JP2002226291A - Quartz crucible - Google Patents

Quartz crucible

Info

Publication number
JP2002226291A
JP2002226291A JP2001021117A JP2001021117A JP2002226291A JP 2002226291 A JP2002226291 A JP 2002226291A JP 2001021117 A JP2001021117 A JP 2001021117A JP 2001021117 A JP2001021117 A JP 2001021117A JP 2002226291 A JP2002226291 A JP 2002226291A
Authority
JP
Japan
Prior art keywords
thickness
nitride film
silicon
silicon nitride
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001021117A
Other languages
Japanese (ja)
Other versions
JP3888065B2 (en
Inventor
Hisashi Furuya
久 降屋
Satoru Matsuo
悟 松尾
Hitoshi Sasaki
斉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP2001021117A priority Critical patent/JP3888065B2/en
Publication of JP2002226291A publication Critical patent/JP2002226291A/en
Application granted granted Critical
Publication of JP3888065B2 publication Critical patent/JP3888065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quartz crucible which can always maintain nitrogen content in a drawn silicon single crystal ingot homogenously even for different amount of charge, can control the nitrogen content in the ingot and can grow the nitrogen-doped ingot simply. SOLUTION: A silicon nitride film with a thickness of 0.01-5 μm is formed on an inner surface, which comes into contact with a silicon melt, of the quartz crucible for growing the silicon single crystal ingot in accordance with a Czochralski method. The first silicon nitride film 11 with a thickness of tA (0.015-5 μm) is homogeneously formed on the inner surface of a cylindrical wall 10a of the crucible body part 10. The second silicon nitride film 12 with a thickness of tB (0.01-2 μm) which is thinner than tA is homogeneously formed on the inner surface of a bottom part 10b linking to the wall 10a of the crucible body part 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法(以下、CZ法という。)に基づいてシリコン単結晶
インゴットを育成するために用いられる石英るつぼに関
する。更に詳しくは、窒素ドープしたシリコン単結晶イ
ンゴットを育成するために用いられる石英るつぼに関す
るものである。
The present invention relates to a quartz crucible used for growing a silicon single crystal ingot based on the Czochralski method (hereinafter referred to as CZ method). More specifically, the present invention relates to a quartz crucible used for growing a nitrogen-doped silicon single crystal ingot.

【0002】[0002]

【従来の技術】CZ法では、非晶質の石英ガラス製のる
つぼの内部でシリコンを融解し、シリコン融液上面に触
れた種結晶を静かに回転させながら上方に引上げる。種
結晶に触れた融液は種結晶を通して熱を失って、種結晶
の上に凝固する際に種結晶の結晶方位に従って析出し、
単結晶インゴットとして引上げられる。そのためCZ法
では、シリコン融液と接触するるつぼの石英ガラスの一
部はシリコン融液中に不可避的に溶解し、これにより酸
素が融液内に溶け込むために、育成した単結晶シリコン
では酸素が最大の不純物となる。この方法により育成さ
れたシリコン単結晶インゴットには1017〜1018at
oms/cm3の酸素を不純物として含んでいる。
2. Description of the Related Art In the CZ method, silicon is melted in a crucible made of amorphous quartz glass, and a seed crystal touching the upper surface of the silicon melt is pulled upward while gently rotating. The melt that touches the seed crystal loses heat through the seed crystal and precipitates according to the crystal orientation of the seed crystal when solidifying on the seed crystal,
Pulled up as a single crystal ingot. Therefore, in the CZ method, a part of the quartz glass in the crucible that comes into contact with the silicon melt is inevitably dissolved in the silicon melt, thereby dissolving oxygen into the melt. It is the largest impurity. The silicon single crystal ingot grown by this method has 10 17 to 10 18 at
oms / cm 3 of oxygen is contained as an impurity.

【0003】不純物酸素はシリコンウェーハの機械的強
度及び熱処理誘起欠陥、そして内部ゲッタリングに大き
な影響を与える。主として、この不純物酸素による機械
的強度における優位性からCZ法により育成されたシリ
コン単結晶インゴットはICデバイスの製造に使用され
ている。これは固有している酸素の転位固着作用による
ものである。しかしながら、単結晶インゴット中の不純
物酸素が析出したときに急速に熱応力に弱くなる現象が
ある。その原因としては、転位の固着作用をもたらす格
子間酸素濃度の減少や、酸素析出物が応力集中源となっ
て転位の発生を容易にするなどが考えられている。
[0003] Impurity oxygen has a great effect on the mechanical strength of silicon wafers, heat treatment induced defects, and internal gettering. Primarily, silicon single crystal ingots grown by the CZ method are used in the manufacture of IC devices because of their superior mechanical strength due to impurity oxygen. This is due to the inherent dislocation fixation of oxygen. However, there is a phenomenon that when impurity oxygen in the single crystal ingot precipitates, the single crystal ingot rapidly becomes weak to thermal stress. Possible causes include a decrease in the interstitial oxygen concentration that causes the dislocation to be fixed, and the fact that oxygen precipitates act as a stress concentration source to facilitate the generation of dislocations.

【0004】また、このシリコン単結晶インゴットより
切出したウェーハの表面には、結晶に起因したパーティ
クル(Crystal Originated Particle、以下、COPと
いう。)も発生する。ここでCOPは鏡面研磨後のシリ
コンウェーハをアンモニアと過酸化水素の混合液で洗浄
すると、ウェーハ表面にピットが形成され、このウェー
ハをパーティクルカウンタで測定すると、ピットも本来
のパーティクルとともにパーティクルとして検出される
結晶に起因した欠陥である。このCOPは電気的特性、
例えば酸化膜の経時絶縁破壊特性(Time Dependent Die
lectric Breakdown、TDDB)、酸化膜耐圧特性(Tim
e Zero Dielectric Breakdown、TZDB)等を劣化さ
せる原因となる。またCOPがウェーハ表面に存在する
とデバイスの配線工程において段差を生じ、断線の原因
となり得る。そして素子分離部分においてもリーク等の
原因となり、製品の歩留りを低くする。
[0004] Particles originating from crystals (Crystal Originated Particles, hereinafter referred to as COPs) are also generated on the surface of the wafer cut from the silicon single crystal ingot. Here, when the silicon wafer after mirror polishing is washed with a mixed solution of ammonia and hydrogen peroxide, pits are formed on the wafer surface, and when this wafer is measured with a particle counter, the pits are detected as particles together with the original particles. This is a defect caused by the crystal. This COP has electrical properties,
For example, the time-dependent dielectric breakdown characteristics of an oxide film (Time Dependent Die
electrical breakdown (TDDB), oxide breakdown voltage characteristics (Tim
e Zero Dielectric Breakdown (TZDB) and the like. Also, if the COP exists on the wafer surface, a step is generated in a device wiring process, which may cause disconnection. This also causes a leak and the like in the element isolation portion, and lowers the product yield.

【0005】上記問題点を解決する方法として、窒素を
ドープしたシリコン単結晶インゴットの製造方法が開示
されている(特開昭60−251190)。この方法で
は、シリコン単結晶インゴットの原料である多結晶シリ
コンの融液中に少量の窒化物を混合してシリコン単結晶
インゴットを育成することにより単結晶中に窒素原子を
添加する方法である。これにより、熱応力による結晶性
の劣化を抑制したシリコン単結晶インゴットが得られ
る。この窒素をドープしたシリコン単結晶インゴットよ
り切出されたウェーハは、結晶欠陥の発生が十分抑制さ
れ、半導体素子製造工程中の熱応力に強く、かつ窒素ド
ープ量が少量であるため、半導体素子の電気的諸特性に
も影響を与えない。
As a method for solving the above problems, a method for producing a silicon single crystal ingot doped with nitrogen has been disclosed (JP-A-60-251190). In this method, nitrogen atoms are added to a single crystal by growing a silicon single crystal ingot by mixing a small amount of nitride in a melt of polycrystalline silicon, which is a raw material of the silicon single crystal ingot. Thereby, a silicon single crystal ingot in which the deterioration of crystallinity due to thermal stress is suppressed can be obtained. The wafer cut from the nitrogen-doped silicon single crystal ingot is sufficiently suppressed in the occurrence of crystal defects, resistant to thermal stress during the semiconductor device manufacturing process, and has a small nitrogen doping amount. It does not affect the electrical characteristics.

【0006】シリコン単結晶インゴットに窒素をドープ
する方法には、窒素化合物が混合された多結晶シリコ
ン又は窒化シリコン膜が形成された多結晶シリコンを石
英るつぼに投入して窒素を含むシリコン融液からシリコ
ン単結晶インゴットを引上げる方法、引上げ炉内へ窒
素或いは窒素化合物ガスを流しながら単結晶を育成する
方法、溶融前に高温においての原料への窒素或いは窒
素化合物ガスの吹付ける方法、窒化物製るつぼを使用
する方法などがある。
In a method of doping nitrogen into a silicon single crystal ingot, polycrystalline silicon mixed with a nitrogen compound or polycrystalline silicon formed with a silicon nitride film is charged into a quartz crucible and a silicon melt containing nitrogen is introduced. A method of pulling a silicon single crystal ingot, a method of growing a single crystal while flowing a nitrogen or nitrogen compound gas into a pulling furnace, a method of spraying a nitrogen or nitrogen compound gas on a raw material at a high temperature before melting, and a method of manufacturing a nitride. There are methods such as using a crucible.

【0007】[0007]

【発明が解決しようとする課題】しかし、単結晶インゴ
ットの引上げ条件によっては石英るつぼ内に投入する多
結晶シリコンのチャージ量を調整する必要があり、その
ため、目的とする窒素濃度をドープした単結晶インゴッ
トを得るためには石英るつぼ内に投入するチャージ量に
応じて窒素ドープ量も調整する必要があった。
However, it is necessary to adjust the amount of polycrystalline silicon charged into the quartz crucible depending on the pulling conditions of the single crystal ingot. In order to obtain an ingot, it was necessary to adjust the nitrogen doping amount according to the charge amount charged into the quartz crucible.

【0008】本発明の目的は、異なるチャージ量におい
ても引上げられた単結晶インゴットに含まれる窒素の濃
度割合を常に均一にし得る石英るつぼを提供することに
ある。本発明の別の目的は、育成した単結晶インゴット
に含まれる窒素量を制御できる石英るつぼを提供するこ
とにある。本発明の更に別の目的は、簡便に窒素ドープ
した単結晶インゴットを育成し得る石英るつぼを提供す
ることにある。
An object of the present invention is to provide a quartz crucible capable of always making the concentration ratio of nitrogen contained in a pulled single crystal ingot constant even at different charge amounts. Another object of the present invention is to provide a quartz crucible capable of controlling the amount of nitrogen contained in a grown single crystal ingot. Still another object of the present invention is to provide a quartz crucible capable of easily growing a nitrogen-doped single crystal ingot.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、CZ法に基づいてシリコン単結晶イ
ンゴットを育成するために用いられる有底円筒状の石英
るつぼにおいて、シリコン融液と接触するるつぼ内面1
0a,10bに厚さ0.01〜5μmの窒化シリコン膜
11,12が形成されたことを特徴とする石英るつぼで
ある。請求項1に係る発明では、シリコン融液と接触す
るるつぼ内面に厚さ0.01〜5μmの窒化シリコン膜
を形成したため、常にシリコン融液に窒素が溶け込むの
で融液に含まれる窒素量を一定範囲に保つことができ、
このシリコン融液を原料として均一に窒素ドープしたシ
リコン単結晶インゴットを育成できる。窒化シリコン膜
の厚さは0.01〜5μmである。好ましくは0.04
〜2μmである。厚さが0.01μm未満であると、単
結晶インゴットに形成される結晶欠陥の成長を十分に抑
制できず、厚さが5μmを越えると、単結晶インゴット
の電気特性が悪くなる不具合を生じる。
The invention according to claim 1 is
As shown in FIG. 1, in a bottomed cylindrical quartz crucible used for growing a silicon single crystal ingot based on the CZ method, an inner surface 1 of a crucible in contact with a silicon melt.
This is a quartz crucible characterized in that silicon nitride films 11 and 12 having a thickness of 0.01 to 5 μm are formed on Oa and 10b. In the invention according to the first aspect, since the silicon nitride film having a thickness of 0.01 to 5 μm is formed on the inner surface of the crucible that comes into contact with the silicon melt, nitrogen is always dissolved in the silicon melt, so that the amount of nitrogen contained in the melt is constant. Can be kept in the range,
Using this silicon melt as a raw material, a silicon single crystal ingot uniformly doped with nitrogen can be grown. The thickness of the silicon nitride film is 0.01 to 5 μm. Preferably 0.04
22 μm. When the thickness is less than 0.01 μm, the growth of crystal defects formed in the single crystal ingot cannot be sufficiently suppressed, and when the thickness exceeds 5 μm, the electric characteristics of the single crystal ingot deteriorate.

【0010】請求項2に係る発明は、請求項1に係る発
明であって、図1に示すように、るつぼ本体10の円筒
状周壁10a内面に第1窒化シリコン膜11が厚さtA
で均一に形成され、るつぼ本体10の周壁10aに続く
底部10b内面に第2窒化シリコン膜12が厚さtA
り小さい厚さtBで均一に形成された石英るつぼであ
る。請求項2に係る発明では、るつぼ本体の円筒状周壁
内面に第1窒化シリコン膜を厚さtAで均一に形成し、
この周壁に続く底部内面に第2窒化シリコン膜を厚さt
Aより小さい厚さtBで均一に形成する。このように、第
1窒化シリコン膜の厚さtAと第2窒化シリコン膜の厚
さtBをそれぞれ異なる厚さにし、かつtA>tBの関係
が成り立つように窒化シリコン膜を形成することによ
り、異なるチャージ量においても引上げられた単結晶イ
ンゴットに含まれる窒素の濃度割合を常に均一に保つこ
とができる。
The invention according to claim 2 is the invention according to claim 1, wherein the first silicon nitride film 11 has a thickness t A on the inner surface of the cylindrical peripheral wall 10a of the crucible body 10, as shown in FIG.
In uniformly formed, a quartz crucible second silicon nitride film 12 is uniformly formed with a thickness t A is less than the thickness t B in the bottom 10b inner surface following the circumferential wall 10a of the crucible body 10. In the invention according to claim 2, the first silicon nitride film is formed uniformly on the inner surface of the cylindrical peripheral wall of the crucible body with a thickness t A ,
A second silicon nitride film having a thickness t is formed on the inner surface of the bottom portion following the peripheral wall.
Uniformly formed at A smaller thickness t B. As described above, the thickness t A of the first silicon nitride film and the thickness t B of the second silicon nitride film are different from each other, and the silicon nitride film is formed such that the relationship of t A > t B is satisfied. Thereby, the concentration ratio of nitrogen contained in the pulled single crystal ingot can be always kept uniform even with different charge amounts.

【0011】請求項3に係る発明は、請求項2に係る発
明であって、第1窒化シリコン膜の厚さtAが0.01
5〜5μmであって、第2窒化シリコン膜の厚さtB
0.01〜2μmである石英るつぼである。請求項3に
係る発明では、るつぼの寸法やシリコン単結晶インゴッ
トの育成条件にもよるが、厚さtAは0.015〜5μ
m、厚さtBは0.01〜2μmである。
The invention according to claim 3 is the invention according to claim 2, wherein the first silicon nitride film has a thickness t A of 0.01.
This is a quartz crucible having a thickness of 5 to 5 μm and a thickness t B of the second silicon nitride film of 0.01 to 2 μm. In the invention according to claim 3, the thickness t A is 0.015 to 5 μm, depending on the size of the crucible and the growth condition of the silicon single crystal ingot.
m and the thickness t B are 0.01 to 2 μm.

【0012】[0012]

【発明の実施の形態】本発明の石英るつぼはるつぼ内径
が15〜50cmの大きさに適する。本発明の石英るつ
ぼはシリコン融液と接触するるつぼ内面に厚さ0.01
〜5μmの窒化シリコン膜が形成されたことを特徴とす
る。CZ法では、シリコン融液と石英るつぼが接触する
ため、その接触面では一部がシリコン融液中に不可避的
に溶解する。窒化シリコン膜をシリコン融液と接触する
内面に厚さ0.01〜5μm形成したため、シリコン単
結晶インゴットの育成前でも、インゴットを育成して、
シリコン融液が少量になっても石英るつぼに貯留したシ
リコン融液中の窒素量を5×1012〜5×1014ato
ms/cm3の範囲内に常に保つことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The quartz crucible of the present invention is suitable for a crucible having an inner diameter of 15 to 50 cm. The quartz crucible of the present invention has a thickness of 0.01 mm on the inner surface of the crucible in contact with the silicon melt.
A silicon nitride film having a thickness of about 5 μm is formed. In the CZ method, since the silicon melt and the quartz crucible come into contact with each other, a part of the contact surface is inevitably dissolved in the silicon melt. Since the silicon nitride film was formed on the inner surface in contact with the silicon melt at a thickness of 0.01 to 5 μm, the ingot was grown even before the silicon single crystal ingot was grown.
Even if the silicon melt becomes small, the amount of nitrogen in the silicon melt stored in the quartz crucible can be reduced to 5 × 10 12 to 5 × 10 14 at.
It can always be kept within the range of ms / cm 3 .

【0013】この5×1012〜5×1014atoms/
cm3の窒素が含有されたシリコン融液を用いて育成し
た単結晶インゴットに含まれる窒素ドープ量は5×10
12〜5×1014atoms/cm3の範囲内となる。単
結晶インゴットの窒素ドープ量が5×1012atoms
/cm3未満であると、単結晶インゴットに形成される
結晶欠陥の成長を十分に抑制できない。窒素ドープ量が
5×1014atoms/cm3を越えると育成した単結
晶インゴットの電気特性が悪くなり、更に窒素ドープ量
が5×1015atoms/cm3を越えると、窒素が過
飽和してSi3 4として析出するため、単結晶インゴッ
トの成長を阻害する。ドープする窒素濃度は5×1012
〜5×1014atoms/cm3の範囲内が好ましい。
更に好ましくは3×1013〜3×1014atoms/c
3の範囲内である。
This 5 × 1012~ 5 × 1014atoms /
cmThreeGrown using a silicon melt containing nitrogen
The amount of nitrogen doping contained in the obtained single crystal ingot is 5 × 10
12~ 5 × 1014atoms / cmThreeWithin the range. single
Nitrogen doping of crystal ingot is 5 × 1012atoms
/ CmThreeIf less than, it will be formed into a single crystal ingot
The growth of crystal defects cannot be sufficiently suppressed. Nitrogen doping amount
5 × 1014atoms / cmThreeA simple bond that has grown up
The electrical properties of the crystal ingot deteriorate and the nitrogen doping
Is 5 × 10Fifteenatoms / cmThreeExceeds
Saturated and SiThreeN FourAs a single crystal ingot
Inhibit the growth of Doping nitrogen concentration is 5 × 1012
~ 5 × 1014atoms / cmThreeIs preferably within the range.
More preferably 3 × 1013~ 3 × 1014atoms / c
mThreeIs within the range.

【0014】窒素をシリコン単結晶インゴット中にドー
プすると、シリコン中の原子空孔の凝集が抑制され、結
晶欠陥のサイズが縮小する。この効果は原子空孔の凝集
過程が、均一核形成から不均一核形成に移行するためで
あると考えられる。従って、窒素をドープすることによ
って、結晶育成中に導入される結晶欠陥の成長を抑制す
ることができ、また導入された結晶欠陥も結晶欠陥サイ
ズを非常に小さくできる。そのため、空孔に起因するボ
イドを縮小する効果やCOPやボイドの消滅に要する熱
処理時間を短縮する効果が得られる。また窒素をドープ
することにより、単結晶インゴット内に発生した空孔の
固溶度を高めて空孔の消失を抑制するとともに、この空
孔を利用してシリコン単結晶インゴット内に多くの酸素
析出核を生成する。この酸素析出核は内部ゲッタリング
の効果を発揮することができる。
When nitrogen is doped into a silicon single crystal ingot, aggregation of atomic vacancies in silicon is suppressed, and the size of crystal defects is reduced. This effect is considered to be due to the transition of the process of aggregation of atomic vacancies from the formation of uniform nuclei to the formation of heterogeneous nuclei. Therefore, by doping with nitrogen, the growth of crystal defects introduced during crystal growth can be suppressed, and the size of the introduced crystal defects can be very small. Therefore, the effect of reducing the voids caused by the voids and the effect of shortening the heat treatment time required for eliminating COPs and voids can be obtained. In addition, by doping with nitrogen, the solid solubility of the vacancies generated in the single crystal ingot is increased to suppress the disappearance of the vacancies, and a large amount of oxygen precipitates in the silicon single crystal ingot using the vacancies. Generate nuclei. This oxygen precipitation nucleus can exhibit the effect of internal gettering.

【0015】更にるつぼ本体の円筒状周壁内面に厚さt
A(0.015〜5μm)の第1窒化シリコン膜を均一
に形成し、るつぼ本体の周壁に続く底部内面に厚さtA
より小さい厚さtB(0.01〜2μm)の第2窒化シ
リコン膜を均一に形成することにより、インゴットに含
有する窒素濃度を厳密な濃度範囲内に設定できる。厚さ
Bが厚さtAより大きくなると、インゴットの引上げに
よってシリコン融液の量が少なくなったとき窒素濃度が
増加してしまうおそれがある。従って、厚さt Aと厚さ
BはtA>tBの関係に維持され、0.01μm≦tB
A≦5μmで表される。
Further, a thickness t is formed on the inner surface of the cylindrical peripheral wall of the crucible body.
A(0.015 to 5 μm) uniform first silicon nitride film
And a thickness t on the bottom inner surface following the peripheral wall of the crucible body.A
Smaller thickness tB(0.01-2 μm) second silicon nitride
By forming a uniform recon film, it can be included in the ingot.
The nitrogen concentration can be set within a strict concentration range. thickness
tBIs the thickness tAAs it gets bigger, ingots can be raised
Therefore, when the amount of silicon melt decreases, the nitrogen concentration
It may increase. Therefore, the thickness t AAnd thickness
tBIs tA> TBAnd 0.01 μm ≦ tB<
tA≦ 5 μm.

【0016】図1に示すように、るつぼ本体10の円筒
状周壁10a内面に第1窒化シリコン膜11を厚さtA
で均一に形成し、このるつぼ本体10の周壁10aに続
く底部10b内面に第2窒化シリコン膜12を厚さtA
より小さい厚さtBで均一に形成する。この時、円筒状
周壁内面の内表面積をSA、厚さtAで均一に形成された
第1窒化シリコン膜の体積をVA、底部内面の内表面積
をSB、厚さtBで均一に形成された第2窒化シリコン膜
の体積をVBとすると、るつぼ円筒状周壁内面及び底部
内面にそれぞれ形成される第1及び第2窒化シリコン膜
がシリコン融液に溶け込んだ場合同じ単位体積当たりの
窒素濃度になるためには下記式(1)に示すように、
As shown in FIG. 1, a first silicon nitride film 11 is formed on the inner surface of the cylindrical peripheral wall 10a of the crucible body 10 to a thickness t A.
The second silicon nitride film 12 is formed to a thickness t A on the inner surface of the bottom 10 b following the peripheral wall 10 a of the crucible body 10.
It is formed uniformly with a smaller thickness t B. At this time, the inner surface area of the inner surface of the cylindrical peripheral wall is S A , the volume of the first silicon nitride film uniformly formed with the thickness t A is V A , the inner surface area of the bottom inner surface is S B , and the thickness t B is uniform. the volume of the second silicon nitride film when V B formed in the crucible cylindrical inner surface of the peripheral wall and the bottom first and second identical per unit volume if the silicon nitride film is melted into the silicon melt are formed on the inner surface In order to obtain a nitrogen concentration of

【0017】[0017]

【数1】 で表される。従って、厚さtA及び厚さtBは下記式
(2)に示すように、
(Equation 1) It is represented by Accordingly, the thickness t A and the thickness t B are expressed by the following equation (2):

【0018】[0018]

【数2】 となり、ここでSB/SA=x、VB/VA=yとすると、
式(2)は下記式(3)で表される。
(Equation 2) Where S B / S A = x and V B / V A = y,
Equation (2) is represented by the following equation (3).

【0019】[0019]

【数3】 x及びyはそれぞれるつぼの寸法によって一定値をとる
ため、周壁内面に形成する第1窒化シリコン膜の厚さt
Aを設定することにより底部内面に形成する第2窒化シ
リコン膜の厚さtBも決まる。
(Equation 3) Since x and y each take a constant value depending on the size of the crucible, the thickness t of the first silicon nitride film formed on the inner surface of the peripheral wall is set.
The thickness of the second silicon nitride film formed on the inner bottom surface by setting the A t B is also determined.

【0020】次に本発明の石英るつぼの製造方法につい
て述べる。石英るつぼの内面に窒化シリコン膜を形成す
るときには、化学気相成長法(CVD法:Chemical Vap
or Deposition)、物理蒸着法(PVD法:Physical Va
por Deposition)及びプラズマ溶射法が挙げられる。例
えばCVD法により窒化シリコン膜を形成する場合、先
ずるつぼをNH3雰囲気に保持し、原料ガスとしてSi
4を供給して700〜900℃に昇温して熱分解させ
ることにより内面に厚さtBまで窒化シリコン膜を形成
する。次いで底部内面をレジストによりマスクし、次に
上記膜形成方法と同様にしてるつぼの円筒状周壁内面に
厚さtAまで窒化シリコン膜を形成する。最後にレジス
トを除去することにより、図1に示すように、円筒状周
壁10a内面に厚さtAの第1窒化シリコン膜11が、
底部10b内面に厚さtAより小さい厚さtBの第2窒化
シリコン膜12がそれぞれ形成された石英るつぼ10が
できる。
Next, a method for manufacturing the quartz crucible of the present invention will be described. When a silicon nitride film is formed on the inner surface of a quartz crucible, a chemical vapor deposition (CVD) method is used.
or Deposition), physical vapor deposition (PVD)
por Deposition) and a plasma spraying method. For example, when a silicon nitride film is formed by a CVD method, first, the crucible is kept in an NH 3 atmosphere and Si
By supplying H 4 and raising the temperature to 700 to 900 ° C. to cause thermal decomposition, a silicon nitride film is formed on the inner surface to a thickness t B. Then a mask is inner bottom surface with a resist, and then forming the film forming method and the thickness t A to the silicon nitride film on a cylindrical inner surface of the peripheral wall of the crucible are in the same manner. Finally, by removing the resist, as shown in FIG. 1, the first silicon nitride film 11 having a thickness of t A is formed on the inner surface of the cylindrical peripheral wall 10a.
It is a second quartz crucible 10 in which the silicon nitride film 12 are formed respectively in the thickness in the bottom 10b the inner surface of t A is less than the thickness t B.

【0021】[0021]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>先ず内径が29.3cmの石英ガラス製の
るつぼを用意した。この石英るつぼを上述した窒化シリ
コン膜の成膜方法により円筒状周壁内面に第1窒化シリ
コン膜を0.01μm、底部内面に第2窒化シリコン膜
を0.005μmそれぞれ形成した。次いでこの石英る
つぼに多結晶シリコンを充填し、充填した多結晶シリコ
ンを不活性ガス中で1415℃に加熱して融解した。次
に融解したシリコン融液上面に種結晶を静かに接触さ
せ、種結晶を回転させながら上方に引上げてチャージ量
が100kgの単結晶インゴットを育成した。 <実施例2>単結晶インゴットのチャージ量を150k
gとした以外は実施例1と同様にして単結晶インゴット
を育成した。
Next, examples of the present invention will be described together with comparative examples. Example 1 First, a quartz glass crucible having an inner diameter of 29.3 cm was prepared. In this quartz crucible, a first silicon nitride film was formed on the inner surface of the cylindrical peripheral wall by 0.01 μm, and a second silicon nitride film was formed on the inner surface of the bottom by 0.005 μm by the above-described method for forming a silicon nitride film. Next, the quartz crucible was filled with polycrystalline silicon, and the filled polycrystalline silicon was heated to 1415 ° C. and melted in an inert gas. Next, the seed crystal was gently brought into contact with the upper surface of the melted silicon melt, and was pulled upward while rotating the seed crystal to grow a single crystal ingot having a charge amount of 100 kg. Example 2 Charge amount of single crystal ingot was 150 k
A single crystal ingot was grown in the same manner as in Example 1 except that g was used.

【0022】<比較例1>第1窒化シリコン膜を0.0
1μm、第2窒化シリコン膜を0.005μmそれぞれ
形成した石英るつぼを用いた以外は実施例1と同様にし
て単結晶インゴットを育成した。 <比較例2>第1窒化シリコン膜を10μm、第2窒化
シリコン膜を5μmそれぞれ形成した石英るつぼを用い
た以外は実施例1と同様にして単結晶インゴットを育成
した。
Comparative Example 1 The first silicon nitride film was
A single crystal ingot was grown in the same manner as in Example 1 except that a quartz crucible having a thickness of 1 μm and a second silicon nitride film of 0.005 μm was used. Comparative Example 2 A single crystal ingot was grown in the same manner as in Example 1 except that a quartz crucible having a first silicon nitride film of 10 μm and a second silicon nitride film of 5 μm was used.

【0023】<比較評価>実施例1,2及び比較例1,
2で育成した単結晶インゴットの結晶トップ部における
窒素濃度を測定した。表1に窒素濃度をそれぞれ示す。
なお、表1中のt Aは第1窒化シリコン膜の厚さ、tB
第2窒化シリコン膜の厚さをそれぞれ示す。
<Comparative Evaluation> Examples 1 and 2 and Comparative Examples 1 and 2
In the crystal top part of the single crystal ingot grown in 2
The nitrogen concentration was measured. Table 1 shows the respective nitrogen concentrations.
In Table 1, t AIs the thickness of the first silicon nitride film, tBIs
The thickness of the second silicon nitride film is shown.

【0024】[0024]

【表1】 [Table 1]

【0025】表1より明らかなように、比較例1及び2
の石英るつぼを用いて育成した単結晶インゴットに含ま
れる窒素濃度は5×1012〜5×1014atoms/c
3の範囲外になっていた。従って、比較例1で育成し
たインゴットではインゴットに形成される結晶欠陥の成
長を十分に抑制できず、比較例2で育成したインゴット
ではインゴットの電気特性が悪くなる。これに対して、
実施例1及び2では5×1012〜5×1014atoms
/cm3の濃度範囲内であり、この単結晶インゴットを
用いることにより熱応力による結晶性の劣化を抑制する
ことができる。また、引上げチャージ量の異なる実施例
1及び2について石英るつぼに形成された窒化シリコン
膜の厚さtA及び厚さtBがそれぞれ同じ膜厚に形成され
ていても単結晶インゴット内の窒素は同じ濃度となって
おり、本発明の石英るつぼを用いることにより、異なる
チャージ量での単結晶インゴットの引上げにおいても同
濃度の窒素ドープをすることができる。
As is clear from Table 1, Comparative Examples 1 and 2
The concentration of nitrogen contained in the single crystal ingot grown using the quartz crucible is 5 × 10 12 to 5 × 10 14 atoms / c.
It had been outside the range of m 3. Therefore, in the ingot grown in Comparative Example 1, the growth of crystal defects formed in the ingot cannot be sufficiently suppressed, and in the ingot grown in Comparative Example 2, the electrical properties of the ingot deteriorate. On the contrary,
In Examples 1 and 2, 5 × 10 12 to 5 × 10 14 atoms
/ Cm 3 , and the use of this single crystal ingot can suppress the deterioration of crystallinity due to thermal stress. Further, even when the thickness t A and the thickness t B of the silicon nitride film formed in the quartz crucible were formed to the same thickness in Examples 1 and 2 having different amounts of charge to be pulled, the nitrogen in the single crystal ingot remained By using the quartz crucible of the present invention having the same concentration, the same concentration of nitrogen can be doped even when pulling a single crystal ingot with different charge amounts.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、シ
リコン単結晶インゴットの引上げによりシリコン融液量
が変化しても融液に含まれる窒素の割合が常に一定範囲
となるように石英るつぼのシリコン融液と接触する内面
に厚さ0.01〜5μm、具体的には、るつぼ本体の円
筒状周壁内面に第1窒化シリコン膜を厚さtAが0.0
15〜5μmで均一に形成し、この周壁に続く底部内面
に第2窒化シリコン膜を厚さtAより小さい厚さtB
0.01〜2μmで均一に形成したので、この石英るつ
ぼを用いることにより、簡便に窒素ドープした単結晶イ
ンゴットを育成でき、かつ育成したシリコン単結晶イン
ゴットの窒素ドープ量を制御できる。
As described above, according to the present invention, even if the amount of the silicon melt changes due to the pulling of the silicon single crystal ingot, the ratio of the nitrogen contained in the melt is always within a certain range. A first silicon nitride film having a thickness of 0.01 to 5 μm on the inner surface of the crucible that comes into contact with the silicon melt, specifically, a first silicon nitride film having a thickness tA of 0.0
Uniformly formed in 15~5Myuemu, since the thickness t A is less than the thickness t B of the second silicon nitride film on the inner bottom surface following the circumferential wall is uniformly formed at 0.01 to 2 [mu] m, using this quartz crucible This makes it possible to easily grow a nitrogen-doped single crystal ingot and to control the nitrogen doping amount of the grown silicon single crystal ingot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の石英るつぼの断面図。FIG. 1 is a cross-sectional view of a quartz crucible of the present invention.

【符号の説明】[Explanation of symbols]

10 石英るつぼ 10a 円筒状周壁部 10b 底部 11 第1窒化シリコン膜 12 第2窒化シリコン膜 DESCRIPTION OF SYMBOLS 10 Quartz crucible 10a Cylindrical peripheral wall part 10b Bottom part 11 1st silicon nitride film 12 2nd silicon nitride film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 斉 東京都千代田区大手町1丁目5番1号 三 菱マテリアルシリコン株式会社内 Fターム(参考) 4G077 AA02 BA04 CF10 EG02 PD05 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hitoshi Sasaki 1-5-1, Otemachi, Chiyoda-ku, Tokyo Mitsubishi Materials Silicon Co., Ltd. F-term (reference) 4G077 AA02 BA04 CF10 EG02 PD05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法に基づいてシリコン
単結晶インゴットを育成するために用いられる有底円筒
状の石英るつぼにおいて、 シリコン融液と接触するるつぼ内面(10a,10b)に厚さ
0.01〜5μmの窒化シリコン膜(11,12)が形成され
たことを特徴とする石英るつぼ。
1. A bottomed cylindrical quartz crucible used for growing a silicon single crystal ingot based on the Czochralski method, wherein the inner surface (10a, 10b) of the crucible in contact with the silicon melt has a thickness of 0.1 mm. A quartz crucible characterized in that a silicon nitride film (11, 12) of 01 to 5 μm is formed.
【請求項2】 るつぼ本体(10)の円筒状周壁(10a)内面
に第1窒化シリコン膜(11)が厚さtAで均一に形成さ
れ、前記るつぼ本体(10)の周壁(10a)に続く底部(10b)内
面に第2窒化シリコン膜(12)が前記厚さtAより小さい
厚さtBで均一に形成された請求項1記載の石英るつ
ぼ。
2. A first silicon nitride film (11) having a thickness t A is uniformly formed on an inner surface of a cylindrical peripheral wall (10a) of a crucible body (10), and is formed on a peripheral wall (10a) of the crucible body (10). continued bottom (10b) inner surface to a second quartz crucible according to claim 1, wherein the silicon nitride film (12) is uniformly formed with a thickness t B the smaller thickness t a.
【請求項3】 第1窒化シリコン膜(11)の厚さtA
0.015〜5μmであって、第2窒化シリコン膜(12)
の厚さtBが0.01〜2μmである請求項2記載の石
英るつぼ。
3. The first silicon nitride film (11) having a thickness t A of 0.015 to 5 μm and a second silicon nitride film (12)
Quartz crucible according to claim 2, wherein the thickness t B is 0.01 to 2 [mu] m.
JP2001021117A 2001-01-30 2001-01-30 Quartz crucible Expired - Fee Related JP3888065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001021117A JP3888065B2 (en) 2001-01-30 2001-01-30 Quartz crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001021117A JP3888065B2 (en) 2001-01-30 2001-01-30 Quartz crucible

Publications (2)

Publication Number Publication Date
JP2002226291A true JP2002226291A (en) 2002-08-14
JP3888065B2 JP3888065B2 (en) 2007-02-28

Family

ID=18886721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021117A Expired - Fee Related JP3888065B2 (en) 2001-01-30 2001-01-30 Quartz crucible

Country Status (1)

Country Link
JP (1) JP3888065B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033946B3 (en) * 2008-07-19 2009-09-10 Heraeus Quarzglas Gmbh & Co. Kg A quartz glass crucible with a nitrogen doping and method of making such a crucible
US7799133B2 (en) 2005-05-02 2010-09-21 Iis Materials Corporation, Ltd. Crucible apparatus and method of solidifying a molten material
DE102005032789B4 (en) * 2005-06-06 2010-12-30 Deutsche Solar Ag Container with coating and manufacturing process
WO2013099431A1 (en) * 2011-12-30 2013-07-04 ジャパンスーパークォーツ株式会社 Silica glass crucible
JP2013224232A (en) * 2012-04-20 2013-10-31 Panasonic Corp Quartz crucible for growing silicon single crystal, method for producing quartz crucible for growing silicon single crystal and method for producing silicon single crystal
CN113832537A (en) * 2021-09-30 2021-12-24 西安奕斯伟材料科技有限公司 Quartz crucible and crystal pulling furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799133B2 (en) 2005-05-02 2010-09-21 Iis Materials Corporation, Ltd. Crucible apparatus and method of solidifying a molten material
DE102005032789B4 (en) * 2005-06-06 2010-12-30 Deutsche Solar Ag Container with coating and manufacturing process
DE102008033946B3 (en) * 2008-07-19 2009-09-10 Heraeus Quarzglas Gmbh & Co. Kg A quartz glass crucible with a nitrogen doping and method of making such a crucible
EP2145862A1 (en) 2008-07-19 2010-01-20 Heraeus Quarzglas GmbH & Co. KG Crucible made of nitrogen doped quartz glass and method for producing such a crucible
WO2013099431A1 (en) * 2011-12-30 2013-07-04 ジャパンスーパークォーツ株式会社 Silica glass crucible
JP2013139359A (en) * 2011-12-30 2013-07-18 Japan Siper Quarts Corp Silica glass crucible
US9758900B2 (en) 2011-12-30 2017-09-12 Sumco Corporation Silica glass crucible
JP2013224232A (en) * 2012-04-20 2013-10-31 Panasonic Corp Quartz crucible for growing silicon single crystal, method for producing quartz crucible for growing silicon single crystal and method for producing silicon single crystal
CN113832537A (en) * 2021-09-30 2021-12-24 西安奕斯伟材料科技有限公司 Quartz crucible and crystal pulling furnace

Also Published As

Publication number Publication date
JP3888065B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
KR100913635B1 (en) Silicon single crystal manufacturing method and silicon wafer
TWI577841B (en) Method for growing monocrystalline silicon and monocrystalline silicon ingot prepared thereof
JP2022180551A (en) Methods for forming single crystal silicon ingots with improved resistivity control
JPWO2009025336A1 (en) Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
EP1746186B1 (en) A method for producing a silicon single crystal
JP6927150B2 (en) Method for manufacturing silicon single crystal
JPH0812493A (en) Production of silicon single crystal
KR100758162B1 (en) Method for manufacturing nitrogen-doped silicon single crystal
US6117231A (en) Method of manufacturing semiconductor silicon single crystal wafer
JP2001068477A (en) Epitaxial silicon wafer
JP4908730B2 (en) Manufacturing method of high resistance silicon single crystal
EP1536044B1 (en) Method of manufacturing an epitaxial silicon wafer
JP2002226291A (en) Quartz crucible
JP2003086597A (en) Silicon semiconductor substrate and method for manufacturing the same
JP4510997B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP4750916B2 (en) Method for growing silicon single crystal ingot and silicon wafer using the same
JP4151148B2 (en) Method for producing silicon single crystal
JP4089137B2 (en) Method for producing silicon single crystal and method for producing epitaxial wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP2005060153A (en) Silicon single crystal production method and silicon single crystal wafer
KR101121814B1 (en) Method for Manufacturing Single Crystal Ingot
JP3864693B2 (en) Method for producing silicon single crystal
JP2002293691A (en) Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JPH08290995A (en) Silicon single crystal and its production
WO2004065667A1 (en) Process for producing single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Ref document number: 3888065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees