JP3428625B2 - Apparatus and method for pulling silicon single crystal - Google Patents

Apparatus and method for pulling silicon single crystal

Info

Publication number
JP3428625B2
JP3428625B2 JP17893598A JP17893598A JP3428625B2 JP 3428625 B2 JP3428625 B2 JP 3428625B2 JP 17893598 A JP17893598 A JP 17893598A JP 17893598 A JP17893598 A JP 17893598A JP 3428625 B2 JP3428625 B2 JP 3428625B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
heat
silicon
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17893598A
Other languages
Japanese (ja)
Other versions
JP2000007488A (en
Inventor
森林 符
直樹 小野
道夫 喜田
康 島貫
Original Assignee
三菱住友シリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱住友シリコン株式会社 filed Critical 三菱住友シリコン株式会社
Priority to JP17893598A priority Critical patent/JP3428625B2/en
Publication of JP2000007488A publication Critical patent/JP2000007488A/en
Application granted granted Critical
Publication of JP3428625B2 publication Critical patent/JP3428625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン単結晶棒
を引上げて育成するシリコン単結晶の引上げ装置及びそ
の引上げ方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal pulling apparatus for pulling and growing a silicon single crystal rod and a pulling method thereof.

【0002】[0002]

【従来の技術】従来、この種のシリコン単結晶引上げ装
置として、図8に示すようにチャンバ3内にシリコン融
液2が貯留された石英るつぼ4が収容され、シリコン単
結晶棒1の外周面と石英るつぼ4の内周面との間にシリ
コン単結晶棒1を包囲するように熱遮蔽部材7が挿入さ
れた引上げ装置(特公昭57−40119号)が開示さ
れている。この装置では、熱遮蔽部材7が下方に向うに
従って直径が小さくなるコーン部7aと、外周縁がコー
ン部7aの下縁に接続され水平に延びて内周縁がシリコ
ン単結晶棒1の外周面近傍に達するリング部7bと、内
周縁がコーン部7aの上縁に接続され水平に延びて外周
縁が保温筒8の上面に達するフランジ部7cとを有す
る。熱遮蔽部材7はフランジ部7cを保温筒8の上面に
載置することにより固定される。図4の符号9はヒータ
である。
2. Description of the Related Art Conventionally, as a silicon single crystal pulling apparatus of this type, a quartz crucible 4 in which a silicon melt 2 is stored is housed in a chamber 3 as shown in FIG. There is disclosed a pulling device (Japanese Patent Publication No. 57-40119) in which a heat shield member 7 is inserted so as to surround the silicon single crystal ingot 1 between the quartz crucible 4 and the inner surface of the quartz crucible 4. In this apparatus, a cone portion 7a having a diameter that decreases as the heat shield member 7 moves downward, and an outer peripheral edge connected to a lower edge of the cone portion 7a and extending horizontally and an inner peripheral edge near the outer peripheral surface of the silicon single crystal ingot 1. And a flange portion 7c whose inner peripheral edge is connected to the upper edge of the cone portion 7a and extends horizontally and whose outer peripheral edge reaches the upper surface of the heat insulating cylinder 8. The heat shield member 7 is fixed by placing the flange portion 7c on the upper surface of the heat insulating cylinder 8. Reference numeral 9 in FIG. 4 is a heater.

【0003】このように構成された引上げ装置では、シ
リコン単結晶棒1をシリコン融液2から引上げると、シ
リコン融液2の液面が次第に低下して石英るつぼ4の内
周壁が露出し、この露出した石英るつぼ4の内周壁から
の輻射熱がシリコン単結晶棒1の外周面に向うが、この
輻射熱は熱遮蔽部材7により遮られてシリコン単結晶棒
1の外周面に達しない。この結果、引上げ中のシリコン
単結晶棒1の凝固が遅延することはなく、シリコン単結
晶棒1は速やかに冷却されるようになっている。
In the pulling apparatus thus constructed, when the silicon single crystal ingot 1 is pulled up from the silicon melt 2, the liquid surface of the silicon melt 2 is gradually lowered and the inner peripheral wall of the quartz crucible 4 is exposed. Although the radiant heat from the exposed inner peripheral wall of the quartz crucible 4 is directed to the outer peripheral surface of the silicon single crystal rod 1, this radiant heat is blocked by the heat shield member 7 and does not reach the outer peripheral surface of the silicon single crystal rod 1. As a result, the solidification of the silicon single crystal ingot 1 during pulling is not delayed, and the silicon single crystal ingot 1 is quickly cooled.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の特
公昭57−40119号公報に示された引上げ装置で
は、シリコン融液から引上げられるシリコン単結晶棒の
固液界面付近において、高温のシリコン融液からの輻射
熱が熱遮蔽部材により遮られるため、シリコン単結晶棒
の外周面からの放熱量が比較的多い。この結果、シリコ
ン単結晶棒内の温度分布がその中心から外周面に向うに
従って次第に低くなり、シリコン単結晶棒の肩部形成時
にはほぼ平面であった固液界面が、シリコン単結晶棒の
引上げに従ってその直胴部形成時に上方に湾曲するよう
に変化し、シリコン単結晶棒内に熱的ストレスが発生す
る恐れがあった。また、直胴径の異なる複数種類のシリ
コン単結晶棒を同一の装置により引上げる場合に、その
引上げようとするシリコン単結晶棒の直胴径に適した熱
遮蔽部材に、その直胴径が異なるシリコン単結晶棒の引
上げ毎に取替える煩わしさを回避する必要もある。
However, in the conventional pulling apparatus disclosed in Japanese Patent Publication No. 57-40119, a high temperature silicon melt is formed near the solid-liquid interface of the silicon single crystal rod pulled from the silicon melt. Since the radiant heat from the liquid is shielded by the heat shield member, the amount of heat radiated from the outer peripheral surface of the silicon single crystal rod is relatively large. As a result, the temperature distribution inside the silicon single crystal rod gradually decreases from the center toward the outer peripheral surface, and the solid-liquid interface, which was almost flat when the shoulder portion of the silicon single crystal rod was formed, is increased as the silicon single crystal rod is pulled up. When the straight body portion was formed, it changed so as to curve upward, and there was a risk that thermal stress would occur in the silicon single crystal rod. Further, when pulling a plurality of types of silicon single crystal rods having different straight body diameters by the same device, the heat shield member suitable for the straight body diameters of the silicon single crystal rods to be pulled has a straight body diameter It is also necessary to avoid the inconvenience of replacing different silicon single crystal ingots every time they are pulled.

【0005】本発明の目的は、シリコン融液から引上げ
られるシリコン単結晶棒における固液界面形状を均一に
することにより、シリコン単結晶棒内の熱的ストレスの
発生を低減できるシリコン単結晶引上げ装置及びその引
上げ方法を提供することにある。本発明の別の目的は、
熱遮蔽部材を取替えることなく、直胴径の異なる複数種
類のシリコン単結晶棒を引上げ得るシリコン単結晶引上
げ装置及びその引上げ方法を提供することにある。
An object of the present invention is to make it possible to reduce the occurrence of thermal stress in the silicon single crystal rod by making the solid-liquid interface shape of the silicon single crystal rod pulled from the silicon melt uniform. And to provide a method of raising the price. Another object of the present invention is to
It is an object of the present invention to provide a silicon single crystal pulling apparatus and a pulling method thereof that can pull a plurality of types of silicon single crystal rods having different straight body diameters without replacing the heat shield member.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、チャンバ11内に設けられシリコン
融液12が貯留された石英るつぼ13と、石英るつぼ1
3の外周面を包囲しシリコン融液12を加熱するヒータ
18と、シリコン融液12から引上げられるシリコン単
結晶棒25の外周面を包囲しかつ下端がシリコン融液1
2表面から間隔をあけて上方に位置するように構成され
ヒータ18からの輻射熱を遮る熱遮蔽部材26とを備え
たシリコン単結晶引上げ装置の改良である。その特徴あ
る構成は、下方に向うに従って開口径が小さくなるよう
に下向きに傾斜したコーン状の放熱抑制部26cが熱遮
蔽部材26の下部に形成され、複数の熱輻射体27がシ
リコン単結晶棒25を包囲するように放熱抑制部26c
上に放射状に移動可能に配置され、複数の熱輻射体27
をそれぞれ移動して複数の熱輻射体27のシリコン単結
晶棒25の周面に対する距離を変更する熱輻射体移動手
段41を備えたところにある。
The invention according to claim 1 is
As shown in FIG. 1, a quartz crucible 13 provided in a chamber 11 in which a silicon melt 12 is stored, and a quartz crucible 1
The heater 18 that surrounds the outer peripheral surface of the silicon melt 3 and heats the silicon melt 12, and the outer peripheral surface of the silicon single crystal rod 25 pulled up from the silicon melt 12 and the lower end of the silicon melt 1
The present invention is an improvement of a silicon single crystal pulling apparatus provided with a heat shield member 26 which is configured to be positioned above and spaced apart from two surfaces and which shields radiant heat from the heater 18. The characteristic structure is that a cone-shaped heat dissipation suppressing portion 26c inclined downward so that the opening diameter becomes smaller as it goes downward is formed in the lower portion of the heat shield member 26, and the plurality of heat radiators 27 are made of silicon single crystal rods. The heat radiation suppressing portion 26c so as to surround 25
A plurality of heat radiators 27 are arranged so as to be radially movable above.
Is provided with the heat radiator moving means 41 for changing the distances of the plurality of heat radiators 27 to the peripheral surface of the silicon single crystal rod 25.

【0007】この請求項1に記載されたシリコン単結晶
の引上げ装置では、放熱抑制部26c上に配置された複
数の熱輻射体27は高温のシリコン融液12からの輻射
熱によりその温度が上昇するか、又はシリコン融液12
からの輻射熱若しくはシリコン単結晶棒25からの放熱
を熱輻射体27を反射する。複数の熱輻射体27をシリ
コン単結晶棒25の近傍にそれぞれ移動することによ
り、シリコン融液12近傍におけるシリコン単結晶棒2
5の外周面からの急激な放熱は抑制される。この結果、
シリコン単結晶棒25の外周部の急激な温度低下を阻止
して固液界面形状を略平面にする。また、この請求項1
に記載されたシリコン単結晶の引上げ装置では、直胴径
の異なる複数種類のシリコン単結晶棒25を引上げる場
合であっても、複数の熱輻射体27をそれぞれ移動して
その複数の熱輻射体27が包囲する開口径を変化させる
ことにより、その引上げようとするシリコン単結晶棒2
5の直胴径に適して複数の熱輻射体27を配置する。こ
の結果、同一の熱遮蔽部材26の使用を可能にしてその
直胴径が異なるシリコン単結晶棒25の引上げ毎に熱遮
蔽部材を取替える煩わしさを回避する。
In the apparatus for pulling a silicon single crystal according to the present invention, the temperature of the plurality of heat radiators 27 arranged on the heat radiation suppressing portion 26c rises due to the radiant heat from the high temperature silicon melt 12. Or silicon melt 12
The radiant heat from or the heat radiated from the silicon single crystal rod 25 is reflected by the thermal radiator 27. By moving each of the plurality of heat radiators 27 to the vicinity of the silicon single crystal rod 25, the silicon single crystal rod 2 in the vicinity of the silicon melt 12 is moved.
Rapid heat dissipation from the outer peripheral surface of 5 is suppressed. As a result,
Abrupt temperature decrease of the outer peripheral portion of the silicon single crystal ingot 25 is prevented to make the solid-liquid interface shape substantially flat. In addition, this claim 1
In the apparatus for pulling a silicon single crystal described in (1), even when pulling a plurality of types of silicon single crystal rods 25 having different straight body diameters, the plurality of thermal radiators 27 are moved and the plurality of thermal radiators are moved. By changing the diameter of the opening surrounded by the body 27, the silicon single crystal ingot 2 to be pulled up is changed.
A plurality of heat radiating bodies 27 are arranged in accordance with the straight body diameter of 5. As a result, it is possible to use the same heat shield member 26 and avoid the trouble of replacing the heat shield member each time the silicon single crystal ingots 25 having different straight body diameters are pulled.

【0008】請求項2に係る発明は、請求項1に係る発
明であって、熱輻射体移動手段41が、チャンバ11の
上部に設けられた駆動ギヤと、チャンバ11の上部に設
けられ駆動ギヤを駆動する駆動モータ46と、チャンバ
11の上部からチャンバ11内に吊り下げられ駆動ギヤ
に歯合するラックギヤが周囲に形成された支持棒42
と、支持棒42の下端と熱輻射体27を連結する連結ワ
イヤ44とを有するシリコン単結晶の引上げ装置であ
る。この請求項2に記載されたシリコン単結晶の引上げ
装置では、ラックギヤに歯合する駆動ギヤの回転により
支持棒42が昇降するため、容易に熱輻射体27を移動
できる。
The invention according to claim 2 is the invention according to claim 1, wherein the heat radiation member moving means 41 is a drive gear provided on the upper part of the chamber 11 and a drive gear provided on the upper part of the chamber 11. A drive motor 46 for driving the motor, and a support rod 42 around which a rack gear that is suspended from the upper portion of the chamber 11 and meshes with the drive gear is formed.
And a connecting wire 44 that connects the lower end of the support rod 42 and the heat radiator 27 to each other. In the apparatus for pulling a silicon single crystal according to the second aspect, the support rod 42 moves up and down by the rotation of the drive gear that meshes with the rack gear, so that the heat radiation body 27 can be easily moved.

【0009】請求項3に係る発明は、石英るつぼ13に
貯留されたシリコン融液12から成長するシリコン単結
晶棒25を筒状の熱遮蔽部材26と熱遮蔽部材26の下
部に形成された下向きに傾斜したコーン状の放熱抑制部
26cにより包囲し、放熱抑制部26c上にシリコン単
結晶棒25を包囲するように複数の熱輻射体27を放射
状に移動可能に配置してシリコン単結晶棒25を引上げ
る方法である。その特徴ある点は、シリコン単結晶棒2
5の肩部25b形成時に複数の熱輻射体27を放熱抑制
部26c上に肩部25bから離した位置に移動し、シリ
コン単結晶棒25の直胴部25c形成時に複数の熱輻射
体27を直胴部25c近傍に移動するところにある。
According to a third aspect of the present invention, a silicon single crystal rod 25 growing from the silicon melt 12 stored in the quartz crucible 13 is formed into a cylindrical heat shield member 26 and a downward face formed below the heat shield member 26. It is surrounded by a cone-shaped heat dissipation suppressing portion 26c inclined to the outside, and a plurality of thermal radiators 27 are radially movably arranged so as to surround the silicon single crystal rod 25 on the heat dissipation suppressing portion 26c. Is the method of pulling up. The characteristic point is that the silicon single crystal rod 2
5 is moved to a position separated from the shoulder portion 25b on the heat dissipation suppressing portion 26c when the shoulder portion 25b of 5 is formed, and the plurality of heat radiator 27 is moved when the straight body portion 25c of the silicon single crystal rod 25 is formed. It is located near the straight body portion 25c.

【0010】この請求項3に記載されたシリコン単結晶
の引上げ方法では、肩部25b形成時に複数の熱輻射体
27を肩部25bから離した位置に移動することによ
り、シリコン融液12の熱を形成途中の肩部25bに積
極的に放散して速やかに肩部25bの形成を行う。一
方、直胴部25c形成時には複数の熱輻射体27を直胴
部25c近傍に移動してシリコン融液12近傍における
シリコン単結晶棒25の外周面からの急激な放熱を抑制
し、シリコン単結晶棒25の外周部の急激な温度低下を
阻止して固液界面形状を略平面にする。
In the method of pulling up the silicon single crystal according to the third aspect of the present invention, the heat of the silicon melt 12 is increased by moving the plurality of heat radiating bodies 27 to the positions apart from the shoulder portion 25b when the shoulder portion 25b is formed. Is actively dissipated to the shoulder portion 25b in the process of forming, and the shoulder portion 25b is quickly formed. On the other hand, when the straight body portion 25c is formed, a plurality of heat radiators 27 are moved to the vicinity of the straight body portion 25c to suppress rapid heat dissipation from the outer peripheral surface of the silicon single crystal rod 25 in the vicinity of the silicon melt 12, and the silicon single crystal is formed. The solid-liquid interface shape is made substantially flat by preventing a sharp temperature decrease in the outer peripheral portion of the rod 25.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1及び図2に示すように、シリコ
ン単結晶の引上げ装置10のチャンバ11内には、シリ
コン融液12を貯留する石英るつぼ13が設けられ、こ
の石英るつぼ13の外面は黒鉛サセプタ14により被覆
される。石英るつぼ13の下面は上記黒鉛サセプタ14
を介して支軸16の上端に固定され、この支軸16の下
部はるつぼ駆動手段17に接続される。るつぼ駆動手段
17は図示しないが石英るつぼ13を回転させる第1回
転用モータと、石英るつぼ13を昇降させる昇降用モー
タとを有し、これらのモータにより石英るつぼ13が所
定の方向に回転し得るとともに、上下方向に移動可能と
なっている。石英るつぼ13の外周面は石英るつぼ13
から所定の間隔をあけてヒータ18により包囲され、こ
のヒータ18は保温筒19により包囲される。ヒータ1
8は石英るつぼ13に投入された高純度のシリコン多結
晶体を加熱・溶融してシリコン融液にする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, a quartz crucible 13 for storing a silicon melt 12 is provided in a chamber 11 of a silicon single crystal pulling apparatus 10, and an outer surface of the quartz crucible 13 is covered with a graphite susceptor 14. To be done. The lower surface of the quartz crucible 13 is the above graphite susceptor 14.
It is fixed to the upper end of the support shaft 16 via, and the lower part of the support shaft 16 is connected to the crucible drive means 17. Although not shown, the crucible driving means 17 has a first rotation motor for rotating the quartz crucible 13 and an elevating motor for elevating the quartz crucible 13, and these motors can rotate the quartz crucible 13 in a predetermined direction. At the same time, it can move vertically. The outer peripheral surface of the quartz crucible 13 is a quartz crucible 13.
A heater 18 surrounds the heater 18 at a predetermined distance from the heater 18. Heater 1
Numeral 8 heats and melts the high-purity silicon polycrystalline material charged into the quartz crucible 13 to form a silicon melt.

【0012】またチャンバ11の上端には円筒状のケー
シング21が接続される。このケーシング21には引上
げ手段22が設けられる。引上げ手段22はケーシング
21の上端部に水平状態で旋回可能に設けられた引上げ
ヘッド(図示せず)と、このヘッドを回転させる第2回
転用モータ(図示せず)と、ヘッドから石英るつぼ13
の回転中心に向って垂下されたワイヤケーブル23と、
上記ヘッド内に設けられワイヤケーブル23を巻取り又
は繰出す引上げ用モータ(図示せず)とを有する。ワイ
ヤケーブル23の下端にはシリコン融液12に浸してシ
リコン単結晶棒25を引上げるための種結晶24が取付
けられる。
A cylindrical casing 21 is connected to the upper end of the chamber 11. The casing 21 is provided with pulling up means 22. The pulling means 22 is a pulling head (not shown) provided on the upper end of the casing 21 so as to be horizontally rotatable, a second rotation motor (not shown) for rotating the head, and a quartz crucible 13 from the head.
A wire cable 23 hanging toward the center of rotation of
A pulling motor (not shown) provided in the head for winding or unwinding the wire cable 23. A seed crystal 24 for dipping in the silicon melt 12 and pulling up the silicon single crystal ingot 25 is attached to the lower end of the wire cable 23.

【0013】またシリコン単結晶棒25の外周面と石英
るつぼ13の内周面との間にはシリコン単結晶棒25の
外周面を包囲する熱遮蔽部材26が設けられる。この熱
遮蔽部材26は円筒状に形成されヒータ18からの輻射
熱を遮る筒部26aと、この筒部26aの上縁に連設さ
れ外方に略水平方向に張り出すフランジ部26bとを有
する。上記フランジ部26bを保温筒19上に載置する
ことにより、筒部26aの下縁がシリコン融液12表面
から所定の距離だけ上方に位置するように熱遮蔽部材2
6がチャンバ11内に固定される。
A heat shield member 26 surrounding the outer peripheral surface of the silicon single crystal rod 25 is provided between the outer peripheral surface of the silicon single crystal rod 25 and the inner peripheral surface of the quartz crucible 13. The heat shield member 26 has a cylindrical portion 26a which is formed in a cylindrical shape and shields the radiant heat from the heater 18, and a flange portion 26b which is connected to the upper edge of the cylindrical portion 26a and projects outward in a substantially horizontal direction. By placing the flange portion 26b on the heat insulating cylinder 19, the heat shield member 2 is arranged so that the lower edge of the cylinder portion 26a is located above the surface of the silicon melt 12 by a predetermined distance.
6 is fixed in the chamber 11.

【0014】更に、チャンバ11にはこのチャンバ11
のシリコン単結晶棒側に不活性ガスを供給しかつ上記不
活性ガスをチャンバ11のるつぼ内周面側から排出する
ガス給排手段28が接続される。ガス給排手段28は一
端がケーシング21の周壁に接続され他端が上記不活性
ガスを貯留するタンク(図示せず)に接続された供給パ
イプ29と、一端がチャンバ11の下壁に接続され他端
が真空ポンプ(図示せず)に接続された排出パイプ30
とを有する。供給パイプ29及び排出パイプ30にはこ
れらのパイプ29,30を流れる不活性ガスの流量を調
整する第1及び第2流量調整弁31,32がそれぞれ設
けられる。
Further, the chamber 11 includes the chamber 11
A gas supply / discharge means 28 for supplying an inert gas to the silicon single crystal rod side and discharging the inert gas from the inner peripheral surface side of the crucible of the chamber 11 is connected. The gas supply / discharge means 28 has one end connected to the peripheral wall of the casing 21 and the other end connected to a supply pipe 29 connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 11. Discharge pipe 30 whose other end is connected to a vacuum pump (not shown)
Have and. The supply pipe 29 and the discharge pipe 30 are provided with first and second flow rate adjusting valves 31, 32 for adjusting the flow rates of the inert gas flowing through these pipes 29, 30, respectively.

【0015】熱遮蔽部材26である筒部26aの下部に
は下方に向うに従って開口径が小さくなるように下向き
に傾斜したコーン状の放熱抑制部26cが形成され、放
熱抑制部26cには複数の熱輻射体27がシリコン単結
晶棒25を包囲するようにかつ放射状に移動可能に配置
される。図3及び図4に示すように、本実施の形態にお
ける熱輻射体27は6個使用され、シリコン単結晶棒2
5(図1)を中心として等角度配置される。それぞれ
の熱輻射体27はカーボンにより作られ、下部にローラ
27aが設けられる。放熱抑制部26cの上面にはその
ローラ27aが挿入可能な幅を有する凹溝26dが放射
状に形成され、ローラ27aをその凹溝26dに挿入す
ることにより6個の熱輻射体27は放射状にそれぞれ移
動可能に配置される。
At the lower part of the cylindrical portion 26a which is the heat shield member 26, there is formed a cone-shaped heat radiation suppressing portion 26c which is inclined downward so that the opening diameter becomes smaller as it goes downward, and a plurality of heat radiation suppressing portions 26c are provided. A heat radiation body 27 is arranged so as to surround the silicon single crystal ingot 25 and can be moved radially. As shown in FIG. 3 and FIG. 4, six heat radiators 27 in this embodiment are used, and the silicon single crystal rod 2 is used.
5 (FIG. 1) as a center and arranged at an equal angle. Each heat radiating body 27 is made of carbon, and a roller 27a is provided at the bottom thereof. Recessed grooves 26d having a width into which the rollers 27a can be inserted are radially formed on the upper surface of the heat dissipation suppressing portion 26c. By inserting the rollers 27a into the recessed grooves 26d, the six heat radiators 27 are respectively radially formed. It is movably arranged.

【0016】また、複数の熱輻射体27には、ガス給排
手段28(図1及び図2)により供給された不活性ガス
を流通させるために複数の通孔27cが下部から上部に
向って互いに広がるように斜めに形成され、後述する熱
輻射体移動手段41(図1及び図2)の連結ワイヤ44
の一端がそれぞれ接続される。熱輻射体27はシリコン
融液12からの放熱を反射しかつシリコン融液12から
の輻射熱を蓄熱する。シリコン単結晶棒25の近傍にそ
れぞれ移動することにより、熱輻射体27はシリコン融
液12の熱がチャンバ11内に放散するのを防ぐととも
に、成長したシリコン単結晶棒25の外周面からの放熱
量を抑制し、とくに直胴部25cの形成時(図1)にお
ける固液界面を肩部形成時と同様に維持するようになっ
ている。
In addition, a plurality of through holes 27c are provided in the plurality of heat radiating members 27 from the lower part to the upper part in order to allow the inert gas supplied by the gas supply / discharge means 28 (FIGS. 1 and 2) to flow. Connecting wires 44 of the heat radiation body moving means 41 (FIGS. 1 and 2) which will be described later and are formed obliquely so as to spread each other.
One end of each is connected. The thermal radiator 27 reflects the heat radiation from the silicon melt 12 and stores the radiation heat from the silicon melt 12. By moving to the vicinity of the silicon single crystal ingot 25, the heat radiator 27 prevents the heat of the silicon melt 12 from being dissipated into the chamber 11, and at the same time, the heat is radiated from the outer peripheral surface of the grown silicon single crystal ingot 25. The amount of heat is suppressed, and in particular, the solid-liquid interface when forming the straight body portion 25c (FIG. 1) is maintained in the same manner as when forming the shoulder portion.

【0017】図1及び図2に戻って、チャンバ11の上
部にはケーシング21を挟むように一対の熱輻射体移動
手段41が設けられる。熱輻射体移動手段41はチャン
バ11の上部に設けられた駆動ギヤと、チャンバ11の
上部に設けられ駆動ギヤを駆動する駆動モータ46と、
チャンバ11の上部からチャンバ11内に吊り下げられ
駆動ギヤに歯合するラックギヤが周囲に形成された支持
棒42と、支持棒42の下端と熱輻射体を連結する連結
ワイヤ44とを有する。駆動ギヤはチャンバ11の上部
に設けられたギヤボックス43に内蔵され、連結ワイヤ
44は筒部26aの外側に設けられた転向ローラ26e
(図3)によりその方向を変化させて配索される。熱輻
射体移動手段41は、駆動モータ46による回転軸46
aの回転によりギヤボックス43に内蔵された図示しな
い駆動ギヤが回転し、支持棒42を上下動させることに
より連結ワイヤ44を介して熱輻射体27をそれぞれ移
動し、図3の実線で示す状態から破線で示す状態までの
間で複数の熱輻射体27のシリコン単結晶棒25の周面
に対する距離を変更可能に構成される。
Returning to FIG. 1 and FIG. 2, a pair of heat radiator moving means 41 is provided at the upper part of the chamber 11 so as to sandwich the casing 21. The heat radiator moving means 41 includes a drive gear provided in the upper portion of the chamber 11, a drive motor 46 provided in the upper portion of the chamber 11 and driving the drive gear,
It has a support rod 42 around which a rack gear that is suspended from the upper portion of the chamber 11 and meshes with a drive gear is formed, and a connecting wire 44 that connects the lower end of the support rod 42 and the heat radiator. The drive gear is built in a gear box 43 provided at the upper part of the chamber 11, and the connecting wire 44 is provided at the turning roller 26e provided outside the cylindrical portion 26a.
(Fig. 3), the direction is changed and the wires are installed. The heat radiator moving means 41 includes a rotating shaft 46 driven by a drive motor 46.
The rotation of a rotates a drive gear (not shown) built in the gear box 43, and the support rod 42 is moved up and down to move the heat radiating bodies 27 via the connecting wires 44, respectively, and the state shown by the solid line in FIG. To the state shown by the broken line, the distances of the plurality of heat radiators 27 to the peripheral surface of the silicon single crystal rod 25 can be changed.

【0018】一方、引上げ手段22における引上げ用モ
ータの出力軸(図示せず)にはロータリエンコーダ(図
示せず)が設けられ、るつぼ昇降手段17には石英るつ
ぼ13内のシリコン融液12の重量を検出する重量セン
サ(図示せず)と、支軸16の昇降位置を検出するリニ
ヤエンコーダ(図示せず)とが設けられる。ロータリエ
ンコーダ、重量センサ及びリニヤエンコーダの各検出出
力はコントローラ(図示せず)の制御入力に接続され、
コントローラの制御出力は引上げ手段22の引上げ用モ
ータ、るつぼ昇降手段17の昇降用モータ及び熱輻射体
移動手段41の駆動モータ46にそれぞれ接続される。
またコントローラにはメモリ(図示せず)が設けられ、
このメモリにはロータリエンコーダの検出出力に対する
ワイヤケーブル23の巻取り長さ、即ちシリコン単結晶
棒25の引上げ長さが第1マップとして記憶され、重量
センサの検出出力に対する石英るつぼ13内のシリコン
融液12の液面レベルが第2マップとして記憶される。
コントローラは重量センサの検出出力に基づいて石英る
つぼ13内のシリコン融液12の液面を常に一定のレベ
ルに保つように、るつぼ昇降手段17の昇降用モータを
制御するとともに、複数の熱輻射体27を移動するよう
に熱輻射体移動手段41の駆動モータ46を制御するよ
うに構成される。
On the other hand, a rotary encoder (not shown) is provided on the output shaft (not shown) of the pulling motor in the pulling means 22, and the weight of the silicon melt 12 in the quartz crucible 13 is provided in the crucible lifting means 17. There is provided a weight sensor (not shown) for detecting the position and a linear encoder (not shown) for detecting the vertical position of the support shaft 16. Each detection output of the rotary encoder, the weight sensor and the linear encoder is connected to a control input of a controller (not shown),
The control output of the controller is connected to the pulling motor of the pulling means 22, the raising / lowering motor of the crucible raising / lowering means 17, and the drive motor 46 of the heat radiation body moving means 41, respectively.
In addition, the controller is provided with a memory (not shown),
In this memory, the winding length of the wire cable 23 with respect to the detection output of the rotary encoder, that is, the pulling length of the silicon single crystal rod 25 is stored as a first map, and the silicon melting inside the quartz crucible 13 with respect to the detection output of the weight sensor is stored. The liquid level of the liquid 12 is stored as the second map.
The controller controls the raising / lowering motor of the crucible raising / lowering means 17 so that the liquid level of the silicon melt 12 in the quartz crucible 13 is always kept at a constant level based on the detection output of the weight sensor, and at the same time, the plurality of heat radiators 27 is configured to control the drive motor 46 of the heat radiator moving means 41.

【0019】このように構成された装置による本発明に
よるシリコン単結晶の引上げ方法を説明する。図2に示
すように、石英るつぼ13に高純度のシリコン多結晶体
を投入し、カーボンヒータ18によりこの高純度のシリ
コン多結晶体を加熱・融解してシリコン融液12にす
る。シリコン多結晶体が融解して石英るつぼ13にシリ
コン融液12が貯留されたならば、次に、第1及び第2
流量調整弁31,32を開くことにより不活性ガスをケ
ーシング21内に供給してシリコン融液12の表面から
蒸発したガスをこの不活性ガスとともに排出パイプ30
から排出させる。
A method for pulling a silicon single crystal according to the present invention using the apparatus thus configured will be described. As shown in FIG. 2, a high-purity silicon polycrystal is put into a quartz crucible 13, and the high-purity silicon polycrystal is heated and melted by a carbon heater 18 to form a silicon melt 12. If the silicon polycrystal melts and the silicon melt 12 is stored in the quartz crucible 13, then the first and second
The inert gas is supplied into the casing 21 by opening the flow rate adjusting valves 31 and 32, and the gas evaporated from the surface of the silicon melt 12 is discharged together with the inert gas into the exhaust pipe 30.
To be discharged from.

【0020】次に、引上げ手段の図示しない引上げ用モ
ータによりワイヤケーブル23を繰出して種結晶24を
降下させ、種結晶24の先端部をシリコン融液12に接
触させる。その後種結晶24を徐々に引上げて種絞り部
25aを形成した後、更に種結晶24を引上げることに
より種絞り部25aの下部に先ず肩部25bを育成させ
る。この肩部25bの形成時において、熱輻射体移動手
段41は複数の熱輻射体27を放熱抑制部31上肩部
25bから離した位置に移動する。このため、シリコン
融液12の熱は形成途中の肩部25bに積極的に放散さ
れて、速やかに肩部25bの形成が行われる。
Next, the wire cable 23 is fed out by a pulling motor (not shown) of pulling means to lower the seed crystal 24, and the tip of the seed crystal 24 is brought into contact with the silicon melt 12. After that, the seed crystal 24 is gradually pulled up to form the seed narrowing portion 25a, and then the seed crystal 24 is further pulled up to grow the shoulder portion 25b under the seed narrowing portion 25a. At the time of forming the shoulder portion 25b, the heat radiator moving means 41 moves the plurality of heat radiators 27 to a position on the heat dissipation suppressing portion 31 separated from the shoulder portion 25b. For this reason, the heat of the silicon melt 12 is positively dissipated to the shoulder 25b in the process of formation, and the shoulder 25b is quickly formed.

【0021】肩部25bが育成されたならば、図1に示
すように、更に種結晶24を引上げることにより肩部2
5bの下方に直胴部25cを形成する。この直胴部25
cの形成に際し、熱輻射体移動手段41は支持棒42を
下方に移動させ、複数の熱輻射体27を直胴部25c近
傍に移動する。直胴部25c近傍に位置する複数の熱輻
射体27は、シリコン融液12の熱がチャンバ11内に
放散するのを防ぐとともにシリコン融液12からの輻射
熱を蓄熱し、液面近傍の直胴部25cにおける外周面か
らの放熱量を抑制し、固液界面を肩部25bの形成時と
同様に略平面に維持する。直胴部25cの育成に伴い、
シリコン融液12の表面は低下し、減少する融液12の
量に応じて図示しない昇降用モータはるつぼ13を上昇
させ、種結晶24の引上げとともに低下するシリコン融
液12の表面を所定位置に維持させる。
After the shoulder 25b is grown, the shoulder 2 is further pulled up by pulling up the seed crystal 24, as shown in FIG.
A straight body portion 25c is formed below 5b. This straight body part 25
When forming c, the heat radiator moving means 41 moves the support rod 42 downward to move the plurality of heat radiators 27 to the vicinity of the straight body portion 25c. The plurality of thermal radiators 27 located near the straight body portion 25c prevent the heat of the silicon melt 12 from being dissipated into the chamber 11 and also store the radiant heat from the silicon melt 12 to store the direct heat in the vicinity of the liquid surface. The amount of heat radiated from the outer peripheral surface of the portion 25c is suppressed, and the solid-liquid interface is maintained on a substantially flat surface as in the formation of the shoulder portion 25b. With the training of the straight body part 25c,
The surface of the silicon melt 12 is lowered, and a lifting motor (not shown) raises the crucible 13 in accordance with the amount of the melt 12 that is reduced, and the surface of the silicon melt 12 that is lowered as the seed crystal 24 is pulled up to a predetermined position. Keep it up.

【0022】[0022]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>図1に示すように、内径が400〜600
mmの石英るつぼ13と、筒部26aの内径が300〜
500mm、高さが300〜600mmの熱遮蔽体26
とを有するシリコン単結晶の引上げ装置10の、その筒
部26aの下部にコーン状の放熱抑制部31を形成し
た。この放熱抑制部31に6個の熱輻射体27を放射状
に移動可能に配置し、熱輻射体移動手段41の支持棒4
2の下端に連結ワイヤ44を介して接続した。この熱輻
射体27は厚さ約50〜80mmのカーボンにより作ら
れたものを使用した。このように構成された引上げ装置
10を実施例1とした。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> As shown in FIG. 1, the inner diameter is 400 to 600.
mm quartz crucible 13 and the inner diameter of the tubular portion 26a is 300 to
Thermal shield 26 of 500 mm and height of 300-600 mm
In the silicon single crystal pulling apparatus 10 having the above, the cone-shaped heat dissipation suppressing portion 31 was formed below the cylindrical portion 26a. Six heat radiating bodies 27 are radially movably arranged in the heat radiation suppressing section 31, and the support rods 4 of the heat radiating body moving means 41 are arranged.
It was connected to the lower end of 2 via a connecting wire 44. As the heat radiator 27, one made of carbon having a thickness of about 50 to 80 mm was used. The pulling device 10 configured as described above is referred to as Example 1.

【0023】<比較例1>図示しないが熱輻射体27を
設けないことを除いて、引上げ装置を上記実施例1と同
一に構成した。この引上げ装置を比較例1とした。
<Comparative Example 1> Although not shown, the pulling device was constructed in the same manner as in Example 1 except that the heat radiator 27 was not provided. This pulling device is referred to as Comparative Example 1.

【0024】<比較試験1及び評価>実施例1の引上げ
装置にて、直胴部の直径が300〜350mmであって
600mm引上げたシリコン単結晶棒25の略中央部に
おける固液界面のシリコン融液表面に対する高さ(H)
と、熱輻射体27のシリコン単結晶棒の周面に対する距
離との関係を輻射伝熱を考慮した熱伝導解析プログラム
にてシミュレーション計算した。この結果を図5に示
す。
<Comparative Test 1 and Evaluation> In the pulling apparatus of Example 1, the silicon melt at the solid-liquid interface at the substantially central portion of the silicon single crystal rod 25 having a diameter of the straight body portion of 300 to 350 mm and pulled up by 600 mm. Height to liquid surface (H)
And the distance between the heat radiation member 27 and the peripheral surface of the silicon single crystal rod were simulated by a heat conduction analysis program in consideration of radiation heat transfer. The result is shown in FIG.

【0025】図5より明らかなように、熱輻射体27が
シリコン融液近傍のシリコン単結晶棒の周面に近接する
ことによりシリコン単結晶棒の略中央部における固液界
面の高さは低くなり、熱輻射体27がシリコン単結晶棒
の周面から離間することにより固液界面の高さは高くな
ることが判る。従って、熱輻射体を移動させることによ
り固液界面形状を変化させることが判明した。
As is clear from FIG. 5, the height of the solid-liquid interface at the approximate center of the silicon single crystal rod is low because the heat radiator 27 is close to the peripheral surface of the silicon single crystal rod near the silicon melt. Therefore, it can be seen that the height of the solid-liquid interface increases as the heat radiator 27 is separated from the peripheral surface of the silicon single crystal rod. Therefore, it was found that the solid-liquid interface shape is changed by moving the heat radiator.

【0026】これは、熱輻射体27がシリコン融液近傍
のシリコン単結晶棒の周面に近接すると、熱輻射体27
がシリコン融液12からの輻射熱を蓄熱してシリコン融
液12近傍におけるシリコン単結晶棒25の外周面から
の放熱量を抑制するためと考えられる。即ち、シリコン
単結晶棒25の略中央部における冷却速度と、複数の熱
輻射体27により包囲されてその外周面からの放熱が抑
制されたシリコン単結晶棒25の周囲における冷却速度
が略等しくなったため、固液界面の形状が略平面になり
シリコン単結晶棒25の略中央部における固液界面の高
さが低くなったものと考えられる。一方、熱輻射体27
がシリコン単結晶棒の周面から離間すると固液界面の高
さが高くなるのは、シリコン単結晶棒25の外周面から
積極的に放熱が行われ、シリコン単結晶棒25の略中央
部における冷却速度がシリコン融液12近傍におけるシ
リコン単結晶棒25の外周面における冷却速度より遅い
ためと考えられる。
This is because when the heat radiator 27 approaches the peripheral surface of the silicon single crystal rod near the silicon melt, the heat radiator 27
It is considered that this is because the radiant heat from the silicon melt 12 is stored to suppress the amount of heat released from the outer peripheral surface of the silicon single crystal rod 25 in the vicinity of the silicon melt 12. That is, the cooling rate in the substantially central portion of the silicon single crystal rod 25 is substantially equal to the cooling rate in the periphery of the silicon single crystal rod 25 which is surrounded by the plurality of heat radiating bodies 27 and whose heat radiation from the outer peripheral surface is suppressed. Therefore, it is considered that the shape of the solid-liquid interface becomes substantially flat and the height of the solid-liquid interface at the substantially central portion of the silicon single crystal ingot 25 becomes low. On the other hand, the heat radiator 27
Is separated from the peripheral surface of the silicon single crystal rod, the height of the solid-liquid interface becomes high because the heat is positively radiated from the outer peripheral surface of the silicon single crystal rod 25, and the solid-liquid interface is almost at the center portion. It is considered that the cooling rate is slower than the cooling rate on the outer peripheral surface of the silicon single crystal ingot 25 near the silicon melt 12.

【0027】<比較試験2及び評価>実施例1の引上げ
装置にて直胴部25cの直径300〜350mmのシリ
コン単結晶棒25を引上げ速度0.1〜1.0mm/分
で引上げたときの固液界面形状をほぼ平面にするように
熱輻射体27を移動してシリコン単結晶棒25の略中央
部における固液界面のシリコン融液表面に対する高さと
固化率との関係を輻射伝熱を考慮した熱伝導解析プログ
ラムにてシミュレーション計算した。なお、固化率は、
引上げられたシリコン単結晶棒25の重量を石英るつぼ
13に当初貯留されたシリコン融液12の重量で除した
値に100を乗じた値として表した。この結果得られた
熱輻射体27のシリコン単結晶棒25の周面に対する距
離と固化率との関係を図6に、シリコン単結晶棒の略中
央部における固液界面のシリコン融液表面に対する高さ
(H)と固化率との関係を図7の実線にそれぞれ示す。
<Comparative Test 2 and Evaluation> When the silicon single crystal rod 25 having a diameter of the straight barrel portion 25c of 300 to 350 mm was pulled at a pulling rate of 0.1 to 1.0 mm / min with the pulling device of Example 1. By moving the heat radiating body 27 so that the solid-liquid interface shape becomes substantially flat, the relationship between the height of the solid-liquid interface at the substantially central portion of the silicon single crystal rod 25 with respect to the silicon melt surface and the solidification rate is radiated. Simulation calculation was performed using a heat conduction analysis program that takes into consideration. The solidification rate is
The value obtained by dividing the weight of the pulled silicon single crystal rod 25 by the weight of the silicon melt 12 initially stored in the quartz crucible 13 was multiplied by 100. The relationship between the solidification rate and the distance of the heat radiation body 27 to the peripheral surface of the silicon single crystal rod 25 obtained as a result is shown in FIG. 6, and the solid-liquid interface in the substantially central portion of the silicon single crystal rod is higher than the silicon melt surface. The solid line in FIG. 7 shows the relationship between the hardness (H) and the solidification rate.

【0028】図6より明らかなように、シリコン単結晶
棒25の引上げ当初は熱輻射体27とシリコン単結晶棒
25の周面は離間しており、引上げとともにその距離が
小さくなっていることが判る。また、このように熱輻射
体27を移動させることにより、図7に示すように、固
液界面形状はほぼ平面に維持することがわかる。
As is apparent from FIG. 6, at the beginning of pulling up the silicon single crystal rod 25, the peripheral surfaces of the heat radiation body 27 and the silicon single crystal rod 25 are separated from each other, and the distance becomes smaller as the pulling is performed. I understand. Further, by moving the heat radiating body 27 in this manner, it is understood that the solid-liquid interface shape is maintained substantially flat as shown in FIG.

【0029】<比較試験3及び評価>比較例1の引上げ
装置にて比較試験2と同一の条件でシリコン単結晶棒を
引上げ、固液界面のシリコン融液表面に対する高さ
(H)と固化率との関係を輻射伝熱を考慮した熱伝導解
析プログラムにてシミュレーション計算した。この結果
を図7に破線で示す。
<Comparative Test 3 and Evaluation> A silicon single crystal ingot was pulled up by the pulling apparatus of Comparative Example 1 under the same conditions as in Comparative Test 2, and the height (H) of the solid-liquid interface with respect to the surface of the silicon melt and the solidification rate. The relationship between and was calculated by simulation with a heat conduction analysis program considering radiative heat transfer. The result is shown by a broken line in FIG.

【0030】図7の破線により明らかなように、比較例
1ではシリコン単結晶棒の引上げとともに固液界面のシ
リコン融液表面に対する高さが上昇することが判る。こ
れは固液界面が上方に棒出するように変化することを意
味し、シリコン単結晶棒の引上げとともに固液界面形状
が変化することが判る。
As is apparent from the broken line in FIG. 7, it is understood that in Comparative Example 1, the height of the solid-liquid interface with respect to the surface of the silicon melt rises as the silicon single crystal rod is pulled up. This means that the solid-liquid interface changes so as to stick out upward, and it can be seen that the solid-liquid interface shape changes as the silicon single crystal rod is pulled up.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、下
方に向うに従って開口径が小さくなるように下向きに傾
斜したコーン状の放熱抑制部を熱遮蔽部材の下部に形成
し、複数の熱輻射体をシリコン単結晶棒を包囲するよう
に放熱抑制部上に放射状に移動可能に配置し、複数の熱
輻射体をそれぞれ移動して複数の熱輻射体のシリコン単
結晶棒の周面に対する距離を変更する熱輻射体移動手段
を備えたので、シリコン融液から引上げられるシリコン
単結晶棒の固液界面付近において、高温のシリコン融液
からの輻射熱により熱輻射体の温度が上昇するか、又は
シリコン融液からの輻射熱若しくはシリコン単結晶棒か
らの放熱を熱輻射体が反射することにより、シリコン融
液近傍におけるシリコン単結晶棒の外周面からの急激な
放熱を抑制することができる。この結果、シリコン単結
晶棒の外周部の急激な温度低下を阻止して固液界面形状
を略均一にすることにより、シリコン単結晶棒内の熱的
ストレスの発生を低減できる。また、放熱抑制部上に放
射状に移動可能に複数の熱輻射体を配置したので、直胴
径の異なる複数種類のシリコン単結晶棒を引上げる場合
であっても、複数の熱輻射体をそれぞれ移動してその複
数の熱輻射体が包囲する開口径を変化させることによ
り、その引上げようとするシリコン単結晶棒の直胴径に
適して複数の熱輻射体を配置することができる。この結
果、同一の熱遮蔽部材の使用が可能になり、本発明の装
置では熱遮蔽部材を取替えることなく、直胴径の異なる
複数種類のシリコン単結晶棒を引上げることができる。
As described above, according to the present invention, a cone-shaped heat radiation suppressing portion inclined downward so that the opening diameter becomes smaller as it goes downward is formed in the lower portion of the heat shielding member, and a plurality of heat radiation suppressing members are formed. The heat radiator is radially movably arranged on the heat dissipation suppressing portion so as to surround the silicon single crystal rod, and the plurality of heat radiators are respectively moved to the peripheral surface of the silicon single crystal rod of the plurality of heat radiators. Since the thermal radiator moving means for changing the distance is provided, in the vicinity of the solid-liquid interface of the silicon single crystal rod pulled up from the silicon melt, the temperature of the thermal radiator rises due to the radiant heat from the high-temperature silicon melt, or Alternatively, the radiant heat from the silicon melt or the heat radiation from the silicon single crystal rod is reflected by the thermal radiation body to suppress rapid heat radiation from the outer peripheral surface of the silicon single crystal rod near the silicon melt. Can. As a result, the occurrence of thermal stress in the silicon single crystal rod can be reduced by preventing a sharp temperature decrease in the outer peripheral portion of the silicon single crystal rod and making the solid-liquid interface shape substantially uniform. Further, since a plurality of thermal radiators are arranged on the heat dissipation suppressing portion so as to be radially movable, even when pulling a plurality of types of silicon single crystal rods having different straight body diameters, the plurality of thermal radiators are respectively separated. By moving and changing the diameter of the opening surrounded by the plurality of heat radiators, the plurality of heat radiators can be arranged in accordance with the straight diameter of the silicon single crystal rod to be pulled. As a result, the same heat shield member can be used, and the apparatus of the present invention can pull up a plurality of types of silicon single crystal rods having different straight body diameters without replacing the heat shield member.

【0032】また、熱輻射体移動手段が、チャンバの上
部に設けられた駆動ギヤと、チャンバの上部に設けられ
駆動ギヤを駆動する駆動モータと、チャンバの上部から
チャンバ内に吊り下げられ駆動ギヤに歯合するラックギ
ヤが周囲に形成された支持棒と、支持棒の下端と熱輻射
体を連結する連結ワイヤとを有すれば、ラックギヤに歯
合する駆動ギヤの回転により支持棒が昇降するため、容
易に熱輻射体を移動できる。
Further, the heat radiator moving means is provided with a drive gear provided on the upper part of the chamber, a drive motor provided on the upper part of the chamber to drive the drive gear, and a drive gear suspended from the upper part of the chamber into the chamber. If there is a support rod around which a rack gear that meshes with is formed, and a connecting wire that connects the lower end of the support rod and the heat radiator, the support rod moves up and down due to the rotation of the drive gear that meshes with the rack gear. , The heat radiator can be moved easily.

【0033】更に、肩部形成時に複数の熱輻射体を肩部
から離した位置に移動すれば、シリコン融液の熱を形成
途中の肩部に積極的に放散して速やかに肩部の形成を行
うことができ、直胴部形成時に複数の熱輻射体を直胴部
近傍に移動すれば、シリコン融液近傍におけるシリコン
単結晶棒の外周面からの急激な放熱を抑制してシリコン
単結晶棒の外周部の急激な温度低下を阻止して容易に固
液界面形状を略平面にすることができる。
Furthermore, if a plurality of heat radiators are moved to positions away from the shoulders when forming the shoulders, the heat of the silicon melt is positively dissipated to the shoulders in the process of forming the shoulders. If a plurality of heat radiators are moved to the vicinity of the straight body portion when forming the straight body portion, the rapid heat dissipation from the outer peripheral surface of the silicon single crystal rod in the vicinity of the silicon melt is suppressed to suppress the silicon single crystal. The solid-liquid interface shape can be easily made substantially flat by preventing a rapid temperature decrease in the outer peripheral portion of the rod.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリコン単結晶棒の直胴部が引上げられた本発
明の引上げ装置を示す断面構成図。
FIG. 1 is a cross-sectional configuration diagram showing a pulling device of the present invention in which a straight body portion of a silicon single crystal ingot is pulled up.

【図2】肩部が引上げられた状態を示す図1に対応する
断面構成図。
FIG. 2 is a sectional configuration diagram corresponding to FIG. 1, showing a state in which a shoulder portion is pulled up.

【図3】その放熱抑制部の上に熱輻射体が配置された熱
遮蔽部材の断面図。
FIG. 3 is a cross-sectional view of a heat shield member in which a heat radiator is arranged on the heat radiation suppressing portion.

【図4】その熱輻射体の配置状態を示す図1のA−A線
断面図。
FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1 showing an arrangement state of the heat radiator.

【図5】シリコン単結晶棒の略中央部における固液界面
のシリコン融液表面に対する高さと、熱輻射体のシリコ
ン単結晶棒の周面に対する距離との関係を示す図。
FIG. 5 is a diagram showing the relationship between the height of the solid-liquid interface in the substantially central portion of the silicon single crystal ingot with respect to the surface of the silicon melt, and the distance of the heat radiator to the peripheral surface of the silicon single crystal ingot.

【図6】熱輻射体のシリコン単結晶棒の周面に対する距
離と固化率との関係を示す図。
FIG. 6 is a diagram showing a relationship between a solidification rate and a distance of a heat radiator to a peripheral surface of a silicon single crystal rod.

【図7】シリコン単結晶棒の略中央部における固液界面
のシリコン融液表面に対する高さと固化率との関係を示
す図。
FIG. 7 is a diagram showing the relationship between the height of the solid-liquid interface in the substantially central portion of the silicon single crystal ingot with respect to the surface of the silicon melt and the solidification rate.

【図8】従来例のシリコン単結晶の引上げ装置を示す図
1に対応する断面構成図。
FIG. 8 is a sectional configuration diagram corresponding to FIG. 1, showing a conventional silicon single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

10 引上げ装置 11 チャンバ 12 シリコン融液 13 石英るつぼ 18 ヒータ 25 シリコン単結晶棒 26 熱遮蔽部材 26c 放熱抑制部 27 熱輻射体 41 熱輻射体移動手段 42 支持棒 44 連結ワイヤ 46 駆動モータ 10 Lifting device 11 chambers 12 Silicon melt 13 Quartz crucible 18 heater 25 Silicon single crystal rod 26 Heat shield 26c Heat dissipation suppressing section 27 Heat radiator 41 Heat radiator moving means 42 Support rod 44 connecting wire 46 Drive motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島貫 康 東京都千代田区大手町1丁目5番1号 三菱マテリアルシリコン株式会社内 (56)参考文献 特開 平5−330975(JP,A) 特開 平1−100086(JP,A) 特開 平6−256084(JP,A) 特開 平9−227272(JP,A) 特開 平9−309789(JP,A) 特開 平9−315882(JP,A) 特開 平11−157993(JP,A) 特開 平11−263692(JP,A) 国際公開93/00462(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasushi Shimanuki 1-5-1 Otemachi, Chiyoda-ku, Tokyo Mitsubishi Materials Silicon Co., Ltd. (56) Reference JP-A-5-330975 (JP, A) JP JP-A-1-100086 (JP, A) JP-A-6-256084 (JP, A) JP-A-9-227272 (JP, A) JP-A-9-309789 (JP, A) JP-A-9-315882 (JP , A) JP 11-157993 (JP, A) JP 11-263692 (JP, A) International Publication 93/00462 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) ) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チャンバ(11)内に設けられシリコン融液
(12)が貯留された石英るつぼ(13)と、前記石英るつぼ(1
3)の外周面を包囲し前記シリコン融液(12)を加熱するヒ
ータ(18)と、前記シリコン融液(12)から引上げられるシ
リコン単結晶棒(25)の外周面を包囲しかつ下端が前記シ
リコン融液(12)表面から間隔をあけて上方に位置するよ
うに構成され前記ヒータ(18)からの輻射熱を遮る円筒状
の熱遮蔽部材(26)とを備えたシリコン単結晶の引上げ装
置において、 下方に向うに従って開口径が小さくなるように下向きに
傾斜したコーン状の放熱抑制部(26c)が前記熱遮蔽部材
(26)の下部に形成され、 複数の熱輻射体(27)が前記シリコン単結晶棒(25)を包囲
するように前記放熱抑制部(26c)上に放射状に移動可能
に配置され、 前記複数の熱輻射体(27)をそれぞれ移動して前記複数の
熱輻射体(27)の前記シリコン単結晶棒(25)の周面に対す
る距離を変更する熱輻射体移動手段(41)を備えたことを
特徴とするシリコン単結晶の引上げ装置。
1. A silicon melt provided in the chamber (11).
(12) is stored in the quartz crucible (13), and the quartz crucible (1
A heater (18) that surrounds the outer peripheral surface of 3) and heats the silicon melt (12), and a lower end that surrounds the outer peripheral surface of the silicon single crystal rod (25) pulled from the silicon melt (12). A silicon single crystal pulling device provided with a cylindrical heat shield member (26) configured to be positioned above the surface of the silicon melt (12) with a space between them and shield the radiant heat from the heater (18). In the above, the cone-shaped heat dissipation suppressing portion (26c) inclined downward so that the opening diameter becomes smaller as it goes downward is the heat shielding member.
(26) is formed in the lower portion, a plurality of thermal radiators (27) are radially movably arranged on the heat dissipation suppressing portion (26c) so as to surround the silicon single crystal rod (25), Each of the heat radiators (27) is moved to change the distance of the plurality of heat radiators (27) to the peripheral surface of the silicon single crystal rod (25). A device for pulling a silicon single crystal.
【請求項2】 熱輻射体移動手段(41)が、前記チャンバ
(11)の上部に設けられた駆動ギヤと、前記チャンバ(11)
の上部に設けられ前記駆動ギヤを駆動する駆動モータ(4
6)と、チャンバ(11)の上部から前記チャンバ(11)内に吊
り下げられ前記駆動ギヤに歯合するラックギヤが周囲に
形成された支持棒(42)と、前記支持棒(42)の下端と熱輻
射体(27)を連結する連結ワイヤ(44)とを有する請求項1
記載のシリコン単結晶の引上げ装置。
2. A heat radiant body moving means (41) is provided in the chamber.
The drive gear provided on the upper part of (11) and the chamber (11)
A drive motor (4
6), a support rod (42) around which a rack gear that is suspended from the upper part of the chamber (11) and meshes with the drive gear is formed, and the lower end of the support rod (42) And a connecting wire (44) for connecting the heat radiation body (27).
The apparatus for pulling a silicon single crystal described.
【請求項3】 石英るつぼ(13)に貯留されたシリコン融
液(12)から成長するシリコン単結晶棒(25)を筒状の熱遮
蔽部材(26)と前記熱遮蔽部材(26)の下部に形成された下
向きに傾斜したコーン状の放熱抑制部(26c)により包囲
し、前記放熱抑制部(26c)上に前記シリコン単結晶棒(2
5)を包囲するように複数の熱輻射体(27)を放射状に移動
可能に配置して前記シリコン単結晶棒(25)を引上げる方
法であって、 前記シリコン単結晶棒(25)の肩部(25b)形成時に前記複
数の熱輻射体(27)を前記放熱抑制部(26c)上に前記肩部
(25b)から離した位置に移動し、 前記シリコン単結晶棒(25)の直胴部(25c)形成時に前記
複数の熱輻射体(27)を前記直胴部(25c)近傍に移動する
ことを特徴とするシリコン単結晶の引上げ方法。
3. A cylindrical heat shield member (26) is provided with a silicon single crystal rod (25) grown from a silicon melt (12) stored in a quartz crucible (13) and a lower portion of the heat shield member (26). It is surrounded by a downwardly inclined cone-shaped heat dissipation suppressing part (26c), and the silicon single crystal rod (2
5) is a method of pulling the silicon single crystal rod (25) by arranging a plurality of thermal radiators (27) so as to be radially movable so as to surround the silicon single crystal rod (25). When forming the portion (25b), the plurality of heat radiators (27) are placed on the heat radiation suppressing portion (26c) and the shoulder portion.
(25b) moved to a position away from, the plurality of thermal radiators (27) in the vicinity of the straight body portion (25c) when forming the straight body portion (25c) of the silicon single crystal rod (25) And a method for pulling a silicon single crystal.
JP17893598A 1998-06-25 1998-06-25 Apparatus and method for pulling silicon single crystal Expired - Fee Related JP3428625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17893598A JP3428625B2 (en) 1998-06-25 1998-06-25 Apparatus and method for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17893598A JP3428625B2 (en) 1998-06-25 1998-06-25 Apparatus and method for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JP2000007488A JP2000007488A (en) 2000-01-11
JP3428625B2 true JP3428625B2 (en) 2003-07-22

Family

ID=16057225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17893598A Expired - Fee Related JP3428625B2 (en) 1998-06-25 1998-06-25 Apparatus and method for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP3428625B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193500B2 (en) * 2002-10-07 2008-12-10 株式会社Sumco Silicon single crystal pulling apparatus and pulling method thereof
KR101530274B1 (en) * 2013-08-27 2015-06-23 주식회사 엘지실트론 Apparutus and Method for Growing Ingot
KR101582022B1 (en) * 2014-01-02 2015-12-31 주식회사 엘지실트론 Heat shield apparatus and a ingot growing apparatus having the same
CN111321458A (en) * 2018-12-13 2020-06-23 上海新昇半导体科技有限公司 Heating type guide cylinder
CN111519241B (en) * 2019-02-01 2021-12-17 上海新昇半导体科技有限公司 Semiconductor crystal growth device
DE102020128225A1 (en) * 2019-10-28 2021-04-29 Pva Tepla Ag Crystal pulling system
CN113089079A (en) * 2021-04-15 2021-07-09 曲靖阳光能源硅材料有限公司 Heat shield guide cylinder of single crystal furnace

Also Published As

Publication number Publication date
JP2000007488A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP4345624B2 (en) Raw material supply apparatus and raw material supply method by Czochralski method
US10415150B2 (en) Apparatus for manufacturing silicon single crystal and melt inlet pipe of the same
JP3709494B2 (en) Heat shielding member of silicon single crystal pulling device
JP3428625B2 (en) Apparatus and method for pulling silicon single crystal
JP3428626B2 (en) Apparatus and method for pulling silicon single crystal
US5788718A (en) Apparatus and a method for growing a single crystal
US6379460B1 (en) Thermal shield device and crystal-pulling apparatus using the same
JP3428624B2 (en) Silicon single crystal pulling method
JP3741418B2 (en) Silicon single crystal pulling device
JP2001010892A (en) Method for melting polycrystalline silicon for silicon single crystal pulling device
WO1992018672A1 (en) Device and method for growing crystal
JP4175008B2 (en) Single crystal growth method
JP3642174B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3587231B2 (en) Silicon single crystal pulling device
JP2007182355A (en) Heat shielding member of silicon single crystal pulling apparatus
JP4310980B2 (en) Pulling method of silicon single crystal
JP3642175B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3719329B2 (en) Silicon single crystal pulling device
JP4221797B2 (en) Melting method of polycrystalline silicon before silicon single crystal growth
JP3719336B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP5051044B2 (en) Method for growing silicon single crystal
JP3598800B2 (en) Method of pulling silicon single crystal
TW201300584A (en) Feed tool for shielding a portion of a crystal puller
JPH09202685A (en) Apparatus for pulling up single crystal
JP3890854B2 (en) Silicon single crystal pulling method and pulling apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees