JP6610816B1 - Silicon single crystal pulling device - Google Patents
Silicon single crystal pulling device Download PDFInfo
- Publication number
- JP6610816B1 JP6610816B1 JP2019026542A JP2019026542A JP6610816B1 JP 6610816 B1 JP6610816 B1 JP 6610816B1 JP 2019026542 A JP2019026542 A JP 2019026542A JP 2019026542 A JP2019026542 A JP 2019026542A JP 6610816 B1 JP6610816 B1 JP 6610816B1
- Authority
- JP
- Japan
- Prior art keywords
- window glass
- single crystal
- inner cylinder
- graphite
- silicon single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 133
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 133
- 239000010703 silicon Substances 0.000 title claims abstract description 133
- 239000013078 crystal Substances 0.000 title claims abstract description 125
- 239000005357 flat glass Substances 0.000 claims abstract description 248
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 164
- 229910002804 graphite Inorganic materials 0.000 claims description 164
- 239000010439 graphite Substances 0.000 claims description 164
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 45
- 239000010453 quartz Substances 0.000 claims description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 43
- 229910052760 oxygen Inorganic materials 0.000 abstract description 43
- 239000001301 oxygen Substances 0.000 abstract description 43
- 239000007789 gas Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 239000013065 commercial product Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007524 flame polishing Methods 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【課題】整流筒の気密性を高めてシリコン単結晶中の酸素濃度を低減する。【解決手段】引き上げるシリコン単結晶を同芯に包囲するようにシリコン融液上に配置され、かつ窓孔を有する外筒と、前記外筒の内側に配置され、前記窓孔に対応する窓部を有する内筒と、前記窓部に取り付けられ、前記窓孔を覆う窓ガラスとを備えるシリコン単結晶引上装置であって、前記内筒の上端に取り付けられ、前記窓ガラスの上縁部に接触するキャップをさらに備え、前記窓ガラスの下縁部及びそれに接触する前記内筒の縁部は、共に、前記窓ガラスが外側となるテーパー形状を有し、かつ前記窓ガラスは、前記キャップの自重により、前記窓ガラスの下縁部とそれに接触する前記内筒の縁部との接触面に沿ってスライド可能であり、前記キャップが取り付けられた状態で前記窓ガラスを前記外筒の内面に密着させるものであることを特徴とするシリコン単結晶引上装置。【選択図】図1An oxygen concentration in a silicon single crystal is reduced by improving airtightness of a rectifying cylinder. An outer cylinder arranged on a silicon melt so as to concentrically surround a silicon single crystal to be pulled up and having a window hole, and a window portion arranged inside the outer cylinder and corresponding to the window hole A silicon single crystal pulling device provided with an inner cylinder having an inner cylinder and a window glass attached to the window portion and covering the window hole, attached to an upper end of the inner cylinder, and attached to an upper edge portion of the window glass A cap that contacts the lower edge of the window glass and an edge of the inner cylinder that contacts the window glass, both of which have a tapered shape with the window glass facing outside; Due to its own weight, it is slidable along the contact surface between the lower edge of the window glass and the edge of the inner cylinder that contacts the window glass, and the window glass is attached to the inner surface of the outer cylinder with the cap attached. It is what makes it adhere A silicon single crystal pulling apparatus, wherein the door. [Selection] Figure 1
Description
本発明は、CZ(Czochralski)法 によって、シリコン融液からシリコン単結晶を引き上げるシリコン単結晶引上装置に関する。 The present invention relates to a silicon single crystal pulling apparatus for pulling a silicon single crystal from a silicon melt by a CZ (Czochralski) method.
従来、シリコン単結晶はCZ法によって引き上げて、製造されている。この方法は石英ガラスルツボ内にシリコン多結晶原料を入れ、黒鉛製ヒーターによって加熱して溶融し、その融液に上軸の下端に取り付けられた種結晶を浸漬し、上軸を回転させながら、低速で引き上げることで、シリコン単結晶を成長している。このように単結晶を成長させる装置がシリコン単結晶引上装置である。 Conventionally, silicon single crystals have been manufactured by pulling up by the CZ method. In this method, a polycrystalline silicon raw material is placed in a quartz glass crucible, heated by a graphite heater and melted, a seed crystal attached to the lower end of the upper shaft is immersed in the melt, and the upper shaft is rotated, A silicon single crystal is grown by pulling it up at a low speed. An apparatus for growing a single crystal in this way is a silicon single crystal pulling apparatus.
従来、シリコン単結晶ウェーハ内に酸素析出物を形成し、酸素析出物にデバイス工程の汚染をゲッタリングさせていたが、近年、デバイス工程の清浄度が向上してくると、酸素析出物を増やしてゲッタリング能力を向上することよりも、酸素析出物を減らして結晶欠陥の発生を抑止することが望まれるようになり、酸素析出物を少なくするために低酸素濃度の単結晶の要求が増加してきた。 Conventionally, oxygen precipitates have been formed in silicon single crystal wafers, and oxygen precipitates have been gettered to contaminate device processes. However, as the cleanliness of device processes has improved in recent years, oxygen precipitates have increased. Rather than improving the gettering ability, it is desired to reduce the number of oxygen precipitates and suppress the generation of crystal defects, and the demand for single crystals with low oxygen concentration is increased in order to reduce oxygen precipitates. I have done it.
そして、低酸素濃度の単結晶を製造する方法は、シリコン単結晶引上装置に超伝導磁石の磁場印加装置を装備し、水平磁場を印加しながら、単結晶を引き上げる水平磁場印加CZ法(Horizontal magnetic field applied CZ法、以下、HMCZ法)が一般的である(例えば、特許文献1、特許文献2を参照)。このHMCZ法において、石英ルツボの回転速度を低速で回転する事により、例えば、1×1017atoms/cm3(ASTM’79)レベルの低酸素濃度の単結晶を得る事ができる(例えば、特許文献3を参照)。 A method for producing a single crystal having a low oxygen concentration includes a horizontal magnetic field application CZ method (Horizontal) in which a silicon single crystal pulling apparatus is equipped with a superconducting magnet magnetic field applying device, and the single crystal is pulled up while applying a horizontal magnetic field. A magnetic field applied CZ method (hereinafter, HMCZ method) is generally used (see, for example, Patent Document 1 and Patent Document 2). In this HMCZ method, a single crystal having a low oxygen concentration of, for example, 1 × 10 17 atoms / cm 3 (ASTM'79) level can be obtained by rotating the quartz crucible at a low speed (for example, patents). Reference 3).
しかし、この様に石英ルツボを低速で回転させると、単結晶の有転位化が発生する事が多く、単結晶が有転位化すると引き上げを中断し、単結晶を溶融し、再度引き上げを行う事で生産性が悪くなっていた。従って、ルツボ回転が少しでも高回転とできるように、磁場印加以外の条件で補う必要があった。 However, when the quartz crucible is rotated at a low speed in this way, dislocation of the single crystal often occurs, and when the single crystal becomes dislocation, the pulling is interrupted, the single crystal is melted, and the pulling is performed again. And productivity was getting worse. Therefore, it has been necessary to compensate under conditions other than the magnetic field application so that the crucible rotation can be as high as possible.
また、MCZ法以外の低酸素濃度の単結晶を得る方法も追及されてきた。単結晶の周囲に黒鉛製円筒を設けたシリコン単結晶引上装置において、黒鉛製円筒の窓孔を覆う石英板を有する整流筒を用いることで、単結晶の酸素濃度を低減できることが開示されている(特許文献4を参照)。この装置によれば、酸素濃度を通常よりも3ppma(JEITA)程度低減できる。 In addition, methods for obtaining low oxygen concentration single crystals other than the MCZ method have been pursued. In a silicon single crystal pulling apparatus provided with a graphite cylinder around a single crystal, it is disclosed that the oxygen concentration of the single crystal can be reduced by using a rectifying cylinder having a quartz plate covering a window hole of the graphite cylinder. (See Patent Document 4). According to this apparatus, the oxygen concentration can be reduced by about 3 ppma (JEITA) than usual.
さらに、黒鉛製円筒の窓孔を覆う装置として、黒鉛製円筒の内壁を覆う石英製の筒(石英筒)を設置した装置が特許文献5に開示されている。この方法では、黒鉛製円筒からの鉄汚染を防止するために黒鉛製円筒内の700℃以上の高温部分を全て覆う石英筒を用い、石英筒の上端に内側がテーパーのガスを整流させるためのリングを配置している。 Further, Patent Document 5 discloses an apparatus in which a quartz cylinder (quartz cylinder) covering an inner wall of a graphite cylinder is installed as an apparatus for covering the window hole of the graphite cylinder. In this method, in order to prevent iron contamination from the graphite cylinder, a quartz cylinder that covers all of the high-temperature portion of 700 ° C. or more in the graphite cylinder is used, and the inside of the quartz cylinder is rectified with a taper inside. A ring is placed.
しかし、特許文献4では、黒鉛製円筒の内側に入れる第2の円筒に溝を形成し、そこに石英製の窓ガラスを嵌め込んでいることで、次のような問題があった。それは、第一に、黒鉛と石英の熱膨張率の違いにより、室温では隙間なく嵌め込む構造であっても引き上げ中に黒鉛が熱膨張すると、石英との熱膨張率の差により隙間が発生する事、第二に、薄い窓ガラスが熱変形すると、嵌め込む事ができなくなるため、わずかな熱変形があっても組み込む事ができる様にある程度の公差(隙間)を設ける必要がある、という事だった。このような上記第一及び第二の問題により窓ガラス面積の3%〜10%程度の隙間ができ、酸素濃度を低下させる効果が抑えられた。 However, in Patent Document 4, a groove is formed in the second cylinder placed inside the graphite cylinder, and a quartz window glass is fitted therein, thereby causing the following problems. First, due to the difference in thermal expansion coefficient between graphite and quartz, even if the structure fits without gaps at room temperature, if graphite expands during pulling, gaps will occur due to the difference in thermal expansion coefficient from quartz. Secondly, when a thin window glass is thermally deformed, it cannot be fitted, so it is necessary to provide a certain degree of tolerance (gap) so that it can be incorporated even with slight thermal deformation. was. Due to the above first and second problems, a gap of about 3% to 10% of the window glass area was formed, and the effect of reducing the oxygen concentration was suppressed.
また、特許文献5のように黒鉛製円筒の内側に石英筒を配置する場合は、前述の様に窓ガラスを組み込む場合の上記第二の問題は無いが、黒鉛と石英との熱膨張率の違いによる上記第一の問題が発生する。また、石英筒は市販品を切断して使用する事が多いが、市販品は公差が大きく、隙間が片側で2mm〜3mm以上になってしまう。この隙間を無くす様に石英筒の外径を高精度に旋盤加工すると、石英筒の加工費が高くなり、また、加工により石英筒の表面が汚染されてしまう。石英筒の上端に載せるリングで隙間を埋める事が考えられるが、高温に晒される石英筒が徐々に熱変形するので、リングと石英筒との間に隙間ができ、完全に隙間を塞ぐ事ができない。 In addition, when the quartz cylinder is arranged inside the graphite cylinder as in Patent Document 5, there is no second problem when the window glass is incorporated as described above, but the thermal expansion coefficient of graphite and quartz is The first problem due to the difference occurs. In addition, the quartz cylinder is often used by cutting a commercial product, but the commercial product has a large tolerance, and the gap becomes 2 mm to 3 mm or more on one side. If the outer diameter of the quartz cylinder is turned with high precision so as to eliminate this gap, the processing cost of the quartz cylinder increases, and the surface of the quartz cylinder is contaminated by the machining. It is conceivable to fill the gap with a ring placed on the upper end of the quartz cylinder, but since the quartz cylinder exposed to high temperatures gradually undergoes thermal deformation, a gap is created between the ring and the quartz cylinder, and the gap can be completely blocked. Can not.
近年、単結晶の周囲に水冷式の強制冷却筒を設置し、その下方に黒鉛製円筒を設置することで、単結晶の冷却効果を高めた装置(例えば、特許文献6を参照)が用いられる様になると、黒鉛製円筒の高温部が短くなり、また、単結晶の成長速度が速くなる事で、黒鉛製円筒による鉄汚染の影響が小さくなった。このため、黒鉛製円筒の内側全面を石英筒で覆う必要が無くなり、これに代わり、高精度で黒鉛製円筒の窓部に組み込み可能な石英窓ガラスを用いる様になった。 In recent years, an apparatus (for example, see Patent Document 6) in which a cooling effect of a single crystal is enhanced by installing a water-cooled forced cooling cylinder around the single crystal and installing a graphite cylinder below the cylinder. As a result, the high temperature portion of the graphite cylinder was shortened and the growth rate of the single crystal was increased, thereby reducing the influence of iron contamination by the graphite cylinder. For this reason, it is no longer necessary to cover the entire inner surface of the graphite cylinder with a quartz cylinder. Instead, a quartz window glass that can be incorporated into the window portion of the graphite cylinder with high accuracy is used.
このように、近年では、黒鉛製円筒の窓孔を覆うため、石英筒よりも石英窓ガラスを多く用いる様になってきた。この理由として、前述の通り、石英筒は市販品で公差が大きく、高精度に黒鉛製円筒内に組み込む事ができないということがある。また、精度を高めようと外周面又は内周面を旋盤加工すると、表面の透明性が損なわれ、ファィヤーポリッシュ(火炎研磨)が必要となり、加工費が高くなってしまう。また、石英筒は窓ガラスより大きな部材となるため、熱膨張による変形量も増える。さらに、石英筒には歪み、すなわち表面の凹凸があり、カメラによる炉内監視の際に引き上げ結晶の直径を検出する精度に悪影響が生じる。これに対して、窓ガラスは高精度の研磨加工が容易にでき、石英筒よりも安価に購入でき、また、歪みが無く、石英筒と比べると、カメラによる直径を検出する精度も良くなる。 Thus, in recent years, in order to cover the window hole of the graphite cylinder, more quartz window glass has been used than the quartz cylinder. The reason for this is that, as described above, the quartz cylinder is a commercial product and has a large tolerance and cannot be incorporated into the graphite cylinder with high accuracy. In addition, if the outer peripheral surface or the inner peripheral surface is turned to improve accuracy, the transparency of the surface is impaired, and fire polishing (flame polishing) is required, which increases the processing cost. Further, since the quartz cylinder is a larger member than the window glass, the amount of deformation due to thermal expansion also increases. Further, the quartz cylinder has distortion, that is, unevenness on the surface, which adversely affects the accuracy of detecting the diameter of the pulled crystal during monitoring in the furnace by a camera. On the other hand, the window glass can be easily polished with high accuracy, can be purchased at a lower cost than the quartz tube, has no distortion, and has a higher accuracy in detecting the diameter of the camera than the quartz tube.
以上から、低酸素濃度の単結晶を得る方法としては、石英筒よりも窓ガラスを使用する方にメリットがあり、前述の通り、黒鉛製円筒(以下、外筒)の内側に入れる黒鉛製円筒(以下、内筒)に溝を形成し、その溝に石英製の窓ガラスを嵌め込む構造において、上記第一及び第二の問題を解決することが望まれている。 From the above, as a method for obtaining a single crystal having a low oxygen concentration, there is a merit in using a window glass rather than a quartz cylinder. As described above, a graphite cylinder placed inside a graphite cylinder (hereinafter referred to as an outer cylinder). It is desired to solve the first and second problems in a structure in which a groove is formed in (hereinafter referred to as an inner cylinder) and a quartz window glass is fitted into the groove.
黒鉛製外筒の内側に入れる黒鉛製内筒に溝を形成し、そこに石英製の窓ガラスを嵌め込む構造において、上記第一の問題は、黒鉛と石英の熱膨張率の違いにより、室温で隙間なく窓ガラスが嵌め込まれた構造であっても、引き上げ中に黒鉛が熱膨張すると、石英との熱膨張率の差により隙間が発生してしまう事である。また、上記第二の問題は、薄い窓ガラスが熱変形すると、これを黒鉛製内筒に嵌め込む事ができなくなるため、わずかな熱変形があっても組み込む事ができる様にある程度の公差(隙間)を設ける必要があるという事である。このようなことから、当該構造においては、窓ガラスの面積の2%〜5%程度の隙間ができ、引き上げるシリコン単結晶中の酸素濃度を低下させる効果が抑えられていた。 In a structure in which a groove is formed in a graphite inner cylinder to be placed inside a graphite outer cylinder and a quartz window glass is fitted therein, the first problem is that due to the difference in thermal expansion coefficient between graphite and quartz, room temperature Even if the window glass is inserted without any gap, if the graphite is thermally expanded during pulling, a gap is generated due to the difference in thermal expansion coefficient from quartz. The second problem is that when the thin window glass is thermally deformed, it cannot be fitted into the graphite inner tube, so that a certain degree of tolerance (so that it can be incorporated even if there is slight heat deformation ( It is necessary to provide a gap). For this reason, in this structure, a gap of about 2% to 5% of the area of the window glass is formed, and the effect of reducing the oxygen concentration in the silicon single crystal to be pulled up is suppressed.
本発明は、上記問題を解決するためになされたものであり、引き上げ中のシリコン単結晶の周囲に設置する整流筒の内筒に窓ガラスを取り付ける構造において、当該整流筒の気密性を高めて引き上げるシリコン単結晶中の酸素濃度を低減することが可能なシリコン単結晶引上装置を提供することを目的とする。 The present invention has been made to solve the above problems, and in a structure in which a window glass is attached to an inner cylinder of a rectifying cylinder installed around a silicon single crystal being pulled, the airtightness of the rectifying cylinder is increased. An object of the present invention is to provide a silicon single crystal pulling apparatus capable of reducing the oxygen concentration in a silicon single crystal to be pulled up.
上記目的を達成するために、本発明では、引き上げるシリコン単結晶を同芯に包囲するようにシリコン融液上に配置され、かつ窓孔を有する外筒と、前記外筒の内側に配置され、前記窓孔に対応する窓部を有する内筒と、前記窓部に取り付けられ、前記窓孔を覆う窓ガラスとを備えるシリコン単結晶引上装置であって、前記内筒の上端に取り付けられ、前記窓ガラスの上縁部に接触するキャップをさらに備え、前記窓ガラスの下縁部及びそれに接触する前記内筒の縁部は、共に、前記窓ガラスが外側となるテーパー形状を有し、かつ前記窓ガラスは、前記キャップの自重により、前記窓ガラスの下縁部とそれに接触する前記内筒の縁部との接触面に沿ってスライド可能であり、前記キャップが取り付けられた状態で前記窓ガラスを前記外筒の内面に密着させるものであることを特徴とするシリコン単結晶引上装置を提供する。 In order to achieve the above object, in the present invention, an outer cylinder disposed on the silicon melt so as to concentrically surround the silicon single crystal to be pulled up, and having a window hole, and disposed inside the outer cylinder, A silicon single crystal pulling device comprising an inner cylinder having a window portion corresponding to the window hole, and a window glass attached to the window portion and covering the window hole, and attached to the upper end of the inner cylinder, A cap that contacts the upper edge of the window glass; both the lower edge of the window glass and the edge of the inner cylinder that contacts the window glass have a tapered shape with the window glass facing outside; and The window glass is slidable along a contact surface between a lower edge portion of the window glass and an edge portion of the inner cylinder that contacts the window glass by its own weight, and the window is attached with the cap attached. Glass of the outer cylinder Providing a silicon single crystal pulling apparatus, characterized in that to adhere to the surface.
このようなシリコン単結晶引上装置によれば、引き上げ中のシリコン単結晶の周囲に設置する整流筒の内筒に窓ガラスを取り付ける構造において、当該整流筒の気密性を高めて引き上げるシリコン単結晶中の酸素濃度を低減することが可能となる。 According to such a silicon single crystal pulling apparatus, in the structure in which the window glass is attached to the inner cylinder of the rectifying cylinder installed around the silicon single crystal being pulled up, the silicon single crystal that is pulled up by increasing the airtightness of the rectifying cylinder It becomes possible to reduce the oxygen concentration inside.
すなわち、窓ガラスの下縁部及びそれに接触する内筒の縁部は、共に、窓ガラスが外側となるテーパー形状を有し、かつ窓ガラスは、キャップの自重により、窓ガラスの下縁部とそれに接触する内筒の縁部との接触面に沿ってスライド可能である。従って、内筒と窓ガラスとの熱膨張率の差により発生する隙間(上記第一の問題)、及び窓ガラスの熱変形を考慮した隙間(上記第二の問題)は、キャップの取り付けにより、窓ガラスがスライドし、当該窓ガラスが外筒の内面に密着することで解消される。これにより、整流筒の気密性を高めて引き上げるシリコン単結晶中の酸素濃度を低減することが可能となる。 That is, both the lower edge of the window glass and the edge of the inner cylinder that contacts the window glass have a tapered shape with the window glass facing outside, and the window glass is separated from the lower edge of the window glass by the weight of the cap. It is slidable along the contact surface with the edge of the inner cylinder that contacts it. Therefore, the gap generated by the difference in thermal expansion coefficient between the inner cylinder and the window glass (the first problem) and the gap considering the thermal deformation of the window glass (the second problem) are caused by attaching the cap. When the window glass slides and the window glass comes into close contact with the inner surface of the outer cylinder, the problem is solved. Thereby, it becomes possible to reduce the oxygen concentration in the silicon single crystal to be raised by increasing the airtightness of the rectifying cylinder.
前記窓部は、前記内筒の上端側がオープンであることが好ましい。
この場合、窓ガラスの取り付けが容易化されるとともに、キャップが内筒の上端に取り付けられたときに、当該キャップの自重を窓ガラスの上縁部を介して当該窓ガラスに有効に伝えることが可能となる。
It is preferable that the upper end side of the inner cylinder is open.
In this case, the attachment of the window glass is facilitated, and when the cap is attached to the upper end of the inner cylinder, the weight of the cap can be effectively transmitted to the window glass via the upper edge of the window glass. It becomes possible.
前記キャップは、前記引き上げるシリコン単結晶を同芯に包囲するようにリング形状を有することが好ましい。
この場合、内筒の上端の全周にキャップを被せることができ、内筒上のキャップの位置を安定化させることができる。また、このような構造によれば、複数の窓ガラスが内筒に取り付けられる場合に、キャップの自重をこれら複数の窓ガラスに均等に伝えることが可能となる。
The cap preferably has a ring shape so as to surround the silicon single crystal to be pulled up concentrically.
In this case, the cap can be put on the entire circumference of the upper end of the inner cylinder, and the position of the cap on the inner cylinder can be stabilized. Moreover, according to such a structure, when several window glass is attached to an inner cylinder, it becomes possible to transmit the self-weight of a cap equally to these several window glass.
前記窓ガラスの上縁部及びそれに接触する前記キャップの縁部は、共に、前記窓ガラスが外側となるテーパー形状を有し、かつ前記窓ガラスは、前記キャップの自重により、前記窓ガラスの上縁部とそれに接触する前記キャップの縁部との接触面に沿ってスライド可能であることが好ましい。
この場合、窓ガラスは、内筒と窓ガラスの接触面と、キャップと窓ガラスの接触面との双方に沿ってスライド可能となる。従って、窓ガラスのスライドは、当該窓ガラスの主表面が均等に外筒の内面に近づくように、すなわち、当該窓ガラスが内筒又は外筒の中心軸に垂直な径方向に移動するように行うことができるため、外筒と窓ガラスとの間に隙間を発生させない効果がより増大する。
Both the upper edge of the window glass and the edge of the cap that contacts the window glass have a tapered shape with the window glass facing outside, and the window glass is placed on the window glass by its own weight. It is preferable that it is slidable along the contact surface of an edge part and the edge part of the said cap which contacts it.
In this case, the window glass can slide along both the contact surface of the inner cylinder and the window glass and the contact surface of the cap and the window glass. Therefore, the sliding of the window glass is performed so that the main surface of the window glass approaches the inner surface of the outer cylinder evenly, that is, the window glass moves in the radial direction perpendicular to the central axis of the inner cylinder or the outer cylinder. Since it can perform, the effect which does not produce a clearance gap between an outer cylinder and a window glass increases more.
前記窓ガラスのテーパー角度は、水平面に対して、30°以上、60°以下であることが好ましい。
この場合、外筒と窓ガラスとの隙間を抑制する効果を向上できるとともに、窓ガラスの強度を保ち、信頼性の向上を図ることができる。
The taper angle of the window glass is preferably 30 ° or more and 60 ° or less with respect to the horizontal plane.
In this case, the effect of suppressing the gap between the outer cylinder and the window glass can be improved, the strength of the window glass can be maintained, and the reliability can be improved.
すなわち、窓ガラスのテーパー角度を水平面に対し30°以上とすることで、窓ガラスと、内筒又はキャップとの接触面積を増やし(スライド可能な量を大きくし)、比較的大きな隙間が発生しても、窓ガラスのスライドによりこれを補償(隙間を埋める)ことが可能となる。また、窓ガラスのテーパー角度を水平面に対し30°以上とすることで、キャップの自重により窓ガラスをスライドさせ易くなる。 In other words, by setting the taper angle of the window glass to 30 ° or more with respect to the horizontal plane, the contact area between the window glass and the inner cylinder or cap is increased (the amount of sliding is increased), and a relatively large gap is generated. However, it is possible to compensate for this (fill the gap) by sliding the window glass. Moreover, it becomes easy to slide a window glass by the dead weight of a cap because the taper angle of a window glass shall be 30 degrees or more with respect to a horizontal surface.
また、窓ガラスのテーパー角度を水平面に対し60°以下とすることで、窓ガラスの縁部(テーパー形状を有する部分の先端部)の強度を確保し、窓ガラスを破損し難くすることができ、結果として、窓ガラスの信頼性を向上させることができる。 In addition, by setting the taper angle of the window glass to 60 ° or less with respect to the horizontal plane, the strength of the edge of the window glass (the tip of the portion having the tapered shape) can be secured, and the window glass can be made difficult to break. As a result, the reliability of the window glass can be improved.
なお、前記外筒及び前記内筒は、黒鉛製であり、前記窓ガラスは、石英製であるときに、上記効果が最大限に発揮される。
すなわち、これにより、黒鉛と石英の熱膨張率の違いにより、室温では隙間なく嵌め込む構造であっても引き上げ中に黒鉛が熱膨張すると、石英との熱膨張率の差により隙間が発生するという問題を解消できる。また、石英製の薄い窓ガラスの熱変形を考慮した公差(隙間)の問題を解消できる。
The outer cylinder and the inner cylinder are made of graphite, and when the window glass is made of quartz, the above-described effect is maximized.
In other words, due to the difference in thermal expansion coefficient between graphite and quartz, even if the structure fits without gaps at room temperature, if graphite expands during pulling, a gap is generated due to the difference in thermal expansion coefficient with quartz. The problem can be solved. In addition, it is possible to solve the problem of tolerance (gap) in consideration of thermal deformation of a thin glass window made of quartz.
以上のように、本発明によれば、引き上げ中のシリコン単結晶の周囲に設置する整流筒の内筒に窓ガラスを取り付ける構造において、当該整流筒の気密性を高めて引き上げるシリコン単結晶中の酸素濃度を低減することが可能となる。 As described above, according to the present invention, in the structure in which the window glass is attached to the inner cylinder of the rectifying cylinder installed around the silicon single crystal being pulled, It is possible to reduce the oxygen concentration.
上述のように、近年では、CZ法によるシリコン単結晶の製造において、引き上げるシリコン単結晶を同芯に包囲するようにシリコン融液上に配置される外筒の内側に、窓部を有する内筒を配置し、当該内筒の窓部に窓ガラスを取り付けることで、引き上げ中にシリコン単結晶内に混入する酸素を抑制する整流筒の構造が採用される。本発明は、このような構造を持つシリコン単結晶引上装置において、当該整流筒の気密性を高めて引き上げるシリコン単結晶中の酸素濃度をより低減することを主体とした発明である。 As described above, in the manufacture of a silicon single crystal by the CZ method in recent years, an inner cylinder having a window portion inside an outer cylinder arranged on the silicon melt so as to concentrically surround the silicon single crystal to be pulled up. And a structure of a rectifying cylinder that suppresses oxygen mixed in the silicon single crystal during pulling is employed by attaching a window glass to the window portion of the inner cylinder. In the silicon single crystal pulling apparatus having such a structure, the present invention is mainly an invention for further reducing the oxygen concentration in the silicon single crystal to be pulled up by increasing the airtightness of the rectifying cylinder.
従来、このような構造においては、第一に、内筒と窓ガラスとの熱膨張率の違いにより、室温で隙間なく窓ガラスが嵌め込まれたとしても、シリコン単結晶の引き上げ中に内筒が熱膨張すると、窓ガラスとの熱膨張率の差により当該内筒と当該窓ガラスとの間に隙間が発生してしまう問題があった(上記第一の問題)。また、薄い窓ガラスを内筒に取り付ける前に当該窓ガラスが熱変形すると、当該窓ガラスを当該内筒に嵌め込む事ができなくなるため、このような熱変形が発生しても窓ガラスを内筒に確実に組み込む事ができる様にある程度の公差(隙間)を設けなければならないという問題があった(上記第二の問題)。 Conventionally, in such a structure, first of all, even if the window glass is fitted without a gap at room temperature due to the difference in thermal expansion coefficient between the inner cylinder and the window glass, the inner cylinder is being pulled during the pulling of the silicon single crystal. When thermal expansion occurs, there is a problem that a gap is generated between the inner cylinder and the window glass due to a difference in thermal expansion coefficient with the window glass (the first problem described above). In addition, if the window glass is thermally deformed before the thin window glass is attached to the inner cylinder, the window glass cannot be fitted into the inner cylinder. There was a problem that a certain degree of tolerance (gap) had to be provided so that the cylinder could be reliably incorporated (second problem described above).
このようなことから、当該構造においては、シリコン単結晶の引き上げ中に、窓ガラスと内筒との間に、当該窓ガラスの面積の2%〜5%程度の隙間が発生してしまう。このため、当該引き上げ中に、内筒の上部から当該内筒の下部に配置されるシリコン融液の上面に向かって流す不活性ガス(例えば、Arガス)が当該内筒の隙間から漏れ出し、シリコン融液の上面に流れ込む当該不活性ガスの量が減少する。その結果、シリコン融液から蒸発する酸素の量が減り、当該シリコン融液から引き上げるシリコン単結晶中の酸素濃度を十分に低下させることができないという問題があった。 For this reason, in the structure, a gap of about 2% to 5% of the area of the window glass is generated between the window glass and the inner cylinder during the pulling of the silicon single crystal. For this reason, during the pulling up, an inert gas (for example, Ar gas) flowing from the upper part of the inner cylinder toward the upper surface of the silicon melt disposed at the lower part of the inner cylinder leaks from the gap of the inner cylinder, The amount of the inert gas flowing into the upper surface of the silicon melt is reduced. As a result, there is a problem that the amount of oxygen evaporated from the silicon melt is reduced and the oxygen concentration in the silicon single crystal pulled up from the silicon melt cannot be sufficiently reduced.
そこで、引き上げ中のシリコン単結晶の周囲に設置する内筒に窓ガラスを取り付ける整流筒の構造において、当該窓ガラスと当該内筒との隙間を完全になくし、当該整流筒の気密性を高めることで、シリコン融液の上面に吹き付ける不活性ガスの量を多くし、結果として、シリコン融液から蒸発する酸素の量を増やし、かつシリコン融液から蒸発した酸素を排出することで、引き上げるシリコン単結晶中の酸素濃度をより低減可能な手法の開発が求められていた。 Therefore, in the structure of the rectifying cylinder in which the window glass is attached to the inner cylinder installed around the silicon single crystal being pulled, the gap between the window glass and the inner cylinder is completely eliminated, and the airtightness of the rectifying cylinder is increased. Therefore, the amount of inert gas sprayed on the upper surface of the silicon melt is increased, and as a result, the amount of oxygen evaporated from the silicon melt is increased, and the oxygen evaporated from the silicon melt is discharged, so that the silicon Development of a technique that can further reduce the oxygen concentration in the crystal has been demanded.
本発明者らは、上記課題について鋭意検討を重ねた結果、窓ガラスの下縁部及びそれに接触する内筒の縁部を、共に、窓ガラスが外側となるテーパー形状を有するように加工し、かつ当該窓ガラスがキャップの自重により当該窓ガラスの下縁部とそれに接触する内筒の縁部との接触面に沿ってスライド可能にすることで、内筒と窓ガラスとの間に隙間が発生したとしても、当該窓ガラスのスライドにより当該隙間を塞ぐことができることを見出した。すなわち、内筒の上端に、窓ガラスの上縁部に接触するキャップを取り付けた状態において、当該キャップの自重により窓ガラスがスライドし、かつ外筒の内面に密着するような構成とすれば、どのような隙間が発生したとしてもこれを確実に塞ぐことが可能となることを見出し、本発明を完成させた。 As a result of earnestly studying the above problems, the inventors of the present invention both processed the lower edge of the window glass and the edge of the inner cylinder in contact with the window glass so that the window glass has an outer tapered shape, In addition, by allowing the window glass to slide along the contact surface between the lower edge of the window glass and the edge of the inner cylinder that contacts the window glass by its own weight, there is a gap between the inner cylinder and the window glass. It has been found that even if it occurs, the gap can be closed by sliding the window glass. That is, in a state where a cap that contacts the upper edge of the window glass is attached to the upper end of the inner cylinder, if the window glass slides by its own weight, and is in close contact with the inner surface of the outer cylinder, It has been found that whatever gap is generated, it can be surely closed, and the present invention has been completed.
すなわち、本発明は、引き上げるシリコン単結晶を同芯に包囲するようにシリコン融液上に配置され、かつ窓孔を有する外筒と、前記外筒の内側に配置され、前記窓孔に対応する窓部を有する内筒と、前記窓部に取り付けられ、前記窓孔を覆う窓ガラスとを備えるシリコン単結晶引上装置であって、前記内筒の上端に取り付けられ、前記窓ガラスの上縁部に接触するキャップをさらに備え、前記窓ガラスの下縁部及びそれに接触する前記内筒の縁部は、共に、前記窓ガラスが外側となるテーパー形状を有し、かつ前記窓ガラスは、前記キャップの自重により、前記窓ガラスの下縁部とそれに接触する前記内筒の縁部との接触面に沿ってスライド可能であり、前記キャップが取り付けられた状態で前記窓ガラスを前記外筒の内面に密着させるものであることを特徴とするシリコン単結晶引上装置である。 That is, the present invention is arranged on the silicon melt so as to concentrically surround the silicon single crystal to be pulled up, and has an outer cylinder having a window hole, arranged inside the outer cylinder, and corresponds to the window hole. A silicon single crystal pulling apparatus comprising an inner cylinder having a window and a window glass attached to the window and covering the window hole, the upper edge of the window glass being attached to an upper end of the inner cylinder A cap that is in contact with a portion, and a lower edge portion of the window glass and an edge portion of the inner cylinder that are in contact with each other have a tapered shape with the window glass being outside, and the window glass is Due to the weight of the cap, it is slidable along the contact surface between the lower edge of the window glass and the edge of the inner cylinder that contacts the window glass, and the window glass is attached to the outer cylinder with the cap attached. Also close to the inner surface A silicon single crystal pulling apparatus, characterized in that it.
以下、本発明の実施の形態について、添付した図面に基づいて具体的に説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the present invention is not limited thereto.
図1は、本発明のシリコン単結晶引上装置の例を示す。
シリコン単結晶引上装置1の主チャンバー2内に黒鉛ルツボ5で保持された石英ルツボ4が設置され、該黒鉛ルツボ5は底部中心で回転し、上下動する支持軸10により支持される。主チャンバー2の上方には、引き上がったシリコン単結晶3を取り出しする開口扉が設けられたプルチャンバー21が設けられている。主チャンバー2の首部23には、上端を気密に設置し、下端をシリコン融液18に向かって垂下する黒鉛製外筒11が設けられ、黒鉛製外筒11の下端に断熱リング12が取り付けられている。
FIG. 1 shows an example of a silicon single crystal pulling apparatus of the present invention.
A quartz crucible 4 held by a graphite crucible 5 is installed in the main chamber 2 of the silicon single crystal pulling apparatus 1, and the graphite crucible 5 rotates around the bottom and is supported by a support shaft 10 that moves up and down. Above the main chamber 2 is provided a pull chamber 21 provided with an opening door for taking out the pulled silicon single crystal 3. The neck portion 23 of the main chamber 2 is provided with a graphite outer cylinder 11 having an upper end airtight and a lower end depending on the silicon melt 18, and a heat insulating ring 12 is attached to the lower end of the graphite outer cylinder 11. ing.
この断熱リング12を取り付ける事で、引き上げるシリコン単結晶3の口径が大きくなっても十分な熱遮蔽効果を持ち、引上速度の低下をきたす事もなく、結晶熱履歴、及び結晶の温度分布を容易に制御できる。 By attaching the heat insulating ring 12, the silicon single crystal 3 to be pulled up has a sufficient heat shielding effect even when the diameter of the silicon single crystal 3 is increased, and the crystal heat history and the temperature distribution of the crystal are reduced without lowering the pulling speed. Easy to control.
黒鉛製外筒11と黒鉛製内筒13は、SiC膜又は熱分解炭素皮膜で被覆された黒鉛から作られ、これにより黒鉛から引き上げ中の単結晶への鉄汚染を防止する。黒鉛製内筒13には透明な板状の窓ガラス14が設置され、この窓ガラス14を通して、カメラで引き上げるシリコン単結晶3の直径を検出し、炉内を監視している。黒鉛製外筒11と黒鉛製内筒13と窓ガラス14とにより、いわゆる整流筒が構成されている。 The graphite outer cylinder 11 and the graphite inner cylinder 13 are made of graphite coated with a SiC film or a pyrolytic carbon film, thereby preventing iron contamination of the single crystal being pulled from the graphite. A transparent plate-like window glass 14 is installed in the graphite inner cylinder 13, and the diameter of the silicon single crystal 3 pulled up by the camera is detected through the window glass 14 to monitor the inside of the furnace. The graphite outer cylinder 11, the graphite inner cylinder 13 and the window glass 14 constitute a so-called rectifying cylinder.
プルチャンバー21の上方には、雰囲気ガス(例えば、Arガス)の導入管22が設けられ、主チャンバー2の底部には、導入された雰囲気ガスを排出するための排ガス管24が設けられている。そして、黒鉛ルツボ5の外周にシリコン原料を溶融した後、シリコン融液18を適温に保つための黒鉛ヒーター6及び断熱シールド7が設置される。また、導入管22よりシリコン単結晶製造装置1の黒鉛製外筒11内に雰囲気ガスを導入しながら、シリコン融液18に種結晶17を浸し、引き上げワイヤー16を回転させながら巻き上げて、シリコン単結晶3を引き上げていく。 An atmosphere gas (for example, Ar gas) introduction pipe 22 is provided above the pull chamber 21, and an exhaust gas pipe 24 for exhausting the introduced atmosphere gas is provided at the bottom of the main chamber 2. . Then, after melting the silicon raw material on the outer periphery of the graphite crucible 5, the graphite heater 6 and the heat shield 7 are installed to keep the silicon melt 18 at an appropriate temperature. Further, while introducing the atmospheric gas into the graphite outer cylinder 11 of the silicon single crystal manufacturing apparatus 1 from the introduction tube 22, the seed crystal 17 is immersed in the silicon melt 18 and wound up while rotating the pulling wire 16, so that the silicon single crystal is wound. The crystal 3 is pulled up.
このようなシリコン単結晶引上装置1において、本発明では、黒鉛製内筒13には透明な窓ガラス14が設置され、当該窓ガラス14と黒鉛製内筒13とはテーパーで接触するように互いの接触面をテーパー形状とし、かつ当該窓ガラス14の上に設置されるキャップ15の自重により窓ガラス14の側面が黒鉛製外筒11の内面、すなわち、黒鉛製外筒11の複数の窓孔の間の柱に密着するようにする。 In such a silicon single crystal pulling apparatus 1, in the present invention, a transparent window glass 14 is installed in the graphite inner cylinder 13 so that the window glass 14 and the graphite inner cylinder 13 are in contact with each other with a taper. The contact surfaces are tapered, and the side surface of the window glass 14 is the inner surface of the graphite outer cylinder 11, that is, a plurality of windows of the graphite outer cylinder 11 due to the weight of the cap 15 installed on the window glass 14. Try to adhere to the pillars between the holes.
ここで、窓ガラス14と黒鉛製内筒13とがテーパーで接触するように互いの接触面をテーパー形状とするとは、窓ガラス14と黒鉛製内筒13とが互いの接触面でテーパー形状を有し、かつ窓ガラス14がキャップ15の自重により当該接触面に沿ってスライド可能な状態となっていることを意味する。 Here, when the contact surfaces of the window glass 14 and the graphite inner cylinder 13 are tapered so that the window glass 14 and the graphite inner cylinder 13 are in contact with each other, the window glass 14 and the graphite inner cylinder 13 are tapered at the contact surfaces of each other. And the window glass 14 is slidable along the contact surface by its own weight.
以下に、黒鉛製外筒11、黒鉛製内筒13、窓ガラス14、及びキャップ15の詳細について説明する。 Details of the graphite outer cylinder 11, the graphite inner cylinder 13, the window glass 14, and the cap 15 will be described below.
図2、図3、及び図4は、黒鉛製外筒、黒鉛製内筒、窓ガラス、及びキャップを示す。図2は、黒鉛製外筒、黒鉛製内筒、窓ガラス、及びキャップの斜視図である。図3は、黒鉛製内筒、窓ガラス、及びキャップの説明図である。図4は、シリコン単結晶引上装置内に組み込まれた状態での黒鉛製外筒、黒鉛製内筒、窓ガラス、及びキャップの関係を示すものである。図4は、図3のA−A線に沿う断面図に相当する。 2, 3, and 4 show a graphite outer cylinder, a graphite inner cylinder, a window glass, and a cap. FIG. 2 is a perspective view of a graphite outer cylinder, a graphite inner cylinder, a window glass, and a cap. FIG. 3 is an explanatory diagram of a graphite inner cylinder, a window glass, and a cap. FIG. 4 shows the relationship between the graphite outer cylinder, the graphite inner cylinder, the window glass, and the cap in a state of being incorporated in the silicon single crystal pulling apparatus. FIG. 4 corresponds to a cross-sectional view taken along the line AA of FIG.
黒鉛製外筒11及び黒鉛製内筒13は、シリコン融液から引き上げるシリコン単結晶を同芯に包囲するように、中心軸(点線)AXを中心とする円筒型を有する。黒鉛製内筒13は、黒鉛製外筒11の内側に配置され、キャップ15は、黒鉛製内筒13の上端に取り付けられる。 The graphite outer cylinder 11 and the graphite inner cylinder 13 have a cylindrical shape centering on the central axis (dotted line) AX so as to concentrically surround the silicon single crystal pulled up from the silicon melt. The graphite inner cylinder 13 is disposed inside the graphite outer cylinder 11, and the cap 15 is attached to the upper end of the graphite inner cylinder 13.
黒鉛製外筒11は、中心軸AXを取り囲む周方向、すなわち中心軸AXを中心とする円の周方向に、複数の窓孔11aを有する。複数の窓孔11aの間は、黒鉛製外筒11の柱11bとなっている。黒鉛製内筒13は、黒鉛製外筒11と同様に、中心軸AXを取り囲む周方向に、複数の窓部13aを有する。複数の窓部13aは、複数の窓孔11aに対応する位置に設けられる。 The graphite outer cylinder 11 has a plurality of window holes 11a in the circumferential direction surrounding the central axis AX, that is, in the circumferential direction of a circle centered on the central axis AX. Between the plurality of window holes 11a, pillars 11b of the graphite outer cylinder 11 are formed. Similar to the graphite outer cylinder 11, the graphite inner cylinder 13 has a plurality of window portions 13 a in the circumferential direction surrounding the central axis AX. The plurality of window portions 13a are provided at positions corresponding to the plurality of window holes 11a.
複数の窓部13aは、黒鉛製内筒13の上端側がオープンとなっている。すなわち、複数の窓部13aは、黒鉛製内筒13の上端側から切り込まれたスリット形状を有する。これにより、窓ガラス14の取り付けが容易化されるとともに、キャップ15が黒鉛製内筒13の上端に取り付けられたときに、キャップ15の自重を窓ガラス14の縁部を介して当該窓ガラス14に有効に伝えることが可能となる。 The plurality of window portions 13a are open at the upper end side of the graphite inner cylinder 13. That is, the plurality of window portions 13 a have a slit shape cut from the upper end side of the graphite inner cylinder 13. This facilitates the attachment of the window glass 14, and when the cap 15 is attached to the upper end of the graphite inner cylinder 13, the weight of the cap 15 is passed through the edge of the window glass 14. Can be effectively communicated to.
黒鉛製内筒13は、複数の窓部13aに露出する縁部のうち柱13b側の縁部において窓ガラス14を嵌め込むための段差部を有する。これにより、窓ガラス14は、黒鉛製内筒13の窓部13aに取り付け可能となる。 The graphite inner cylinder 13 has a stepped portion for fitting the window glass 14 at the edge portion on the column 13b side among the edge portions exposed to the plurality of window portions 13a. As a result, the window glass 14 can be attached to the window portion 13 a of the graphite inner cylinder 13.
また、黒鉛製内筒13は、複数の窓部13aに露出する縁部のうちシリコン融液側(黒鉛製内筒13の下端側)の縁部においてテーパー形状13tpを有する。当該テーパー形状13tpは、窓ガラス14の下縁部のテーパー形状14tpと対をなし、窓ガラス14のスライド構造X1を構成する。 Moreover, the graphite inner cylinder 13 has a tapered shape 13tp at the edge on the silicon melt side (the lower end side of the graphite inner cylinder 13) among the edge portions exposed to the plurality of window portions 13a. The tapered shape 13tp is paired with the tapered shape 14tp of the lower edge portion of the window glass 14, and constitutes the sliding structure X1 of the window glass 14.
当該スライド構造X1は、窓ガラス14の下縁部及びそれに接触する黒鉛製内筒13の縁部が、共に窓ガラス14が外側となるテーパー形状を有するように構成される。従って、黒鉛製内筒13と窓ガラス14との間に隙間が発生している場合には、キャップ15が黒鉛製内筒13の上端に取り付けられると、当該キャップ15の自重により、窓ガラス14が、黒鉛製内筒13と窓ガラス14との接触面に沿ってスライドし、当該隙間が塞がれる。 The slide structure X1 is configured such that the lower edge portion of the window glass 14 and the edge portion of the graphite inner cylinder 13 in contact with the window glass 14 have a tapered shape with the window glass 14 on the outside. Therefore, when a gap is generated between the graphite inner cylinder 13 and the window glass 14, when the cap 15 is attached to the upper end of the graphite inner cylinder 13, the window glass 14 is caused by its own weight. However, it slides along the contact surface between the graphite inner cylinder 13 and the window glass 14, and the gap is closed.
キャップ15は、引き上げるシリコン単結晶を同芯に包囲するように、中心軸AXを中心とするリング形状を有する。 The cap 15 has a ring shape centering on the central axis AX so as to surround the silicon single crystal to be pulled up concentrically.
キャップ15がリング形状であれば、黒鉛製内筒13の上端の全周にキャップ15を被せることができ、黒鉛製内筒13上のキャップ15の位置を安定化させることができる。また、このような構造によれば、複数の窓ガラス14が黒鉛製内筒13に取り付けられる場合に、キャップ15の自重をこれら複数の窓ガラス14に均等に伝えることが可能となる。但し、キャップ15は、リング形状以外の形状、例えば、1つ以上の窓部13aに対応する複数の円弧状部材の集合であってもよい。 If the cap 15 is ring-shaped, the cap 15 can be put on the entire circumference of the upper end of the graphite inner cylinder 13, and the position of the cap 15 on the graphite inner cylinder 13 can be stabilized. In addition, according to such a structure, when the plurality of window glasses 14 are attached to the graphite inner tube 13, the weight of the cap 15 can be evenly transmitted to the plurality of window glasses 14. However, the cap 15 may be a shape other than the ring shape, for example, a set of a plurality of arc-shaped members corresponding to the one or more window portions 13a.
キャップ15は、複数の窓部13a側(黒鉛製内筒13の上端側)の縁部においてテーパー形状15tpを有する。当該テーパー形状15tpは、窓ガラス14の上縁部のテーパー形状14tpと対をなし、窓ガラス14のスライド構造X2を構成する。 The cap 15 has a tapered shape 15tp at an edge portion on the side of the plurality of window portions 13a (upper end side of the graphite inner cylinder 13). The tapered shape 15tp is paired with the tapered shape 14tp of the upper edge portion of the window glass 14, and constitutes the sliding structure X2 of the window glass 14.
当該スライド構造X2は、窓ガラス14の上縁部及びそれに接触するキャップ15の縁部が、共に窓ガラス14が外側となるテーパー形状を有するように構成される。従って、黒鉛製内筒13と窓ガラス14との間に隙間が発生した場合には、窓ガラス14が、窓ガラス14とキャップ15との接触面に沿ってスライドし、当該隙間が塞がれる。 The slide structure X2 is configured such that the upper edge portion of the window glass 14 and the edge portion of the cap 15 in contact with the window glass 14 have a tapered shape with the window glass 14 being the outside. Therefore, when a gap is generated between the graphite inner cylinder 13 and the window glass 14, the window glass 14 slides along the contact surface between the window glass 14 and the cap 15, and the gap is closed. .
すなわち、キャップ15が黒鉛製内筒13の上端に取り付けられると、2つのスライド構造X1,X2により、例えば、図5に示すように、窓ガラス14には、中心軸AXに垂直な径方向に向かう力Pが加わる。従って、この力Pによって、窓ガラス14は、その主表面が均等に黒鉛製外筒11の内面に近づくように当該径方向に移動するため、黒鉛製内筒13と窓ガラス14との間に隙間を発生させない効果がより増大するとともに、整流筒の気密性が保たれる。 That is, when the cap 15 is attached to the upper end of the graphite inner cylinder 13, for example, as shown in FIG. 5, the window glass 14 has a radial direction perpendicular to the central axis AX by the two slide structures X 1 and X 2. A heading force P is added. Therefore, because of this force P, the window glass 14 moves in the radial direction so that its main surface approaches the inner surface of the graphite outer cylinder 11 evenly, so that the window glass 14 is interposed between the graphite inner cylinder 13 and the window glass 14. The effect of not generating a gap is further increased, and the airtightness of the rectifying cylinder is maintained.
なお、上記のように、2つのスライド構造X1,X2により、黒鉛製内筒13と窓ガラス14との隙間を抑制する効果が最大となるが、少なくともスライド構造X1が存在すれば、黒鉛製内筒13と窓ガラス14との隙間を抑制することができる。すなわち、スライド構造X2は、省略可能である。 As described above, the effect of suppressing the gap between the graphite inner cylinder 13 and the window glass 14 is maximized by the two slide structures X1 and X2. However, if at least the slide structure X1 exists, the graphite inner A gap between the tube 13 and the window glass 14 can be suppressed. That is, the slide structure X2 can be omitted.
ここで、窓ガラス14のテーパー角度は、30°以上、60°以下であることが好ましい。この場合、前述のように、黒鉛製内筒13と窓ガラス14がテーパーで接触する事により、黒鉛製内筒13が熱膨張して、当該黒鉛製内筒13の窓部13aが拡がった場合でも、テーパー部(テーパー形状)13tp,14tp,15tpが接触し、黒鉛製内筒13と窓ガラス14の隙間を小さくできる。 Here, the taper angle of the window glass 14 is preferably 30 ° or more and 60 ° or less. In this case, as described above, when the graphite inner cylinder 13 and the window glass 14 are in contact with each other with a taper, the graphite inner cylinder 13 is thermally expanded, and the window portion 13a of the graphite inner cylinder 13 is expanded. However, the tapered portions (tapered shapes) 13 tp , 14 tp , and 15 tp come into contact with each other, and the gap between the graphite inner cylinder 13 and the window glass 14 can be reduced.
テーパー角度について説明する。
テーパー角度は、水平面に対するテーパー面の傾きと定義する。例えば、図11に示すように、窓ガラス14の上縁部に形成されるテーパー形状のテーパー角度θueは、窓ガラス14の主表面Sに垂直となる水平面Lpに対するテーパー面Stp1の傾きである。同様に、窓ガラス14の下縁部に形成されるテーパー形状のテーパー角度θdeは、窓ガラス14の主表面Sに垂直となる水平面Lpに対するテーパー面Stp2の傾きである。
The taper angle will be described.
The taper angle is defined as the inclination of the tapered surface with respect to the horizontal plane. For example, as shown in FIG. 11, the taper angle θ ue of the tapered shape formed at the upper edge of the window glass 14 is the inclination of the taper surface S tp1 with respect to the horizontal plane L p perpendicular to the main surface S of the window glass 14. It is. Similarly, the taper-shaped taper angle θ de formed at the lower edge portion of the window glass 14 is the inclination of the taper surface Stp2 with respect to the horizontal plane L p perpendicular to the main surface S of the window glass 14.
この定義によれば、窓ガラス14のテーパー角度θue,θdeがそれぞれ0°のとき、窓ガラス14の上縁部及び下縁部が窓ガラス14の主表面Sと垂直となる通常の窓ガラスとなることが分かる。 According to this definition, when the taper angles θ ue and θ de of the window glass 14 are 0 °, the normal window in which the upper edge and the lower edge of the window glass 14 are perpendicular to the main surface S of the window glass 14. It turns out that it becomes glass.
なお、窓ガラス14の上縁部のテーパー角度θueと窓ガラス14の下縁部のテーパー角度θdeは、同じであってもよいし、又は異なっていてもよい。 Note that the taper angle θ ue of the upper edge portion of the window glass 14 and the taper angle θ de of the lower edge portion of the window glass 14 may be the same or different.
また、窓ガラス14と同様に、黒鉛製内筒13にもテーパー形状が形成される。黒鉛製内筒13の窓部13aのテーパー形状のテーパー角度は、黒鉛製内筒13の内面又は外面に垂直となる水平面に対するテーパー面の角度として定義される。黒鉛製内筒13のテーパー形状のテーパー角度は、それに対向する窓ガラス14のテーパー形状のテーパー角度と同じとなる。 Further, like the window glass 14, the graphite inner cylinder 13 is also tapered. The taper-shaped taper angle of the window portion 13a of the graphite inner cylinder 13 is defined as an angle of the taper surface with respect to a horizontal plane perpendicular to the inner surface or the outer surface of the graphite inner cylinder 13. The taper-shaped taper angle of the graphite inner cylinder 13 is the same as the taper-shaped taper angle of the window glass 14 facing it.
このように、窓ガラス14のテーパー角度を30°以上とすることで、窓ガラス14と、黒鉛製内筒13又はキャップ15との接触面積を増やし(スライド可能な量を大きくし)、比較的大きな隙間が発生しても、窓ガラス14のスライドによりこれを補償(隙間を埋める)ことが可能となる。また、窓ガラス14のテーパー角度を30°以上とすることで、キャップ15の自重により窓ガラス14をスライドさせ易くなる。 Thus, by setting the taper angle of the window glass 14 to 30 ° or more, the contact area between the window glass 14 and the graphite inner tube 13 or the cap 15 is increased (the amount of sliding is increased), Even if a large gap is generated, it is possible to compensate (fill the gap) by sliding the window glass 14. Moreover, it becomes easy to slide the window glass 14 by the dead weight of the cap 15 because the taper angle of the window glass 14 is 30 ° or more.
また、窓ガラス14のテーパー角度を60°以下とすることで、窓ガラス14の縁部(テーパー形状を有する部分)の強度を確保し、窓ガラス14を破損し難くすることができ、結果として、窓ガラス14の信頼性を向上させることができる。 Moreover, the intensity | strength of the edge part (part which has a taper shape) of the window glass 14 can be ensured by making the taper angle of the window glass 14 60 degrees or less, and the window glass 14 can be made hard to be damaged. The reliability of the window glass 14 can be improved.
また、外筒11及び内筒13は、黒鉛製であることが好ましいが、それ以外の材料から構成されていても構わない。同様に、窓ガラス14は、石英製であることが好ましいが、それ以外の材料から構成されていても構わない。すなわち、耐熱性が有り、内筒13と窓ガラス14との熱膨張率の違い、又は窓ガラス14の熱変形を考慮したことにより生じる隙間を、上記スライド構造X1,X2により塞ぐことができれば、これらの材料が限定されることはない。 The outer cylinder 11 and the inner cylinder 13 are preferably made of graphite, but may be made of other materials. Similarly, the window glass 14 is preferably made of quartz, but may be made of other materials. That is, if the slide structure X1, X2 has a heat resistance, and the gap formed by considering the difference in thermal expansion coefficient between the inner cylinder 13 and the window glass 14 or the thermal deformation of the window glass 14 can be closed, These materials are not limited.
