JP2002237306A - Solid polymer fuel cell and its manufacturing method - Google Patents

Solid polymer fuel cell and its manufacturing method

Info

Publication number
JP2002237306A
JP2002237306A JP2001031732A JP2001031732A JP2002237306A JP 2002237306 A JP2002237306 A JP 2002237306A JP 2001031732 A JP2001031732 A JP 2001031732A JP 2001031732 A JP2001031732 A JP 2001031732A JP 2002237306 A JP2002237306 A JP 2002237306A
Authority
JP
Japan
Prior art keywords
catalyst layer
polymer electrolyte
catalyst
fuel cell
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001031732A
Other languages
Japanese (ja)
Inventor
Miyako Hitomi
美也子 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001031732A priority Critical patent/JP2002237306A/en
Publication of JP2002237306A publication Critical patent/JP2002237306A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain a solid polymer fuel cell which has a superior cell characteristic by suppressing the drying of electrolyte membrane of an entrance side of reaction gas and by suppressing the reduction of gas diffusion performance of a catalyst layer of an exit side. SOLUTION: In the fuel cell which uses an electrolyte/electrode junction 4A constituted by arranging a catalyst layer 2A and a gas diffusion layer 3 for both faces of a solid polymer electrolyte membrane 1, the catalyst layer 2a is constituted from the first catalyst layer 21 of a small pore size and pore volume and from the second catalyst layer 22 of a large pore size and pore volume, and this is constituted so that the first catalyst layer 21 is arranged at the entrance side of the reaction gas, and the second catalyst layer 22 at the exist side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜と触媒層およびガス拡散層からなる電解質膜・電極接
合体を用いる固体高分子形燃料電池、ならびにその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell using an electrolyte membrane-electrode assembly comprising a polymer electrolyte membrane, a catalyst layer and a gas diffusion layer, and a method for producing the same.

【0002】[0002]

【従来の技術】図4は、従来の固体高分子形燃料電池の
単セルの基本構成例を示す分解断面図である。図に見ら
れるように、本単セルは、固体高分子電解質膜1の両面
に貴金属触媒を含む触媒層2を形成したのち、その両外
側に反応ガスの拡散機能と集電体としての機能を併せ持
つガス拡散層3を熱圧着することによって得られた電解
質膜・電極接合体4(MEA;Membrane and Electroly
te Assembly )と、その両外側に配されたガス流通溝付
きのセパレータ5からなる。
2. Description of the Related Art FIG. 4 is an exploded sectional view showing an example of a basic structure of a single cell of a conventional polymer electrolyte fuel cell. As shown in the figure, this single cell forms a catalyst layer 2 containing a noble metal catalyst on both sides of a solid polymer electrolyte membrane 1 and then has a function of diffusing a reaction gas and a function as a current collector on both outer sides thereof. An electrolyte membrane / electrode assembly 4 (MEA; Membrane and Electrolyte) obtained by thermocompression bonding of the gas diffusion layer 3 having the same
te Assembly) and separators 5 with gas flow grooves arranged on both outer sides thereof.

【0003】固体高分子電解質膜1には、パーフルオロ
スルホン酸ポリマー膜(米国デュポン社;商品名Nafion
膜)がよく用いられる。この膜は、飽和に含水させるこ
とによって常温で比抵抗が 20 Ω・cm以下となり、プロ
トン導電性電解質として機能する。触媒層2は、通常、
粒子状の白金黒あるいは白金担持カーボンと撥水性を有
するフッ素樹脂から形成される。触媒の反応面積を増大
させるために、触媒層の中に固体高分子電解質樹脂を混
合する方法を用いる場合もある。なお、触媒層2には、
その触媒粒子相互の間にガスの流路を確保するための細
孔が備えられている。ガス拡散層3は、導電性を備えた
カーボンペーパーあるいはカーボンクロスを用いて形成
されており、前述のように、セパレータ5のガス流通溝
を流れる反応ガスを触媒層へと拡散させる機能と集電体
としての機能を果たす。
The solid polymer electrolyte membrane 1 includes a perfluorosulfonic acid polymer membrane (Dupont, USA; trade name: Nafion)
Film) is often used. This membrane has a specific resistance of 20 Ω · cm or less at room temperature by being saturated with water, and functions as a proton conductive electrolyte. The catalyst layer 2 is usually
It is made of particulate platinum black or platinum-supporting carbon and a water-repellent fluororesin. In order to increase the reaction area of the catalyst, a method of mixing a solid polymer electrolyte resin in the catalyst layer may be used. The catalyst layer 2 includes
Pores are provided for securing a gas flow path between the catalyst particles. The gas diffusion layer 3 is formed using conductive carbon paper or carbon cloth, and as described above, has the function of diffusing the reaction gas flowing through the gas flow grooves of the separator 5 to the catalyst layer and the function of collecting current. Serves as a body.

【0004】本構成において、一方のセパレータ5のガ
ス流通溝に水素を含んだ燃料極ガスを、もう一方のセパ
レータ5のガス流通溝に酸素を含んだ空気極ガスを供給
すると、固体高分子電解質膜1と触媒層2の界面におけ
る水素の酸化反応、および酸素の還元反応により、プロ
トンおよび電子の移動が起こり、電気エネルギーが外部
に取出される。
In this configuration, when a fuel electrode gas containing hydrogen is supplied to a gas flow groove of one separator 5 and an air electrode gas containing oxygen is supplied to a gas flow groove of the other separator 5, the solid polymer electrolyte Oxidation reaction of hydrogen and reduction reaction of oxygen at the interface between the membrane 1 and the catalyst layer 2 cause transfer of protons and electrons, and electric energy is extracted to the outside.

【0005】[0005]

【発明が解決しようとする課題】ところで、固体高分子
形燃料電池では、固体高分子電解質膜をプロトン導電性
電解質として機能させるために反応ガスを加湿して供給
する方法が採られるが、電気エネルギーを得る電気化学
反応の際に反応生成水が生じるため、下流側に行くに従
って反応ガスに含まれる水分量が増大する。通常、固体
高分子形燃料電池の単セルでは、図4に見られるごと
く、セパレータ5の一端(図4においては紙面上端)に
備えた図示しないガス供給マニホールドより燃料極ガ
ス、あるいは空気極ガスを供給してガス流通溝へ流し、
他端(図4においては紙面下端)に備えた図示しないガ
ス排出マニホールドへ送って排出する方法が採られてい
る。したがって、反応ガスは触媒層2の面に沿って流
れ、触媒層2の一端(図4においては紙面上端)には相
対的に水分量の少ない反応ガスが拡散し、他端(図4に
おいては紙面下端)には相対的に水分量の多い反応ガス
が拡散することとなる。
By the way, in a polymer electrolyte fuel cell, a method of humidifying and supplying a reaction gas in order to make a polymer electrolyte membrane function as a proton conductive electrolyte is adopted. Since water produced by the reaction is generated during the electrochemical reaction for obtaining, the amount of water contained in the reaction gas increases toward the downstream side. Normally, in a single cell of a polymer electrolyte fuel cell, as shown in FIG. 4, a fuel electrode gas or an air electrode gas is supplied from a gas supply manifold (not shown) provided at one end of the separator 5 (the upper end in FIG. 4). Supply and flow into the gas flow channel,
A method is employed in which the gas is sent to a gas discharge manifold (not shown) provided at the other end (the lower end of the sheet in FIG. 4) to discharge the gas. Accordingly, the reaction gas flows along the surface of the catalyst layer 2, and the reaction gas having a relatively small amount of water diffuses at one end of the catalyst layer 2 (the upper end of the paper in FIG. 4), and the other end (in FIG. 4, The reaction gas having a relatively large amount of water diffuses into the lower end of the drawing).

【0006】これに対して、従来の固体高分子形燃料電
池の電解質膜・電極接合体に用いられている触媒層は、
触媒と固体高分子電解質樹脂のアルコール溶液を混合し
て得たペーストをガス拡散層上に塗布して形成されてい
るので、反応ガスを拡散させるための細孔が触媒層内の
全域に渡ってほぼ均質に備えられている。このため、反
応ガスに含まれる水分量が相対的に少ない上流側に位置
する触媒層内では、細孔を通して水分が容易に排出され
るので、電解質膜の乾燥が生じ、セル特性が低下すると
いう問題点がある。一方、反応ガスに含まれる水分量が
相対的に多い下流側に位置する触媒層内では、水分の排
出が不足するので、細孔を通してのガス拡散が不十分と
なってセル特性が低下するという問題点がある。
[0006] On the other hand, the catalyst layer used in the electrolyte membrane / electrode assembly of the conventional polymer electrolyte fuel cell is
Since the paste obtained by mixing the catalyst and the alcohol solution of the polymer electrolyte resin is coated on the gas diffusion layer, the pores for diffusing the reaction gas are formed all over the catalyst layer. Almost homogeneously provided. For this reason, in the catalyst layer located on the upstream side where the amount of water contained in the reaction gas is relatively small, water is easily discharged through the pores, so that the electrolyte membrane is dried and the cell characteristics deteriorate. There is a problem. On the other hand, in the catalyst layer located on the downstream side where the amount of water contained in the reaction gas is relatively large, since the discharge of water is insufficient, gas diffusion through the pores becomes insufficient and the cell characteristics deteriorate. There is a problem.

【0007】本発明の目的は、上記のごとき従来の電解
質膜・電極接合体に用いられている触媒層に係わる問題
点を解消して、セル特性の低下が抑制される電解質膜・
電極接合体を備えた固体高分子形燃料電池、およびその
製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems associated with the catalyst layer used in the conventional electrolyte membrane / electrode assembly as described above, and to suppress the deterioration of cell characteristics.
An object of the present invention is to provide a polymer electrolyte fuel cell having an electrode assembly and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、 (1)固体高分子電解質膜の両面に触媒層およびガス拡
散層を配して構成される電解質膜・電極接合体を用いる
固体高分子形燃料電池において、上記の触媒層を、細孔
径および細孔容積が相対的に小さい第1の触媒層と細孔
径および細孔容積が相対的に大きい第2の触媒層から構
成し、かつ、第1の触媒層を反応ガスの入口側に、また
第2の触媒層を反応ガスの出口側に配することとする。
In order to achieve the above object, the present invention provides: (1) an electrolyte membrane comprising a catalyst layer and a gas diffusion layer on both sides of a solid polymer electrolyte membrane; In the polymer electrolyte fuel cell using the electrode assembly, the catalyst layer is formed by forming a first catalyst layer having a relatively small pore diameter and a small pore volume with a second catalyst layer having a relatively large pore diameter and a small pore volume. The first catalyst layer is provided on the inlet side of the reaction gas, and the second catalyst layer is provided on the outlet side of the reaction gas.

【0009】(2)さらに、触媒と固体高分子電解質樹
脂のアルコール溶液を混合して得たペーストを乾燥し、
粉末化して電解質樹脂付き触媒を作製し、この電解質樹
脂付き触媒と高分子量有機溶媒、例えばエチレングリコ
ール系有機溶媒あるいはグリセリン等の高分子量有機溶
媒を混合して得たペーストをガス拡散層上の反応ガス入
口側領域に塗布したのち、乾燥することによって第1の
触媒層を作製し、上記の電解質樹脂付き触媒と低分子量
有機溶媒、例えば炭素数が1乃至6のアルコール溶媒の
うちのいずれか一つを混合して得たペーストをガス拡散
層上の第1の触媒層に隣接する反応ガス出口側領域に塗
布したのち、乾燥することによって第2の触媒層を作製
し、第1の触媒層と第2の触媒層を備えたガス拡散層を
固体高分子電解質膜の両面に配し、これらの触媒層を固
体高分子電解質膜に圧着して電解質膜・電極接合体を製
作する方法を用いて固体高分子形燃料電池を製造するこ
ととする。
(2) Further, the paste obtained by mixing the catalyst and the alcohol solution of the solid polymer electrolyte resin is dried,
The catalyst obtained with powdered electrolyte resin is prepared, and the paste obtained by mixing the catalyst with electrolyte resin and a high molecular weight organic solvent such as an ethylene glycol organic solvent or a high molecular weight organic solvent such as glycerin is reacted on the gas diffusion layer. After being applied to the gas inlet side region, the first catalyst layer is prepared by drying, and one of the above-mentioned catalyst with an electrolyte resin and a low molecular weight organic solvent, for example, an alcohol solvent having 1 to 6 carbon atoms is used. A paste obtained by mixing the two is applied to a reaction gas outlet side region adjacent to the first catalyst layer on the gas diffusion layer, and then dried to form a second catalyst layer. And a gas diffusion layer having a second catalyst layer disposed on both sides of the solid polymer electrolyte membrane, and pressing these catalyst layers against the solid polymer electrolyte membrane to produce an electrolyte membrane / electrode assembly. And to produce a polymer electrolyte fuel cell.

【0010】上記の(1)のごとく、触媒層を、細孔径
および細孔容積が相対的に小さい第1の触媒層と細孔径
および細孔容積が相対的に大きい第2の触媒層から構成
し、第1の触媒層を反応ガスの入口側に、また第2の触
媒層を反応ガスの出口側に配することとすれば、細孔径
および細孔容積が小さくなったことによって反応ガスの
入口側の水分の排出が抑えられ、固体高分子膜の乾燥に
起因するセル特性の低下が抑制される。また、細孔径お
よび細孔容積が大きくなったことによって反応ガスの出
口側の細孔を通してのガス拡散性が向上し、ガス拡散性
の低下に起因するセル特性の低下が抑制される。
As described in the above (1), the catalyst layer comprises a first catalyst layer having a relatively small pore diameter and a small pore volume and a second catalyst layer having a relatively large pore diameter and a large pore volume. If the first catalyst layer is arranged on the inlet side of the reaction gas and the second catalyst layer is arranged on the outlet side of the reaction gas, the pore diameter and the pore volume are reduced, so that the reaction gas is reduced. The discharge of water on the inlet side is suppressed, and a decrease in cell characteristics due to drying of the solid polymer film is suppressed. In addition, since the pore diameter and the pore volume are increased, the gas diffusivity through the pores on the outlet side of the reaction gas is improved, and the decrease in cell characteristics due to the decrease in gas diffusivity is suppressed.

【0011】次に、固体高分子電解質樹脂はスルホン酸
基の親水部分で有機溶剤を吸収して膨潤する性質を持
ち、その膨潤度は有機溶剤の種類により異なる。有機溶
剤がメタノール、エタノール、プロパノール等の炭素数
1乃至6の低分子量アルコール溶剤であれば、樹脂は大
きく膨潤し、エチレングリコール系有機溶媒あるいはグ
リセリン等の高分子量有機溶媒では、ほとんど膨潤しな
い。膨潤した樹脂を含むペーストを塗布して触媒層を形
成し、そののち乾燥させれば、樹脂は再び収縮するので
触媒層に細孔が生じる。膨潤度が多ければ収縮量も多く
なるので、低分子量有機溶剤を用いて膨潤させた場合に
は、細孔径が大きく、細孔容積も大きい触媒層が、高分
子量有機溶剤を用いて膨潤させた場合には、細孔径が小
さく、細孔容積も小さい触媒層が得られることとなる。
したがって、上記(2)のごとき方法を用いれば、上記
の(1)のごとき構成の固体高分子形燃料電池を製造す
ることができる。
Next, the solid polymer electrolyte resin has the property of swelling by absorbing an organic solvent at the hydrophilic portion of the sulfonic acid group, and the degree of swelling varies depending on the type of the organic solvent. The carbon number of the organic solvent is methanol, ethanol, propanol, etc.
With a low molecular weight alcohol solvent of 1 to 6, the resin swells greatly, and with a high molecular weight organic solvent such as an ethylene glycol organic solvent or glycerin, it hardly swells. If a paste containing the swollen resin is applied to form a catalyst layer and then dried, the resin shrinks again and pores are formed in the catalyst layer. If the degree of swelling is large, the amount of shrinkage is also large, so when swelling using a low molecular weight organic solvent, the catalyst layer having a large pore diameter and large pore volume was swollen using a high molecular weight organic solvent. In this case, a catalyst layer having a small pore diameter and a small pore volume can be obtained.
Therefore, by using the method as described in (2) above, a polymer electrolyte fuel cell having the configuration as described in (1) can be manufactured.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施例を用いて詳
しく説明する。図1は、本実施例における固体高分子形
燃料電池の電解質膜・電極接合体の製造方法を示すフロ
ー図である。図に見られるごとく、本実施例において
は、まず、触媒と固体高分子電解質樹脂のパーフルオロ
スルホン酸ポリマー(米国デュポン社;商品名Nafion)
のアルコール溶液とを混合してペースト化したのち、真
空乾燥し、粉末化して電解質樹脂付き触媒を得た。次い
で得られた電解質樹脂付き触媒を二分し、その一方を高
分子量有機溶媒のエチレングリコールモノエチルエーテ
ルと混合して再度ペースト化したのち、導電性のカーボ
ンペーパーよりなるガス拡散層上の触媒層形成領域の半
面に刷毛を用いて 0.01 〜 0.03 mmの厚さに塗布した。
また、二分した電解質樹脂付き触媒のもう一方は、低分
子量有機溶媒のエタノールと混合して再度ペースト化し
たのち、上記のガス拡散層上の触媒層形成領域の残りの
半面に刷毛を用いて 0.01 〜 0.03 mmの厚さに塗布し
た。次いでこれらを乾燥することにより、高分子量有機
溶媒を使用して形成した第1の触媒層(細孔径;0.01〜
0.05μm、細孔容積;0.05〜0.4 ml/g)と低分子量有
機溶媒を使用して形成した第2の触媒層(細孔径;0.05
〜0.1 μm、細孔容積;0.4 〜1.0 ml/g)が隣接して配
された触媒層を得た。図2は、本実施例において形成さ
れた触媒層の構成を示す断面図である。本図において、
3はカーボンペーパーよりなるガス拡散層、21は細孔
径が小さく、細孔容積も小さい第1の触媒層、22は細
孔径が大きく、細孔容積も大きい第2の触媒層である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. FIG. 1 is a flowchart showing a method for manufacturing an electrolyte membrane / electrode assembly of a polymer electrolyte fuel cell according to the present embodiment. As shown in the figure, in this example, first, a perfluorosulfonic acid polymer of a catalyst and a solid polymer electrolyte resin (Dupont, USA; trade name: Nafion)
Was mixed with an alcohol solution to form a paste, dried under vacuum, and powdered to obtain a catalyst with an electrolyte resin. Next, the obtained catalyst with an electrolyte resin is divided into two parts, one of which is mixed with a high molecular weight organic solvent, ethylene glycol monoethyl ether, and pasted again, and then a catalyst layer is formed on a gas diffusion layer made of conductive carbon paper. One half of the area was applied with a brush to a thickness of 0.01 to 0.03 mm.
The other half of the catalyst with an electrolyte resin was mixed with ethanol of a low molecular weight organic solvent and pasted again, and then the remaining half of the catalyst layer forming region on the gas diffusion layer was coated with a brush using a brush on the other half. It was applied to a thickness of 0.00.03 mm. Then, by drying them, the first catalyst layer (pore diameter: 0.01 to
0.05 μm, pore volume; 0.05 to 0.4 ml / g) and a second catalyst layer (pore diameter; 0.05) formed using a low molecular weight organic solvent.
0.10.1 μm, pore volume; 0.4-1.0 ml / g) were obtained adjacently. FIG. 2 is a cross-sectional view illustrating a configuration of the catalyst layer formed in the present embodiment. In this figure,
3 is a gas diffusion layer made of carbon paper, 21 is a first catalyst layer having a small pore size and a small pore volume, and 22 is a second catalyst layer having a large pore size and a large pore volume.

【0013】このようにして細孔径および細孔容積の異
なる二つの層からなる触媒層を二組形成し、これらの触
媒層を固体高分子電解質膜のパーフルオロスルホン酸ポ
リマー膜(米国デュポン社;商品名 Nafion 膜)の両面
に熱圧着して電解質膜・電極接合体を作製した。さら
に、この電解質膜・電極接合体を組み込んだ単セルを作
製し、特性試験を行った。
In this way, two sets of catalyst layers composed of two layers having different pore diameters and pore volumes are formed, and these catalyst layers are formed of a perfluorosulfonic acid polymer membrane (DuPont, USA; solid polymer electrolyte membrane). Thermocompression bonding was performed on both sides of an Nafion membrane (trade name) to produce an electrolyte membrane / electrode assembly. Further, a single cell incorporating the electrolyte membrane / electrode assembly was fabricated and subjected to a characteristic test.

【0014】図3は、作製した単セルの構成を示す分解
断面図である。本図において、図4に示した従来例の単
セルと同一機能を有する構成要素には同一符号を付し、
重複する説明は省略する。本実施例の特徴は触媒層2A
の構成にある。すなわち、本実施例では、固体高分子電
解質膜の両面に配された触媒層2Aがいずれも上記の第
1の触媒層21と第2の触媒層22からなり、かつ、空
気極ガスと燃料極ガスの入口側に細孔径が小さく、細孔
容積も小さい第1の触媒層が配され、空気極ガスと燃料
極ガスの出口側に細孔径が大きく、細孔容積も大きい第
2の触媒層が配されている。この単セルの特性試験は、
セルの温度を 70 ℃に保持し、燃料極ガスとして水素
を、また空気極ガスとして空気を供給して行った。その
結果、0.4A/cm2 の電流密度において 0.7Vの高い出力
電圧が得られた。また臨界電流密度は 1.5 A/cm2であっ
た。この値は従来の構成の単セルの臨界電流密度 0.8 A
/cm2に比べて大幅に高い値であり、本実施例の構成によ
りガス拡散性能が飛躍的に向上していることが知られ
る。また、連続試験運転の結果によれば、従来の構成で
は凡そ 100 hで出力電圧の低下が見られていたのに対し
て、本実施例の単セルでは、運転時間が 1000 h を経過
しても特に電圧低下は認められていない。
FIG. 3 is an exploded sectional view showing the structure of the manufactured single cell. In the figure, components having the same functions as those of the conventional single cell shown in FIG.
Duplicate description will be omitted. The feature of this embodiment is the catalyst layer 2A.
Configuration. That is, in the present embodiment, each of the catalyst layers 2A disposed on both surfaces of the solid polymer electrolyte membrane is composed of the first catalyst layer 21 and the second catalyst layer 22, and the air electrode gas and the fuel electrode A first catalyst layer having a small pore diameter and a small pore volume is disposed on the gas inlet side, and a second catalyst layer having a large pore diameter and a large pore volume on the outlet side of the air electrode gas and the fuel electrode gas. Is arranged. The characteristic test of this single cell
The temperature of the cell was maintained at 70 ° C., and hydrogen was supplied as a fuel electrode gas and air was supplied as an air electrode gas. As a result, a high output voltage of 0.7 V was obtained at a current density of 0.4 A / cm 2 . The critical current density was 1.5 A / cm 2 . This value is the critical current density of the single cell of the conventional configuration 0.8 A
The value is much higher than / cm 2 , and it is known that the configuration of the present embodiment dramatically improves the gas diffusion performance. In addition, according to the results of the continuous test operation, the output voltage was reduced at about 100 h in the conventional configuration, whereas the operation time of the single cell of the present example was 1000 h after the conventional configuration. No voltage drop was observed.

【0015】なお、本実施例では、第1の触媒層21と
第2の触媒層22をほぼ等量に形成しているが、その割
合は運転条件に則して選定すればよい。
In this embodiment, the first catalyst layer 21 and the second catalyst layer 22 are formed in substantially equal amounts, but the ratio may be selected according to the operating conditions.

【0016】[0016]

【発明の効果】上述のごとく、本発明においては、 (1)固体高分子形燃料電池を請求項1に記載のごとく
構成することとしたので、電解質膜の水分量が全域にわ
たって適度に保たれ、かつ触媒層のガス拡散性が良好に
維持され、優れたセル特性を有する固体高分子形燃料電
池が得られることとなった。
As described above, according to the present invention, (1) the polymer electrolyte fuel cell is constituted as described in claim 1, so that the water content of the electrolyte membrane is appropriately maintained over the entire region. In addition, the gas diffusion property of the catalyst layer was maintained well, and a polymer electrolyte fuel cell having excellent cell characteristics was obtained.

【0017】(2)また、請求項2、さらには請求項
3、4のごとき製造方法を用いれば、請求項1に記載の
ごとき構成の固体高分子形燃料電池が得られるので、優
れたセル特性を有する固体高分子形燃料電池の製造方法
として好適である。
(2) Further, by using the manufacturing method according to the second aspect, and also the third and fourth aspects, a polymer electrolyte fuel cell having the configuration according to the first aspect can be obtained. It is suitable as a method for producing a polymer electrolyte fuel cell having characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例における固体高分子形燃料電池の電解
質膜・電極接合体の製造方法を示すフロー図
FIG. 1 is a flowchart showing a method for manufacturing an electrolyte membrane / electrode assembly of a polymer electrolyte fuel cell according to an embodiment.

【図2】本実施例において形成された触媒層の構成を示
す断面図
FIG. 2 is a cross-sectional view illustrating a configuration of a catalyst layer formed in the present embodiment.

【図3】本実施例において作製した単セルの構成を示す
分解断面図
FIG. 3 is an exploded cross-sectional view illustrating a configuration of a single cell manufactured in this example.

【図4】従来の固体高分子形燃料電池の単セルの基本構
成例を示す分解断面図
FIG. 4 is an exploded sectional view showing a basic configuration example of a single cell of a conventional polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質膜 2A 触媒層 3 ガス拡散層 4 電解質膜・電極接合体 5 セパレータ 21 第1の触媒層 22 第2の触媒層 DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2A Catalyst layer 3 Gas diffusion layer 4 Electrolyte membrane / electrode assembly 5 Separator 21 First catalyst layer 22 Second catalyst layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜の両面に触媒層および
ガス拡散層を配して構成される電解質膜・電極接合体を
用いる固体高分子形燃料電池において、 前記触媒層が、細孔径および細孔容積が相対的に小さい
第1の触媒層と細孔径および細孔容積が相対的に大きい
第2の触媒層からなり、かつ、第1の触媒層が反応ガス
の入口側に、また第2の触媒層が反応ガスの出口側に配
されていることを特徴とする固体高分子形燃料電池。
1. A solid polymer electrolyte fuel cell using an electrolyte membrane / electrode assembly comprising a catalyst layer and a gas diffusion layer disposed on both sides of a polymer electrolyte membrane, wherein the catalyst layer has a pore diameter and It comprises a first catalyst layer having a relatively small pore volume and a second catalyst layer having a relatively large pore diameter and a large pore volume, and the first catalyst layer is located on the reaction gas inlet side, and 2. A polymer electrolyte fuel cell, wherein the catalyst layer of No. 2 is disposed on the outlet side of the reaction gas.
【請求項2】触媒と固体高分子電解質樹脂のアルコール
溶液を混合して得たペーストを乾燥し、粉末化して電解
質樹脂付き触媒を作製し、 該電解質樹脂付き触媒と高分子量有機溶媒を混合して得
たペーストをガス拡散層上の反応ガス入口側領域に塗布
したのち、乾燥することによって第1の触媒層を作製
し、 前記電解質樹脂付き触媒と低分子量有機溶媒を混合して
得たペーストをガス拡散層上の前記の第1の触媒層に隣
接する反応ガス出口側領域に塗布たのち、乾燥すること
によって第2の触媒層を作製し、 第1の触媒層と第2の触媒層を備えたガス拡散層を固体
高分子電解質膜の両面に配し、これらの触媒層を固体高
分子電解質膜に圧着することにより電解質膜・電極接合
体を製作することを特徴とする固体高分子形燃料電池の
製造方法。
2. A paste obtained by mixing a catalyst and an alcohol solution of a solid polymer electrolyte resin is dried and powdered to produce a catalyst with an electrolyte resin, and the catalyst with an electrolyte resin and a high molecular weight organic solvent are mixed. A paste obtained by applying the obtained paste to the reaction gas inlet side region on the gas diffusion layer and then drying to prepare a first catalyst layer, and mixing the catalyst with an electrolyte resin and a low molecular weight organic solvent. Is applied to a reaction gas outlet side region adjacent to the first catalyst layer on the gas diffusion layer, and then dried to form a second catalyst layer. The first catalyst layer and the second catalyst layer A polymer diffusion layer provided on both sides of a solid polymer electrolyte membrane, and press-bonding these catalyst layers to the solid polymer electrolyte membrane to produce an electrolyte membrane / electrode assembly. Of manufacturing fuel cell
【請求項3】請求項2に記載の固体高分子形燃料電池の
製造方法において、前記の高分子量有機溶媒が、エチレ
ングリコール系有機溶媒あるいはグリセリンであること
を特徴とする固体高分子形燃料電池の製造方法。
3. A polymer electrolyte fuel cell according to claim 2, wherein said high molecular weight organic solvent is an ethylene glycol organic solvent or glycerin. Manufacturing method.
【請求項4】請求項2に記載の固体高分子形燃料電池の
製造方法において、前記の低分子量有機溶媒が、炭素数
が1乃至6のアルコール溶媒のうちのいずれか一つであ
ることを特徴とする固体高分子形燃料電池の製造方法。
4. The method for manufacturing a polymer electrolyte fuel cell according to claim 2, wherein the low molecular weight organic solvent is any one of alcohol solvents having 1 to 6 carbon atoms. A method for producing a polymer electrolyte fuel cell.
JP2001031732A 2001-02-08 2001-02-08 Solid polymer fuel cell and its manufacturing method Withdrawn JP2002237306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031732A JP2002237306A (en) 2001-02-08 2001-02-08 Solid polymer fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031732A JP2002237306A (en) 2001-02-08 2001-02-08 Solid polymer fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002237306A true JP2002237306A (en) 2002-08-23

Family

ID=18895775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031732A Withdrawn JP2002237306A (en) 2001-02-08 2001-02-08 Solid polymer fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002237306A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
WO2006083038A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007080726A (en) * 2005-09-15 2007-03-29 Jsr Corp Membrane electrode assembly
WO2009004959A1 (en) * 2007-06-29 2009-01-08 Toppan Printing Co., Ltd. Membrane electrode assembly, process for producing membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2009170272A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Maintenance method of fuel cell stack
JP2010080369A (en) * 2008-09-29 2010-04-08 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
EP2306576A1 (en) 2009-09-28 2011-04-06 Panasonic Corporation Direct oxidation fuel cell with reduced fuel crossover
JP2012209170A (en) * 2011-03-30 2012-10-25 Toshiba Fuel Cell Power Systems Corp Apparatus and method for manufacturing fuel cell electrode
JP2014007099A (en) * 2012-06-26 2014-01-16 Toppan Printing Co Ltd Electrode catalyst layer for fuel cell, and method of manufacturing the same
JP2014053100A (en) * 2012-09-05 2014-03-20 Toppan Printing Co Ltd Process of manufacturing membrane electrode assembly and membrane electrode assembly
JP2015060801A (en) * 2013-09-20 2015-03-30 凸版印刷株式会社 Method for manufacturing film-electrode assembly, film-electrode assembly, and solid polymer fuel cell
JP2015162309A (en) * 2014-02-26 2015-09-07 凸版印刷株式会社 Method for manufacturing film electrode assembly, film electrode assembly, and solid polymer fuel cell
JP2017050107A (en) * 2015-08-31 2017-03-09 凸版印刷株式会社 Method for manufacturing membrane-electrode assembly, and method for manufacturing solid polymer fuel cell
JP2017084456A (en) * 2015-10-22 2017-05-18 本田技研工業株式会社 Fuel cell
JP2017174600A (en) * 2016-03-23 2017-09-28 凸版印刷株式会社 Manufacturing method of membrane/electrode assembly, membrane/electrode assembly, and solid polymer type fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506165B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
WO2006083038A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007080726A (en) * 2005-09-15 2007-03-29 Jsr Corp Membrane electrode assembly
WO2009004959A1 (en) * 2007-06-29 2009-01-08 Toppan Printing Co., Ltd. Membrane electrode assembly, process for producing membrane electrode assembly, and solid polymer electrolyte fuel cell
US7947411B1 (en) 2007-06-29 2011-05-24 Toppan Printing Co., Ltd. Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell
JP2009170272A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Maintenance method of fuel cell stack
JP2010080369A (en) * 2008-09-29 2010-04-08 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
EP2306576A1 (en) 2009-09-28 2011-04-06 Panasonic Corporation Direct oxidation fuel cell with reduced fuel crossover
US8557469B2 (en) 2009-09-28 2013-10-15 Panasonic Corporation Direct oxidation fuel cell
JP2012209170A (en) * 2011-03-30 2012-10-25 Toshiba Fuel Cell Power Systems Corp Apparatus and method for manufacturing fuel cell electrode
JP2014007099A (en) * 2012-06-26 2014-01-16 Toppan Printing Co Ltd Electrode catalyst layer for fuel cell, and method of manufacturing the same
JP2014053100A (en) * 2012-09-05 2014-03-20 Toppan Printing Co Ltd Process of manufacturing membrane electrode assembly and membrane electrode assembly
JP2015060801A (en) * 2013-09-20 2015-03-30 凸版印刷株式会社 Method for manufacturing film-electrode assembly, film-electrode assembly, and solid polymer fuel cell
JP2015162309A (en) * 2014-02-26 2015-09-07 凸版印刷株式会社 Method for manufacturing film electrode assembly, film electrode assembly, and solid polymer fuel cell
JP2017050107A (en) * 2015-08-31 2017-03-09 凸版印刷株式会社 Method for manufacturing membrane-electrode assembly, and method for manufacturing solid polymer fuel cell
JP2017084456A (en) * 2015-10-22 2017-05-18 本田技研工業株式会社 Fuel cell
JP2017174600A (en) * 2016-03-23 2017-09-28 凸版印刷株式会社 Manufacturing method of membrane/electrode assembly, membrane/electrode assembly, and solid polymer type fuel cell

Similar Documents

Publication Publication Date Title
JP3594533B2 (en) Fuel cell
JP4233208B2 (en) Fuel cell
JP5551215B2 (en) Method for producing polymer electrolyte fuel cell
JP2002237306A (en) Solid polymer fuel cell and its manufacturing method
JP2004006306A (en) Fuel cell, electrode for fuel cell and manufacturing method of these
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2001319663A (en) Solid polymer type fuel cell and its manufacturing method
JP2004327358A (en) Polymer electrolyte fuel cell
JP2023126365A (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP2001006708A (en) Solid high polymer fuel cell
JP2008204664A (en) Membrane-electrode assembly for fuel cell, and fuel cell using it
JP2003109604A (en) Gas diffusion electrode for fuel cell and method of manufacturing the same
JP3813406B2 (en) Fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP2007265898A (en) Electrolyte membrane for polymer electrolyte fuel cell, and polymer electrolyte fuel cell equipped with it
JP2001006699A (en) Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof
US11677081B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2002025575A (en) Fuel cell
US20130157167A1 (en) Alternate material for electrode topcoat
JP4486540B2 (en) Method for producing membrane-catalyst layer assembly and method for producing membrane-electrode assembly
JP4511965B2 (en) Method for producing membrane-catalyst layer assembly and method for producing membrane-electrode assembly
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2001043865A (en) Solid polymer electrolyte type fuel cell
KR20170069590A (en) Membrane electrode assembly and fuel cell comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080710

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080908