JP2002246215A - Sintered magnet - Google Patents
Sintered magnetInfo
- Publication number
- JP2002246215A JP2002246215A JP2001043368A JP2001043368A JP2002246215A JP 2002246215 A JP2002246215 A JP 2002246215A JP 2001043368 A JP2001043368 A JP 2001043368A JP 2001043368 A JP2001043368 A JP 2001043368A JP 2002246215 A JP2002246215 A JP 2002246215A
- Authority
- JP
- Japan
- Prior art keywords
- grain boundary
- magnet
- sample
- sintered magnet
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、Nd2Fe14B系
組成をもつ希土類焼結磁石に関する。The present invention relates to a rare earth sintered magnet having an Nd 2 Fe 14 B-based composition.
【0002】[0002]
【従来の技術】高性能を有する希土類磁石としては、例
えば特許第1431617号公報に記載されているNd
2Fe14B系磁石が知られている。2. Description of the Related Art As a rare earth magnet having high performance, for example, Nd described in Japanese Patent No. 1431617 is disclosed.
2 Fe 14 B-based magnets are known.
【0003】Nd2Fe14B系磁石は、希土類磁石とし
ては比較的安価でしかも磁気特性が高いため、近年需要
が伸びている。Nd2Fe14B系磁石をモータに使用す
る場合、高磁気特性が要求されることはもちろんである
が、機械的強度が高いことも必要とされる。例えば電気
自動車のモータは、ケイ素鋼板等からなるヨークに磁石
を固定してロータが構成されるが、ロータが高速回転す
る際に磁石が外れないように、磁石をヨークに打ち込む
ことにより固定する。したがって、打ち込む際の破壊を
防ぐために、磁石には高い機械的強度が要求される。The demand for Nd 2 Fe 14 B-based magnets has been increasing in recent years because they are relatively inexpensive and have high magnetic properties as rare earth magnets. When an Nd 2 Fe 14 B-based magnet is used for a motor, not only high magnetic properties are required, but also high mechanical strength is required. For example, in a motor of an electric vehicle, a rotor is configured by fixing a magnet to a yoke made of a silicon steel plate or the like. The magnet is fixed by driving the magnet into the yoke so that the magnet does not come off when the rotor rotates at high speed. Therefore, a high mechanical strength is required for the magnet in order to prevent breakage at the time of driving.
【0004】Nd2Fe14B系磁石の機械的強度を高め
るために、例えば特開平5−283220号公報では、
TiB2等の硼化物を磁石中に含有させる提案がなされ
ている。しかし、この提案では、非磁性の硼化物を含有
させるため、磁気特性の低下を招くという問題がある。In order to increase the mechanical strength of the Nd 2 Fe 14 B-based magnet, for example, Japanese Patent Application Laid-Open No. 5-283220 discloses
It has been proposed to include a boride such as TiB 2 in a magnet. However, in this proposal, there is a problem that magnetic properties are deteriorated because a nonmagnetic boride is contained.
【0005】[0005]
【発明が解決しようとする課題】図3(A)に、3点抗
折強度試験の概念図を示す。本発明者らは、このような
3点抗折強度試験において、Nd2Fe14B結晶の磁化
容易軸(c軸)方向の抗折強度が相対的に低いことを見
いだした。FIG. 3A shows a conceptual diagram of a three-point bending strength test. The present inventors have found that in such a three-point bending strength test, the bending strength in the easy axis (c-axis) direction of the Nd 2 Fe 14 B crystal is relatively low.
【0006】本発明は、機械的強度が高く、しかも磁気
特性の良好なNd2Fe14B系焼結磁石を提供すること
を目的とする。An object of the present invention is to provide an Nd 2 Fe 14 B-based sintered magnet having high mechanical strength and excellent magnetic properties.
【0007】[0007]
【課題を解決するための手段】このような目的は、下記
(1)の本発明により達成される。 (1) R(Rは、希土類元素の少なくとも1種であ
る)、FeおよびBを含有する焼結磁石であって、結晶
粒界に粒界相が存在し、磁化容易軸方向および磁化困難
軸方向にそれぞれ延びる直線によって一定の間隔で磁石
断面の走査型電子顕微鏡像を碁盤目状に区切り、磁化容
易軸方向に延びる前記直線を容易軸線とし、磁化困難軸
方向に延びる前記直線を困難軸線とし、容易軸線のうち
粒界相を横切る部分の合計長さの比率をAとし、困難軸
線のうち粒界相を横切る部分の合計長さの比率をBとし
たとき、 0.8≦B/A≦1.2 である焼結磁石。This and other objects are attained by the present invention which is defined below as (1). (1) A sintered magnet containing R (R is at least one kind of rare earth element), Fe and B, wherein a grain boundary phase exists in a crystal grain boundary, and an easy axis direction and a hard axis direction The scanning electron microscope image of the magnet cross section is divided into grids at regular intervals by straight lines extending in each direction, the straight line extending in the easy axis direction is defined as the easy axis, and the straight line extending in the hard axis direction is defined as the hard axis. When the ratio of the total length of the portion crossing the grain boundary phase in the easy axis is A, and the ratio of the total length of the portion crossing the grain boundary phase in the hard axis is B, 0.8 ≦ B / A A sintered magnet with ≦ 1.2.
【0008】[0008]
【発明の実施の形態】本発明では、R2Fe14B系磁石
において、組織構造を制御することにより、磁気特性を
低下させることなく機械的強度を向上させる。なお、R
は希土類元素である。DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, the mechanical strength of an R 2 Fe 14 B-based magnet is improved without deteriorating its magnetic properties by controlling its structure. Note that R
Is a rare earth element.
【0009】R2Fe14B系の焼結磁石には、硬質磁性
相であるR2Fe14B相からなる結晶粒が存在し、結晶
粒界に粒界相が存在する。粒界相は、Rリッチ相、R
1.1Fe4B4等のBリッチ相、R2O3等のR酸化物相、
R2C3等のR炭化物相などから構成され、存在比率が最
も多いのは、通常、Rリッチ相である。Rリッチ相の存
在は、保磁力発現に必須である。The R 2 Fe 14 B-based sintered magnet has crystal grains composed of the R 2 Fe 14 B phase, which is a hard magnetic phase, and has a grain boundary phase at a crystal grain boundary. The grain boundary phase is an R-rich phase, R
1.1 B-rich phase such as Fe 4 B 4 , R oxide phase such as R 2 O 3 ,
An R-rich phase is generally composed of an R carbide phase such as R 2 C 3 and has the highest abundance ratio. The presence of the R-rich phase is essential for the coercive force development.
【0010】本発明では、Rリッチ相を主体とする粒界
相の形状を制御することにより、磁石の機械的強度を向
上させる。本発明における粒界相の形状制御について、
図1および図2を用いて説明する。In the present invention, the mechanical strength of the magnet is improved by controlling the shape of the grain boundary phase mainly composed of the R-rich phase. Regarding the shape control of the grain boundary phase in the present invention,
This will be described with reference to FIGS.
【0011】図1および図2は、R2Fe14B系焼結磁
石研磨面の走査型電子顕微鏡写真(BEIモード、CO
MPO像)である。この写真において、粒界相は結晶粒
より濃度が薄く、白色を呈する領域である。すなわち、
結晶粒およびポア(空孔)以外の領域である。FIGS. 1 and 2 are scanning electron micrographs (BEI mode, CO2) of the polished surface of an R 2 Fe 14 B-based sintered magnet.
(MPO image). In this photograph, the grain boundary phase is a region having a lower concentration than the crystal grains and exhibiting white. That is,
This is a region other than crystal grains and pores (voids).
【0012】本発明では、磁石断面の走査型電子顕微鏡
像を、磁化容易軸方向および磁化困難軸方向にそれぞれ
延びる直線によって一定間隔で区切る。本明細書では、
磁化容易軸方向に延びる前記直線を容易軸線と呼び、磁
化困難軸方向に延びる前記直線を困難軸線と呼ぶ。そし
て、容易軸線のうち粒界相を横切る部分の合計長さの比
率をAとし、困難軸線のうち粒界相を横切る部分の合計
長さの比率をBとしたとき、本発明の磁石では、 0.8≦B/A≦1.2 であり、好ましくは 0.85≦B/A≦1.15 である。B/Aが小さすぎても大きすぎても、磁石のc
軸方向における抗折強度が低くなる。すなわち本発明で
は、B/Aと相関する粒界相の形状異方性を制御するこ
とにより、磁石の機械的強度を向上させる。上記Aおよ
びBを測定するに際しては、容易軸線および困難軸線に
おける測定対象長さをいずれも4mm以上とすることが好
ましく、また、両線における測定対象長さを同一とする
ことが好ましい。測定対象長さが短すぎると、B/Aと
粒界相の形状異方性との相関が低くなってしまう。ただ
し、測定対象長さを著しく長くしても上記相関が著しく
向上するわけではないので、測定対象長さは10mmを超
える必要はない。In the present invention, the scanning electron microscope image of the cross section of the magnet is divided at regular intervals by straight lines extending in the easy axis direction and the hard axis direction, respectively. In this specification,
The straight line extending in the easy axis direction is called an easy axis, and the straight line extending in the hard axis direction is called a hard axis. Then, when the ratio of the total length of the portion crossing the grain boundary phase in the easy axis is A, and the ratio of the total length of the portion crossing the grain boundary phase in the hard axis is B, in the magnet of the present invention, 0.8 ≦ B / A ≦ 1.2, and preferably 0.85 ≦ B / A ≦ 1.15. If B / A is too small or too large, c
The bending strength in the axial direction decreases. That is, in the present invention, the mechanical strength of the magnet is improved by controlling the shape anisotropy of the grain boundary phase correlated with B / A. In measuring A and B, it is preferable that the length of the object to be measured on both the easy axis and the difficult axis is 4 mm or more, and that the length of the object to be measured on both lines is the same. If the length to be measured is too short, the correlation between B / A and the shape anisotropy of the grain boundary phase will be low. However, even if the length of the object to be measured is significantly increased, the above-mentioned correlation is not significantly improved. Therefore, the length of the object to be measured does not need to exceed 10 mm.
【0013】磁石断面を容易軸線および困難軸線によっ
て碁盤目状に区切る際の前記一定間隔は特に限定されな
い。ただし、区切り間隔が著しく狭いと、B/Aと粒界
相の形状異方性との相関が低くなることがある。また、
区切り間隔が著しく広いと、広い面積について走査型電
子顕微鏡写真を撮影しなければならないので、区切り間
隔は10〜15μm程度とすることが好ましく、通常
は、後述する実施例における区切り間隔12.5μmを
用いればよい。The above-mentioned fixed interval when the magnet section is sectioned in a grid pattern by the easy axis and the hard axis is not particularly limited. However, if the separation interval is extremely narrow, the correlation between B / A and the shape anisotropy of the grain boundary phase may decrease. Also,
If the separation interval is extremely wide, a scanning electron micrograph must be taken for a large area. Therefore, the separation interval is preferably set to about 10 to 15 μm. Usually, the separation interval of 12.5 μm in Examples described later is used. It may be used.
【0014】なお、本発明において磁化容易軸方向と
は、磁石製造の際に原料合金の粉末を磁場中で成形する
ときの磁場印加方向である。また、磁化困難軸方向と
は、磁化容易軸方向と直交する方向である。In the present invention, the direction of the axis of easy magnetization is the direction in which the magnetic field is applied when the powder of the raw material alloy is molded in a magnetic field during the production of the magnet. The hard axis direction is a direction orthogonal to the easy axis direction.
【0015】前記したように、R2Fe14B系焼結磁石
は、R2Fe14B結晶のc軸方向において、抗折強度が
相対的に低い。すなわち、図3(A)に示すような3点
抗折強度試験において、図3(C)に示すように、c軸
を折る方向に加圧したときの抗折強度が、図3(B)に
示すb軸方向の抗折強度および図3(D)に示すa軸方
向の抗折強度に比べ、相対的に低い。なお、R2Fe14
B結晶は正方晶なので、a軸とb軸とは等価である。本
発明における粒界相の形状異方性制御は、c軸方向の抗
折強度を向上させ、その結果、全方向において機械的強
度の高いR2Fe1 4B系焼結磁石を実現することができ
る。しかも本発明では、保磁力発現に重要な働きを示す
Rリッチ相の形状を等方化するため、保磁力の向上も実
現する。また、前記特開平5−283220号公報とは
異なり、非磁性の粒界相を増やすことはないので、残留
磁束密度の低下は生じない。As described above, the R 2 Fe 14 B sintered magnet has a relatively low bending strength in the c-axis direction of the R 2 Fe 14 B crystal. That is, in the three-point bending strength test as shown in FIG. 3A, as shown in FIG. 3C, the bending strength when pressing in the direction of folding the c-axis is as shown in FIG. Are relatively lower than the bending strength in the b-axis direction shown in FIG. 3A and the bending strength in the a-axis direction shown in FIG. Note that R 2 Fe 14
Since the B crystal is tetragonal, the a-axis and the b-axis are equivalent. Shape anisotropy control of the grain boundary phase in the present invention improves the bending strength of the c-axis direction, as a result, to realize a high R 2 Fe 1 4 B based sintered magnet mechanical strength in all directions Can be. Moreover, in the present invention, the shape of the R-rich phase, which plays an important role in expressing the coercive force, is made isotropic, so that the coercive force is also improved. Also, unlike the above-mentioned Japanese Patent Application Laid-Open No. 5-283220, since the nonmagnetic grain boundary phase is not increased, the residual magnetic flux density does not decrease.
【0016】本発明において、粒界相の形状異方性を表
す上記B/Aを制御する手段は特に限定されないが、焼
結条件および/または時効処理条件の制御が特に有効で
あり、このうち時効処理条件の制御が最も有効である。
焼結や時効処理の際の好ましい具体的条件は、磁石組
成、特に元素Rの含有量によって異なるため、対象とす
る磁石組成ごとに実験的に決定することが好ましい。In the present invention, means for controlling the B / A, which represents the shape anisotropy of the grain boundary phase, is not particularly limited, but control of sintering conditions and / or aging conditions is particularly effective. Control of the aging conditions is most effective.
Since preferable specific conditions for sintering and aging treatment vary depending on the magnet composition, particularly the content of the element R, it is preferable to determine experimentally for each target magnet composition.
【0017】本発明の焼結磁石は、R(ただし、RはY
を含む希土類元素の1種以上)、FeおよびBを含有す
るものである。[0017] The sintered magnet of the present invention has R (where R is Y
At least one rare earth element containing Fe), Fe and B.
【0018】RおよびBの含有量は、モル百分率で 12≦R≦16、 4≦B≦8 であることが好ましい。残部は実質的にFeである。It is preferable that the contents of R and B satisfy 12 ≦ R ≦ 16 and 4 ≦ B ≦ 8 in terms of mole percentage. The balance is substantially Fe.
【0019】希土類元素Rとしては、Nd、Pr、D
y、Tbのうち少なくとも1種を必ず用いることが好ま
しい。また、これらに加え、La、Ce、Sm、Pm、
Eu、Gd、Ho、Er、Tm、Yb、Lu、Yのうち
1種以上を用いてもよい。なお、Rとして2種以上の元
素を用いる場合、原料としてミッシュメタル等の混合物
を用いることもできる。R含有量が少なすぎると、結晶
構造がα−Feと同一構造の立方晶組織となるため、高
い保磁力が得られない。一方、R含有量が多すぎると、
Rリッチな非磁性相が多くなり、残留磁束密度が低下す
る。Fe含有量が少なすぎると残留磁束密度が低くな
り、多すぎると保磁力が低くなる。B含有量が少なすぎ
ると菱面体組繊となるため保磁力が不十分となり、多す
ぎるとBリッチな非磁性相が多くなるため残留磁束密度
が低くなる。As the rare earth element R, Nd, Pr, D
It is preferable to use at least one of y and Tb. In addition, in addition to these, La, Ce, Sm, Pm,
One or more of Eu, Gd, Ho, Er, Tm, Yb, Lu, and Y may be used. When two or more elements are used as R, a mixture such as misch metal can be used as a raw material. If the R content is too small, a high coercive force cannot be obtained because the crystal structure becomes a cubic structure having the same structure as α-Fe. On the other hand, if the R content is too large,
The number of R-rich non-magnetic phases increases, and the residual magnetic flux density decreases. If the Fe content is too low, the residual magnetic flux density will be low, and if it is too high, the coercive force will be low. If the B content is too small, the coherence becomes insufficient due to the rhombohedral braiding, and if it is too large, the B-rich nonmagnetic phase increases and the residual magnetic flux density decreases.
【0020】なお、Feの一部をCoで置換することに
より、磁気特性を損うことなく温度特性を改善すること
ができる。この場合、Co置換量がFeの50%を超え
ると磁気特性が劣化するため、Co置換量は50%以下
とすることが好ましい。By replacing part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics. In this case, if the amount of Co substitution exceeds 50% of Fe, the magnetic properties deteriorate, so the amount of Co substitution is preferably set to 50% or less.
【0021】さらに、Bの一部を、C、P、Sのうちの
1種以上で置換することにより、生産性の向上および低
コスト化が実現できる。この場合、置換量は全体の4モ
ル%以下であることが好ましい。また、保磁力の向上、
生産性の向上、低コスト化のために、Al、Ti、V、
Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、G
e、Sn、Zr、Ni、Si、Hf、Ga、Zn、Cu
等の1種以上を添加してもよい。この場合、添加量は総
計で10モル%以下とすることが好ましい。Further, by replacing a part of B with one or more of C, P and S, it is possible to realize an improvement in productivity and a reduction in cost. In this case, the substitution amount is preferably 4 mol% or less of the whole. In addition, improvement of coercive force,
Al, Ti, V,
Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, G
e, Sn, Zr, Ni, Si, Hf, Ga, Zn, Cu
And the like may be added. In this case, the amount of addition is preferably 10 mol% or less in total.
【0022】上記焼結磁石は、実質的に正方晶系の結晶
構造の主相を有する。この主相の粒径は、3〜50μm
程度であることが好ましい。そして、通常、体積比で1
〜15%の非磁性相を含む。この非磁性相は、前記した
Rリッチ相、Bリッチ相、R酸化物相、R炭化物相など
である。The sintered magnet has a main phase having a substantially tetragonal crystal structure. The particle size of this main phase is 3-50 μm
It is preferred that it is about. And usually, the volume ratio is 1
15% non-magnetic phase. The non-magnetic phase is the above-mentioned R-rich phase, B-rich phase, R-oxide phase, R-carbide phase and the like.
【0023】次に、本発明の焼結磁石を製造する方法の
一例を説明する。Next, an example of a method for producing the sintered magnet of the present invention will be described.
【0024】まず、合金を鋳造し、インゴットを得る。
得られたインゴットを、ディスクミル等により10〜1
00μm程度の粒径まで粗粉砕し、次いで、ジェットミ
ル等により0.5〜5μm程度の粒径まで微粉砕する。
なお、水素吸蔵粉砕を行うこともできる。水素吸蔵粉砕
では、インゴットを30mm角程度まで粗粉砕し、水素吸
蔵と水素放出とを少なくとも1回行うことにより、微粉
砕する。この水素吸蔵粉砕と機械的粉砕とを併用しても
よい。水素吸蔵粉砕を行うと元素Rは水素化物となる
が、焼結工程の昇温過程において800℃付近で脱水素
される。First, an alloy is cast to obtain an ingot.
The obtained ingot is placed in a disc mill or the like for 10 to 1
The material is roughly pulverized to a particle size of about 00 μm, and then finely pulverized to a particle size of about 0.5 to 5 μm by a jet mill or the like.
In addition, hydrogen occlusion grinding can also be performed. In the hydrogen storage pulverization, the ingot is coarsely pulverized to about 30 mm square, and finely pulverized by performing hydrogen storage and hydrogen release at least once. The hydrogen storage pulverization and the mechanical pulverization may be used in combination. The element R becomes a hydride when the hydrogen absorbing and pulverizing is performed, but is dehydrogenated at around 800 ° C. in the temperature rising process of the sintering step.
【0025】得られた粉末を磁場中にて成形し、成形体
を得る。磁場強度は800〜8000kA/m、成形圧力は
50〜500MPa程度であることが好ましい。The obtained powder is molded in a magnetic field to obtain a molded body. The magnetic field strength is preferably 800 to 8000 kA / m, and the molding pressure is preferably about 50 to 500 MPa.
【0026】次に、成形体を焼結する。焼結時の雰囲気
ガスは、Ar等の希ガスや窒素などの不活性ガスから構
成されることが好ましく、特に希ガスから構成されるこ
とが好ましい。焼結温度(安定温度)は、1000〜1
150℃とすることが好ましい。安定温度とは、昇温過
程と降温過程とに挟まれた安定温度域における温度であ
る。安定温度に保持する時間は、0.1〜100時間と
することが好ましい。焼結温度が低すぎたり焼結時間が
短すぎたりすると、焼結が十分に進まず残留磁束密度が
低くなりやすい。一方、焼結温度が高すぎたり焼結時間
が長すぎたりすると、結晶粒が粗大化して保磁力が低く
なりやすい。Next, the compact is sintered. The atmosphere gas during sintering is preferably composed of a rare gas such as Ar or an inert gas such as nitrogen, and particularly preferably composed of a rare gas. Sintering temperature (stable temperature) is 1000-1
Preferably, the temperature is set to 150 ° C. The stable temperature is a temperature in a stable temperature range between a temperature rising process and a temperature falling process. The time for maintaining the temperature at a stable temperature is preferably 0.1 to 100 hours. If the sintering temperature is too low or the sintering time is too short, sintering does not proceed sufficiently and the residual magnetic flux density tends to be low. On the other hand, if the sintering temperature is too high or the sintering time is too long, the crystal grains become coarse and the coercive force tends to decrease.
【0027】焼結後、通常、時効処理を施す。時効処理
は、好ましくは不活性ガス雰囲気中において、好ましく
は500℃以上焼結温度以下の温度、より好ましくは5
00〜950℃で、0.1〜100時間加熱することに
より行う。時効処理により保磁力がさらに向上する。な
お、時効処理は、多段階の熱処理から構成してもよい。
例えば2段の熱処理からなる時効処理では、1段目の熱
処理を700℃以上焼結温度未満の温度で0.1〜50
時間行い、2段目の熱処理を500〜700℃で0.1
〜100時間行うことが好ましい。After sintering, an aging treatment is usually performed. The aging treatment is preferably performed in an inert gas atmosphere, preferably at a temperature of 500 ° C. or higher and a sintering temperature or lower, more preferably 5 ° C.
It is performed by heating at 00 to 950 ° C. for 0.1 to 100 hours. The coercive force is further improved by the aging treatment. Note that the aging treatment may be constituted by a multi-step heat treatment.
For example, in the aging treatment consisting of two stages of heat treatment, the first stage heat treatment is performed at a temperature of 700 ° C. or more and less than the sintering temperature by 0.1 to 50 °
And heat-treating the second stage at 500-700 ° C. for 0.1
It is preferably performed for up to 100 hours.
【0028】本発明の焼結磁石の用途は特に限定され
ず、例えばモータやスピーカなど各種機器に適用可能で
あるが、本発明の焼結磁石は、高強度が必要とされる機
器に特に好適である。The use of the sintered magnet of the present invention is not particularly limited, and can be applied to various devices such as a motor and a speaker. However, the sintered magnet of the present invention is particularly suitable for devices requiring high strength. It is.
【0029】[0029]
【実施例】サンプルNo.1−1 鋳造した合金インゴットを窒素ガス雰囲気中で粉砕する
ことにより、合金粉末を得た。合金粉末の組成(モル百
分率)は、 組成I:14.59Nd-0.42Dy-0.53Co-0.77Al-Fe とした。EXAMPLES Sample No. 1-1 An alloy powder was obtained by grinding a cast alloy ingot in a nitrogen gas atmosphere. The composition (molar percentage) of the alloy powder was composition I: 14.59Nd-0.42Dy-0.53Co-0.77Al-Fe.
【0030】次いで、合金粉末を強度1200kA/mの静
磁場中で150MPaの圧力で成形し、成形体を得た。次
いで、成形体を真空中において1080℃で4時間焼結
し、焼結体を得た。この焼結体をサンプルNo.1−1と
した。Next, the alloy powder was compacted at a pressure of 150 MPa in a static magnetic field having a strength of 1200 kA / m to obtain a compact. Next, the molded body was sintered at 1080 ° C. for 4 hours in a vacuum to obtain a sintered body. This sintered body was designated as Sample No. 1-1.
【0031】サンプルNo.1−2 サンプルNo.1−1に対し、Ar雰囲気中において、8
50℃で1時間の熱処理と、これに続く540℃で5時
間の熱処理とからなる時効処理を施したものを、サンプ
ルNo.1−2とした。 Sample No. 1-2 Sample No. 1-1 was compared with Sample No. 1-1 in an Ar atmosphere.
Sample No. 1-2 was subjected to an aging treatment consisting of a heat treatment at 50 ° C. for 1 hour and a subsequent heat treatment at 540 ° C. for 5 hours.
【0032】サンプルNo.1−3 サンプルNo.1−1に対し、Ar雰囲気中において、6
00℃で1時間の熱処理からなる時効処理を施したもの
を、サンプルNo.1−3とした。 Sample No. 1-3 Sample No. 1-1 was compared with Sample No. 1-1 in an Ar atmosphere.
Sample No. 1-3 was subjected to an aging treatment consisting of a heat treatment at 00 ° C. for one hour.
【0033】サンプルNo.1−4 サンプルNo.1−1に対し、Ar雰囲気中において、7
00℃で1時間の熱処理と、これに続く600℃で1時
間の熱処理とからなる時効処理を施したものを、サンプ
ルNo.1−4とした。 Sample No. 1-4 Compared to Sample No. 1-1 , 7
Sample No. 1-4 was subjected to an aging treatment consisting of a heat treatment at 00 ° C. for 1 hour and a heat treatment at 600 ° C. for 1 hour.
【0034】サンプルNo.2−1 鋳造した合金インゴットを窒素ガス雰囲気中で粉砕する
ことにより、合金粉末を得た。合金粉末の組成(モル百
分率)は、 組成II:11.49Nd-3.43Dy-0.59Co-0.77Al-0.29Sn-Fe とした。 Sample No. 2-1 An alloy powder was obtained by grinding the cast alloy ingot in a nitrogen gas atmosphere. The composition (molar percentage) of the alloy powder was composition II: 11.49Nd-3.43Dy-0.59Co-0.77Al-0.29Sn-Fe.
【0035】次いで、合金粉末を強度1200kA/mの静
磁場中で150MPaの圧力で成形し、成形体を得た。次
いで、成形体を真空中において1100℃で4時間焼結
し、焼結体を得た。この焼結体をサンプルNo.2−1と
した。Next, the alloy powder was compacted under a pressure of 150 MPa in a static magnetic field having a strength of 1200 kA / m to obtain a compact. Next, the compact was sintered at 1100 ° C. for 4 hours in a vacuum to obtain a sintered body. This sintered body was designated as Sample No. 2-1.
【0036】サンプルNo.2−2 サンプルNo.2−1に対し、Ar雰囲気中において、8
50℃で1時間の熱処理と、これに続く540℃で1時
間の熱処理とからなる時効処理を施したものを、サンプ
ルNo.2−2とした。 Sample No. 2-2 Sample No. 2-1 was compared with Sample No. 2-1 in an Ar atmosphere.
Sample No. 2-2 was subjected to an aging treatment consisting of a heat treatment at 50 ° C. for 1 hour and a heat treatment at 540 ° C. for 1 hour.
【0037】サンプルNo.2−3 サンプルNo.2−1に対し、Ar雰囲気中において、4
00℃で5時間の熱処理からなる時効処理を施したもの
を、サンプルNo.2−3とした。 Sample No. 2-3 Sample No. 2-1 was compared with Sample No. 2-1 in an Ar atmosphere.
Sample No. 2-3 was subjected to an aging treatment consisting of a heat treatment at 00 ° C. for 5 hours.
【0038】評価 各サンプルの断面を研磨した後、走査型電子顕微鏡のB
EI(COMPO)モードにおいて倍率1000倍で写
真撮影した。サンプルNo.1−1の写真を図1に、サン
プルNo.1−2の写真を図2にそれぞれ示す。撮影した
写真に1cm(実寸で12.5μm)間隔で容易軸線およ
び困難軸線を記入し、容易軸線における粒界相の比率A
と、困難軸線における粒界相の比率Bとを測定し、B/
Aを算出した。なお、測定対象の写真は、各サンプルの
容易軸線および困難軸線のそれぞれについて6枚とし、
容易軸線および困難軸線における測定対象長さは、いず
れも4.725mmとした。また、各サンプルについて、
島津製作所製万能試験機AGS-1000Aを用い、JIS R1601の
規定に準じて3点抗折強度試験を行った。ただし、抗折
強度測定に際し、試験片は丸めなしとし、試験片の寸法
は10mm×10mm×1.5mmとし、クロスヘッド速度は
10mm/minとした。抗折強度は、図3(B)、図3
(C)および図3(D)にそれぞれ示すように、b軸方
向、c軸方向およびa軸方向について測定した。また、
各サンプルの保磁力(HcJ)を測定した。これらの結果
を表1に示す。 Evaluation After polishing the cross section of each sample, the B
A photograph was taken at a magnification of 1000 in the EI (COMPO) mode. FIG. 1 shows a photograph of Sample No. 1-1, and FIG. 2 shows a photograph of Sample No. 1-2. An easy axis and a difficult axis are drawn at intervals of 1 cm (actual size: 12.5 μm) in the photographed image, and the ratio A of the grain boundary phase in the easy axis
And the ratio B of the grain boundary phase at the hard axis is measured, and B /
A was calculated. In addition, the number of photographs of the measurement object is six for each of the easy axis and the difficult axis of each sample.
The length to be measured on the easy axis and the difficult axis was 4.725 mm. Also, for each sample,
Using a universal testing machine AGS-1000A manufactured by Shimadzu Corporation, a three-point bending strength test was performed according to the provisions of JIS R1601. However, when measuring the bending strength, the test piece was not rounded, the dimensions of the test piece were 10 mm × 10 mm × 1.5 mm, and the crosshead speed was 10 mm / min. The bending strength is shown in FIG.
As shown in FIG. 3 (C) and FIG. 3 (D), measurements were made in the b-axis direction, the c-axis direction, and the a-axis direction. Also,
The coercive force (HcJ) of each sample was measured. Table 1 shows the results.
【0039】[0039]
【表1】 [Table 1]
【0040】表1から、本発明の効果が明らかである。
すなわち、B/Aが本発明で限定する範囲内にあれば、
c軸方向の抗折強度が他の方向の抗折強度と同等まで向
上し、機械的強度の高い焼結磁石が得られることがわか
る。From Table 1, the effect of the present invention is clear.
That is, if B / A is within the range defined by the present invention,
It can be seen that the bending strength in the c-axis direction is improved to the same level as the bending strength in other directions, and a sintered magnet with high mechanical strength can be obtained.
【0041】なお、組成Iのサンプルの密度は7.53
Mg/m3であり、組成IIのサンプルの密度は7.63Mg/m3
であり、いずれも時効処理によって変化しなかった。し
たがって本発明による抗折強度の向上は、密度向上によ
るものではない。The density of the sample of composition I was 7.53.
Mg / m 3 , and the density of the composition II sample was 7.63 Mg / m 3
, And none of them was changed by the aging treatment. Therefore, the improvement in bending strength according to the present invention is not due to the improvement in density.
【0042】[0042]
【発明の効果】本発明では、R2Fe14B系焼結磁石に
おいて、Rリッチ相を主体とする粒界相の形状が等方的
となるように制御することにより、磁石の機械的強度を
向上させることができる。According to the present invention, the mechanical strength of the R 2 Fe 14 B-based sintered magnet is controlled by controlling the shape of the grain boundary phase mainly composed of the R-rich phase to be isotropic. Can be improved.
【図1】結晶構造を示す図面代用写真であって、磁石研
磨面の走査型電子顕微鏡写真である。FIG. 1 is a drawing substitute photograph showing a crystal structure, which is a scanning electron microscope photograph of a polished surface of a magnet.
【図2】結晶構造を示す図面代用写真であって、磁石研
磨面の走査型電子顕微鏡写真である。FIG. 2 is a drawing substitute photograph showing a crystal structure, and is a scanning electron micrograph of a polished surface of a magnet.
【図3】(A)は、3点抗折強度試験の概念図である。
(B)は、(A)に示す3点抗折強度試験において、b
軸方向の抗折強度を測定する際の磁石の結晶軸の方向を
示す図である。(C)は、(A)に示す3点抗折強度試
験において、c軸方向の抗折強度を測定する際の磁石の
結晶軸の方向を示す図である。(D)は、(A)に示す
3点抗折強度試験において、a軸方向の抗折強度を測定
する際の磁石の結晶軸の方向を示す図である。FIG. 3A is a conceptual diagram of a three-point bending strength test.
(B) shows b in the three-point bending strength test shown in (A).
It is a figure which shows the direction of the crystal axis of a magnet when measuring the bending strength in an axial direction. (C) is a diagram showing the direction of the crystal axis of the magnet when measuring the bending strength in the c-axis direction in the three-point bending strength test shown in (A). (D) is a diagram showing the direction of the crystal axis of the magnet when measuring the bending strength in the a-axis direction in the three-point bending strength test shown in (A).
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 H01F 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/053 H01F 1/04 H
Claims (1)
である)、FeおよびBを含有する焼結磁石であって、 結晶粒界に粒界相が存在し、 磁化容易軸方向および磁化困難軸方向にそれぞれ延びる
直線によって一定の間隔で磁石断面の走査型電子顕微鏡
像を碁盤目状に区切り、磁化容易軸方向に延びる前記直
線を容易軸線とし、磁化困難軸方向に延びる前記直線を
困難軸線とし、容易軸線のうち粒界相を横切る部分の合
計長さの比率をAとし、困難軸線のうち粒界相を横切る
部分の合計長さの比率をBとしたとき、 0.8≦B/A≦1.2 である焼結磁石。1. A sintered magnet containing R (R is at least one kind of rare earth element), Fe and B, wherein a grain boundary phase exists at a crystal grain boundary, The scanning electron microscope image of the magnet cross section is divided into grids at regular intervals by straight lines extending in the hard axis direction, and the straight line extending in the easy axis direction is defined as the easy axis, and the straight line extending in the hard axis direction is difficult. When the ratio of the total length of the portion crossing the grain boundary phase in the easy axis is A, and the ratio of the total length of the portion crossing the grain boundary phase in the hard axis is B, 0.8 ≦ B /A≦1.2 sintered magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001043368A JP2002246215A (en) | 2001-02-20 | 2001-02-20 | Sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001043368A JP2002246215A (en) | 2001-02-20 | 2001-02-20 | Sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002246215A true JP2002246215A (en) | 2002-08-30 |
JP2002246215A5 JP2002246215A5 (en) | 2005-07-21 |
Family
ID=18905541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001043368A Pending JP2002246215A (en) | 2001-02-20 | 2001-02-20 | Sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002246215A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005260210A (en) * | 2004-02-10 | 2005-09-22 | Tdk Corp | Rare earth sintered magnet, and method of improving mechanical strength and corrosion resistance thereof |
US9583243B2 (en) | 2010-09-24 | 2017-02-28 | Kabushiki Kaisha Toshiba | Permanent magnet and method for manufacturing the same, and motor and power generator using the same |
CN106847454A (en) * | 2015-12-03 | 2017-06-13 | 昭和电工株式会社 | The manufacture method of R T B system's rare-earth sintered magnet alloys and its manufacture method and R T B systems rare-earth sintered magnet |
US9774234B2 (en) | 2010-03-30 | 2017-09-26 | Kabushiki Kaisha Toshiba | Permanent magnet and method for manufacturing the same, and motor and power generator using the same |
-
2001
- 2001-02-20 JP JP2001043368A patent/JP2002246215A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005260210A (en) * | 2004-02-10 | 2005-09-22 | Tdk Corp | Rare earth sintered magnet, and method of improving mechanical strength and corrosion resistance thereof |
US9774234B2 (en) | 2010-03-30 | 2017-09-26 | Kabushiki Kaisha Toshiba | Permanent magnet and method for manufacturing the same, and motor and power generator using the same |
US9583243B2 (en) | 2010-09-24 | 2017-02-28 | Kabushiki Kaisha Toshiba | Permanent magnet and method for manufacturing the same, and motor and power generator using the same |
CN106847454A (en) * | 2015-12-03 | 2017-06-13 | 昭和电工株式会社 | The manufacture method of R T B system's rare-earth sintered magnet alloys and its manufacture method and R T B systems rare-earth sintered magnet |
US10490324B2 (en) | 2015-12-03 | 2019-11-26 | Tdk Corporation | Alloy for R-T-B-based rare earth sintered magnet and manufacturing method thereof, and manufacturing method of R-T-B-based rare earth sintered magnet |
CN106847454B (en) * | 2015-12-03 | 2020-04-14 | Tdk株式会社 | Alloy for R-T-B-based rare earth sintered magnet, method for producing same, and method for producing R-T-B-based rare earth sintered magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5304907B2 (en) | R-Fe-B fine crystal high density magnet | |
JP6156375B2 (en) | Sintered magnet | |
JP5892139B2 (en) | Rare earth anisotropic magnet and manufacturing method thereof | |
JP4830024B2 (en) | Composite magnetic material for magnet and manufacturing method thereof | |
RU2389098C2 (en) | Functional-gradient rare-earth permanent magnet | |
CN109473246B (en) | R-T-B permanent magnet | |
WO2007119553A1 (en) | Process for producing rare-earth permanent magnet material | |
JP6094612B2 (en) | Method for producing RTB-based sintered magnet | |
JP2000188213A (en) | R-t-b sintered permanent magnet | |
JP4700578B2 (en) | Method for producing high resistance rare earth permanent magnet | |
JP3865180B2 (en) | Heat-resistant rare earth alloy anisotropic magnet powder | |
JP3092672B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
JP2009010305A (en) | Method for manufacturing rare-earth magnet | |
JP2576671B2 (en) | Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance | |
JP3540438B2 (en) | Magnet and manufacturing method thereof | |
JP3683260B2 (en) | Rare earth permanent magnet | |
JP2024020341A (en) | Anisotropic rare earth sintered magnet and method for manufacturing the same | |
JP2019176011A (en) | R-t-b based sintered magnet | |
JP2576672B2 (en) | Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance | |
JP4702522B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP2002246215A (en) | Sintered magnet | |
JP2006041507A (en) | Sintered magnet | |
JP2747236B2 (en) | Rare earth iron permanent magnet | |
EP4130300A1 (en) | Anisotropic rare earth sintered magnet and method for producing same | |
JP7303157B2 (en) | Rare earth magnet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041207 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051012 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060808 |