JP2006069803A - Heat-shielding member for silicon single crystal pulling apparatus - Google Patents

Heat-shielding member for silicon single crystal pulling apparatus Download PDF

Info

Publication number
JP2006069803A
JP2006069803A JP2004251161A JP2004251161A JP2006069803A JP 2006069803 A JP2006069803 A JP 2006069803A JP 2004251161 A JP2004251161 A JP 2004251161A JP 2004251161 A JP2004251161 A JP 2004251161A JP 2006069803 A JP2006069803 A JP 2006069803A
Authority
JP
Japan
Prior art keywords
single crystal
heat
silicon single
insulating cover
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251161A
Other languages
Japanese (ja)
Inventor
Shinrin Fu
森林 符
Naoki Ono
直樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2004251161A priority Critical patent/JP2006069803A/en
Publication of JP2006069803A publication Critical patent/JP2006069803A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To relatively easily change the required shielding amount of heat radiation. <P>SOLUTION: The heat-shielding member is installed in an apparatus for pulling a silicon single crystal rod 25 from a silicon melt 12 stored in a quartz crucible 13. The heat-shielding member is equipped with a cylindrical part 37 whose lower end is located at an upper part of the surface of the silicon melt 12 with an interval from the surface and which surrounds the outer peripheral surface of the silicon single crystal rod; a bulged part 41 installed at a lower part of the cylindrical part 37 bulging toward the inside of the cylinder; a ring-like heat-insulating cover 51 which is constituted in an insertable/removable way at the inside of the cylinder and surrounds the outer peripheral surface of the silicon single crystal rod in a state that it is inserted inside the cylindrical part 37; and a supporting member 56 which supports the heat-insulating cover 51 inserted inside the cylindrical part 37 at an upper part of the bulged part 41 with a prescribed interval from the bulged part 41. The supporting member 56 is constituted of a plurality of projected parts 56 provided at the inner surface of the cylindrical part 37, and a plurality of notched parts 51a are formed at the outer peripheral surface of the ring-like heat-insulating cover 51 corresponding to the projected parts 56 so that the heat-insulating cover 51 can pass through the projected parts 56 when it is inserted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シリコン単結晶棒を引上げて育成する装置にそのシリコン単結晶棒を包囲するように設けられた熱遮蔽部材に関するものである。   The present invention relates to a heat shielding member provided in an apparatus for pulling up and growing a silicon single crystal rod so as to surround the silicon single crystal rod.

従来、この種のシリコン単結晶引上げ装置として、チャンバ内にシリコン融液が貯留された石英るつぼが収容され、シリコン単結晶棒の外周面と石英るつぼの内周面との間にシリコン単結晶棒を包囲するように熱遮蔽部材が挿入された引上げ装置(例えば、特許文献1参照。)が開示されている。この装置における熱遮蔽部材は引上げられるシリコン単結晶棒の外周面を包囲しかつ下端がシリコン融液表面から間隔をあけて上方に位置しヒータからの輻射熱を遮る円筒部と、この円筒部の下部に筒内の方向に膨出して設けられた膨出部を有し、この熱遮蔽部材はシリコン単結晶棒の外周面と円筒部の内周面との間を流下する不活性ガスをスムーズに導くように構成される。この引上げ装置では、露出した石英るつぼの内周壁からの輻射熱を熱遮蔽部材が遮ることにより、輻射熱がシリコン単結晶棒の外周面に達することを防止して、引上げ中のシリコン単結晶棒の凝固を促進し、シリコン単結晶棒を速やかに冷却するようになっている。   Conventionally, as this type of silicon single crystal pulling apparatus, a quartz crucible in which a silicon melt is stored in a chamber is accommodated, and a silicon single crystal rod is interposed between the outer peripheral surface of the silicon single crystal rod and the inner peripheral surface of the quartz crucible. A pulling device (see, for example, Patent Document 1) in which a heat shielding member is inserted so as to surround the frame is disclosed. The heat shielding member in this apparatus surrounds the outer peripheral surface of the silicon single crystal rod to be pulled up, and the lower end is located above the silicon melt surface and is located above the cylindrical portion which shields the radiant heat from the heater, and the lower portion of the cylindrical portion The heat shielding member smoothly flows the inert gas flowing down between the outer peripheral surface of the silicon single crystal rod and the inner peripheral surface of the cylindrical portion. Configured to guide. In this pulling device, the heat shielding member blocks the radiant heat from the exposed inner wall of the quartz crucible, thereby preventing the radiant heat from reaching the outer peripheral surface of the silicon single crystal rod and solidifying the silicon single crystal rod being pulled. The silicon single crystal rod is promptly cooled.

一方、半導体集積回路を製造する工程において、歩留りを低下させる原因として酸化誘起積層欠陥(Oxidation-induced Stacking Fault、以下、OSFという。)の核となる酸素析出物の微小欠陥や、結晶に起因したパーティクル(Crystal Originated Particle、以下、COPという。)や、或いは侵入型転位(Interstitial-type Large Dislocation、以下、L/Dという。)の存在が挙げられ、半導体集積回路を製造するために用いられるシリコンウェーハからはこれらのOSF、COP及びL/Dを減少させることが必要となる。
このOSF、COP及びL/Dを有しない無欠陥のシリコンウェーハを切出すために、ボロンコフ(Voronkov)の理論に基づいたシリコン単結晶棒の製造方法が提案されている(例えば、特許文献2参照。)。このボロンコフ(Voronkov)の理論では、シリコン単結晶棒を速い速度で引上げると、シリコン単結晶棒内部に空孔型点欠陥の凝集体が支配的に存在する領域[V]が形成され、シリコン単結晶棒を遅い速度で引上げると、シリコン単結晶棒内部に格子間シリコン型点欠陥の凝集体が支配的に存在する領域[I]が形成される。このため、熱遮蔽部材の円筒部の下部に設けられた膨出部を比較的大型化させて石英るつぼの内周壁からの輻射熱を有効に遮るとともに、シリコン単結晶棒の軸方向における温度勾配の径方向分布が略均一になるようにシリコン単結晶棒を最適な引上げ速度で引上げることにより、上記点欠陥の凝集体が存在しないパーフェクト領域[P]からなるシリコン単結晶棒を製造できるようになっている。
On the other hand, in the process of manufacturing a semiconductor integrated circuit, the cause of lowering the yield is due to micro-defects of oxygen precipitates that are the core of oxidation-induced stacking faults (hereinafter referred to as OSFs) or crystals. The presence of particles (Crystal Originated Particles, hereinafter referred to as COP) or interstitial-type large dislocations (hereinafter referred to as L / D), and silicon used for manufacturing semiconductor integrated circuits From the wafer, it is necessary to reduce these OSF, COP and L / D.
In order to cut out a defect-free silicon wafer having no OSF, COP, and L / D, a silicon single crystal rod manufacturing method based on the Boronkov theory has been proposed (for example, see Patent Document 2). .) In this Voronkov theory, when a silicon single crystal rod is pulled up at a high speed, a region [V] in which agglomerates of vacancy-type point defects exist dominantly in the silicon single crystal rod is formed. When the single crystal rod is pulled at a low speed, a region [I] in which aggregates of interstitial silicon type point defects exist predominantly in the silicon single crystal rod is formed. For this reason, the bulge part provided in the lower part of the cylindrical part of the heat shielding member is made relatively large to effectively shield the radiant heat from the inner peripheral wall of the quartz crucible, and the temperature gradient in the axial direction of the silicon single crystal rod By pulling up the silicon single crystal rod at an optimum pulling rate so that the radial distribution is substantially uniform, a silicon single crystal rod composed of the perfect region [P] in which the aggregate of point defects does not exist can be manufactured. It has become.

しかし、熱遮蔽部材における膨出部を大型化させても、引上げ速度を比較的遅くしなければシリコン単結晶棒の軸方向における温度勾配の径方向分布を略均一にすることができず、引上げる速度を速くして点欠陥の凝集体が存在しないパーフェクト領域[P]からなるシリコン単結晶棒の量産効果を向上させることができない現実があった。
また、円筒部の下部にのみ膨出部を設けた熱遮蔽部材では、引上げた単結晶棒から切り出したシリコンウェーハの表面に酸化膜を形成した場合、その膨出部の大小にかかわらずその酸化膜の耐圧特性が悪化する不具合がある。即ち、膨出部が小型であると、シリコン単結晶棒とシリコン融液の固液界面近傍での単結晶中心位置及び単結晶外周面近傍における結晶軸方向の温度勾配をそれぞれG1(℃/mm)及びG2(℃/mm)とするときに、両温度勾配の差(G2−G1)が比較的大きくなるため、COP等が増加する。このため、この単結晶から切り出したシリコンウェーハの表面に酸化膜を形成して、その耐圧を評価したときに酸化膜耐圧特性が悪化する。逆に膨出部が大型であると、石英るつぼの内周壁からの輻射熱が遮られることから、引上げられる単結晶の引上げ方向の約1400〜1000℃の温度範囲が比較的短いため、単結晶中の点欠陥の外方拡散や坂道拡散が十分に行われない。この結果、この単結晶から作られたシリコンウェーハの酸化膜耐圧特性は、小型の膨出部が設けられた熱遮蔽部材を用いた場合より悪化する問題点があった。
However, even if the bulging portion of the heat shielding member is enlarged, the radial distribution of the temperature gradient in the axial direction of the silicon single crystal rod cannot be made substantially uniform unless the pulling speed is relatively slow. There has been a reality that it is not possible to improve the mass production effect of a silicon single crystal rod composed of a perfect region [P] in which no point defect agglomerates exist by increasing the speed of raising.
In addition, in the heat shielding member provided with the bulging part only at the lower part of the cylindrical part, when the oxide film is formed on the surface of the silicon wafer cut out from the pulled single crystal rod, the oxidation is performed regardless of the size of the bulging part. There is a problem that the pressure resistance characteristics of the film deteriorate. That is, if the bulge is small, the temperature gradient in the crystal axis direction near the solid-liquid interface between the silicon single crystal rod and the silicon melt and in the crystal axis direction near the single crystal outer peripheral surface is G 1 (° C / ° C). mm) and G 2 (° C./mm), the difference between the two temperature gradients (G 2 −G 1 ) becomes relatively large, so that COP and the like increase. For this reason, when an oxide film is formed on the surface of a silicon wafer cut out from the single crystal and the withstand voltage is evaluated, the oxide film withstand voltage characteristic deteriorates. Conversely, if the bulge is large, the radiant heat from the inner peripheral wall of the quartz crucible is blocked, so the temperature range of about 1400 to 1000 ° C. in the pulling direction of the single crystal to be pulled is relatively short. The point defects are not sufficiently diffused outward or sloped. As a result, there is a problem that the oxide film pressure resistance characteristic of the silicon wafer made from this single crystal is worse than when a heat shield member provided with a small bulge portion is used.

そして、このようなシリコンウェーハにしたときの酸化膜耐圧特性を改善し得る熱遮蔽部材として、円筒部の下端に下側膨出部を設けるとともに、その下側膨出部の上方にその下側膨出部と所定の間隔を開けて上側膨出部を設けた熱遮蔽部材が提案されている(例えば、特許文献3参照。)。このように上下に所定の間隔を開けて膨出部を設けた熱遮蔽部材では、固液界面近傍での単結晶中心位置及び単結晶外周面近傍における結晶軸方向の両温度勾配の差(G2−G1)を比較的小さくして単結晶中のCOP等を低減させるとともに、引上げられる単結晶の外周面近傍の温度が1400℃から1000℃に降下するまでの時間を比較的長くして、単結晶内部で外方拡散や坂道拡散を促進し、結果的にこの単結晶から作られたシリコンウェーハの酸化膜耐圧特性を向上させることができるものとしている。 And as a heat shielding member that can improve the oxide film pressure resistance characteristics when such a silicon wafer is formed, a lower bulging portion is provided at the lower end of the cylindrical portion, and the lower side thereof is located above the lower bulging portion. There has been proposed a heat shielding member provided with an upper bulging portion with a predetermined distance from the bulging portion (see, for example, Patent Document 3). Thus, in the heat shielding member provided with the bulging portion with a predetermined interval above and below, the difference between both temperature gradients in the crystal axis direction in the vicinity of the single crystal center position near the solid-liquid interface and the single crystal outer peripheral surface (G 2 -G 1) relatively small to the well as to reduce the COP, etc. in the single crystal, the temperature of the vicinity of the outer peripheral surface of the pulled up single crystal is relatively long time until lowering to 1000 ° C. from 1400 ° C. In this case, outward diffusion and slope diffusion are promoted inside the single crystal, and as a result, the oxide film withstand voltage characteristic of a silicon wafer made from the single crystal can be improved.

一方、シリコン単結晶棒に要求される品質は様々なものがあり、点欠陥の凝集体が存在しても良いものや、シリコンウェーハの高い酸化膜耐圧特性を要求されないものもある。このような品質要求のシリコン単結晶棒に対しては、熱遮蔽部材における膨出部を小型化させて石英るつぼからの輻射熱の遮断量を低下させるとともに、その引上げ速度を比較的速くして単結晶自体の単価を低下させるような工夫がなされ、高い酸化膜特性が要求された場合にのみ上下に膨出部が形成された熱遮蔽部材を用いるようなことが行われている。従って、従来では、膨出部が小型の熱遮蔽部材と、膨出部が大型の熱遮蔽部材と、膨出部が二段階に形成された熱遮蔽部材を準備し、要求される品質のシリコン単結晶棒に合った熱遮蔽部材を用いてシリコン単結晶棒の引上げを行っている。
特公昭57−40119号公報 特開平11−1393号公報 特開2001−261494号公報
On the other hand, there are various qualities required for silicon single crystal rods, and some may have agglomerates of point defects, and some do not require high oxide film pressure resistance characteristics of silicon wafers. For silicon single crystal rods with such quality requirements, the bulging part of the heat shielding member is downsized to reduce the amount of radiant heat from the quartz crucible, and the pulling speed is relatively high to increase the single crystal rod. A device for reducing the unit price of the crystal itself has been devised, and only when a high oxide film characteristic is required, a heat shielding member having bulged portions formed vertically is used. Therefore, conventionally, a swelled portion having a small heat shielding member, a bulging portion having a large heat shielding member, and a heat shielding member having a bulging portion formed in two stages are prepared, and the required quality silicon is prepared. The silicon single crystal rod is pulled up by using a heat shielding member suitable for the single crystal rod.
Japanese Patent Publication No.57-40119 Japanese Patent Application Laid-Open No. 11-1393 JP 2001-261494 A

しかし、近年ではシリコン単結晶棒に要求される品質が多様化し、これに伴い多様化したそれぞれのシリコン単結晶棒の品質に合致した相当な数の熱遮蔽部材を保有しなければならない不具合が生じた。
本発明の目的は、多様な品質のシリコン単結晶棒の引上げに対して、少数の熱遮蔽部材で要求される熱輻射の遮断量を比較的容易に変更し得るシリコン単結晶引上げ装置の熱遮蔽部材を提供することにある。
However, in recent years, the quality required for silicon single crystal rods has diversified, and as a result, there has been a problem that a considerable number of heat shielding members must be provided that match the quality of each diversified silicon single crystal rod. It was.
The object of the present invention is to heat shield a silicon single crystal pulling apparatus that can relatively easily change the amount of heat radiation that is required by a small number of heat shielding members, when pulling silicon single crystal rods of various qualities. It is to provide a member.

請求項1に係る発明は、図5に示すように、石英るつぼ13の外周面を包囲するヒータ18により加熱されて石英るつぼ13に貯留されたシリコン融液12からシリコン単結晶棒25を引上げる装置に設けられ、下端がシリコン融液12表面から間隔をあけて上方に位置しかつシリコン単結晶棒25の外周面を包囲する円筒部37と、円筒部37の下部に筒内の方向に膨出して設けられた膨出部41とを備える熱遮蔽部材36の改良である。
その特徴ある構成は、図1に詳しく示すように、円筒部37内に挿脱可能に構成され円筒部37内に挿入した状態でシリコン単結晶棒25の外周面を包囲するリング状の断熱カバー51と、円筒部37の内面に設けられ円筒部37に挿入された断熱カバー51を膨出部41と所定の間隔をあけて膨出部41の上方に支持する支持部材56とを備えたところにある。
この請求項1に記載されたシリコン単結晶引上げ装置の熱遮蔽部材では、断熱カバー51を膨出部41の上方に支持させた熱遮蔽部材36の断熱カバー51を円筒部37から離脱させることにより、断熱カバー51と膨出部41を有する熱遮蔽部材を膨出部41のみの熱遮蔽部材36に比較的容易に変更することができる。要求される品質が異なるシリコン単結晶棒25を引上げる際にその要求に合致した熱遮蔽部材に全体を交換していた従来に比較して用意する熱遮蔽部材の種類と数を減らして単結晶の引上げコストを低下させることができる。
In the invention according to claim 1, as shown in FIG. 5, the silicon single crystal rod 25 is pulled up from the silicon melt 12 heated by the heater 18 surrounding the outer peripheral surface of the quartz crucible 13 and stored in the quartz crucible 13. A cylindrical portion 37 provided at the apparatus, the lower end of which is located above the surface of the silicon melt 12 and which surrounds the outer peripheral surface of the silicon single crystal rod 25, and a lower portion of the cylindrical portion 37 swells in the in-cylinder direction. This is an improvement of the heat shielding member 36 including the bulging portion 41 provided.
As shown in detail in FIG. 1, the characteristic configuration is a ring-shaped heat insulating cover that is configured to be detachable from the cylindrical portion 37 and surrounds the outer peripheral surface of the silicon single crystal rod 25 while being inserted into the cylindrical portion 37. 51 and a support member 56 that is provided on the inner surface of the cylindrical portion 37 and supports the heat insulating cover 51 inserted into the cylindrical portion 37 above the bulging portion 41 with a predetermined gap therebetween. It is in.
In the heat shielding member of the silicon single crystal pulling apparatus described in claim 1, the heat insulating cover 51 of the heat shielding member 36 that supports the heat insulating cover 51 above the bulging portion 41 is detached from the cylindrical portion 37. The heat shielding member having the heat insulating cover 51 and the bulging portion 41 can be changed relatively easily to the heat shielding member 36 having only the bulging portion 41. When pulling up the silicon single crystal rod 25 having different required qualities, the type and number of heat shield members prepared are reduced compared to the conventional case where the whole is replaced with a heat shield member that meets the requirements. The pulling cost can be reduced.

請求項2に係る発明は、請求項1に係る発明であって、更に図3及び図4に示すように、支持部材が円筒部37内面に設けられた複数の凸部56であって、リング状の断熱カバー51の外周面に凸部56に相応しかつ断熱カバー51の挿入時に凸部56を通過可能な複数の切り欠き51aが形成され、切り欠き51aを凸部56に一致させて断熱カバー51を円筒部37に挿入することにより断熱カバー51を膨出部41上に設置し、切り欠き51aを凸部56に一致させずに断熱カバー51を円筒部37に挿入することにより断熱カバー51を膨出部41の上方に支持するように構成されたことを特徴とする。
この請求項2に記載されたシリコン単結晶引上げ装置の熱遮蔽部材では、断熱カバー51を膨出部41に設置させることにより、円筒部37の下部における輻射熱の遮蔽量を著しく向上させることができる。このため、膨出部41の大きさが異なる複数種類の熱遮蔽部材36を準備することを必要とせずに、要求される品質が異なるシリコン単結晶棒25を引上げる際に断熱カバー51の取付け又は取外しを行い、その要求に合致した輻射熱の遮断量を得ることにより全体を交換していた従来に比較して用意する熱遮蔽部材の種類と数を減らして単結晶の引上げコストを低下させることができる。
The invention according to claim 2 is the invention according to claim 1, and as shown in FIGS. 3 and 4, the support member is a plurality of convex portions 56 provided on the inner surface of the cylindrical portion 37, and the ring A plurality of cutouts 51a corresponding to the projections 56 and passing through the projections 56 when the heat insulation cover 51 is inserted are formed on the outer peripheral surface of the heat insulation cover 51 in the shape of a plate, and the cutouts 51a are aligned with the projections 56 to be insulated. The heat insulating cover 51 is installed on the bulging portion 41 by inserting the cover 51 into the cylindrical portion 37, and the heat insulating cover 51 is inserted into the cylindrical portion 37 without matching the notch 51 a with the convex portion 56. 51 is configured to be supported above the bulging portion 41.
In the heat shielding member of the silicon single crystal pulling apparatus according to claim 2, the shielding amount of the radiant heat in the lower part of the cylindrical portion 37 can be remarkably improved by installing the heat insulating cover 51 on the bulging portion 41. . For this reason, it is not necessary to prepare a plurality of types of heat shielding members 36 with different sizes of the bulging portion 41, and when the silicon single crystal rods 25 having different qualities are pulled up, the heat insulating cover 51 is attached. Or reduce the cost of pulling up the single crystal by reducing the types and number of heat shielding members prepared compared to the conventional case where the whole is replaced by removing the radiant heat that meets the requirements. Can do.

本発明のシリコン単結晶引上げ装置の熱遮蔽部材では、円筒部内に挿脱可能に構成され円筒部内に挿入した状態でシリコン単結晶棒の外周面を包囲するリング状の断熱カバーと、円筒部の内面に設けられ円筒部に挿入された断熱カバーを膨出部と所定の間隔をあけて膨出部の上方に支持する支持部材とを備えたので、断熱カバーを膨出部の上方に支持させた熱遮蔽部材の断熱カバーを円筒部から離脱させることにより、断熱カバーと膨出部を有する熱遮蔽部材を膨出部のみの熱遮蔽部材に比較的容易に変更することができる。   In the heat shielding member of the silicon single crystal pulling apparatus of the present invention, a ring-shaped heat insulating cover configured to be insertable / removable into the cylindrical portion and surrounding the outer peripheral surface of the silicon single crystal rod in a state of being inserted into the cylindrical portion, Since the heat insulating cover provided on the inner surface and supporting the heat insulating cover inserted into the cylindrical portion is provided above the bulging portion with a predetermined distance from the bulging portion, the heat insulating cover is supported above the bulging portion. By removing the heat insulating cover of the heat shielding member from the cylindrical portion, the heat shielding member having the heat insulating cover and the bulging portion can be relatively easily changed to a heat shielding member having only the bulging portion.

また、支持部材が円筒部内面に設けられた複数の凸部であれば、リング状の断熱カバーの外周面に凸部に相応しかつ断熱カバーの挿入時に凸部を通過可能な複数の切り欠きを形成し、切り欠きを凸部に一致させて断熱カバーを円筒部に挿入することにより断熱カバーを膨出部上に設置し、切り欠きを凸部に一致させずに断熱カバーを円筒部に挿入することにより断熱カバーを膨出部の上方に支持するように構成することができる。すると、断熱カバーを膨出部に設置させることにより、円筒部の下部における輻射熱の遮蔽量を著しく向上させることができ、膨出部の大きさが異なる複数種類の熱遮蔽部材を準備することを必要とせずに、要求される品質が異なるシリコン単結晶棒を引上げる際に断熱カバーの取付け又は取外しを行い、その要求に合致した輻射熱の遮断量を得ることにより全体を交換していた従来に比較して用意する熱遮蔽部材の種類と数を減らして単結晶の引上げコストを低下させることができる。   Further, if the support member is a plurality of convex portions provided on the inner surface of the cylindrical portion, a plurality of cutouts corresponding to the convex portions on the outer peripheral surface of the ring-shaped heat insulating cover and capable of passing through the convex portions when the heat insulating cover is inserted. The heat insulation cover is installed on the bulge by inserting the heat insulation cover into the cylindrical portion with the notch aligned with the convex portion, and the heat insulation cover on the cylindrical portion without aligning the notch with the convex portion. By inserting, it can comprise so that a heat insulation cover may be supported above a bulging part. Then, by installing the heat insulating cover on the bulging part, it is possible to remarkably improve the shielding amount of the radiant heat at the lower part of the cylindrical part, and to prepare a plurality of types of heat shielding members having different bulging part sizes. In the past, the whole was replaced by installing or removing a heat insulating cover when pulling up a silicon single crystal rod with different required quality, without obtaining it, and obtaining a shielding amount of radiant heat meeting that requirement. It is possible to reduce the cost of pulling a single crystal by reducing the types and number of heat shielding members prepared in comparison.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図5に示すように、シリコン単結晶の引上げ装置10のチャンバ11内には、シリコン融液12を貯留する石英るつぼ13が設けられ、この石英るつぼ13の外周面は黒鉛サセプタ14により被覆される。石英るつぼ13の下面は上記黒鉛サセプタ14を介して支軸16の上端に固定され、この支軸16の下部はるつぼ駆動手段17に接続される。るつぼ駆動手段17は図示しないが石英るつぼ13を回転させる第1回転用モータと、石英るつぼ13を昇降させる昇降用モータとを有し、これらのモータにより石英るつぼ13が所定の方向に回転し得るとともに、上下方向に移動可能となっている。石英るつぼ13の外周面は石英るつぼ13から所定の間隔をあけてヒータ18により包囲され、このヒータ18は保温筒19により包囲される。ヒータ18は石英るつぼ13に投入された高純度のシリコン多結晶体を加熱・融解してシリコン融液12にする。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 5, a quartz crucible 13 for storing a silicon melt 12 is provided in the chamber 11 of the silicon single crystal pulling apparatus 10, and the outer peripheral surface of the quartz crucible 13 is covered with a graphite susceptor 14. . The lower surface of the quartz crucible 13 is fixed to the upper end of the support shaft 16 via the graphite susceptor 14, and the lower portion of the support shaft 16 is connected to the crucible driving means 17. Although not shown, the crucible driving means 17 has a first rotating motor for rotating the quartz crucible 13 and a lifting motor for moving the quartz crucible 13 up and down, and the quartz crucible 13 can be rotated in a predetermined direction by these motors. At the same time, it is movable in the vertical direction. The outer peripheral surface of the quartz crucible 13 is surrounded by a heater 18 at a predetermined interval from the quartz crucible 13, and the heater 18 is surrounded by a heat retaining cylinder 19. The heater 18 heats and melts the high-purity silicon polycrystal charged in the quartz crucible 13 to form the silicon melt 12.

またチャンバ11の上端には円筒状のケーシング21が接続される。このケーシング21には引上げ手段22が設けられる。引上げ手段22はケーシング21の上端部に水平状態で旋回可能に設けられた引上げヘッド(図示せず)と、このヘッドを回転させる第2回転用モータ(図示せず)と、ヘッドから石英るつぼ13の回転中心に向って垂下されたワイヤケーブル23と、上記ヘッド内に設けられワイヤケーブル23を巻取り又は繰出す引上げ用モータ(図示せず)とを有する。ワイヤケーブル23の下端にはシリコン融液12に浸してシリコン単結晶棒25を引上げるための種結晶24が取付けられる。
更にチャンバ11にはこのチャンバ11のシリコン単結晶棒側に不活性ガスを供給しかつ上記不活性ガスをチャンバ11のるつぼ内周面側から排出するガス給排手段28が接続される。ガス給排手段28は一端がケーシング21の周壁に接続され他端が上記不活性ガスを貯留するタンク(図示せず)に接続された供給パイプ29と、一端がチャンバ11の下壁に接続され他端が真空ポンプ(図示せず)に接続された排出パイプ30とを有する。供給パイプ29及び排出パイプ30にはこれらのパイプ29,30を流れる不活性ガスの流量を調整する第1及び第2流量調整弁31,32がそれぞれ設けられる。
A cylindrical casing 21 is connected to the upper end of the chamber 11. The casing 21 is provided with a pulling means 22. The pulling means 22 is a pulling head (not shown) provided at the upper end of the casing 21 so as to be turnable in a horizontal state, a second rotating motor (not shown) for rotating the head, and a quartz crucible 13 from the head. And a pulling motor (not shown) that is provided in the head and winds or feeds the wire cable 23. A seed crystal 24 is attached to the lower end of the wire cable 23 to immerse the silicon single crystal rod 25 in the silicon melt 12.
Further, a gas supply / discharge means 28 for supplying an inert gas to the silicon single crystal rod side of the chamber 11 and discharging the inert gas from the crucible inner peripheral surface side of the chamber 11 is connected to the chamber 11. The gas supply / discharge means 28 has one end connected to the peripheral wall of the casing 21 and the other end connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 11. The other end has a discharge pipe 30 connected to a vacuum pump (not shown). The supply pipe 29 and the discharge pipe 30 are respectively provided with first and second flow rate adjusting valves 31 and 32 for adjusting the flow rate of the inert gas flowing through the pipes 29 and 30.

一方、引上げ用モータの出力軸(図示せず)にはエンコーダ(図示せず)が設けられ、るつぼ駆動手段17には支軸16の昇降位置を検出するエンコーダ(図示せず)が設けられる。2つのエンコーダの各検出出力はコントローラ(図示せず)の制御入力に接続され、コントローラの制御出力は引上げ手段22の引上げ用モータ及びるつぼ駆動手段の昇降用モータにそれぞれ接続される。またコントローラにはメモリ(図示せず)が設けられ、このメモリにはエンコーダの検出出力に対するワイヤケーブル23の巻取り長さ、即ちシリコン単結晶棒25の引上げ長さが第1マップとして記憶される。また、メモリには、シリコン単結晶棒25の引上げ長さに対する石英るつぼ13内のシリコン融液12の液面レベルが第2マップとして記憶される。コントローラは、引上げ用モータにおけるエンコーダの検出出力に基づいて石英るつぼ13内のシリコン融液12の液面を常に一定のレベルに保つように、るつぼ駆動手段17の昇降用モータを制御するように構成される。   On the other hand, an encoder (not shown) is provided on the output shaft (not shown) of the pulling motor, and an encoder (not shown) for detecting the raising / lowering position of the support shaft 16 is provided on the crucible driving means 17. Each detection output of the two encoders is connected to a control input of a controller (not shown), and the control output of the controller is connected to a lifting motor of the pulling means 22 and a lifting motor of the crucible driving means. The controller is also provided with a memory (not shown), and the memory stores the winding length of the wire cable 23 with respect to the detection output of the encoder, that is, the pulling length of the silicon single crystal rod 25 as a first map. . Further, the memory stores the liquid level of the silicon melt 12 in the quartz crucible 13 with respect to the pulled length of the silicon single crystal rod 25 as a second map. The controller is configured to control the raising / lowering motor of the crucible driving means 17 so as to always keep the liquid level of the silicon melt 12 in the quartz crucible 13 at a constant level based on the detection output of the encoder in the pulling motor. Is done.

シリコン単結晶棒25の外周面と石英るつぼ13の内周面との間にはシリコン単結晶棒25の外周面を包囲する熱遮蔽部材36が設けられる。この熱遮蔽部材36は円筒状に形成されヒータ18からの輻射熱を遮る円筒部37と、この円筒部37の上縁に連設され外方に略水平方向に張り出すフランジ部38とを有する。上記フランジ部38を保温筒19上に載置することにより、円筒部37の下縁がシリコン融液12表面から所定の距離だけ上方に位置するように熱遮蔽部材36はチャンバ11内に固定される。この実施の形態における円筒部37は同一直径の筒状体であり、この円筒部37の下部には筒内の方向に膨出する膨出部41が設けられる。   Between the outer peripheral surface of the silicon single crystal rod 25 and the inner peripheral surface of the quartz crucible 13, a heat shielding member 36 surrounding the outer peripheral surface of the silicon single crystal rod 25 is provided. The heat shielding member 36 includes a cylindrical portion 37 that is formed in a cylindrical shape and shields radiant heat from the heater 18, and a flange portion 38 that is provided on the upper edge of the cylindrical portion 37 and projects outward in a substantially horizontal direction. By placing the flange portion 38 on the heat retaining cylinder 19, the heat shielding member 36 is fixed in the chamber 11 so that the lower edge of the cylindrical portion 37 is positioned a predetermined distance above the surface of the silicon melt 12. The The cylindrical portion 37 in this embodiment is a cylindrical body having the same diameter, and a bulging portion 41 that bulges in the direction of the cylinder is provided at the lower portion of the cylindrical portion 37.

図1及び図3に詳しく示すように、膨出部41は、外周が円筒部37の下縁に接続され内周がシリコン単結晶棒25の外周面近傍に達するリング状の下壁42と、下壁42の内縁と円筒部37の下部内周面を連設するリング状の上壁43とにより構成される。この実施の形態では、下壁42と上壁43は、円筒部37と同様に熱的に安定で高純度な黒鉛或いは表面にSiCがコーティングされた黒鉛によって作られるが、熱的に安定なMo(モリブデン)やW(タングステン)等の材料を使うこともできる。下壁42は水平か、或いは上方に向うに従って直径が大きくなるように形成され、下壁42と上壁43と円筒部37の下部により囲まれる膨出部41の内部にはリング状の蓄熱部材47が設けられる。この実施の形態における蓄熱部材47は、膨出部41の内部にカーボン繊維からなる0.05〜0.50g/cm3のフェルト材で充填することにより形成される。 As shown in detail in FIGS. 1 and 3, the bulging portion 41 includes a ring-shaped lower wall 42 whose outer periphery is connected to the lower edge of the cylindrical portion 37 and whose inner periphery reaches the vicinity of the outer peripheral surface of the silicon single crystal rod 25, An inner edge of the lower wall 42 and a ring-shaped upper wall 43 connecting the lower inner peripheral surface of the cylindrical portion 37 are formed. In this embodiment, the lower wall 42 and the upper wall 43 are made of thermally stable and high-purity graphite as in the case of the cylindrical portion 37 or graphite whose surface is coated with SiC. Materials such as (molybdenum) and W (tungsten) can also be used. The lower wall 42 is horizontal or formed so as to increase in diameter toward the upper side, and a ring-shaped heat storage member is formed inside the bulging portion 41 surrounded by the lower wall 42, the upper wall 43, and the lower portion of the cylindrical portion 37. 47 is provided. The heat storage member 47 in this embodiment is formed by filling the bulging portion 41 with a felt material of 0.05 to 0.50 g / cm 3 made of carbon fiber.

本発明の特徴ある構成は、円筒部37内に挿脱可能に構成され円筒部37内に挿入した状態でシリコン単結晶棒25の外周面を包囲するリング状の断熱カバー51を備えるところにある。この実施の形態における断熱カバー51は、ハウジング52と、そのハウジング52の内部に充填された断熱材53とを備える。ハウジング52は、膨出部41を形成する上壁43に重合するリング状の下板52aと、下板52aの内縁に連設された内板52bと、下板52aの外縁に連設された外板52cと、この内板52bの上縁と外板52cの上縁を連設するリング状の上板52dとにより構成される。ハウジング52は、熱的に安定で高純度な黒鉛或いは表面にSiCがコーティングされた黒鉛によって作られるが、表面輻射率が低くかつ熱的に安定なMo(モリブデン)等の材料を使うこともできる。   The characteristic configuration of the present invention is that it includes a ring-shaped heat insulating cover 51 that is configured to be detachable from the cylindrical portion 37 and that surrounds the outer peripheral surface of the silicon single crystal rod 25 while being inserted into the cylindrical portion 37. . The heat insulating cover 51 in this embodiment includes a housing 52 and a heat insulating material 53 filled in the housing 52. The housing 52 is connected to the ring-shaped lower plate 52a overlapping the upper wall 43 forming the bulging portion 41, the inner plate 52b connected to the inner edge of the lower plate 52a, and the outer edge of the lower plate 52a. The outer plate 52c is constituted by an upper plate 52d having a ring shape that continuously connects the upper edge of the inner plate 52b and the upper edge of the outer plate 52c. The housing 52 is made of thermally stable and high-purity graphite or graphite having a surface coated with SiC, but a material such as Mo (molybdenum) having a low surface emissivity and being thermally stable can also be used. .

ハウジング52内部に充填される断熱材53は、膨出部41の内部に設けられる蓄熱部材47と同一のカーボン繊維からなる0.05〜0.50g/cm3のフェルト材により形成される。このカーボン繊維を断熱材53として用いることにより、その断熱材53の熱伝導率は5W/(m・℃)以下に制限される。但し、断熱材53は、このカーボン繊維からなるフェルト材に限らず、熱伝導率が5W/(m・℃)以下であれば、アルミナ等の断熱材を使用することも可能である。 The heat insulating material 53 filled in the housing 52 is formed of a felt material of 0.05 to 0.50 g / cm 3 made of the same carbon fiber as the heat storage member 47 provided in the bulging portion 41. By using this carbon fiber as the heat insulating material 53, the heat conductivity of the heat insulating material 53 is limited to 5 W / (m · ° C.) or less. However, the heat insulating material 53 is not limited to the felt material made of carbon fiber, and a heat insulating material such as alumina can be used as long as the thermal conductivity is 5 W / (m · ° C.) or less.

図1に示すように、円筒部37の内面には、円筒部37に挿入された断熱カバー51を膨出部41と所定の間隔をあけて膨出部41の上方に支持する支持部材56が設けられる。この実施の形態における支持部材は、円筒部37の内面に設けられた複数の凸部56である。この実施の形態では、図2及び図4に示すようにシリコン単結晶棒25を中心とした円周方向の同一の高さに4本の凸部56が90度毎に設けられ、かつ図1に示すようその4本の凸部56が上下に2段階に設けられて凸部56は合計で8箇所設けられる。一方、図2及び図4に示すように、リング状の断熱カバー51の外周面には、円筒部37の内面に設けられた支持部材である凸部56に相応しかつ断熱カバー51の挿入時にその凸部56を通過可能な複数の切り欠き51aが形成される。従って、図4に示すように切り欠き51aを凸部56に一致させて断熱カバー51を円筒部37に挿入することにより断熱カバー51は凸部56を超えて下げることが可能になり、図3に示すようにその断熱カバー51を膨出部41上に設置することができるように構成される。また、図2に示すように、切り欠き51aを凸部56に一致させずに断熱カバー51を円筒部37に挿入すると、図1に示すように断熱カバー51は支持部材である凸部56に当接して膨出部41の上方に支持されるように構成される。   As shown in FIG. 1, on the inner surface of the cylindrical portion 37, a support member 56 that supports the heat insulating cover 51 inserted in the cylindrical portion 37 above the bulging portion 41 with a predetermined distance from the bulging portion 41. Provided. The support member in this embodiment is a plurality of convex portions 56 provided on the inner surface of the cylindrical portion 37. In this embodiment, as shown in FIGS. 2 and 4, four convex portions 56 are provided at the same height in the circumferential direction around the silicon single crystal rod 25 every 90 degrees, and FIG. As shown in FIG. 4, the four convex portions 56 are provided in two stages in the vertical direction, and the convex portions 56 are provided in a total of eight locations. On the other hand, as shown in FIGS. 2 and 4, the outer peripheral surface of the ring-shaped heat insulating cover 51 corresponds to the convex portion 56 which is a support member provided on the inner surface of the cylindrical portion 37 and is inserted when the heat insulating cover 51 is inserted. A plurality of cutouts 51a that can pass through the convex portion 56 are formed. Therefore, as shown in FIG. 4, by inserting the heat insulating cover 51 into the cylindrical portion 37 with the notch 51 a aligned with the convex portion 56, the heat insulating cover 51 can be lowered beyond the convex portion 56. As shown in FIG. 2, the heat insulating cover 51 can be installed on the bulging portion 41. As shown in FIG. 2, when the heat insulating cover 51 is inserted into the cylindrical portion 37 without matching the notch 51a to the convex portion 56, the heat insulating cover 51 is formed on the convex portion 56 as a support member as shown in FIG. It is configured to abut and be supported above the bulging portion 41.

このように構成されたシリコン単結晶引上げ装置の熱遮蔽部材36では、図3に示すように、膨出部41に断熱カバー51が設置された状態では、その膨出部41より下方のシリコン融液12近傍におけるシリコン単結晶棒25の周囲は高温のヒータ18及びシリコン融液12によって積極的に加熱される。一方、膨出部41及び断熱カバー51は高温のヒータ18及びシリコン融液12によって積極的に加熱され、この膨出部41及びその膨出部41に設置された断熱カバー51の双方に対向するシリコン単結晶棒25の周囲は加熱される。これにより、シリコン単結晶棒25の下部外周部の急激な温度低下は阻止され、この部分におけるシリコン単結晶棒25の軸方向における温度勾配の径方向分布が略均一にとなり、ボロンコフのV/Gモデルにより、無欠陥のシリコン単結晶棒25を製造することができる。一方、断熱カバー51より上方の円筒部37の内側は、その円筒部37によりヒータ18からの輻射熱が遮られ、膨出部41及びその膨出部41に設置された断熱カバー51の双方により高温のシリコン融液12からの輻射熱も遮られる。よって、断熱カバー51より上方に位置するシリコン単結晶棒25からの放熱は上述したシリコン単結晶棒25の下部に比較して促進される。   In the heat shielding member 36 of the silicon single crystal pulling apparatus configured in this way, as shown in FIG. 3, in the state where the heat insulating cover 51 is installed on the bulging portion 41, the silicon fusion member below the bulging portion 41 is melted. The periphery of the silicon single crystal rod 25 in the vicinity of the liquid 12 is positively heated by the high-temperature heater 18 and the silicon melt 12. On the other hand, the bulging portion 41 and the heat insulating cover 51 are positively heated by the high-temperature heater 18 and the silicon melt 12, and face both the bulging portion 41 and the heat insulating cover 51 installed in the bulging portion 41. The periphery of the silicon single crystal rod 25 is heated. As a result, a rapid temperature drop in the lower outer peripheral portion of the silicon single crystal rod 25 is prevented, and the radial distribution of the temperature gradient in the axial direction of the silicon single crystal rod 25 in this portion becomes substantially uniform. A defect-free silicon single crystal rod 25 can be manufactured according to the model. On the other hand, the inside of the cylindrical portion 37 above the heat insulating cover 51 is shielded from the radiant heat from the heater 18 by the cylindrical portion 37, and is heated by both the bulging portion 41 and the heat insulating cover 51 installed in the bulging portion 41. The radiant heat from the silicon melt 12 is also blocked. Therefore, heat radiation from the silicon single crystal rod 25 located above the heat insulating cover 51 is promoted as compared with the lower portion of the silicon single crystal rod 25 described above.

逆に、円筒部37から断熱カバー51を離脱させてシリコン単結晶棒25をシリコン融液12から引上げると、シリコン単結晶棒25のシリコン融液12近傍における外周面からの放熱量が増加し、シリコン単結晶棒25の中央における軸方向の温度勾配に比較してシリコン単結晶棒25の外周部における軸方向の温度勾配は高くなる。このため、シリコン単結晶棒25の軸方向における温度勾配の径方向分布を均一にすることはできずに、無欠陥のシリコン単結晶棒25を製造することはできない。しかし、軸方向の温度勾配が高くなることから、無欠陥のシリコン単結晶棒25を製造する場合に比較してシリコン単結晶棒25を引上げる速度を速くすることができる。   Conversely, when the heat insulating cover 51 is detached from the cylindrical portion 37 and the silicon single crystal rod 25 is pulled up from the silicon melt 12, the amount of heat radiation from the outer peripheral surface of the silicon single crystal rod 25 in the vicinity of the silicon melt 12 increases. The axial temperature gradient in the outer peripheral portion of the silicon single crystal rod 25 is higher than the axial temperature gradient in the center of the silicon single crystal rod 25. For this reason, the radial distribution of the temperature gradient in the axial direction of the silicon single crystal rod 25 cannot be made uniform, and the defect-free silicon single crystal rod 25 cannot be manufactured. However, since the temperature gradient in the axial direction becomes high, it is possible to increase the pulling speed of the silicon single crystal rod 25 as compared with the case of manufacturing the defect-free silicon single crystal rod 25.

一方、引上げた単結晶棒25から切り出したシリコンウェーハの表面に形成した酸化膜に対する比較的高い耐圧特性が要求される場合には、図2に示すように、取り外していた断熱カバー51の切り欠き51aを凸部56に一致させずにその断熱カバー51を円筒部37に挿入し、図1に示すようにその断熱カバー51を支持部材である凸部56に当接させて膨出部41の上方に支持させる。このように断熱カバー51を膨出部41の上方に支持させた熱遮蔽部材36では、断熱カバー51と膨出部41の間に位置するシリコン単結晶棒25における放熱が一定の割合で抑制され、固液界面近傍での単結晶中心位置及び単結晶外周面近傍における結晶軸方向の両温度勾配の差(G2−G1)が比較的小さくなり、単結晶棒25中のCOP等を低減させることができる。また、引上げられる単結晶棒25の外周面近傍の温度が1400℃から1000℃に降下するまでの時間が比較的長くなって、単結晶棒25の内部で外方拡散や坂道拡散が促進され、結果的にこの単結晶棒25から作られたシリコンウェーハの酸化膜耐圧特性を向上させることができる。 On the other hand, when a relatively high pressure resistance characteristic is required for the oxide film formed on the surface of the silicon wafer cut out from the single crystal rod 25 pulled up, as shown in FIG. The heat insulating cover 51 is inserted into the cylindrical portion 37 without causing 51a to coincide with the convex portion 56, and the thermal insulating cover 51 is brought into contact with the convex portion 56 as a support member as shown in FIG. Support upward. As described above, in the heat shielding member 36 in which the heat insulating cover 51 is supported above the bulging portion 41, heat radiation in the silicon single crystal rod 25 located between the heat insulating cover 51 and the bulging portion 41 is suppressed at a certain rate. The difference in temperature gradient (G 2 −G 1 ) in the direction of the crystal axis in the vicinity of the single crystal center position near the solid-liquid interface and in the vicinity of the single crystal outer peripheral surface becomes relatively small, and COP in the single crystal rod 25 is reduced. Can be made. Further, the time until the temperature near the outer peripheral surface of the single crystal rod 25 pulled up drops from 1400 ° C. to 1000 ° C. is relatively long, and outward diffusion and slope diffusion are promoted inside the single crystal rod 25, As a result, the oxide film withstand voltage characteristic of the silicon wafer made from the single crystal rod 25 can be improved.

ここで、本発明の熱遮蔽部材36における膨出部41への断熱カバー51の設置及び円筒部37からの断熱カバー51の取り外し作業は、熱遮蔽部材36全体を交換する場合に比較して容易であり、膨出部41の大きさが異なる複数種類の熱遮蔽部材36を準備することを必要としない。また、切り欠き51aを凸部56に一致させずに断熱カバー51を円筒部37に挿入することにより、断熱カバー51を膨出部41の上方に比較的容易に支持させることもできる。このため膨出部が二段階に形成された従来の熱遮蔽部材を準備することも必要としない。特にこの実施の形態では、同一の高さに4本の凸部56を90度毎に設け、かつ図1に示すようその4本の凸部56を上下に2段階に設けているので、断熱カバー51を任意の段における凸部56に支持させることにより断熱カバー51と膨出部41の間の間隔を、要求される耐圧特性に基づいて変更することができる。   Here, installation of the heat insulating cover 51 to the bulging portion 41 and removal of the heat insulating cover 51 from the cylindrical portion 37 in the heat shielding member 36 of the present invention are easier than when the entire heat shielding member 36 is replaced. Thus, it is not necessary to prepare a plurality of types of heat shielding members 36 having different bulging portions 41 in size. Further, the heat insulating cover 51 can be relatively easily supported above the bulging portion 41 by inserting the heat insulating cover 51 into the cylindrical portion 37 without aligning the notch 51 a with the convex portion 56. For this reason, it is not necessary to prepare the conventional heat shielding member in which the bulging portion is formed in two stages. In particular, in this embodiment, the four protrusions 56 are provided at the same height every 90 degrees, and the four protrusions 56 are provided in two stages up and down as shown in FIG. By supporting the cover 51 on the convex portion 56 at an arbitrary step, the interval between the heat insulating cover 51 and the bulging portion 41 can be changed based on the required pressure resistance characteristics.

従って、要求される品質が異なるシリコン単結晶棒25を引上げる度にその要求に合致した輻射熱の遮断量を断熱カバー51の膨出部41への設置、又は断熱カバー51の取り外し若しくは断熱カバー51を膨出部41の上方に支持させることにより、その輻射熱の遮断量を容易に変更することができる。そして、断熱カバー51はハウジング52とそのハウジング52に充填された断熱材53とを備えるので、その断熱カバー51の輻射熱の遮断量を断熱材53の種類又は充填量で容易に変更することが可能になり、得ようとする遮断量を有する断熱カバー51を比較的容易に得ることができる。   Accordingly, every time the silicon single crystal rods 25 having different required qualities are pulled up, the amount of radiant heat that meets the requirements is set on the bulging portion 41 of the heat insulating cover 51, or the heat insulating cover 51 is removed or the heat insulating cover 51 is removed. Is supported above the bulging portion 41, and the amount of radiant heat can be easily changed. And since the heat insulation cover 51 is provided with the housing 52 and the heat insulating material 53 with which the housing 52 was filled, it is possible to change easily the amount of interruption | blocking of the radiant heat of the heat insulation cover 51 with the kind or filling amount of the heat insulating material 53. Thus, it is possible to obtain the heat insulating cover 51 having a blocking amount to be obtained relatively easily.

なお、上述した実施の形態では、支持部材である4本の凸部56が同一の高さに90度毎に設けられる例を示したが、同一の高さに設けられる支持部材である凸部56は4本に限らず、断熱カバー51を支持可能である限り、3本でも良く5本、6本又は8本であっても良い。
また、上述した実施の形態では、同一の高さに設けられた4本の凸部56が上下に2段階に設けられる例を示したが、複数の支持部材である凸部56は上下に2段階でなくても良く、1段であっても、3段であっても又は4段であっても良い。
In the above-described embodiment, the example in which the four convex portions 56 that are the support members are provided at the same height every 90 degrees has been described. However, the convex portions that are the support members provided at the same height. The number 56 is not limited to four, and may be three, five, six, or eight as long as the heat insulating cover 51 can be supported.
In the above-described embodiment, the example in which the four convex portions 56 provided at the same height are provided in two stages in the vertical direction has been described. However, the convex portions 56 that are a plurality of support members are two in the vertical direction. It may not be a stage, and may be one stage, three stages, or four stages.

本発明実施形態の熱遮蔽部材の構成を示す図5のA部拡大断面図である。It is the A section expanded sectional view of Drawing 5 showing the composition of the heat shielding member of the embodiment of the present invention. 図1のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 断熱カバーが膨出部に設置された図1に対応する拡大断面図である。It is an expanded sectional view corresponding to FIG. 1 with which the heat insulation cover was installed in the bulging part. 図3のC−C線断面図である。It is CC sectional view taken on the line of FIG. その熱遮蔽部材を有する引上げ装置の断面構成図である。It is a section lineblock diagram of a pulling device which has the heat shielding member.

符号の説明Explanation of symbols

12 シリコン融液
13 石英るつぼ
18 ヒータ
25 シリコン単結晶棒
36 熱遮蔽部材
37 円筒部
41 膨出部
51 断熱カバー
51a 切り欠き
56 凸部(支持部材)
12 Silicon melt 13 Quartz crucible 18 Heater 25 Silicon single crystal rod 36 Heat shield member 37 Cylindrical part 41 Swelling part 51 Thermal insulation cover 51a Notch 56 Convex part (support member)

Claims (2)

石英るつぼ(13)の外周面を包囲するヒータ(18)により加熱されて前記石英るつぼ(13)に貯留されたシリコン融液(12)からシリコン単結晶棒(25)を引上げる装置に設けられ、下端が前記シリコン融液(12)表面から間隔をあけて上方に位置しかつ前記シリコン単結晶棒(25)の外周面を包囲する円筒部(37)と、前記円筒部(37)の下部に筒内の方向に膨出して設けられた膨出部(41)とを備える熱遮蔽部材(36)において、
前記円筒部(37)内に挿脱可能に構成され前記円筒部(37)内に挿入した状態で前記シリコン単結晶棒(25)の外周面を包囲するリング状の断熱カバー(51)と、
前記円筒部(37)の内面に設けられ前記円筒部(37)に挿入された前記断熱カバー(51)を前記膨出部(41)と所定の間隔をあけて前記膨出部(41)の上方に支持する支持部材(56)と
を備えたことを特徴とするシリコン単結晶引上げ装置の熱遮蔽部材。
Provided in a device for pulling up the silicon single crystal rod (25) from the silicon melt (12) stored in the quartz crucible (13) by being heated by a heater (18) surrounding the outer peripheral surface of the quartz crucible (13). A cylindrical portion (37) whose lower end is located above and spaced from the surface of the silicon melt (12) and surrounds the outer peripheral surface of the silicon single crystal rod (25), and a lower portion of the cylindrical portion (37) In the heat shielding member (36) provided with a bulging portion (41) provided to bulge in the direction in the cylinder,
A ring-shaped heat insulating cover (51) configured to be detachably inserted into the cylindrical portion (37) and surrounding the outer peripheral surface of the silicon single crystal rod (25) in a state of being inserted into the cylindrical portion (37);
The heat insulating cover (51) provided on the inner surface of the cylindrical portion (37) and inserted into the cylindrical portion (37) is spaced apart from the bulging portion (41) by a predetermined distance from the bulging portion (41). A heat shielding member for a silicon single crystal pulling apparatus, comprising: a supporting member (56) supported upward.
支持部材が円筒部(37)内面に設けられた複数の凸部(56)であって、
リング状の断熱カバー(51)の外周面に前記凸部(56)に相応しかつ前記断熱カバー(51)の挿入時に前記凸部(56)を通過可能な複数の切り欠き(51a)が形成され、
前記切り欠き(51a)を前記凸部(56)に一致させて前記断熱カバー(51)を前記円筒部(37)に挿入することにより前記断熱カバー(51)を膨出部(41)上に設置し、
前記切り欠き(51a)を前記凸部(56)に一致させずに前記断熱カバー(51)を前記円筒部(37)に挿入することにより前記断熱カバー(51)を前記膨出部(41)の上方に支持するように構成された
請求項1記載のシリコン単結晶引上げ装置の熱遮蔽部材。
The support member is a plurality of convex portions (56) provided on the inner surface of the cylindrical portion (37),
A plurality of cutouts (51a) corresponding to the projections (56) and passing through the projections (56) when the insulation cover (51) is inserted are formed on the outer peripheral surface of the ring-shaped insulation cover (51). And
By inserting the heat insulating cover (51) into the cylindrical part (37) with the notch (51a) aligned with the convex part (56), the heat insulating cover (51) is placed on the bulging part (41). Install
By inserting the heat insulating cover (51) into the cylindrical portion (37) without causing the notch (51a) to coincide with the convex portion (56), the heat insulating cover (51) is inserted into the bulging portion (41). The heat shielding member of the silicon single crystal pulling apparatus according to claim 1, wherein the heat shielding member is configured to support the upper portion of the silicon single crystal pulling apparatus.
JP2004251161A 2004-08-31 2004-08-31 Heat-shielding member for silicon single crystal pulling apparatus Pending JP2006069803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251161A JP2006069803A (en) 2004-08-31 2004-08-31 Heat-shielding member for silicon single crystal pulling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251161A JP2006069803A (en) 2004-08-31 2004-08-31 Heat-shielding member for silicon single crystal pulling apparatus

Publications (1)

Publication Number Publication Date
JP2006069803A true JP2006069803A (en) 2006-03-16

Family

ID=36150805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251161A Pending JP2006069803A (en) 2004-08-31 2004-08-31 Heat-shielding member for silicon single crystal pulling apparatus

Country Status (1)

Country Link
JP (1) JP2006069803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906281B1 (en) * 2007-07-19 2009-07-06 주식회사 실트론 Heat shield structure for growing silicon single crystal ingot and grower using the same
US8574362B2 (en) 2007-10-04 2013-11-05 Siltron, Inc. Method and apparatus for manufacturing an ultra low defect semiconductor single crystalline ingot
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906281B1 (en) * 2007-07-19 2009-07-06 주식회사 실트론 Heat shield structure for growing silicon single crystal ingot and grower using the same
US8574362B2 (en) 2007-10-04 2013-11-05 Siltron, Inc. Method and apparatus for manufacturing an ultra low defect semiconductor single crystalline ingot
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment
US10066315B2 (en) 2013-12-03 2018-09-04 Sk Siltron Co., Ltd. Single crystal growing apparatus

Similar Documents

Publication Publication Date Title
US7282095B2 (en) Silicon single crystal pulling method
KR20020041203A (en) Growing apparatus of a single crystal ingot
KR100679135B1 (en) Thermal shield member of silicon single crystal pulling system
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
KR20110134827A (en) Method for producing semiconductor wafers composed of silicon
JP4161804B2 (en) Heat shielding member of silicon single crystal pulling device
JP2006069803A (en) Heat-shielding member for silicon single crystal pulling apparatus
KR100533502B1 (en) Method of manufacturing silicon single crystal and silicon single crystal manufactured by the method
JP4304608B2 (en) Heat shielding member of silicon single crystal pulling device
JP4396505B2 (en) Method for producing silicon single crystal
KR100558156B1 (en) Silicon single crystal growing method
KR101467117B1 (en) Ingot growing apparatus
JP2004182580A (en) Device and method for pulling silicon single crystal
JP2009292684A (en) Silicon single crystal production method and production apparatus therefore
JP4360069B2 (en) Method for growing silicon single crystal
JP2004256359A (en) Inert gas flow rate control unit of silicon single crystal pulling device and its flow rate control method
KR101908366B1 (en) Device for production of single crystal
JP2007210820A (en) Method of manufacturing silicon single crystal
JP2019052067A (en) Single crystal growth apparatus
JP4207498B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP4901487B2 (en) Manufacturing method of semiconductor single crystal
JP4211334B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP4211335B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP2022092450A (en) Apparatus for manufacturing single crystal
JP2004059408A (en) Apparatus for pulling silicon single crystal and method for pulling the silicon single crystal