以上、説明したようなシリコン単結晶引上装置によれば、引き上げ中のシリコン単結晶の周囲に設置する黒鉛製内筒13に窓ガラス14を取り付ける整流筒の構造において、当該黒鉛製内筒13の気密性を高めて引き上げるシリコン単結晶中の酸素濃度を低減することが可能となる。 As described above, according to the silicon single crystal pulling apparatus as described above, in the structure of the rectifying cylinder in which the window glass 14 is attached to the graphite inner cylinder 13 installed around the silicon single crystal being pulled, the graphite inner cylinder 13 It becomes possible to reduce the oxygen concentration in the silicon single crystal to be pulled up by increasing the hermeticity.
すなわち、黒鉛製内筒13と窓ガラス14がテーパーで接触する事により、黒鉛製内筒13が熱膨張して、当該黒鉛製内筒13の窓部13aが拡がった場合でも、テーパー部(テーパー形状)13tp,14tp,15tpが窓ガラス14との接触を維持し、窓ガラス14を黒鉛製外筒11に密着させることが出来るので、窓部13aで当該黒鉛製内筒13の内側から外側への通気を無くすことで、気密性を高くできる。 That is, even when the graphite inner cylinder 13 and the window glass 14 are brought into contact with each other with a taper, the graphite inner cylinder 13 is thermally expanded and the window portion 13a of the graphite inner cylinder 13 is expanded. Shape) 13 tp , 14 tp , 15 tp can maintain contact with the window glass 14, and the window glass 14 can be brought into close contact with the graphite outer cylinder 11. Airtightness can be increased by eliminating ventilation from the outside to the outside.
例えば、図4に示すように、シリコン単結晶の引き上げ中に、黒鉛製内筒13の上部から下部に向かって流し、シリコン融液の上面に吹き付ける不活性ガス(例えば、Arガス)19は、黒鉛製内筒13と窓ガラス14との隙間から漏れ出すことがない。従って、シリコン融液の上面に吹き付ける不活性ガス19の量を多くし、結果として、シリコン融液から蒸発する酸素を増やすとともに、下部にある排ガス管24(図1参照)から十分に排出することができる。その結果、引き上げるシリコン単結晶中の酸素濃度をより低減することが可能となる。 For example, as shown in FIG. 4, during the pulling of the silicon single crystal, an inert gas (for example, Ar gas) 19 that flows from the upper part of the graphite inner cylinder 13 toward the lower part and blows onto the upper surface of the silicon melt, There is no leakage from the gap between the graphite inner cylinder 13 and the window glass 14. Therefore, the amount of the inert gas 19 sprayed on the upper surface of the silicon melt is increased, and as a result, the oxygen evaporated from the silicon melt is increased and exhausted sufficiently from the lower exhaust gas pipe 24 (see FIG. 1). Can do. As a result, the oxygen concentration in the silicon single crystal to be pulled can be further reduced.
このように、本発明によれば、引き上げるシリコン単結晶中の酸素濃度を低下させる効果が従来の構造よりも高くなる。さらに、窓ガラス14の上に設置されるキャップ15の自重により当該窓ガラス14がその外側の黒鉛製外筒11に押し付けられ、図5に示すように、窓ガラス14の縦方向の角部14egが黒鉛製外筒11の内面と密着する。 Thus, according to the present invention, the effect of lowering the oxygen concentration in the silicon single crystal to be pulled is higher than that of the conventional structure. Further, the window glass 14 is pressed against the outer graphite-made outer cylinder 11 by the dead weight of the cap 15 installed on the window glass 14, and as shown in FIG. eg is in close contact with the inner surface of the graphite outer cylinder 11.
以上より、本発明では、窓部13aでの黒鉛製内筒13の内側から外側への通気をほぼ完全に遮断し、シリコン融液の上面に流れ込むガス量を従来よりも多くし、引き上げるシリコン単結晶の周囲のシリコン融液面から蒸発する酸素の量を増加できる。しかも、シリコン融液面から蒸発した酸素は、下部にある排ガス管24から排出される。これにより、シリコン単結晶の周囲から当該シリコン単結晶中に取り込まれる酸素濃度を従来よりも低くできる。 As described above, in the present invention, the ventilation from the inside to the outside of the graphite inner cylinder 13 in the window portion 13a is almost completely blocked, and the amount of gas flowing into the upper surface of the silicon melt is increased compared to the conventional case. The amount of oxygen evaporated from the silicon melt surface around the crystal can be increased. Moreover, the oxygen evaporated from the silicon melt surface is discharged from the exhaust gas pipe 24 at the bottom. Thereby, the oxygen concentration taken into the silicon single crystal from the periphery of the silicon single crystal can be made lower than before.
上記本発明の構造による効果を従来構造との比較で説明する。
図6から図10は、従来構造の例を示す。図6は、シリコン単結晶引上装置の例であり、図7及び図8は、外筒、内筒、及び窓ガラスの例である。図9は、内筒内でのガスの流れを示し、図10は、窓ガラスと外筒の内面との関係を示す。
The effects of the structure of the present invention will be described in comparison with the conventional structure.
6 to 10 show examples of conventional structures. FIG. 6 is an example of a silicon single crystal pulling apparatus, and FIGS. 7 and 8 are examples of an outer cylinder, an inner cylinder, and a window glass. FIG. 9 shows the gas flow in the inner cylinder, and FIG. 10 shows the relationship between the window glass and the inner surface of the outer cylinder.
図6から図10は、それぞれ図1から図5に対応する。
なお、図6から図10において、図1から図5に示す装置の構成要素に対応する構成要素には、図1から図5と同じ符号を付してその詳細な説明を省略する。
6 to 10 correspond to FIGS. 1 to 5, respectively.
6 to 10, components corresponding to the components of the apparatus shown in FIGS. 1 to 5 are assigned the same reference numerals as in FIGS. 1 to 5, and detailed descriptions thereof are omitted.
本発明の構造と従来構造との大きな違いは、従来構造のシリコン単結晶引上装置1’が窓ガラス14の上縁部を押すキャップを有しない点にある。すなわち、黒鉛製内筒13の窓部13aは、上端側がクローズで、下端側がオープンである。従って、従来構造のシリコン単結晶引上装置1’は、黒鉛製内筒13及び窓ガラス14がそれらの接触面でテーパー形状を有せず、かつ本発明のような窓ガラス14のスライド構造も備えていない。 A major difference between the structure of the present invention and the conventional structure is that the silicon single crystal pulling apparatus 1 ′ having the conventional structure does not have a cap that presses the upper edge of the window glass 14. That is, the upper end side of the window 13a of the graphite inner cylinder 13 is closed and the lower end side is open. Accordingly, the silicon single crystal pulling apparatus 1 ′ having the conventional structure has the graphite inner cylinder 13 and the window glass 14 that do not have a tapered shape at their contact surfaces, and also has a sliding structure of the window glass 14 as in the present invention. I do not have.
この場合、窓ガラス14の上縁部14ueは、黒鉛製内筒13の自重により黒鉛製内筒13に押し付けられるため、黒鉛製内筒13の上端側では、黒鉛製内筒13と窓ガラス14との隙間が発生し難い。しかし、黒鉛製内筒13の下端側では、黒鉛製内筒13と窓ガラス14との隙間が発生し易い。当該隙間が発生すると、その隙間から漏れたガスは、黒鉛製外筒11の窓孔11aを経由して主チャンバー2内に流れ出るため、結果として、シリコン融液の上面に吹き付けるガスの量が低下する(図9参照)。 In this case, since the upper edge portion 14ue of the window glass 14 is pressed against the graphite inner cylinder 13 by the weight of the graphite inner cylinder 13, the graphite inner cylinder 13 and the window glass 14 are disposed on the upper end side of the graphite inner cylinder 13. It is difficult for gaps to occur. However, a gap between the graphite inner cylinder 13 and the window glass 14 is likely to occur on the lower end side of the graphite inner cylinder 13. When the gap is generated, the gas leaked from the gap flows out into the main chamber 2 through the window hole 11a of the graphite outer cylinder 11, and as a result, the amount of gas blown onto the upper surface of the silicon melt is reduced. (See FIG. 9).
本発明の構造と従来構造とで、黒鉛製内筒13と窓ガラス14との隙間の有無によるガスの流れの違いについて、図4及び図9を参照しながら説明する。 A difference in gas flow between the structure of the present invention and the conventional structure depending on the presence or absence of a gap between the graphite inner cylinder 13 and the window glass 14 will be described with reference to FIGS. 4 and 9.
図4から明らかなように、本発明の構造では、黒鉛製内筒13と窓ガラス14がテーパーで接触する事により、黒鉛製内筒13が熱膨張して、当該黒鉛製内筒13の窓部13aが拡がった場合でも、互いのテーパー部が常に接触することで、黒鉛製内筒13の内側から外側への通気を無くし、黒鉛製内筒13の気密性を高めることができる。さらに、窓ガラス14の上に設置されるキャップ15の自重により、図5に示すように、窓ガラス14がその外側にある黒鉛製外筒11の内面に押し付けられ、窓ガラス14の角部14egが黒鉛製外筒11に密着する。 As apparent from FIG. 4, in the structure of the present invention, the graphite inner cylinder 13 and the window glass 14 are brought into contact with each other with a taper, so that the graphite inner cylinder 13 is thermally expanded, and the window of the graphite inner cylinder 13 is expanded. Even when the portion 13a expands, the tapered portions are always in contact with each other, thereby eliminating air flow from the inside to the outside of the graphite inner tube 13 and improving the airtightness of the graphite inner tube 13. Further, due to the weight of the cap 15 installed on the window glass 14, as shown in FIG. 5, the window glass 14 is pressed against the inner surface of the graphite outer cylinder 11 on the outer side, and the corner 14eg of the window glass 14 is pressed. Adheres closely to the graphite outer cylinder 11.
従って、黒鉛製内筒13内に流れ込んだガス19は、そのまま黒鉛製内筒13の下部からシリコン融液の上面に吹き付けられる。これにより、引き上げるシリコン単結晶中の酸素濃度を低下させるという効果が最大限に発揮される。 Accordingly, the gas 19 flowing into the graphite inner cylinder 13 is sprayed from the lower part of the graphite inner cylinder 13 onto the upper surface of the silicon melt. Thereby, the effect of lowering the oxygen concentration in the silicon single crystal to be pulled up is exhibited to the maximum extent.
また、本発明の構造では、キャップ15とその外周にある黒鉛製外筒11との隙間を小さくする事で、窓ガラス14の主表面と黒鉛製外筒11の内面の曲面との隙間をほぼ塞ぐことができる。すなわち、黒鉛製内筒13の内側と外側とは、中心軸AXに垂直な径方向において、空間的に完全に分断される。 Further, in the structure of the present invention, the gap between the main surface of the window glass 14 and the curved surface of the inner surface of the graphite outer cylinder 11 is substantially reduced by reducing the gap between the cap 15 and the graphite outer cylinder 11 on the outer periphery thereof. Can be closed. That is, the inner side and the outer side of the graphite inner cylinder 13 are completely separated spatially in the radial direction perpendicular to the central axis AX.
これに対し、図9から明らかなように、従来構造では、黒鉛製内筒13と窓ガラス14との隙間からガス19が漏れると、そのガス19は、黒鉛製外筒11の窓孔11aを経由して主チャンバー2内に流れ出る。また、図10に示すように、黒鉛製外筒11と黒鉛製内筒13との間、すなわち、窓ガラス14の主表面と黒鉛製外筒11との間のスペースにガスが流れ込むと、当該ガスの圧力により、窓ガラス14は、黒鉛製外筒11から離れる方向に力を受ける。 On the other hand, as apparent from FIG. 9, in the conventional structure, when the gas 19 leaks from the gap between the graphite inner cylinder 13 and the window glass 14, the gas 19 passes through the window hole 11 a of the graphite outer cylinder 11. It flows out into the main chamber 2 via. Further, as shown in FIG. 10, when gas flows into the space between the graphite outer cylinder 11 and the graphite inner cylinder 13, that is, between the main surface of the window glass 14 and the graphite outer cylinder 11, The window glass 14 receives a force in a direction away from the graphite outer cylinder 11 due to the pressure of the gas.
その結果、図10に示すように、黒鉛製外筒11と窓ガラス14との隙間が拡がってしまう。これは、黒鉛製内筒13と窓ガラス14との隙間から漏れたガス19が、さらに黒鉛製外筒11の窓孔11aを経由して主チャンバー2内に流れ出やすくなることを意味する。 As a result, as shown in FIG. 10, the gap between the graphite outer cylinder 11 and the window glass 14 is widened. This means that the gas 19 leaking from the gap between the graphite inner cylinder 13 and the window glass 14 is more likely to flow into the main chamber 2 via the window hole 11 a of the graphite outer cylinder 11.
ところで、従来構造において、黒鉛製外筒11と窓ガラス14の隙間を少なくし、図9及び図10に示すようなガス19の流れを抑制するためには、例えば、図12に示すように、窓ガラス14の上縁部Eu及び下縁部Edを曲面形状にするなどの工夫が必要となり、窓ガラス14の加工費が増大する。また、図12に示す窓ガラス14を用いたとしても、黒鉛製内筒13と窓ガラス14との熱膨張率の違い、又は窓ガラス14の熱変形を考慮したことにより生じる隙間については、これを塞ぐことができない。その結果、従来構造では、黒鉛製内筒13内を流れるガスが当該隙間から漏れ出し、シリコン融液の上面に吹き付けるガスの量を低下させるという問題が常に発生する。 By the way, in the conventional structure, in order to reduce the gap between the graphite outer cylinder 11 and the window glass 14 and suppress the flow of the gas 19 as shown in FIGS. 9 and 10, for example, as shown in FIG. contrivance such as the upper edge E u and lower portions E d of the window glass 14 in a curved shape is required, processing cost of the window glass 14 is increased. Further, even when the window glass 14 shown in FIG. 12 is used, the gap generated by considering the difference in thermal expansion coefficient between the graphite inner tube 13 and the window glass 14 or the thermal deformation of the window glass 14 Can't be blocked. As a result, in the conventional structure, there is always a problem that the gas flowing in the graphite inner cylinder 13 leaks from the gap and the amount of gas sprayed on the upper surface of the silicon melt is reduced.
なお、本発明の構造においては、窓ガラス14は、加工費を抑える面から板状であることが好ましいが、図12に示すように、上縁部Eu及び下縁部Edが曲面形状であっても構わない。また、窓ガラス14は、その主表面が黒鉛製外筒11の内面に沿うような円弧状の曲面を有していても構わない。 In the structure of the present invention, the window glass 14, it is preferable from the viewpoint of suppressing the processing costs is a plate-like, as shown in FIG. 12, the curved shape the upper edge E u and lower portions E d It does not matter. The window glass 14 may have an arcuate curved surface whose main surface is along the inner surface of the graphite outer cylinder 11.
以上、説明したように、本発明の構造によれば、黒鉛製内筒13と窓ガラス14がテーパーで接触する事により、黒鉛製内筒13が熱膨張して、当該黒鉛製内筒13の窓部13aが拡がった場合でもテーパー部が接触し、窓部13aでの黒鉛製内筒13の内側から外側への通気を無くし、気密性を高くできる。これにより引上げるシリコン単結晶中の酸素濃度を低下させる効果が従来構造よりも高くなる。さらに、窓ガラス14の上に設置されるキャップ15の自重により窓ガラス14が外側の黒鉛製外筒11に押し付けられ、窓ガラス14の縦方向の角部14egが黒鉛製外筒11の内面と密着する。 As described above, according to the structure of the present invention, the graphite inner cylinder 13 and the window glass 14 are brought into contact with each other with a taper, whereby the graphite inner cylinder 13 is thermally expanded, and the graphite inner cylinder 13 Even when the window portion 13a expands, the tapered portion comes into contact, and ventilation from the inside to the outside of the graphite inner cylinder 13 at the window portion 13a is eliminated, so that airtightness can be enhanced. As a result, the effect of lowering the oxygen concentration in the pulled silicon single crystal is higher than that of the conventional structure. Further, the window glass 14 is pressed against the outer graphite outer cylinder 11 by the weight of the cap 15 installed on the window glass 14, and the vertical corners 14 eg of the window glass 14 are the inner surfaces of the graphite outer cylinder 11. Close contact with.
このように、本発明の構造では、窓部13aでの黒鉛製内筒13の内側から外側への通気をほぼ完全に遮断し、シリコン融液の上面に流れ込むガス量を従来よりも多くでき、引上げるシリコン単結晶の周囲の融液面から蒸発する酸素量を増加できる。これにより、シリコン単結晶の周囲から当該シリコン単結晶に取り込まれる酸素の濃度を従来よりも低くできる。 As described above, in the structure of the present invention, the ventilation from the inside to the outside of the graphite inner cylinder 13 in the window portion 13a is almost completely blocked, and the amount of gas flowing into the upper surface of the silicon melt can be increased more than before, The amount of oxygen evaporated from the melt surface around the silicon single crystal to be pulled can be increased. Thereby, the concentration of oxygen taken into the silicon single crystal from the periphery of the silicon single crystal can be made lower than before.
以下に本発明の実施例を挙げて、本発明を詳細に説明するが、これらは、本発明を限定するものではない。 EXAMPLES The present invention will be described in detail below with reference to examples of the present invention, but these do not limit the present invention.
(実施例1)
図1から図5に示したシリコン単結晶引上装置1において、厚さ10mmの黒鉛製内筒13に窓部(切り込み部)13を4ヶ所設け、そこに厚さ10mm、横幅50mm、及び縦長120mmの窓ガラス14を4枚嵌め込み、その上端に高さ20mm、テーパー角度45°のキャップ15を配置して、シリコン単結晶引上装置1に組み込んだ。ここで、窓ガラス14と黒鉛製内筒13、及び窓ガラス14とキャップ15とはテーパー角度45°で接触し、窓ガラス14と黒鉛製内筒13との隙間は、本発明のスライド構造により、窓ガラス面積(50mm×120mm)の約1%程度に抑えられた。
Example 1
In the silicon single crystal pulling apparatus 1 shown in FIGS. 1 to 5, four window portions (cut portions) 13 are provided in a graphite inner tube 13 having a thickness of 10 mm, and there are 10 mm in thickness, 50 mm in width, and vertically long. Four 120 mm window glasses 14 were fitted, and a cap 15 having a height of 20 mm and a taper angle of 45 ° was arranged at the upper end thereof, and incorporated into the silicon single crystal pulling apparatus 1. Here, the window glass 14 and the graphite inner cylinder 13 and the window glass 14 and the cap 15 are in contact at a taper angle of 45 °, and the gap between the window glass 14 and the graphite inner cylinder 13 is determined by the slide structure of the present invention. It was suppressed to about 1% of the window glass area (50 mm × 120 mm).
このようなシリコン単結晶引上装置1にて、22インチ(550mm)の石英ルツボにシリコン原料を100kg仕込んで、炉内圧を100mbarとし、シリコン融液に吹き付けるArガス量を100L/minとし、ルツボ回転数を8rpmとし、直径205mmのシリコン単結晶を製造したところ、引き上げ直径205mm以上の部分で種結晶側から100mmの位置における酸素濃度が15.0ppma(JEITA)となった。 In such a silicon single crystal pulling apparatus 1, 100 kg of silicon raw material is charged into a 22-inch (550 mm) quartz crucible, the furnace pressure is 100 mbar, the amount of Ar gas blown to the silicon melt is 100 L / min, and the crucible When a silicon single crystal having a diameter of 205 mm was manufactured at a rotational speed of 8 rpm, the oxygen concentration at a position 100 mm from the seed crystal side became 15.0 ppma (JEITA) in a portion with a pulling diameter of 205 mm or more.
(実施例2)
図1から図5に示したシリコン単結晶引上装置1において、厚さ10mmの黒鉛製内筒13に窓部(切り込み部)13を4ヶ所設け、そこに厚さ10mm、横幅50mm、及び縦長120mmの窓ガラス14を4枚嵌め込み、その上端に高さ20mm、テーパー角度45°のキャップ15を配置して、シリコン単結晶引上装置1に組み込んだ。ここで、窓ガラス14は、上縁部Eu及び下縁部Edがそれぞれ曲面形状となっており、窓ガラス14と黒鉛製内筒13、及び窓ガラス14とキャップ15とはテーパー角度45°で接触し、窓ガラス14と黒鉛製内筒13との隙間は、本発明のスライド構造により、窓ガラス面積(50mm×120mm)の約0.2%程度に抑えられ、実施例1よりも密着性が高くなっていた。
(Example 2)
In the silicon single crystal pulling apparatus 1 shown in FIGS. 1 to 5, four windows (cut portions) 13 are provided in a graphite inner cylinder 13 having a thickness of 10 mm, and the thickness is 10 mm, the width is 50 mm, and the length is long. Four 120 mm window glasses 14 were fitted, and a cap 15 having a height of 20 mm and a taper angle of 45 ° was arranged at the upper end thereof, and incorporated into the silicon single crystal pulling apparatus 1. Here, the window glass 14, the upper edge E u and lower edge E d has a curved surface shape, respectively, the taper angle 45 to the window glass 14 and the graphite inner cylinder 13 and the window glass 14 and the cap 15, The gap between the window glass 14 and the graphite inner cylinder 13 is reduced to about 0.2% of the window glass area (50 mm × 120 mm) by the slide structure of the present invention. The adhesion was high.
このようなシリコン単結晶引上装置1にて、22インチ(550mm)の石英ルツボにシリコン原料を100kg仕込んで、炉内圧を100mbarとし、シリコン融液に吹き付けるArガス量を100L/minとし、ルツボ回転数を8rpmとし、直径205mmのシリコン単結晶を製造したところ、引き上げ直径205mm以上の部分で種結晶側から100mmの位置における酸素濃度が14.4ppma(JEITA)となった。 In such a silicon single crystal pulling apparatus 1, 100 kg of silicon raw material is charged into a 22-inch (550 mm) quartz crucible, the furnace pressure is 100 mbar, the amount of Ar gas blown to the silicon melt is 100 L / min, and the crucible When a silicon single crystal having a diameter of 205 mm was manufactured at a rotational speed of 8 rpm, the oxygen concentration at a position of 100 mm from the seed crystal side was 14.4 ppma (JEITA) in a portion with a pulling diameter of 205 mm or more.
(比較例)
図6から図10に示したシリコン単結晶引上装置1’において、厚さ10mmの黒鉛製内筒13に深さ5mmのザグリ部を4ヶ所設け、その中に厚さ4mm、横幅50mm、及び縦長120mmの窓ガラス14を4枚嵌め込んで、シリコン単結晶引上装置1’に組み込んだ。ここで、窓ガラス14と黒鉛製内筒13との隙間は、窓ガラス面積(50mm×120mm)の約8%程度あった。
(Comparative example)
In the silicon single crystal pulling apparatus 1 ′ shown in FIGS. 6 to 10, four counterbore portions having a depth of 5 mm are provided in a graphite inner cylinder 13 having a thickness of 10 mm, and 4 mm in thickness, 50 mm in width, and Four pieces of 120 mm long window glass 14 were fitted and incorporated into the silicon single crystal pulling apparatus 1 ′. Here, the gap between the window glass 14 and the graphite inner cylinder 13 was about 8% of the window glass area (50 mm × 120 mm).
このようなシリコン単結晶引上装置1’にて、22インチ(550mm)の石英ルツボにシリコン原料を100kg仕込んで、炉内圧を100mbarとし、シリコン融液に吹き付けるArガス量を100L/minとし、ルツボ回転数を8rpmとし、直径205mmのシリコン単結晶を製造したところ、引き上げ直径205mm以上の部分で種結晶側から100mmの位置における酸素濃度が16ppma(JEITA)となった。 In such a silicon single crystal pulling apparatus 1 ′, 100 kg of silicon raw material is charged into a 22-inch (550 mm) quartz crucible, the furnace pressure is 100 mbar, and the amount of Ar gas blown to the silicon melt is 100 L / min. When a silicon single crystal having a diameter of 205 mm was manufactured at a crucible rotation speed of 8 rpm, the oxygen concentration at a position 100 mm from the seed crystal side was 16 ppma (JEITA) in a portion with a pulling diameter of 205 mm or more.
以上の結果から分かるように、実施例1及び実施例2では、同じ操業条件であるにもかかわらず、いずれも引き上げるシリコン単結晶中の酸素濃度が比較例におけるそれよりも小さくなっている。すなわち、本発明の整流筒の構造によれば、従来構造に比べて、引き上げるシリコン単結晶中の酸素濃度を低くできることが立証された。 As can be seen from the above results, in Example 1 and Example 2, the oxygen concentration in the silicon single crystal to be pulled up is smaller than that in the comparative example in spite of the same operating conditions. That is, according to the structure of the rectifying cylinder of the present invention, it was proved that the oxygen concentration in the silicon single crystal to be pulled can be lowered as compared with the conventional structure.
以上、説明してきたように、本発明によれば、引き上げ中のシリコン単結晶の周囲に設置する整流筒における内筒に窓ガラスを取り付ける構造において、当該整流筒の気密性を高めて引き上げるシリコン単結晶中の酸素濃度を低減することが可能となる。 As described above, according to the present invention, in the structure in which the window glass is attached to the inner cylinder of the rectifying cylinder installed around the silicon single crystal being pulled up, the silicon single unit that is pulled up with the airtightness of the rectifying cylinder being increased. It becomes possible to reduce the oxygen concentration in the crystal.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
1…シリコン単結晶引上装置、 2…主チャンバー、 3…シリコン単結晶、 4…石英ルツボ、 5…黒鉛ルツボ、 6…黒鉛ヒーター、 7…断熱シールド、 10…支持軸、 11…黒鉛製外筒、 11a…窓孔、 12…断熱リング、 13…黒鉛製内筒、 13a…窓部、 13tp…テーパー形状、 14…窓ガラス、 14tp…テーパー形状、 15…キャップ、 15tp…テーパー形状、 16…引き上げワイヤー、 17…種結晶、 18…シリコン融液、 21…プルチャンバー、 22…ガス導入管、 23…首部、 24…排ガス管。 DESCRIPTION OF SYMBOLS 1 ... Silicon single crystal pulling apparatus, 2 ... Main chamber, 3 ... Silicon single crystal, 4 ... Quartz crucible, 5 ... Graphite crucible, 6 ... Graphite heater, 7 ... Thermal insulation shield, 10 ... Support shaft, 11 ... Outside graphite Tube: 11a: Window hole, 12: Heat insulation ring, 13: Graphite inner tube, 13a: Window, 13tp: Tapered shape, 14: Window glass, 14tp: Tapered shape, 15 ... Cap, 15tp: Tapered shape, 16 ... Pulling wire, 17 ... seed crystal, 18 ... silicon melt, 21 ... pull chamber, 22 ... gas introduction pipe, 23 ... neck, 24 ... exhaust gas pipe.
Claims (6)
前記内筒の上端に取り付けられ、前記窓ガラスの上縁部に接触するキャップをさらに備え、
前記窓ガラスの下縁部及びそれに接触する前記内筒の縁部は、共に、前記窓ガラスが外側となるテーパー形状を有し、かつ前記窓ガラスは、前記キャップの自重により、前記窓ガラスの下縁部とそれに接触する前記内筒の縁部との接触面に沿ってスライド可能であり、前記キャップが取り付けられた状態で前記窓ガラスを前記外筒の内面に密着させるものであることを特徴とするシリコン単結晶引上装置。 An outer cylinder disposed on the silicon melt so as to concentrically surround the silicon single crystal to be pulled up and having a window hole, and an inner cylinder disposed inside the outer cylinder and having a window corresponding to the window hole And a silicon single crystal pulling device comprising a window glass attached to the window portion and covering the window hole,
A cap attached to the upper end of the inner cylinder, further comprising a cap that contacts the upper edge of the window glass,
Both the lower edge portion of the window glass and the edge portion of the inner cylinder in contact with the window glass have a tapered shape with the window glass being outside, and the window glass is formed by the weight of the cap. It is slidable along the contact surface between the lower edge and the edge of the inner cylinder that contacts the lower edge, and the window glass is brought into close contact with the inner surface of the outer cylinder with the cap attached. A silicon single crystal pulling device.
The silicon single crystal pulling apparatus according to any one of claims 1 to 5, wherein the outer cylinder and the inner cylinder are made of graphite, and the window glass is made of quartz.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026542A JP6610816B1 (en) | 2019-02-18 | 2019-02-18 | Silicon single crystal pulling device |
KR1020200017193A KR102344205B1 (en) | 2019-02-18 | 2020-02-12 | Silicon single crystal pull-up device |
CN202010096773.XA CN111575783B (en) | 2019-02-18 | 2020-02-17 | Silicon single crystal pulling apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026542A JP6610816B1 (en) | 2019-02-18 | 2019-02-18 | Silicon single crystal pulling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6610816B1 true JP6610816B1 (en) | 2019-11-27 |
JP2020132462A JP2020132462A (en) | 2020-08-31 |
Family
ID=68691963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019026542A Active JP6610816B1 (en) | 2019-02-18 | 2019-02-18 | Silicon single crystal pulling device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6610816B1 (en) |
KR (1) | KR102344205B1 (en) |
CN (1) | CN111575783B (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0688864B2 (en) * | 1989-09-09 | 1994-11-09 | 信越半導体株式会社 | Rectifier for single crystal pulling equipment |
JP2940437B2 (en) | 1995-06-01 | 1999-08-25 | 信越半導体株式会社 | Method and apparatus for producing single crystal |
JP3557756B2 (en) * | 1995-10-14 | 2004-08-25 | 信越半導体株式会社 | Fogging prevention structure of quartz window plate for observation window of rectifying cylinder for single crystal pulling device |
JP3550487B2 (en) | 1997-11-06 | 2004-08-04 | 東芝セラミックス株式会社 | Silicon single crystal pulling device under transverse magnetic field |
JP3952356B2 (en) | 2001-02-28 | 2007-08-01 | 信越半導体株式会社 | Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same |
JP2007314375A (en) * | 2006-05-26 | 2007-12-06 | Shin Etsu Handotai Co Ltd | Apparatus for manufacturing single crystal |
JP4917519B2 (en) | 2007-11-29 | 2012-04-18 | コバレントマテリアル株式会社 | Method for producing silicon single crystal |
CN103290467B (en) * | 2012-02-24 | 2016-04-13 | 宁夏盈谷实业股份有限公司 | Single crystal growing furnace water jacket structure |
CN103774118B (en) * | 2012-10-17 | 2016-03-02 | 理想能源设备(上海)有限公司 | Substrate bearing device and metal organic chemical vapor deposition device |
JP6088864B2 (en) * | 2013-03-13 | 2017-03-01 | 国立大学法人 鹿児島大学 | Calibration system and calibration method |
JP5974978B2 (en) * | 2013-05-29 | 2016-08-23 | 信越半導体株式会社 | Silicon single crystal manufacturing method |
CN205394323U (en) * | 2015-12-20 | 2016-07-27 | 重庆天和玻璃有限公司 | Window frame anchor clamps |
CN106917869B (en) * | 2017-03-23 | 2019-10-08 | 上海交通大学 | A kind of Double-conical-surface glass window applied to high-pressure bottle |
-
2019
- 2019-02-18 JP JP2019026542A patent/JP6610816B1/en active Active
-
2020
- 2020-02-12 KR KR1020200017193A patent/KR102344205B1/en active IP Right Grant
- 2020-02-17 CN CN202010096773.XA patent/CN111575783B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111575783A (en) | 2020-08-25 |
CN111575783B (en) | 2021-12-31 |
KR102344205B1 (en) | 2021-12-28 |
KR20200100544A (en) | 2020-08-26 |
JP2020132462A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI231318B (en) | Apparatus for growing a single crystalline ingot | |
US8313577B2 (en) | Apparatus for producing single crystal silicon | |
JP6610816B1 (en) | Silicon single crystal pulling device | |
JPH10158091A (en) | Device for producing single crystal and production of single crystal, using the same | |
TWI715122B (en) | Purge tubes, single crystal pulling devices and methods for manufacturing a silicon single crystal | |
US9453291B2 (en) | Single crystal pulling apparatus and low heat conductive member used for single crystal pulling apparatus | |
JP2021066651A (en) | Semiconductor crystal growth apparatus | |
KR101129112B1 (en) | Manufacturing apparatus for silicon crystal ingot | |
US20020124792A1 (en) | Crystal puller and method for growing single crystal semiconductor material | |
TWI761956B (en) | A semiconductor crystal growth apparatus | |
KR101467117B1 (en) | Ingot growing apparatus | |
US7060133B2 (en) | Single crystal pulling apparatus for a metal fluoride | |
JP2004123516A (en) | Device for pulling up single crystal | |
US20240003046A1 (en) | Single crystal manufacturing apparatus | |
JP2705810B2 (en) | Single crystal pulling device | |
KR20160014362A (en) | The single crystal ingot growing apparatus | |
CN108505111B (en) | Method for producing single crystal | |
JP2006069803A (en) | Heat-shielding member for silicon single crystal pulling apparatus | |
JP2569053Y2 (en) | Semiconductor single crystal manufacturing equipment | |
KR101665793B1 (en) | Crucible for ingot growing apparatus | |
JPH07115984B2 (en) | Single crystal pulling device | |
JP2022092442A (en) | Apparatus for manufacturing single crystal | |
JPH08325090A (en) | Device for pulling up single crystal | |
JP2022092450A (en) | Apparatus for manufacturing single crystal | |
KR20190084678A (en) | Method and apparatus for manufacturing silicon wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190517 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190918 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6610816 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |