JP2002243537A - 振動検出装置 - Google Patents

振動検出装置

Info

Publication number
JP2002243537A
JP2002243537A JP2001034573A JP2001034573A JP2002243537A JP 2002243537 A JP2002243537 A JP 2002243537A JP 2001034573 A JP2001034573 A JP 2001034573A JP 2001034573 A JP2001034573 A JP 2001034573A JP 2002243537 A JP2002243537 A JP 2002243537A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
vibration
diaphragm
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001034573A
Other languages
English (en)
Other versions
JP3951613B2 (ja
Inventor
Hiroshi Miyazawa
寛 宮澤
Yoshikazu Oka
好和 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kenwood KK
Original Assignee
Kenwood KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenwood KK filed Critical Kenwood KK
Priority to JP2001034573A priority Critical patent/JP3951613B2/ja
Priority to DE60222744T priority patent/DE60222744T2/de
Priority to DE0001367855T priority patent/DE02711415T1/de
Priority to PCT/JP2002/001087 priority patent/WO2002065812A1/ja
Priority to US10/470,997 priority patent/US7114395B2/en
Priority to EP02711415A priority patent/EP1367855B1/en
Publication of JP2002243537A publication Critical patent/JP2002243537A/ja
Application granted granted Critical
Publication of JP3951613B2 publication Critical patent/JP3951613B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

(57)【要約】 【課題】 小型化及び指向性に優れかつ鏡面を必要とし
ない光検出型マイクロホン10を提供する。 【解決手段】 振動板27は音圧を受けて振動する。光
導波路28は振動板27の直径に沿って形成され、振動
板27との一体的な光導波路28の振動により、光導波
路28から外部への漏れ光量が変化し、光導波路28の
両端の光伝送量が変化する。光導波路28は、一端側よ
り発光素子20から光を入射され、他端側において受光
素子24へ出射する。は、受光素子24は入射光量に関
係する電気信号を出力する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えばマイクロホ
ン等に適用可能である振動検出装置に関し、詳しくは光
を利用して振動を検出する振動検出装置に関するもので
ある。
【0002】
【従来の技術】通常のマイクロホンは、音圧を受けて振
動する振動板の変位をコイルやコンデンサにより電気信
号へ変換するものであるのに対し、光を利用して、振動
板の振動を電気信号へ変換するマイクロホンが提案され
ている。図15〜図17においてこのような光利用型の
公知のマイクロホンについて説明する。図15の光検出
型マイクロホン70では、振動板72は、ケース71の
前面に設けられ、内面側は鏡面とされ、伝搬されて来る
音波を受けて、前後方向振動する。仕切り板75は内面
側が鏡面とされているケース71、ケース71の前方開
口端部に配置されて音圧を受ける振動板72、及び先端
において振動板72との間に間隙76を残しつつ間隙7
6を除く他の範囲においてケース71内を2室に仕切っ
ている仕切り板75を有している。発光素子73及び受
光素子74は、仕切り板75に対して相互に反対側の仕
切り室部分に配置され、発光素子73からの光は鏡面と
しての振動板72の内面側に反射した後、間隙76を通
過して、受光素子74に入射する。集光レンズ78は、
発光素子73と振動板72との間の光路に配置されて、
振動板72上の所定位置に光を集める。収束レンズ79
は、振動板72と受光素子74との間の光路に配置され
て、振動板72からの反射光を受光素子74へ収束す
る。間隙76の寸法は振動板72の振動変位に応じて変
化し、結果、受光素子74の受光量は振動板72の振動
変位量の関数となる。こうして、受光素子74の受光量
から音圧に関係した電気信号を生成することができる。
【0003】図16及び図17は光利用の別の従来技術
の光検出型マイクロホン83の概略図及び詳細図であ
る。半導体レーザー84はレーザー光を前方へ照射し、
モニターフォトダイオード85は、半導体レーザー84
の照射するレーザー光の光量を検出する。レーザーAP
C86は、半導体レーザー84の作動中の出射光量が一
定に保持されるように、モニターフォトダイオード85
の出力に基づいて半導体レーザー84の出力を制御す
る。振動板89は、半導体レーザー84の前方に配置さ
れて、内面側は鏡面とされ、音圧を受けて、振動する。
半導体レーザー84からのレーザー光は、対物レンズ9
0を通過してから、振動板89に照射され、その反射光
は、対物レンズ90を通過してから、振動板変位検出ダ
イオード91に入射し、その光量が振動板変位検出ダイ
オード91により検出される。図17において、振動板
89を除く図16の各素子はケース93内に収容されて
いる。振動板89はケース93の前壁に周縁部を支持さ
れ、ケース93は、振動板89の内面側を外部へ連通さ
せる複数個の連通孔94を有している。半導体レーザー
84及び振動板変位検出ダイオード91は取付け用基板
96に取付けられ、振動板変位検出ダイオード91から
のレーザー光は、反射光束分割素子97、対物レンズ9
0、及び無色透明蓋98を介して鏡面としての振動板8
9の裏面に照射され、その反射光は、無色透明蓋98、
対物レンズ90、及び反射光束分割素子97を経て振動
板変位検出ダイオード91に入射する。無色透明蓋98
は、それが装着されている開口を介しての音圧の伝達を
阻止している。フォーカシング用アクチュエータ99
は、CD(コンパクトディスク)プレーヤ等に周知のフ
ォーカスサーボ制御を利用して対物レンズ90の軸方向
位置を制御している。すなわち、振動板変位検出ダイオ
ード91において検出されるフォーカスエラー信号の
内、例えば20Hz未満の周波数成分(可聴周波数未満
の低周波成分)に基づいて対物レンズ90の軸方向位置
が制御され、こうして、レーザー光の焦点は、振動板8
9の振動にもかかわらず、振動板89上に位置し、振動
板変位検出ダイオード91から20Hz以上のフォーカ
スエラー信号を抽出することにより可聴周波数領域の音
圧を検出できる。
【0004】
【発明が解決しようとする課題】図15の光検出型マイ
クロホン70では、音圧と受光量との直線性関係が得ら
れる音圧−受光領域に間隙76を調整するのが難しいこ
と、発光素子73の発光の広がり角のばらつきや発光素
子73の向きのばらつきのために受光素子74の受光量
がばらつき易いこと等の問題がある。図16及び図17
の光検出型マイクロホン83では、各素子及び取付け上
のばらつきは抑制できるが、光軸方向へ部品の配列が長
くなり、小型化が難しい。マイクロホンの指向性を向上
させるためには、振動板89の内面側にも、音源からの
音圧を作用させる必要があるが、光検出型マイクロホン
83の小型化のために、振動板89を対物レンズ90へ
接近させると、対物レンズ90の存在が、振動板89の
内面側への音圧の到達性を阻害し、指向性が悪化する弊
害がある。さらに、光検出型マイクロホン83では、レ
ーザー光のスポットを振動板89に照射して、その反射
光を検出する必要があるので、振動板89の内面を清浄
な鏡面に維持しなければならないが、振動板89の内面
側の鏡面は、大気中に微小に含まれる化学性ガスによる
化学変化や、ちりの付着により曇り易い。
【0005】本発明の目的は、組み立て上のばらつきに
よる振動振幅−電気信号の直線性阻害を排除できる振動
検出装置を提供することである。本発明の他の目的は、
良好な指向性を維持しつつ、小型化に威力を発揮できる
振動検出装置を提供することである。
【0006】
【課題を解決するための手段】第1の発明の振動検出装
置によれば、振動を面に受けて振動する振動板に、その
面方向へ延びる光導波路を該振動板と一体振動自在に装
備させ、該光導波路は、振動変位量に応じて外部への光
漏れ量を変化させることにより、振動板の振動変位に関
係して両端間の光伝送量を変化させるようになってい
る。
【0007】振動検出装置は、気体内を伝搬して来る音
圧振動を検出するマイクロホンだけでなく、液体内や固
体内を伝搬して来る液圧振動及び固体振動を検出するも
のを含むものとする。
【0008】第1の発明では、光導波路は、振動板に一
体形成されていてもよいし、振動板に固着しているもの
であってもよいとする。振動検出装置は、好ましくは、
光導波路へ光を入射する発光素子、及び光導波路からの
出射光の光量を検出する受光素子を装備するが、それら
発光素子、受光素子、及び受光素子の受光量を処理する
素子は振動検出装置に外付けされてもよいとする。
【0009】該振動検出装置では、振動板の軸方向へ光
学素子を長く配列する必要がないので、振動検出装置を
小型化することができる。また、鏡面を必要としないの
で、鏡面の汚れによる弊害を排除できる。さらに、振動
検出装置をマイクロホンに適用する場合には、該マイク
ロホンでは、小型化のために、振動板の裏面側に所定の
光学素子を接近させる必要もないので、良好な指向性を
確保できる。
【0010】第2の発明の振動検出装置によれば、第1
の発明の振動検出装置において、光導波路は、その変形
に伴い材料密度を変化させ、これにより屈折率を変化さ
せるものとされている。
【0011】第3の発明の振動検出装置によれば、第1
の発明の振動検出装置において、光導波路は、その変形
に伴い外部への光漏れ量が変化する程度に振動板の振動
方向への径を小さくされている。
【0012】なお、光導波路の横断面の形状には、例え
ば長方形、正方形、円、楕円等がある。
【0013】第4の発明の振動検出装置によれば、第1
の発明の振動検出装置において、光導波路の屈折率は、
その変形に伴い外部への光漏れ量が変化するように、不
均一に設定されている。
【0014】第5の発明の振動検出装置によれば、第1
の発明の振動検出装置において、光導波路は、その延び
方向へ不連続部分を備え、振動板の振動に伴う該不連続
部分の両端間の振動方向への相対変位に応じて該不連続
部分からの光漏れ量を変化させるようになっている。
【0015】第6の発明の振動検出装置は次のものを有
している。 ・振動に伴い振動方向へ撓む撓み部分をもつ振動体 ・光導波路を備え該光導波路は振動体の撓み部分を通過
して撓み部分と一体に撓む部分(以下、該部分を「通過
部分」と言う。)をもちかつ通過部分の撓みに応じて両
端間の光伝送量を変化させる光導波路保持体 ・光導波路の一端側へ所定光量の光を入射する発光素子 ・光導波路の他端側からの出射光を受けてその光量に関
係する電気信号を出力する受光素子
【0016】第6の発明において、振動体には、板状の
振動体としての振動板が含まれる。振動体は、振動源か
ら気体、液体、及び固体を介して伝達される振動を受け
て振動するものであってもよいし、振動体自体が振動源
であってもよいとする。固体を介して伝搬される振動を
受けて振動体を振動させるには、振動検出装置の筐体を
振動源側の固体に固定して、筐体に対して振動体を相対
振動させたり、所定の振動伝達棒を振動体に当てたりす
ることができる。振動検出装置は少なくともマイクロホ
ンを含む。第6の発明において、受光素子からの電気信
号を処理する素子は、振動検出装置に装備されていても
よいし、振動検出装置に外付けされてもよい。
【0017】第7の発明の振動検出装置によれば、第6
の発明の振動検出装置において、光導波路の通過部分
は、連続しており、その撓みに伴い材料密度を変化さ
せ、これにより屈折率を変化させる。
【0018】第8の発明の振動検出装置によれば、第6
の発明の振動検出装置において、光導波路の通過部分は
連続しており、光導波路は、通過部分における外部への
光漏れ量が通過部分の撓み量に応じて変化する程度に、
振動体の振動方向への通過部分の径を小さく設定されて
いる。
【0019】第9の発明の振動検出装置によれば、第6
の発明の振動検出装置において、光導波路の通過部分は
連続しており、光導波路の通過部分の屈折率は、通過部
分における外部への光漏れ量が通過部分の撓み量に応じ
て変化するように、不均一に設定されている。
【0020】光導波路の生成には、例えば、半導体製造
技術において採用されている熱拡散法やイオン注入法が
利用される。光透過性材料である所定の物質(例:リチ
ウムナイオレートLiNO3)を選択的にイオン交換す
ることにより、交換部の屈折率は非交換部の屈折率に対
して変化し、屈折率の一様でない光導波路を生成するこ
とができる。なお、光導波路の生成方法としては、例え
ば、金属薄膜や誘電体膜を使い、屈折率の異なる複数個
の材料を圧着、積層するものもある。
【0021】第10の発明の振動検出装置によれば、第
6の発明の振動検出装置において、光導波路の通過部分
は、延び方向へ不連続部分を備え、光導波路保持体は、
振動体の振動に伴う該不連続部分の両端間の振動方向相
対変位に応じて該不連続部分からの光漏れ量を変化させ
て、光導波路の両端間の光伝送量を変化させるものであ
る。
【0022】振動体の振動により、通過部分の不連続部
分の両端は振動体の振動方向へ相対変位する。通過部分
の不連続部分からの外部への光漏れ量は、該両端の相対
変位量の小のときは大きく、大のときは増大する。こう
して、光導波路の両端間の光伝送量を振動体の振動に応
じて変化させることができる。
【0023】第11の発明の振動検出装置によれば、振
動体は、その振動方向に厚さ方向を一致させた振動板で
あり、光導波路の通過部分は、延び方向へ1個の不連続
部分を備え、光導波路は、該不連続部分に対して発光素
子側及び受光素子側の個数がそれぞれ1本及び2本にな
っており、光導波路の発光素子側部分は振動板の厚さ方
向の中心を連ねた面(以下、「中心面」と言う。)に位
置するのに対して、光導波路の該2本の受光素子側部分
は、中心面に対して両側に位置し、不連続部分を介して
の光導波路の発光素子側部分から光導波路の両受光素子
側部分への光伝送量が不連続部分の撓みに応じて変化す
るようになっている。
【0024】振動板において、該中心面に対して両側
は、振動板の振動に対する撓みの正負が相互に逆の関係
(一方が伸びれば、他方は縮む関係。)となる。したが
って、両受光素子側部分からの出射光量の差分を取れ
ば、振動板の製造誤差に因るばらつきの少ない出力を得
ることができる。
【0025】第12の発明の振動検出装置によれば、第
6の発明の振動検出装置において、振動体は、その振動
方向に厚さ方向を一致させた振動板であり、光導波路保
持体は、振動板の厚さ方向へ異なる個所に複数個、配置
され、発光素子は等光量の光を各光導波路保持体の一端
側へ入射し、各受光素子は各光導波路の他端側からの出
射光の光量を検出する。
【0026】振動板の厚さ方向へ分布する各光導波路の
両端間の光伝送量を所定の組み合わせで処理することに
より、振動板の振動振幅を精確に反映する電気信号を得
ることができる。
【0027】第13の発明の振動検出装置によれば、第
6〜第11のいずれかの発明の振動検出装置において、
振動体と光導波路保持体とは、1枚の光透過性材料から
作成された振動板である。
【0028】1枚の光透過性材料からの光導波路の生成
は、例えば、半導体製造技術等において利用されている
熱拡散法やイオン注入法が採用される。光透過性材料で
ある所定の物質(例:リチウムナイオレートLiN
3)の選択的なイオン交換等により、交換部の屈折率
は非交換部の屈折率に対して変化する。
【0029】第14の発明の振動検出装置によれば、第
13の発明の振動検出装置において、振動板は、撓み性
向上のための線状の透孔又は溝を有している。
【0030】振動板における線状の透孔や溝は、振動板
の放射方向及び/又は周方向へ延びるように、形成され
る。光透過性材料は、比較的剛性が高いので、透孔や溝
の形成により適切な撓み性を得ることができる。
【0031】好ましくは、光導波路の不連続部分は、振
動板の透孔や溝の位置に関係した位置に形成される。振
動板における特定の個所への線状の溝や透孔の形成によ
り、その形成位置に対して所定の場所の撓み性が増大す
る。このような撓み性の増大した個所に光導波路の不連
続部分を設置することにより振動板の振動に対する光導
波路の両端間の光伝送量の特性を改善することができ
る。
【0032】第15の発明の振動検出装置によれば、第
13又は第14の発明の振動検出装置において、発光素
子及び受光素子は、振動板の周辺部を包囲するように装
着されるフレキシブル基板に配備されている。
【0033】好ましくはフレキシブル基板上の電気配線
と各素子との接続にはフリップチップ構造が利用され
る。フレキシブル基板の利用により発光素子及び受光素
子と振動板の光導波路との光接続と積層的な組立が円滑
に行われる。
【0034】第16の発明の振動検出装置によれば、第
13又は第14の発明の振動検出装置において、発光素
子及び受光素子は複数のセラミック層に埋設されるよう
に形成されており、振動板は、周辺部を所定のセラミッ
ク層間に挟まれている。
【0035】振動板、発光素子、及び受光素子はモジュ
ール化され、製造上の能率が高まる。
【0036】
【発明の実施の形態】以下、発明の実施の形態について
図面を参照して説明する。図1は光検出型マイクロホン
10の縦断面図である。前側穿設カバー12及び後ろ側
穿設カバー13は、円筒ケース11の軸方向前側及び後
ろ側の開口を覆い、円筒ケース11内へのちりや異物の
侵入を阻止しつつ、円筒ケース11内への音波の伝達を
許容している。正面視が円形の音圧検出モジュール17
は、円筒ケース11内において、その軸方向ほぼ中心部
に固定され、環状枠部18により周辺部を支持されてい
る振動板27を備えている。図1において、Fは音圧、
Aは音圧Fに起因する音圧検出モジュール17の振動を
示している。ここで、光検出型マイクロホン10の諸元
を例示すると、次のとおりである。 円筒ケース11の軸方向寸法:10mm以下。 円筒ケース11の外径:10mm以下。 振動板27の厚さ:10μm以下。 光検出型マイクロホン10の全体の重量:2g以下。
【0037】図2は図1の音圧検出モジュール17の正
面図である。環状枠部18は振動板27の周囲を包囲し
ている。振動板27は、光透過性材料から成り、振動板
27の直径に沿って振動板本体29内を延びている光導
波路28を有している。
【0038】図3は図2の振動板27及びその組付け物
の縦断面図である。振動板27における光導波路28の
形成方法としては、半導体製造技術を使って、光導波路
28の部分にはマスクを施しつつ、振動板27(例えば
リチウムナイオレートLiNO3)にイオン交換処理を
して、交換部の屈折率を、非交換部に対して低下させ、
該非交換部が光導波路28となる。光導波路28が、そ
の径方向、すなわち振動板27の振動方向の撓みに応じ
て両端間の光伝送量を変化させるためには、換言すれ
ば、振動板27の振動方向の撓みに応じて光導波路28
の外への光漏れ量を変化させるためには、光導波路28
を細く、例えば光導波路28の径を伝送光の波長の約1
0倍以下にする。光導波路28の一端側における振動板
27の両面には発光素子20及び発光モニター素子21
が固定され、また、光導波路28の他端側における振動
板27の両面には受光素子24が固定される。回折光学
素子部分33は、光導波路28と同様に、光導波路28
の両端部においてイオン注入により振動板27内に生成
される。光導波路28の一端側における回折光学素子部
分33により、発光素子20から振動板27への入射光
は、光導波路28へ導かれ、その所定分が発光モニター
素子21へ導かれる。また、光導波路28の他端側にお
ける回折光学素子部分33により、光導波路28からの
光が両受光素子24へ入射される。
【0039】図4は図2の環状枠部18の展開図であ
る。環状枠部18は、フレキシブル基板19と、フレキ
シブル基板19にフリップチップ構造により組み付けら
れた各種電気素子とを備えている。フレキシブル基板1
9は、振動板27を両側から挟み込み内側に円形開口3
7をもつ1対の環状側板部35と、両環状側板部を相互
に電気回路的に接続する結合回路帯部36と、一方の環
状側板部35に結合していて他方の環状側板部35の回
路に接続しつつ振動板27の周辺部を間に挟んで両環状
側板部35を相互に固着する留めバンド回路部38とを
有している。留めバンド回路部38の着いている方の環
状側板部35では、直径方向両端位置に発光モニター素
子21及び受光素子24がそれぞれ組み付けられ、発光
モニター素子21の両側近傍にはそれぞれ信号処理IC
40,41が組付けられている。結合回路帯部36で接
続されているもう一方の環状側板部35では、直径方向
両端位置に発光素子20及び受光素子24がそれぞれ組
み付けられ、受光素子24の両側近傍にはそれぞれ信号
処理IC40,41が組付けられ、発光素子20の近傍
には発光自動調整IC39が組付けられている。発光自
動調整IC39は、発光モニター素子21の出力に基づ
いて発光素子20への供給電力を制御して、発光素子2
0の発光量を一定に制御する。信号処理IC40は両受
光素子24の受光量の計算値(音圧検出モジュール17
の場合は加算値)に対応する電気信号を出力する。発光
素子20には、例えばLED(発光ダイオード)や面発
光の半導体レーザー等の半導体光源が採用される。
【0040】図5は音圧検出モジュール17の音圧検出
原理の説明図である。図5において、Aは音圧に因る振
動板27の振動方向を示し、Lは光導波路28の撓みに
因る光導波路28からの漏れ光を示している。振動板2
7は、音圧を受けると、音圧に関係した振幅で肉厚方向
へ振動する。光導波路28は、振動板27の振動に伴
い、径方向へ撓む、光導波路28の横方向の撓みは、光
導波路28から外部への漏れ光Lを引き起こし、光導波
路28からの光漏れ量は光導波路28の横方向の撓み
量、したがって振動板27に作用する音圧に関係する。
結果、両光導波路28へ入射される光の量の合計は音圧
に関係した値になり、信号処理IC40からは音圧に関
係する電気信号が出力される。図13は振動方向への振
動板27の変位量と両受光素子24の合計の受光量との
関係を示している。振動板27の変位量は光検出型マイ
クロホン10の前方向を正としている。
【0041】図6はセラミック層43の積層構造をもつ
音圧検出モジュール17bの断面図である。計5層のセ
ラミック層43が、振動板27の周縁部以外を露出させ
つつ、積層されている。複数個の電極44は最下層のセ
ラミック層43の下面に露出している。発光素子20と
一方の受光素子24とは、光導波路28の層と同層に配
置され、発光素子20には例えば端面発光のファブリペ
ロ型半導体レーザーを採用する。回折光学素子部分33
は光導波路28の片側、図6では上側にのみに形成され
る。
【0042】図7は他の構造の光導波路28cを装備す
る音圧検出モジュール17cの正面図及び垂直断面図で
ある。音圧検出モジュール17cにおいて音圧検出モジ
ュール17と同一の部分は同符号で指示し、また、対応
要素については"c"を付加した符号で指示し、主要点に
ついてのみ説明する。光導波路28cは、振動板27c
のほぼ中心部において不連続部分45を備え、不連続部
分45を境に発光素子20側の上流側部分46と受光素
子24側の下流側部分47とに分割される。上流側部分
46は、個数が1本であり、振動板27の肉厚方向中心
点を連ねる面(以下、「中心面」と言う。)に沿って延
びている。下流側部分47は個数が2本であり、各下流
側部分47は、振動板27の中心面に対して前側及び後
ろ側に配置され、相互に平行に延びている。また、上流
側部分46の径は、各下流側部分47の径より大きく、
振動板27cが中立位置(=撓み0の位置)にあると
き、上流側部分46から直進して来る出射光は、ほぼ等
分されて、各下流側部分47へ入射する。
【0043】図8は図7の振動板27cの撓みに伴う不
連続部分45からの漏れ光Lを示している。図7及び図
8において、発光素子20からの光は、上流側部分46
に入射して、上流側部分46内を不連続部分45の方へ
導かれ、上流側部分46の不連続部分45側の端から不
連続部分45へ出射する。不連続部分45への出射光の
一部は、漏れ光Lとなって、振動板27cの外部へ漏
れ、残部は2本の下流側部分47へ入射して、各下流側
部分47に導かれて、各受光素子24に入射する。振動
板27cは、音圧を受けて、振動する。振動板27cが
中立位置にあるとき、すなわち振動板27cの変位量が
0であるとき、両下流側部分47は上流側部分46から
等光量Qの光を入射されている。これに対して、振動板
27cが一方向へ凸に撓んでいるとき、振動板27cの
振動方向への上流側部分46と各下流側部分47との相
対的なずれにより、上流側部分46から各下流側部分4
7への入射光量はそれぞれQ+ΔQ,Q−ΔQの光が入
射される。これにより、両受光素子24の受光量の差分
は、振動板27cの変位量==0のときも含めて、音圧
に対して2・ΔQとなる。
【0044】図14は図8の音圧検出モジュール17c
における振動板27cの変位量と両受光素子24の受光
量の差分との関係を示している。振動板27cの変位量
は光検出型マイクロホン10の前方向を正としている。
【0045】図9はコルゲート状の振動板27dを備え
る音圧検出モジュール17dの正面図及び垂直断面図で
ある。音圧検出モジュール17dにおいて音圧検出モジ
ュール17と同一の部分は同符号で指示し、また、対応
要素については"d"を付加した符号で指示し、主要点に
ついてのみ説明する。振動板27dは境界線51を境に
内側の中央のコルゲート状肉厚部分49と外側周辺の平
坦部分50とに分割されている。各面において、凹部と
凸部とは半径方向へ交互に配列され、振動板27dの肉
厚が半径方向へ均一になるように、一方の面における凸
部は他方の面における凹部になっている。振動板27d
を正面側から見て凸部を連ねる線は2本の境界線52に
より示される。光導波路28dは外側の一方の平坦部分
50から他方の平坦部分50に至る間において不連続部
分53があり、図では不連続部分53は光導波路28d
に計5個所設けられている。コルゲート形状部分49
は、平坦構造よりも振動板27dの撓み性を増大する効
果がある。コルゲート形状部分49は、また、撓みの方
向性を規定する機能もあり、振動板27dの撓み方向を
音圧を受ける方向へ合わせることにより、音圧に対する
撓み量を増大できる。
【0046】図10はコルゲート状振動板の変形例の拡
大図である。図10の振動板27e,27f,27gに
おいて、図9の振動板27dと同一の要素は振動板27
dの要素と同一符号で指示して、説明は省略し、対応要
素については、"d"の符号を"e"、"f"、及び"g"に変
更して、指示している。振動板27e,27fの各面に
おいて、凸部64と凹部65とは半径方向へ交互に配列
され、振動板27e,27fの肉厚が半径方向へ均一に
なるように、同一の半径方向位置の両面では、一方の面
が凸部64に、また、他方の面には凹部65になってい
る。図10(a)の振動板27eの光導波路28e及び
図10(b)の振動板27fの光導波路28fは、振動
板28e,28fのコルゲート形状に沿って波打ちなが
ら振動板本体29e,29f内を延びている。振動板2
7eの光導波路28eは連続であり、振動板27fの光
導波路28fは複数個の不連続部分53を有している。
不連続部分53は、振動板27eの振動時の位相が揃う
ように、一方の面における凸部64と半径方向位置を一
致させて、設けられている。図10(c)の振動板27
gは振動板27fの変形であり、該振動板27gでは、
一方の面の凸部64と他方の面の凸部64とが、また、
一方の面の凹部65と他方の面凹部65とが、同一の半
径方向位置に形成されている。これにより、凹部65の
ある半径方向位置では凸部64のある半径方向位置に対
して振動板27gの剛性が低下し、すなわち撓み易くな
り、また、この撓み易い位置に不連続部分53が設けら
れている。こうして、振動板27gの振動に対する漏れ
光Lの量の変化を顕著にできる。
【0047】図11は切欠き58付き振動板27hを備
える音圧検出モジュール17hの正面図、図12は振動
板27hの拡大断面図である。音圧検出モジュール17
hにおいて音圧検出モジュール17と同一の部分は同符
号で指示し、また、対応要素については"h"を付加した
符号で指示し、主要点についてのみ説明する。振動板2
7hは、半径方向へ中心から順番に円形平板部55、環
状中間部56、及び周辺平板部57を有している。図1
2から分かるように、円形平板部55は周辺平板部57
に対して振動板27hの軸方向へ突出しており、環状中
間部56は円形平板部55及び周辺平板部57に対して
斜めに広がっている。光導波路28は、振動板27hの
断面輪郭線に沿って振動板本体29h内を延びている。
境界線59は円形平板部55と環状中間部56との境界
線、境界線60は環状中間部56と周辺平板部57との
境界線を示している。環状中間部56には、複数個の切
欠き58が周方向へ等角度間隔に穿設されている。各切
欠き58の幅は、図では誇張されて描かれており、実際
には50μmである。切欠き58により環状中間部56
の可撓性が向上する。光導波路28hは、境界線59及
び境界線60との交差個所において不連続部分61を有
しており、不連続部分61の総計は4個となっている。
振動板27hは、音圧を受けると、境界線59及び境界
線60の個所において振動方向へ最大の撓みになる。不
連続部分61を振動板27hの最大撓みの生じる個所に
設定することにより、音圧の単位変化量に対する光導波
路28h4の両端間の光伝送量の変化量が増大する。
【図面の簡単な説明】
【図1】光検出型マイクロホンの縦断面図である。
【図2】図1の音圧検出モジュールの正面図である。
【図3】図2の振動板及びその組付け物の縦断面図であ
る。
【図4】図2の環状枠部の展開図である。
【図5】音圧検出モジュールの音圧検出原理の説明図で
ある。
【図6】セラミック層の積層構造をもつ音圧検出モジュ
ールの断面図である。
【図7】他の構造の光導波路を装備する音圧検出モジュ
ールの正面図及び垂直断面図である。
【図8】図7の振動板の撓みに伴う不連続部分からの漏
れ光を示す図である。
【図9】コルゲート状の振動板を備える音圧検出モジュ
ールの正面図及び垂直断面図である。
【図10】コルゲート状振動板の変形例の拡大図であ
る。
【図11】切り欠き付き振動板を備える音圧検出モジュ
ールの正面図である。
【図12】図11の振動板の拡大断面図である。
【図13】振動方向への振動板の変位量と両受光素子の
合計の受光量との関係を示す図である。
【図14】図8の音圧検出モジュールにおける振動板の
変位量と両受光素子の受光量の差分との関係を示す図で
ある。
【図15】公知の光検出型マイクロホンの概略図であ
る。
【図16】別の公知の光検出型マイクロホンの概略図で
ある。
【図17】図16の光検出型マイクロホンの詳細図であ
る。
【符号の説明】
10 光検出型マイクロホン(振動検出装置) 20a〜20d 発光素子 27a〜27h 振動板 20 発光素子 24a〜24d 受光素子

Claims (16)

    【特許請求の範囲】
  1. 【請求項1】 振動を面に受けて振動する振動板に、そ
    の面方向へ延びる光導波路を該振動板と一体振動自在に
    装備させ、該光導波路は、振動変位量に応じて外部への
    光漏れ量を変化させることにより、前記振動板の振動変
    位に関係して両端間の光伝送量を変化させるようになっ
    ていることを特徴とする振動検出装置。
  2. 【請求項2】 前記光導波路は、その変形に伴い材料密
    度を変化させ、これにより屈折率を変化させるものとさ
    れていることを特徴とする請求項1記載の振動検出装
    置。
  3. 【請求項3】 前記光導波路は、その変形に伴い外部へ
    の光漏れ量が変化する程度に前記振動板の振動方向への
    径を小さくされていることを特徴とする請求項1記載の
    振動検出装置。
  4. 【請求項4】 前記光導波路の屈折率は、その変形に伴
    い外部への光漏れ量が変化するように、不均一に設定さ
    れていることを特徴とする請求項記1載の振動検出装
    置。
  5. 【請求項5】 前記光導波路は、その延び方向へ不連続
    部分を備え、前記振動板の振動に伴う該不連続部分の両
    端間の振動方向への相対変位に応じて該不連続部分から
    の光漏れ量を変化させるようになっていることを特徴と
    する請求項1記載の振動検出装置。
  6. 【請求項6】 振動に伴い振動方向へ撓む撓み部分をも
    つ振動体、光導波路を備え該光導波路は前記振動体の前
    記撓み部分を通過して前記撓み部分と一体に撓む部分
    (以下、該部分を「通過部分」と言う。)をもちかつ前
    記通過部分の撓みに応じて両端間の光伝送量を変化させ
    る光導波路保持体、 前記光導波路の一端側へ所定光量の光を入射する発光素
    子、及び前記光導波路の他端側からの出射光を受けてそ
    の光量に関係する電気信号を出力する受光素子、を有し
    ていることを特徴とする振動検出装置。
  7. 【請求項7】 前記光導波路の前記通過部分は、連続し
    ており、その撓みに伴い材料密度を変化させ、これによ
    り屈折率を変化させることを特徴とする請求項6記載の
    振動検出装置。
  8. 【請求項8】 前記光導波路の前記通過部分は連続して
    おり、前記光導波路は、前記通過部分における外部への
    光漏れ量が前記通過部分の撓み量に応じて変化する程度
    に、前記振動体の振動方向への前記通過部分の径を小さ
    く設定されていることを特徴とする請求項6記載の振動
    検出装置。
  9. 【請求項9】 前記光導波路の前記通過部分は連続して
    おり、前記光導波路の前記通過部分の屈折率は、前記通
    過部分における外部への光漏れ量が前記通過部分の撓み
    量に応じて変化するように、不均一に設定されているこ
    とを特徴とする請求項6記載の振動検出装置。
  10. 【請求項10】 前記光導波路の前記通過部分は、延び
    方向へ不連続部分を備え、前記光導波路保持体は、前記
    振動体の振動に伴う該不連続部分の両端間の振動方向相
    対変位に応じて該不連続部分からの光漏れ量を変化させ
    て、前記光導波路の両端間の光伝送量を変化させるもの
    であることを特徴とする請求項6記載の振動検出装置。
  11. 【請求項11】 前記振動体は、その振動方向に厚さ方
    向を一致させた振動板であり、前記光導波路の前記通過
    部分は、延び方向へ1個の不連続部分を備え、前記光導
    波路は、該不連続部分に対して発光素子側及び受光素子
    側の個数がそれぞれ1本及び2本になっており、前記光
    導波路の前記発光素子側部分は前記振動板の厚さ方向の
    中心を連ねた面(以下、「中心面」と言う。)に位置す
    るのに対して、前記光導波路の該2本の受光素子側部分
    は、前記中心面に対して両側に位置し、前記不連続部分
    を介しての前記光導波路の前記発光素子側部分から前記
    光導波路の両受光素子側部分への光伝送量が前記不連続
    部分の撓みに応じて変化するようになっていることを特
    徴とする請求項6又は10記載の振動検出装置。
  12. 【請求項12】 前記振動体は、その振動方向に厚さ方
    向を一致させた振動板であり、前記光導波路保持体は、
    前記振動板の厚さ方向へ異なる個所に複数個、配置さ
    れ、前記発光素子は等光量の光を各光導波路保持体の一
    端側へ入射し、各受光素子は各光導波路の他端側からの
    出射光の光量を検出することを特徴とする請求項6〜9
    のいずれかに記載の振動検出装置。
  13. 【請求項13】 前記振動体と前記光導波路保持体と
    は、1枚の光透過性材料から作成された振動板であるこ
    とを特徴とする請求項6〜12のいずれかに記載の振動
    検出装置。
  14. 【請求項14】 前記振動板は、撓み性向上のための線
    状の透孔又は溝を有していることを特徴とする請求項1
    3記載の振動検出装置。
  15. 【請求項15】 前記発光素子及び前記受光素子は、前
    記振動板の周辺部を包囲するように装着されるフレキシ
    ブル基板に配備されていることを特徴とする請求項13
    又は14記載の振動検出装置。
  16. 【請求項16】 前記発光素子及び前記受光素子は複数
    のセラミック層に埋設されるように形成されており、前
    記振動板は、周辺部を所定のセラミック層間に挟まれて
    いることを特徴とする請求項13又は142記載の振動
    検出装置。
JP2001034573A 2001-02-09 2001-02-09 マイクロホン Expired - Fee Related JP3951613B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001034573A JP3951613B2 (ja) 2001-02-09 2001-02-09 マイクロホン
DE60222744T DE60222744T2 (de) 2001-02-09 2002-02-08 Schwingungssensor
DE0001367855T DE02711415T1 (de) 2001-02-09 2002-02-08 Vibrationsdetektor
PCT/JP2002/001087 WO2002065812A1 (fr) 2001-02-09 2002-02-08 Detecteur de vibrations
US10/470,997 US7114395B2 (en) 2001-02-09 2002-02-08 Vibration detector
EP02711415A EP1367855B1 (en) 2001-02-09 2002-02-08 Vibration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034573A JP3951613B2 (ja) 2001-02-09 2001-02-09 マイクロホン

Publications (2)

Publication Number Publication Date
JP2002243537A true JP2002243537A (ja) 2002-08-28
JP3951613B2 JP3951613B2 (ja) 2007-08-01

Family

ID=18898157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034573A Expired - Fee Related JP3951613B2 (ja) 2001-02-09 2001-02-09 マイクロホン

Country Status (5)

Country Link
US (1) US7114395B2 (ja)
EP (1) EP1367855B1 (ja)
JP (1) JP3951613B2 (ja)
DE (2) DE02711415T1 (ja)
WO (1) WO2002065812A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015324A1 (ja) * 2005-08-01 2007-02-08 Tama-Tlo, Ltd. マイクロフォン素子
US9681235B2 (en) 2014-09-30 2017-06-13 Fujitsu Limited Vibration detection component, and acoustic device and information apparatus using vibration detection component

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668322B2 (en) * 2001-05-18 2010-02-23 Tpo Hong Kong Holding Limited Device for detecting pressure fluctuations, display device, recording device and sound reproduction system
EA009298B1 (ru) * 2004-07-26 2007-12-28 Спайдер Текнолоджис Секьюрити Лтд. Вибродатчик
US20100116059A1 (en) * 2004-07-26 2010-05-13 Spider Technologies Security Ltd. Vibration sensor having a single virtual center of mass
US8559770B2 (en) * 2005-03-02 2013-10-15 Fiso Technologies Inc. Fabry-perot optical sensor and method of manufacturing the same
WO2007136779A2 (en) * 2006-05-19 2007-11-29 New Jersey Institute Of Technology Aligned embossed diaphgragm based fiber optic sensor
US7561277B2 (en) * 2006-05-19 2009-07-14 New Jersey Institute Of Technology MEMS fiber optic microphone
US8594507B2 (en) * 2011-06-16 2013-11-26 Honeywell International Inc. Method and apparatus for measuring gas concentrations
US20120321322A1 (en) * 2011-06-16 2012-12-20 Honeywell International Inc. Optical microphone
WO2013055394A1 (en) * 2011-10-14 2013-04-18 Advanced Fuel Research, Inc. Laser stethoscope
WO2013115770A1 (en) * 2012-01-30 2013-08-08 Empire Technology Development Llc Systems, materials, and methods for a mechanical stress activated interface using piezo-optical components
WO2015108531A1 (en) 2014-01-17 2015-07-23 Empire Technology Development Llc Aligning guide using pressure-sensitive index change elastomer
WO2015163896A1 (en) 2014-04-24 2015-10-29 Empire Technology Development Llc Rewritable photorefractive polymer layer for optical fiber coupling
DE102016205572A1 (de) * 2016-04-05 2017-10-05 Osram Gmbh Akustischer sensor
GB2558963A (en) 2017-01-18 2018-07-25 Cirrus Logic Int Semiconductor Ltd Flexible membrane

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542536A (en) * 1967-09-01 1970-11-24 Hazeltine Research Inc Method of forming optical waveguide by irradiation of dielectric material
GB1583107A (en) * 1977-09-07 1981-01-21 Standard Telephones Cables Ltd Acousto-optic transducer arrangement
US4342907A (en) * 1977-12-12 1982-08-03 Pedro B. Macedo Optical sensing apparatus and method
USRE31248E (en) * 1978-06-07 1983-05-24 Paul J. Berger Electro-mechanical transducer
US4162397A (en) * 1978-06-28 1979-07-24 The United States Of America As Represented By The Secretary Of The Navy Fiber optic acoustic sensor
US4268116A (en) * 1979-10-26 1981-05-19 Optelecom Incorporated Method and apparatus for radiant energy modulation in optical fibers
US4443700A (en) * 1980-02-01 1984-04-17 Pedro B. Macedo Optical sensing apparatus and method
GB2084719A (en) * 1980-09-30 1982-04-15 Standard Telephones Cables Ltd Measuring fluid flow
JPS5857898A (ja) * 1981-09-30 1983-04-06 Matsushita Electric Works Ltd マイクロホン
JPS61170623A (ja) * 1985-01-25 1986-08-01 Nec Corp 光フアイバセンサ
EP0227556A1 (fr) * 1985-12-24 1987-07-01 Schlumberger Industries Capteur optique de grandeurs physiques
US5049460A (en) * 1988-05-31 1991-09-17 Siemens Aktiengesellschaft Method for producing beam-shaping diaphragms for lithographic devices
JPH02107927A (ja) * 1988-10-17 1990-04-19 Fujikura Ltd 光ファイバ音響センサ
US5420688A (en) * 1992-12-14 1995-05-30 Farah; John Interferometric fiber optic displacement sensor
US5513533A (en) * 1993-04-15 1996-05-07 The United States Of America As Represented By The Secretary Of The Navy Detection of vibrational energy via optical interference patterns
JPH09101225A (ja) * 1995-10-06 1997-04-15 Hitachi Ltd 光ファイバ圧力センサ
DE19623504C1 (de) * 1996-06-13 1997-07-10 Deutsche Forsch Luft Raumfahrt Optisches Mikrophon
US6160762A (en) * 1998-06-17 2000-12-12 Geosensor Corporation Optical sensor
US6018386A (en) * 1998-07-03 2000-01-25 The United States Of America As Represented By The Secretary Of The Air Force Oscillatory, optically coupled measurement system
JP3456927B2 (ja) * 1999-08-06 2003-10-14 学校法人早稲田大学 グレーティング並びにグレーティング形成方法及び装置
EP1254356A1 (en) * 2000-02-11 2002-11-06 Rosemount, Inc. Oil-less differential pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015324A1 (ja) * 2005-08-01 2007-02-08 Tama-Tlo, Ltd. マイクロフォン素子
US9681235B2 (en) 2014-09-30 2017-06-13 Fujitsu Limited Vibration detection component, and acoustic device and information apparatus using vibration detection component

Also Published As

Publication number Publication date
EP1367855A1 (en) 2003-12-03
US20040067005A1 (en) 2004-04-08
JP3951613B2 (ja) 2007-08-01
US7114395B2 (en) 2006-10-03
EP1367855A4 (en) 2005-11-16
DE02711415T1 (de) 2004-07-08
DE60222744D1 (de) 2007-11-15
WO2002065812A1 (fr) 2002-08-22
DE60222744T2 (de) 2008-01-31
EP1367855B1 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP3951613B2 (ja) マイクロホン
US7293463B2 (en) Acoustoelectric conversion device
US9641941B2 (en) Transducer system
JP3522212B2 (ja) 音響等による微小変位検出装置
JP7387645B2 (ja) 光マイクロフォンアセンブリ
KR100637563B1 (ko) 광학식 음향전기 변환장치
US20220167096A1 (en) Optical microphone assembly
CN217363313U (zh) 光学麦克风
KR100629048B1 (ko) 광학소자를 이용한 음향전기 변환장치
CN111289085A (zh) 麦克风振膜振幅测量方法及其装置
CN115462096A (zh) 麦克风组件及制造方法
CN114175683A (zh) 用于测量位移的光学换能器及方法
JP2001157298A (ja) 光学式マイクロホンおよびその製造方法
JP2001296310A (ja) 光センサおよびその製造方法
WO2024066102A1 (zh) 一种 mems 光学麦克风
JPH01277000A (ja) 音響センサ
JPH02190099A (ja) 光学式マイクロホン
CN116745592A (zh) 位移检测器、位移检测器阵列和制造位移检测器的方法
JP2008202991A (ja) 振動検出装置
JPH02254370A (ja) 周波数分析装置
JP2003284193A (ja) 光学式音響電気信号変換装置の位置調整機構

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees