が殆んど無く、安定した雰囲気で結晶成長が行われていることがわかる。
【0046】
また、図12は、軸線方向に適宜の間隔にて配置した温度センサにより測定した、定径部引き上げ時と略同一条件下での冷却筒の内面軸線方向(縦方向)の温度分布を示すものである。実線が本発明の装置を用いた場合であり、破線は、仕切り壁部を排除したジャケット構造の強制冷却筒を使用した比較例である。これによると、本発明の装置を用いた場合、比較例よりも軸線方向全域に渡って温度が低く、均一で良好な冷却効果が得られていることがわかる。また、軸線方向における温度勾配も、本発明の装置のほうが緩やかになっている。
【図面の簡単な説明】
【図1】本発明に係る半導体単結晶製造装置の一例を示す断面模式図。
【図2】図1の装置における強制冷却筒の詳細構造の一例を示す縦断面図及び横断面図。
【図3】図2の強制冷却筒の内部構造を示す斜視図。
【図4】仕切り壁と内筒部材及び外筒部材との関係を、変形例とともに示す図。
【図5】図2の強制冷却筒及びその変形例の強制冷却筒の作用説明図。
【図6】強制冷却筒の温度調整を、冷却流体の流量調整により制御可能とした装置の一例を概念的に示す図。
【図7】強制冷却筒の温度調整を、ヒータ発熱量により制御可能とした装置の一例を概念的に示す図。
【図8】図7の装置における、ヒータの配置形態の変形例を示す図。
【図9】同じく別の変形例を示す図。
【図10】強制冷却筒のいくつかの変形例を示す断面模式図。
【図11】実施例にて行なった実験における、冷却流体の温度変化推移の測定結果を示すグラフ。
【図12】実施例にて行なった実験における、強制冷却筒内面の縦方向温度分布の測定結果を、比較例と対比して示すグラフ。
【符号の説明】
3 半導体単結晶
4 原料融液
5,6 ルツボ
11 強制冷却筒
20 半導体単結晶製造装置
30 冷却流体出口
31 内筒部材
32 外筒部材
33 仕切り壁(周方向流通矯正部)
36 冷却流体入口
Y 溶接部
57 温度センサ
[0001]
[Technical field to which the invention belongs]
The present invention relates to a single crystal manufacturing apparatus for growing a semiconductor single crystal by the Czochralski method (hereinafter referred to as CZ method) and a method for manufacturing a semiconductor single crystal using the same.
[0002]
[Prior art]
Conventionally, a silicon single crystal grown by the CZ method is processed into a silicon semiconductor wafer and used in many cases as a substrate for semiconductor elements. In the production of a silicon single crystal by the CZ method, as shown in Japanese Patent Laid-Open No. 3-97688, Japanese Patent Laid-Open No. 57-40119, etc., a silicon single crystal pulled up from a raw material melt contained in a crucible is used. In order to remove the radiant heat of the crystal and increase the growth rate, a cylindrical or conical member is disposed so as to surround the single crystal grown immediately above the raw material melt, and the silicon single crystal is pulled up. Many methods are used.
[0003]
In particular, the cooling cylinder having a cylindrical shape arranged so as to surround the grown crystal has a large rectifying action of the inert gas downstream from the upper surface of the melt surface, and efficiently evaporates the raw material melt to the outside of the furnace. Therefore, it is possible to prevent dislocation of the grown crystal due to evaporants and the like, and therefore, the apparatus configuration is widely adopted in the silicon single crystal manufacturing apparatus. These cylindrical cooling cylinders and conical heat shielding screens are arranged immediately above the high-temperature raw material melt at 1400 ° C. or higher, efficiently absorb the radiant heat from the grown crystal, and further melt the raw material. Since it is necessary to block the radiant heat from the heater that heats the liquid and the raw material melt, most of them are made of graphite, refractory metals such as stainless steel and molybdenum with high thermal conductivity. .
[0004]
However, for example, in a cooling cylinder made of a graphite material as disclosed in JP-A-3-97688, the cooling effect of the grown crystal is enhanced by arranging the cooling cylinder so as to surround the pulled single crystal. However, since it does not actively absorb the radiant heat from the single crystal, there is a limit to increasing the crystal growth rate. In particular, when growing a large silicon single crystal having a diameter exceeding 200 mm, since the heat capacity of the grown crystal itself is increased, a more efficient cooling method is required.
[0005]
Therefore, recently, as one method for solving this problem, as described in JP-A-61-68389, JP-A-4-317491, or Japanese Patent Application No. 12-212241, Cooling fluid such as water is circulated through the cooling cylinder and heat shield screen, actively absorbing the radiant heat generated from the growing crystal, and transferring the heat to the outside of the growing furnace, enabling cooling efficiency of the single crystal An apparatus for producing a silicon single crystal provided with a forced cooling cylinder raised as much as possible has been developed.
[0006]
[Problems to be solved by the invention]
In general, in a forced cooling cylinder having a cooling mechanism that circulates the above-described cooling fluid and transfers radiant heat from the grown crystal to the outside of the furnace, the path through which the cooling fluid circulates has a gap between the walls of the forced cooling cylinder as a double structure Well-known are the jacket type that flows cooling fluid through the gap and the method of cooling the forced cooling cylinder by welding a seamless pipe to the wall of the forced cooling cylinder and circulating the cooling fluid through the pipe. Yes.
[0007]
However, in the jacket type with a double structure of the cooling cylinder wall, when the cooling fluid is circulated through the forced cooling cylinder, a shortcut of the cooling fluid is likely to occur in the cooling cylinder, and the temperature of the forced cooling cylinder is high. There is a problem that stagnation occurs in the cooling fluid, and it becomes easy to create a place where the temperature becomes partially high. This deteriorates the cooling efficiency of the single crystal and also leads to damage due to excessive heating of the forced cooling cylinder.
[0008]
On the other hand, with a pipe-type cooling structure, temperature unevenness is likely to occur between the part where the cooling pipe of the forced cooling cylinder is welded and the part where it is not, and it is difficult to obtain a uniform cooling effect over the entire forced cooling cylinder. There is also a problem. Further, since heat conduction from the cooling pipe to the joint portion is involved, the cooling efficiency as with the jacket method cannot be expected, and there is a problem that the cooling effect is insufficient or uneven.
[0009]
An object of the present invention is to allow a semiconductor single crystal to be grown to be cooled uniformly and with high efficiency, to increase the productivity of the semiconductor single crystal, and at the same time, to form a uniform and stable cooling atmosphere. Another object of the present invention is to provide an apparatus capable of producing a semiconductor single crystal with stable quality and little variation, and a method for producing a semiconductor single crystal using the same.
[0010]
[Means for solving the problems and actions / effects]
In order to solve the above problems, the apparatus of the present invention has a forced cooling cylinder for circulating a cooling fluid in a form surrounding a semiconductor single crystal pulled up from the raw material melt stored in the crucible above the raw material melt. In a semiconductor single crystal manufacturing apparatus that grows a single crystal by the Czochralski method while removing radiant heat from the semiconductor single crystal pulled up by the forced cooling cylinder, the cooling fluid flows when the cooling fluid is circulated through the forced cooling cylinder. Is guided to the lower end of the forced cooling cylinder close to the raw material melt, and then cooled from the lower end of the cylinder toward the upper end while urging the flow in the circumferential direction of the cylinder by the circumferential flow correcting section provided in the forced cooling cylinder. It is characterized by allowing fluid to circulate.
[0011]
The method for producing a semiconductor single crystal according to the present invention is characterized in that the single crystal is grown by the Czochralski method while removing radiant heat from the semiconductor single crystal pulled up by the forced cooling cylinder using the above-described apparatus. .
[0012]
When a cooling fluid such as cooling water is circulated through the forced cooling cylinder, if a portion of the water stays, the temperature of the portion where the cooling water stays becomes high and damages the forced cooling cylinder. Unevenness occurs and uniform crystal cooling becomes difficult, and it becomes difficult to pull up the single crystal with stable quality and high speed. Therefore, in the present invention, the cooling fluid is circulated from the lower end of the cylinder toward the upper end while promoting the flow in the circumferential direction by the circumferential flow correction portion provided in the forced cooling cylinder. It becomes possible to distribute the cooling fluid uniformly both in the circumferential direction and in the axial direction of the cylinder, and as a result, it is possible to effectively prevent or suppress overheating of the forced cooling cylinder and a decrease in cooling efficiency due to retention of the cooling fluid. In addition, since the cooling fluid is circulated from the lower end side of the forced cooling cylinder, the lower portion of the single crystal pulled up from the melt is heated to a lower temperature (that is, heat absorption by cooling is not progressing). Since the cooling fluid is supplied, the cooling efficiency can be increased. In addition, the upper part of the single crystal is supplied with a cooling fluid whose temperature has risen to some extent due to cooling of the lower part, so that the temperature gradient in the axial direction of the single crystal to be pulled up can be prevented from becoming excessively steep. it can. If the circumferential flow straightening portion is provided as a member that guides the cooling fluid along the spiral path from the lower end portion to the upper end portion of the cylinder, the above effect can be further enhanced.
[0013]
The forced cooling cylinder has a jacket structure in which an annular cooling fluid circulation gap is formed between the inner cylinder member and the outer cylinder member, and a cooling fluid inlet and a cooling fluid outlet communicating with the fluid circulation gap are provided. Can be configured. The forced cooling cylinder with a jacket structure allows the cooling fluid to contact the entire surface of the inner cylinder member, so that the cooling efficiency is high, but a short circuit (shortcut) of the cooling fluid is likely to occur in the cooling fluid circulation gap in the jacket. The stagnation of the cooling fluid was particularly likely to occur. Therefore, in the case where the jacket structure is adopted in the present invention, the cooling fluid is allowed to flow through the circumferential partition surface intersecting the cylinder axis while allowing the cooling fluid to flow from the lower end to the upper end of the circumferential direction. It is configured to include a partition wall that partitions the circulation gap. As a result, the shortcut of the cooling fluid, and hence the retention of the cooling fluid, hardly occurs, and it is possible to prevent the uneven cooling and further improve the cooling efficiency. In this case, if the partition wall of the forced cooling cylinder having a jacket structure is provided in a form that partitions the cooling fluid circulation gap into a spiral circulation path, the effect can be further enhanced.
[0014]
Next, it is desirable not to provide the welded portion for joining the constituent members of the forced cooling cylinder on the raw material melt surface and the surface facing the semiconductor single crystal pulled up from the raw material melt. When the cooling cylinder is made, the components of the cooling cylinder are joined by welding, but this welded part tends to deteriorate when exposed to high-temperature heat radiation from a single crystal, a heater, etc. and eventually forced cooling. It also leads to damage to the tube. However, by not providing the welds on the surface of the raw material melt and on the surface facing the semiconductor single crystal pulled up from the raw material melt, for example, a cooling tube with a jacket structure can be used to distribute the cooling fluid through all the welds. By configuring so as to occur on the gap side, the above-described problems can be effectively prevented.
[0015]
For example, conventionally, it is difficult to arrange a cooling cylinder because it is exposed to a high temperature of 1400 ° C. or more near the raw material melt surface, and it is difficult to effectively cool a high temperature portion of a single crystal near the raw material melt surface. Since it was regarded as a thing, the arrangement position of the forced cooling cylinder was also limited. However, by adopting this structure, the degree of freedom of the arrangement position is increased, and the layout in the furnace for adjusting the temperature distribution and the compactness can be easily performed. Specifically, the durability and reliability of the forced cooling cylinder are improved by not providing a weld on a surface exposed to a high temperature, for example, a surface expected to rise to 500 ° C. or more due to thermal radiation. be able to. In addition, a forced cooling cylinder can be disposed (extended) at a higher temperature in the furnace (position closer to the raw material melt surface). This enhances the effect of removing radiant heat from the single crystal. In addition, there is an advantage that the inner surface of the forced cooling cylinder (the surface facing the crystal does not have a welded portion, so that the inner surface is not uneven and the rectifying action of the inert gas is not hindered. Of course, in the gist of the present invention, a welded portion is provided in a portion where there is no concern that the semiconductor single crystal pulled up from the liquid is positioned far enough to raise the temperature above the above temperature. Accordingly, in the present specification, such a part belongs to the “raw material melt surface and the surface facing the semiconductor single crystal pulled up from the raw material melt” in the claims. I do not consider.
[0016]
Further, in order to measure the temperature of the cooling fluid flowing through the forced cooling cylinder, one or more temperature sensors can be attached to the inside of the forced cooling cylinder. As a result, the internal temperature of the forced cooling cylinder can be monitored, and the occurrence of overheating or the like can be detected at an early stage. In this case, it is desirable that the temperature sensor is at least attached to a position that measures the temperature of the cooling fluid flowing through the lower end of the forced cooling cylinder that is closest to the melt and that is particularly likely to cause overheating.
[0017]
Further, further, the temperature of the cooling fluid flowing through the forced cooling cylinder is measured by a temperature sensor, and the flow rate of the cooling fluid and / or (for example, by a heater or the like) so that the temperature of the cooling fluid becomes a predetermined temperature. ) It is also possible to grow a single crystal by adjusting the temperature. For example, when an abnormal temperature rise of the cooling fluid is recognized by the measurement by the temperature sensor, it is possible to increase the circulation amount of the cooling fluid to enhance the cooling capacity and maintain a normal temperature. In addition, a more stable cooling atmosphere can be formed by adjusting the flow rate and / or temperature of the cooling fluid, and single crystals with higher quality can be grown.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example the case of applying the present invention to the production of a silicon semiconductor single crystal by the CZ method. The present invention is not limited to the growth of these silicon single crystals. For example, the apparatus of the present invention can be used for other single crystal growth such as compound semiconductors.
[0019]
FIG. 1 is a sectional view of a schematic configuration showing an example of a semiconductor single crystal manufacturing apparatus (hereinafter also simply referred to as a single crystal manufacturing apparatus) according to the present invention. The single crystal manufacturing apparatus 20 includes, in the same manner as a general single crystal manufacturing apparatus, a main chamber including raw materials, for example, crucibles 5 and 6 for storing the raw material melt 4, and a heater 7 for heating and melting the polycrystalline silicon raw material. A pulling mechanism (not shown) for pulling up the grown single crystal is provided on the upper portion of the pulling chamber 2 stored in the main chamber 1 and continuously provided on the main chamber 1.
[0020]
A pulling wire 16 is unwound from a pulling mechanism attached to the upper part of the pulling chamber 2, and a seed holder 18 for attaching a seed crystal 17 is connected to the tip of the pulling wire 16. The obtained seed crystal 17 is immersed in the raw material melt 4 and the pulling wire 16 is wound up by a pulling mechanism to form a silicon semiconductor single crystal (hereinafter also simply referred to as a single crystal) 3 below the seed crystal 17.
[0021]
The crucibles 5 and 6 have a structure in which a quartz crucible 5 for directly storing the raw material melt 4 is arranged on the inner side and a graphite crucible 6 for supporting the quartz crucible 5 is arranged on the outer side. The crucibles 5 and 6 are instructed to a crucible rotating shaft 19 that can be rotated and moved up and down by a rotation drive mechanism (not shown) attached to the lower part of the single crystal manufacturing apparatus 20. In order to keep the melt surface in a fixed position so that the crystal quality does not change due to the change of the crystal, the crucible is raised by the amount of the melt decreased as the single crystal 3 is pulled up while rotating in the opposite direction to the crystal. Yes.
[0022]
Further, a heater 7 is disposed so as to surround the crucibles 5 and 6, and a heat insulating member 8 for preventing heat from the heater 7 from being directly radiated to the main chamber outside the heater 7. Is provided so as to surround the periphery. Further, an inert gas such as argon gas is introduced into the chambers 1 and 2 for the purpose of discharging impurities generated in the furnace to the outside of the furnace and the like from a gas inlet 10 provided at the upper part of the pulling chamber 2. The single crystal 3 being pulled and the upper part of the melt 4 are passed through the chambers 1 and 2 and discharged from the gas flow port 9. The main chamber 1 and the pulling chamber 2 are made of a metal having excellent heat resistance and thermal conductivity, such as stainless steel, and are water-cooled through a cooling pipe (not shown).
[0023]
Next, in the single crystal manufacturing apparatus 20, the forced cooling cylinder 11 is provided in a form extending from at least the ceiling portion of the main chamber 1 toward the raw material solution surface so as to surround the single crystal 3 being pulled up. A cooling fluid W is introduced into the forced cooling cylinder 11 from an introduction pipe 12 that forms a cooling fluid introduction path forming portion, and the cooling fluid circulates in the forced cooling cylinder 11 to forcibly cool the forced cooling cylinder 11. Then, it is discharged outside from the cooling fluid outlet 30 (FIG. 2). As the cooling fluid W, a liquid or gas that has been conventionally used as a cooling fluid can be used, but it is preferable to use water from the viewpoint of handling characteristics, cost, etc. in addition to cooling characteristics. . Further, if the flow rate and temperature of the cooling fluid flowing through the forced cooling cylinders 11 are adjusted as necessary, the amount of heat removed from the forced cooling cylinders 11 can be changed. It is possible to create a cooling atmosphere. This will be described later.
[0024]
The material of the forced cooling cylinder 11 (the inner cylinder member 35, the outer cylinder member 32, and the partition wall 33 described later; see FIG. 2) is not particularly limited as long as it has heat resistance and excellent thermal conductivity. Specifically, it can be made from iron (for example, stainless steel (SUS304, etc.)), nickel, copper, titanium, molybdenum, tungsten, or an alloy containing these metals. The metal or alloy may be covered with titanium, molybdenum, tungsten, or a platinum group metal. By using such a metal or alloy, the heat resistance of the forced cooling cylinder 11 becomes very excellent and the thermal conductivity becomes very high, so after absorbing the heat radiated from the single crystal rod, Since it efficiently transmits to a cooling fluid such as water circulating inside the forced cooling cylinder 11 and lowers the temperature around the crystal, the cooling rate of the single crystal can be improved.
[0025]
Further, the single crystal manufacturing apparatus 20 has a cooling auxiliary member 13 that extends downward from the forced cooling cylinder 11 and has a shape that is reduced in diameter toward the cylinder or downward. In the present embodiment, a cylindrical cooling auxiliary member 13 extending from the lower end portion of the forced cooling cylinder 11 to the vicinity of the raw material melt surface is provided. The cooling auxiliary member 13 surrounds the periphery of the high-temperature single crystal 3 immediately after being pulled up, and has an effect of cooling the single crystal 3 by blocking radiant heat from the heater 7 or the melt 4. Further, the forced cooling cylinder 11 is prevented from approaching directly above the melt surface, ensuring safety and rectifying the inert gas downstream from the vicinity of the crystal from above the melt.
[0026]
The material of the cooling auxiliary member 13 is preferably one that is extremely excellent in heat resistance and has high thermal conductivity, and specifically, graphite, molybdenum, or tungsten. In particular, graphite is suitable because it efficiently shields radiant heat from a heater, a melt, and the like and has a relatively high thermal conductivity. Moreover, you may use what coat | covered the surface with the protective film (For example, a pyrolytic carbon film, a silicon carbide film, etc.). In this way, the adverse effect due to the attachment of the evaporant to the cooling auxiliary member is reduced, the durability is improved, and impurity contamination of the cooling auxiliary member can be further suppressed.
[0027]
As described above, by using the cooling auxiliary member 13 made of a material having excellent heat resistance and high thermal conductivity, the heat absorbed by the cooling auxiliary member 13 is transmitted to the forced cooling cylinder 11, and further, the forced cooling cylinder 11. It is discharged outside through the cooling fluid circulating inside. By providing the forced cooling cylinder 11 and the auxiliary cooling member 13 in combination, the very high temperature single crystal 3 immediately after growing from the melt 4 is first shielded from the radiant heat from the heater 7 and the like by the auxiliary cooling member 13. As a result of being effectively cooled and further pulled up, the forced cooling cylinder 11 is opposed to the forced cooling cylinder 11, and at least the ceiling of the main chamber 1 is cooled by the forced cooling cylinder 11, so that the crystal is efficiently cooled over a wide range. Therefore, the amount of heat flowing out from the crystal is surely removed and the cooling effect is maximized, so that the crystal can be pulled at a very high growth rate.
[0028]
Hereinafter, the characteristics of the present invention in the forced cooling cylinder 11 will be described in detail below.
2A and 2B show details of the structure of the forced cooling cylinder 11, wherein FIG. 2A is a longitudinal sectional view and FIG. 2B is a transverse sectional view. The structural feature is that when the cooling fluid W is circulated, the cooling fluid W is guided to the lower end of the forced cooling cylinder 11 close to the raw material melt, and then the circumferential flow provided in the forced cooling cylinder 11 The correction part 33 circulates the cooling fluid W from the lower end of the cylinder toward the upper end while promoting the flow in the cylinder circumferential direction.
[0029]
In the present embodiment, the forced cooling cylinder 11 has an annular cooling fluid circulation gap CL formed between a cylindrical inner cylinder member 31 and a cylindrical outer cylinder member 32 arranged concentrically therewith, It has a water jacket structure in which a cooling fluid inlet 36 and a cooling fluid outlet 30 communicating with the medium flow gap CL are provided. And the circumferential direction flow correction | amendment part 33 permits the distribution | circulation of the cooling fluid W from the cylinder lower end part toward an upper end, and partitions the cooling fluid circulation gap CL by the circumferential partition surface intersecting the cylinder axis ( Hereinafter, it is described as a partition wall 33).
[0030]
As shown in FIG. 3, the partition wall 33 of the forced cooling cylinder 11 having a jacket structure is provided in a form that partitions the cooling fluid circulation gap CL into a spiral circulation path 34. As shown in FIG. 1, the forced cooling cylinder 11 is disposed on the ceiling portion of the main chamber 1, and more specifically, is disposed in a form extending over the pulling chamber 2 and the main chamber 1. The connection position of the cooling fluid supply path to the forced cooling cylinder 11 by the introduction pipe 12 is the upper end of the forced cooling cylinder 11 so that the introduction pipe 12 is not directly exposed to the radiant heat of the melt 4 or the pulled up single crystal 3. In the present embodiment, the introduction pipe 12 is set at the lower end of the pulling chamber 2 and outside the pulling chamber 2.
[0031]
As shown in FIG. 4A, the partition wall 33 has one edge in the width direction joined and integrated with the outer peripheral surface of the inner cylinder member 31 by a fillet-like welded portion Y. This weld Y faces the cooling fluid flow gap CL side and is exposed to the pulled high temperature single crystal 3 and the surface facing the melt 4 (FIG. 1) (hereinafter referred to as a heat exposed surface). Not. On the other hand, the opposite edge is in intimate contact with the inner peripheral surface of the outer cylinder member 32, but as shown in FIG. 4 (b), between the upper and lower flow paths 34 adjacent to each other across the partition wall 33, If the leakage of the cooling fluid W does not increase so much, a slight gap may be opened between the inner peripheral surface of the outer cylinder member 32 and the partition wall 33.
[0032]
On the other hand, as shown in FIG. 2A, the annular bottom surface forming member 31 b that closes the bottom of the cooling fluid circulation gap CL is also a fillet-like shape that faces the cooling fluid circulation gap CL with respect to the lower end surface of the inner cylinder member 31. Joined by the weld Y. That is, the forced cooling cylinder 11 including the welded portion of the partition wall 33 has a structure in which no welded portion is formed on the heat exposed surface.
[0033]
As shown in FIG. 2, the cooling fluid from the introduction pipe 12 flows, for example, in the flow-down passage portion 35 formed in the inner cylinder member 35 and then opens to the lower end portion of the inner cylinder member 35. To the medium flow gap CL. Then, as shown in FIG. 5 (b), cooling rises toward the upper part of the cylinder while circulating around the circulation path 34 formed in a spiral shape by the partition wall 33, and is formed at the upper end of the outer cylinder member 32. The fluid is discharged from the fluid outlet 30 to the outside of the forced cooling cylinder 11. FIG. 5A shows the transition of the cylinder axis direction and the circumferential position when the cooling fluid that has flowed into the forced cooling cylinder 11 moves through the flow path 34. First, after flowing down in the flow-down passage portion 35 in the direction of the cylinder axis O (see FIG. 2) at a fixed position in the circumferential direction, the cylinder axis line every time the circulation along the partition wall 33 with a constant gradient is repeated. A state of continuously rising in the direction ((2) in FIG. 5) is schematically represented conceptually. In FIG. 2B, reference numeral 30 b is a guide partition wall that guides the cooling fluid W toward the cooling fluid outlet 30.
[0034]
In order to facilitate the arrangement of the partition wall 33, a configuration as shown in FIG. That is, a plurality of fin-like segments 40 each having a fixed axial position are arranged at regular intervals, and adjacent spaces across each segment 40 are cut out in a part in the circumferential direction of the segments 40. Further, the adjacent segments 40, 40 are sequentially connected by the connecting wall 41 at the notch position. Thereby, the step-like flow path 34 formed by the segment 40 and the connecting wall 41 can be formed. As shown in FIG. 5 (2) ', the cooling fluid W rises stepwise in the cylinder axis direction every time it goes around. Reference numeral 133 denotes a partition wall that prevents backflow of the cooling fluid W flowing from the cooling fluid inlet 36.
[0035]
The forced cooling cylinder 11 having the above-described jacket structure has high cooling efficiency because the cooling fluid W can be brought into contact with the entire surface of the inner cylinder member 31. According to the present invention, the cooling fluid circulation gap CL is partitioned by the spiral partition wall 33 to effectively prevent the cooling fluid W from being short-circuited (shortcut). Thus, the cooling fluid can be circulated uniformly in both the circumferential direction and the axial direction of the forced cooling cylinder 11. As a result, it is possible to prevent cooling unevenness and improve cooling efficiency.
[0036]
As shown in FIG. 6 (for easy understanding, the flow path 34 is drawn in a straight line), the cooling medium W flowing out from the cooling fluid outlet 30 passes through the return pipe 51. By returning to the circulation path 34, a circulation flow can be formed. This circulating flow can be formed by a pump 52 as a liquid feeding means arranged on the circulation path. Further, the cooled cooling fluid can be cooled by the cooling tower 60 serving as a heat radiating means on the return pipe 51.
[0037]
Next, returning to FIG. 2, the temperature of the cooling fluid W flowing through the forced cooling cylinder 11 is measured by the temperature sensor 57 provided inside the forced cooling cylinder 11, specifically, in the cooling fluid circulation gap CL. be able to. If an excessive temperature rise or the like occurs in the forced cooling cylinder 11, this can be detected immediately by the temperature sensor 57. Since it is the lower end portion of the forced cooling cylinder 11 facing the melt 4 that is likely to cause excessive temperature rise, if the temperature sensor 57 is disposed at the lower end position of the corresponding cooling fluid circulation gap CL, excessive temperature rise will occur. It becomes easier to detect the temperature rise. However, as indicated by the alternate long and short dash line in the figure, a plurality of temperature sensors 57 such as the axial intermediate position and the upper end of the cooling fluid circulation gap CL are arranged in a distributed manner to detect the temperature. Therefore, it is possible to perform more sensitive detection of excessive temperature rise and to know the temperature distribution in the forced cooling cylinder 11 and to monitor the occurrence of uneven cooling. In addition to the thermocouple, a known sensor such as a thermistor can be used as the temperature sensor.
[0038]
Further, as shown in FIG. 6, the temperature detection signal of the temperature sensor 57 is monitored by the control unit 50 configured by a computer or the like, and when the detected temperature deviates from a predetermined target value, a predetermined temperature is provided. The temperature of the cooling fluid can be adjusted so that the temperature detected by the temperature sensor 57 approaches the target value by automatically controlling the adjustment mechanism by the control unit 50. Among these, as a particularly useful aspect, when an excessive temperature rise of the cooling fluid is detected, it is possible to exemplify a control mode in which this is lowered to an appropriate temperature range. In the embodiment shown in FIG. 6, when the temperature sensor 57 detects an excessive temperature rise, the control unit 50 operates to increase the flow rate of the cooling fluid W flowing in the forced cooling cylinder 11 to promote cooling. Specifically, a bypass path 53 is provided so as to branch from the circulation main path MC of the cooling fluid W, and a flow rate distribution ratio between the circulation main path MC and the bypass path 53 is adjusted by the valve 54. . Here, valves 54, 54 are provided in the circulation main path MC and the bypass path 53, respectively, and the flow rate distribution ratio is adjusted by adjusting the opening amount and / or opening time of the valves 54, 54. However, it is not limited to this.
[0039]
In addition to adjusting the flow rate, the temperature of the cooling fluid can be adjusted, for example, by forced overheating with a heater. In this case, it is of course possible to combine heater heating and flow rate adjustment. For example, when more delicate and quick temperature adjustment is required, it may be more convenient to employ heater heating separately from or in addition to the flow rate adjustment. Further, in the case of excessive temperature rise, an increase in the flow rate of the cooling fluid is effective, but conversely, if the temperature of the forced cooling cylinder is excessively lowered, it may not be possible to cope with the decrease in the flow rate alone.
[0040]
FIG. 7 shows an example in which a heater 56 is provided in the distribution path 34, and the heater 56 can generate heat by a power supply 55. The control unit 50 adjusts the energization output to the heater 56 of the power supply 55 so that the temperature detection value of the temperature sensor 57 approaches the target temperature. In this embodiment, the flow rate adjustment is also used by adjusting the operation of the valve 54, but this may be omitted. Further, although the heater 56 is disposed over substantially the entire length of the circulation path 34, the heater 56 may be provided only in a partial section of the circulation path 34 suitable for heating the cooling fluid. For example, when the temperature near the lower end portion of the forced cooling cylinder 11 becomes a problem, like the temperature sensor 57, only in the section corresponding to the portion (that is, near the end portion on the side close to the inlet 36 of the flow path 34). Only), a heater 56 may be provided.
[0041]
Further, the cooling fluid W may be heated by the heater 56 outside the flow path 34. For example, in FIG. 8, a temperature adjustment chamber 34a is provided on the upstream side of the distribution path 34, a heater 56 is disposed in the temperature adjustment chamber 34a, and the temperature of the cooling fluid W is preliminarily adjusted by the generated heat before the distribution path 34. I try to guide it inside.
[0042]
Furthermore, when the temperature distribution of the cooling cylinder is uneven, it may be necessary to finely perform local temperature adjustment in order to eliminate this. Therefore, as shown in FIG. 9, if the heaters 56 are distributed along the distribution path 34 so that the outputs can be controlled independently of each other, such a response can be easily performed. In this case, the temperature sensors 57 are arranged in a distributed manner along the distribution path 34, and the heater 56 at a predetermined position is set in accordance with the position of the temperature sensor 57 where the deviation of the detected temperature value from the target value becomes large. Try to selectively adjust the output.
[0043]
The present invention is not limited to the embodiments described above, and various improvements or modifications can be added without departing from the concept described in the claims. It belongs to the technical scope. For example, as shown in FIG. 10A, a forced cooling cylinder having a structure in which a metal cooling pipe 113 wound in a spiral shape is welded and fixed to, for example, the outer peripheral surface of the inner cylinder member 111a without using a jacket structure. It is also possible to adopt 111. In this case, the cooling fluid is introduced into the cooling pipe 113 from the inlet portion 112 on the lower end side of the cooling cylinder 111 and discharged from the outlet portion 114 on the upper end side.
[0044]
On the other hand, when the jacket structure is adopted, the distribution channel 34 is not necessarily limited to a spiral shape. FIG. 10 (b) shows an example of this, and the bowl-shaped partition walls 143 separated from each other are arranged at predetermined intervals in the axial direction of the forced cooling cylinder 11, and the circulation holes 143a (or A narrow gap formed between the outer cylinder member 32 and the outer edge of the partition wall 143 may be formed). By forming an annular space between the adjacent partition walls 143 and 143, the fluid flow in the circumferential direction is promoted, and the partition walls 143 are intermittently arranged in the axial direction, so that shortcuts and the like are also suppressed.
[0045]
【Example】
The results of experiments conducted to confirm the effects of the present invention will be described below.
The single crystal was grown using the apparatus shown in FIG. Specifically, after filling a quartz crucible having a diameter of 60 cm with 150 kg of polycrystalline silicon, which is a raw material for silicon single crystal, and heating and melting the silicon single crystal, the crystal constant diameter portion having a constant diameter has a diameter of 200 mm. The crystal was pulled up. In addition, as shown in FIG. 2, the temperature sensor 57 attached to the lower end part of the forced cooling cylinder 11 monitored the cooling water temperature during crystal pulling. The detection target temperature of the temperature sensor was 30 ° C. The result is shown in FIG. That is, it can be seen that by adopting the apparatus of the present invention, the temperature of the cooling water changes in a stable state with a temperature variation of 5 ° C. or less during single crystal growth, and a substantially constant cooling effect is obtained. In particular, it can be seen that there is almost no temperature change during the growth of the single crystal constant diameter portion, and crystal growth is performed in a stable atmosphere.
[0046]
FIG. 12 shows the temperature distribution in the axial direction (longitudinal direction) of the inner surface of the cooling cylinder, measured by a temperature sensor arranged at an appropriate interval in the axial direction, under substantially the same conditions as when the constant diameter portion was pulled up. It is. A solid line is a case where the apparatus of the present invention is used, and a broken line is a comparative example using a forced cooling cylinder having a jacket structure in which a partition wall portion is excluded. According to this, when the apparatus of this invention is used, it turns out that temperature is low over the whole axial direction rather than a comparative example, and the uniform favorable cooling effect is acquired. Also, the temperature gradient in the axial direction is gentler in the apparatus of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor single crystal manufacturing apparatus according to the present invention.
2 is a longitudinal sectional view and a transverse sectional view showing an example of a detailed structure of a forced cooling cylinder in the apparatus of FIG. 1. FIG.
3 is a perspective view showing an internal structure of the forced cooling cylinder of FIG. 2. FIG.
FIG. 4 is a view showing a relationship between a partition wall, an inner cylinder member, and an outer cylinder member together with a modification.
5 is an operation explanatory view of the forced cooling cylinder of FIG. 2 and a forced cooling cylinder of a modified example thereof. FIG.
FIG. 6 is a diagram conceptually illustrating an example of an apparatus that can control the temperature adjustment of the forced cooling cylinder by adjusting the flow rate of the cooling fluid.
FIG. 7 is a diagram conceptually illustrating an example of an apparatus that can control temperature adjustment of a forced cooling cylinder by a heater heat generation amount.
8 is a view showing a modification of the arrangement of heaters in the apparatus of FIG.
FIG. 9 is a diagram showing another modified example.
FIG. 10 is a schematic cross-sectional view showing some modified examples of the forced cooling cylinder.
FIG. 11 is a graph showing a measurement result of a change in temperature of the cooling fluid in an experiment performed in the example.
FIG. 12 is a graph showing the measurement result of the longitudinal temperature distribution on the inner surface of the forced cooling cylinder in the experiment conducted in the example, in comparison with the comparative example.
[Explanation of symbols]
3 Semiconductor single crystal
4 Raw material melt
5,6 crucible
11 Forced cooling cylinder
20 Semiconductor single crystal manufacturing equipment
30 Cooling fluid outlet
31 Inner cylinder member
32 Outer cylinder member
33 Partition wall (circumferential flow straightening part)
36 Cooling fluid inlet
Y weld
57 Temperature sensor

Claims (7)

原料融液の上方において、ルツボに収容した原料融液から引き上げられる半導体単結晶を取り囲む形で、冷却流体を流通させる強制冷却筒を配置し、強制冷却筒により引き上げた半導体単結晶からの輻射熱を除去しつつチョクラルスキー法により単結晶を育成する半導体単結晶製造装置において、
前記強制冷却筒に対し冷却流体を流通する際に、冷却流体を原料融液に近い強制冷却筒の下端部へ、該強制冷却筒の周方向の一定位置にて筒軸線方向に流下させる流下通路部により導き、その後、該強制冷却筒内に設けられた周方向流通矯正部により、筒周方向の流れを促しつつ筒下端部から上端に向けて前記冷却流体を流通させ
前記強制冷却筒は、内筒部材と外筒部材との間に環状の冷却流体流通隙間を形成し、該冷却流体流通隙間に連通する冷却流体入口及び冷却流体出口とを設けたジャケット構造を有してなり、前記周方向流通矯正部は、筒下端部から上端に向けての前記冷却流体の流通を許容しつつ、筒軸線と交差する周方向の仕切面により前記冷却流体流通隙間を仕切る仕切り壁を含み、
前記強制冷却筒の各構成部材を接合する溶接部を、原料融液面並びに原料融液より引き上げられた半導体単結晶と対向する面に設けないことを特徴とする半導体単結晶製造装置。
Above the raw material melt, a forced cooling cylinder that circulates the cooling fluid is disposed so as to surround the semiconductor single crystal pulled up from the raw material melt contained in the crucible, and radiant heat from the semiconductor single crystal pulled up by the forced cooling cylinder is generated. In a semiconductor single crystal manufacturing apparatus that grows a single crystal by the Czochralski method while removing,
When flowing the cooling fluid to the forced cooling cylinder, a flow-down passage that causes the cooling fluid to flow down to the lower end portion of the forced cooling cylinder close to the raw material melt in the cylinder axial direction at a constant position in the circumferential direction of the forced cooling cylinder guided by parts, then the circumferential flow correction unit provided in the forcible cooling cylinder, is flowing through the cooling fluid toward the upper end from the tubular lower portion while encouraging the flow of the cylindrical circumferential direction,
The forced cooling cylinder has a jacket structure in which an annular cooling fluid circulation gap is formed between the inner cylinder member and the outer cylinder member, and a cooling fluid inlet and a cooling fluid outlet communicating with the cooling fluid circulation gap are provided. The circumferential flow straightening portion is a partition that partitions the cooling fluid flow gap by a circumferential partition surface that intersects the cylinder axis while allowing the cooling fluid to flow from the lower end to the upper end of the tube. Including walls,
The apparatus for manufacturing a semiconductor single crystal is characterized in that a welded portion for joining the constituent members of the forced cooling cylinder is not provided on the raw material melt surface and the surface facing the semiconductor single crystal pulled up from the raw material melt .
前記周方向流通矯正部は、前記冷却流体を前記筒下端部から上端に向けてらせん状の経路に沿って導くものとして設けられることを特徴とする請求項に記載の半導体単結晶製造装置。2. The semiconductor single crystal manufacturing apparatus according to claim 1 , wherein the circumferential flow straightening unit is provided to guide the cooling fluid along a spiral path from the lower end of the cylinder toward the upper end. 前記ジャケット構造を有する前記強制冷却筒の前記仕切り壁が、前記冷却流体流通隙間をらせん状の流通経路に仕切る形態に設けられている請求項記載の半導体単結晶製造装置。The semiconductor single crystal manufacturing apparatus according to claim 2 , wherein the partition wall of the forced cooling cylinder having the jacket structure is provided in a form that partitions the cooling fluid circulation gap into a spiral circulation path. 前記強制冷却筒内部を流通する前記冷却流体の温度を測定するために、該強制冷却筒の内部に1箇所以上、温度センサを取り付けたことを特徴とする請求項1ないしのいずれか1項に記載の半導体単結晶製造装置。To measure the temperature of the cooling fluid flowing inside the forced cooling cylinder, one location or in the interior of the forcible cooling cylinder, any one of claims 1, characterized in that fitted with temperature sensors 3 The semiconductor single crystal manufacturing apparatus described in 1. 前記温度センサは、前記強制冷却筒の下端部を流れる冷却流体の温度を測定する位置に少なくとも取り付けられていることを特徴とする請求項記載の半導体単結晶製造装置。5. The semiconductor single crystal manufacturing apparatus according to claim 4 , wherein the temperature sensor is attached at least to a position for measuring a temperature of a cooling fluid flowing through a lower end portion of the forced cooling cylinder. 請求項1ないしのいずれか1項に記載の半導体単結晶製造装置を用い、前記強制冷却筒により引き上げた半導体単結晶からの輻射熱を除去しつつチョクラルスキー法により単結晶を育成することを特徴とする半導体単結晶の製造方法。A semiconductor single crystal manufacturing apparatus according to any one of claims 1 to 5, that a single crystal is grown by the Czochralski method while removing radiant heat from the semiconductor single crystal pulled by said forced cooling cylinder A method for producing a semiconductor single crystal. 前記強制冷却筒に流通する冷却流体の温度を前記温度センサにより測定するとともに、前記冷却流体の温度が所定の温度となるように該冷却流体の流通量及び/又は温度を調整して前記単結晶を育成することを特徴とする請求項に記載の半導体単結晶の製造方法。The temperature of the cooling fluid flowing through the forced cooling cylinder is measured by the temperature sensor, and the flow rate and / or temperature of the cooling fluid is adjusted so that the temperature of the cooling fluid becomes a predetermined temperature. The method for producing a semiconductor single crystal according to claim 6 , wherein the semiconductor single crystal is grown.
JP2001054948A 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same Expired - Fee Related JP3952356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054948A JP3952356B2 (en) 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054948A JP3952356B2 (en) 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2002255682A JP2002255682A (en) 2002-09-11
JP3952356B2 true JP3952356B2 (en) 2007-08-01

Family

ID=18915208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054948A Expired - Fee Related JP3952356B2 (en) 2001-02-28 2001-02-28 Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3952356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200100544A (en) 2019-02-18 2020-08-26 신에쯔 한도타이 가부시키가이샤 Silicon single crystal pull-up device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569090B2 (en) * 2003-10-10 2010-10-27 信越半導体株式会社 Single crystal manufacturing method, single crystal, and single crystal manufacturing apparatus
JP5018609B2 (en) * 2008-04-08 2012-09-05 株式会社Sumco Single crystal puller
KR100964356B1 (en) * 2009-09-28 2010-06-17 퀄리플로나라테크 주식회사 Silicon ingot grower and body for vacuum chamber of silicon ingot grower
KR101942318B1 (en) * 2017-08-18 2019-01-25 에스케이실트론 주식회사 Silicon Single Crystal Ingot Cooling Tube And Silicon Single Crystal Ingot Growth Apparatus Having The Same
CN110735179A (en) * 2018-07-20 2020-01-31 上海新昇半导体科技有限公司 cooling device applied to single crystal furnace and single crystal furnace
CN114381795A (en) * 2021-12-29 2022-04-22 宁夏申和新材料科技有限公司 Water-cooled screen device of czochralski crystal growing furnace and single crystal growing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200100544A (en) 2019-02-18 2020-08-26 신에쯔 한도타이 가부시키가이샤 Silicon single crystal pull-up device

Also Published As

Publication number Publication date
JP2002255682A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US6632280B2 (en) Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
JP3992800B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
US4981549A (en) Method and apparatus for growing silicon crystals
US9217208B2 (en) Apparatus for producing single crystal
EP1158076B1 (en) Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
JP3952356B2 (en) Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same
CN110735179A (en) cooling device applied to single crystal furnace and single crystal furnace
JP2002201090A (en) Method of growing single crystal and single crystal growing device
CN216156017U (en) Resistance heating single crystal growing furnace by physical vapor transport method
CN113774476A (en) Resistance heating single crystal growing furnace by physical vapor transport method
KR20090069313A (en) Apparatus for producing single crystal and method for producing single crystal
JP4788029B2 (en) Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same
JP2008127217A (en) Apparatus and method for manufacturing semiconductor single crystal
JP5181171B2 (en) Semiconductor single crystal manufacturing method
JP2000007488A (en) Single crystal silicon pulling-up equipment and single crystal pulling-up method using the same
JP7059967B2 (en) Single crystal growth device and single crystal growth method
JP3587231B2 (en) Silicon single crystal pulling device
KR20020045765A (en) Growing apparatus of a single crystal ingot
JP5051044B2 (en) Method for growing silicon single crystal
JP2000007496A (en) Single crystal pulling-up equipment and single crystal pulling-up method using the same
KR0130180B1 (en) Device for pulling up single crysta l
JP3642174B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3203341B2 (en) Semiconductor single crystal rod manufacturing equipment
KR100445191B1 (en) A cooling tube and a growing apparatus using a cooling tube
KR101292223B1 (en) Silicon single crystal cooling cylinder and silicon single crystal growth apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3952356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees