JP2002226210A - 活性炭及びその製造方法並びにこれを用いた電気二重層コンデンサの製造方法 - Google Patents

活性炭及びその製造方法並びにこれを用いた電気二重層コンデンサの製造方法

Info

Publication number
JP2002226210A
JP2002226210A JP2001022218A JP2001022218A JP2002226210A JP 2002226210 A JP2002226210 A JP 2002226210A JP 2001022218 A JP2001022218 A JP 2001022218A JP 2001022218 A JP2001022218 A JP 2001022218A JP 2002226210 A JP2002226210 A JP 2002226210A
Authority
JP
Japan
Prior art keywords
activated carbon
activated
electric double
double layer
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001022218A
Other languages
English (en)
Inventor
Yuichi Hori
雄一 堀
Naotomo Sotoshiro
直朋 外城
Isao Mochida
勲 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001022218A priority Critical patent/JP2002226210A/ja
Publication of JP2002226210A publication Critical patent/JP2002226210A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】 【課題】機械的強度が高く、かつ活性炭の含有比率の高
い活性炭質構造体を作製しうる活性炭、およびその製造
方法、並びに該活性炭を用いて、静電容量が高く、かつ
高強度を有する分極性電極を備えた電気二重層コンデン
サを提供する。 【解決手段】昇温脱離ガス分析(TPD)によって求め
られるCO2の脱離カーブのピークトップ位置が200
〜400℃に位置する活性炭に有機バインダを添加混合
して成形し、酸化雰囲気中150〜300℃で熱処理し
た後、非酸化性雰囲気中800〜1000℃で炭化熱処
理して活性炭質構造体を作製し、該活性炭質構造体を電
気二重層コンデンサ1の分極性電極2として用いる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、活性炭質構造体の
機械的強度を高めることができる活性炭、特に、電気二
重層コンデンサの分極性電極をなす活性炭質構造体を形
成するための活性炭、およびその製造方法並びにそれを
用いた電気二重層コンデンサの製造方法に関するもので
ある。
【0002】
【従来技術】電気二重層コンデンサは、電極と電解液と
の界面においてイオンの分極によりできる電気二重層を
利用したコンデンサで、コンデンサと電池の両方の機能
を兼ね備えたものであり、従来のコンデンサと比較して
大きな静電容量を発現できるとともに、急速充放電が可
能であることから、小型のメモリーバックアップ電源や
自動車の駆動源等、大容量モータなどの補助電源として
注目されている。
【0003】従来の電気二重層コンデンサの一例として
は、一対の板状の分極性電極間に板状のセパレータを介
在させるとともに、前記分極性電極の前記セパレータ積
層面と反対の表面それぞれに板状の集電体を積層し、か
つ該積層体を封止材にて封止した構成からなる積層型の
電気二重層コンデンサが知られている。
【0004】かかる分極性電極材料は、コンデンサの大
容量化および小型化の要求を満足するために、単位体積
当たりに高い静電容量が得られること、並びに使用時や
製造時に破損等の生じない機械的強度を有することが要
求される。
【0005】例えば、特開平3−66112号公報で
は、フェノール樹脂系活性炭を酸化剤で処理した活性炭
について記載されており、活性炭を過酸化水素中に浸漬
することにより活性炭表面の表面官能基量を増すことが
でき、該活性炭粉末と電解液とを混合したペーストを分
極性電極として用いたコンデンサの静電容量を高められ
たことが記載されている。
【0006】
【発明が解決しようとする課題】しかしながら、特開平
3−66112号公報によれば、活性炭表面の表面官能
基量を増してコンデンサの静電容量を向上することはで
きるものの、活性炭間の結合力、接触の度合いが低く、
電気二重層コンデンサの内部抵抗が高くなるとともに、
浮遊炭素の存在が多く該浮遊炭素に起因して漏れ電流が
発生する結果、電気二重層コンデンサの自己放電特性が
低下したり、電解液として使用耐電圧が高い有機系の電
解液を用いると、長期にわたり表面官能基が電解液と反
応して脱離・ガス化し電気二重層コンデンサの信頼性を
著しく低下させる欠点があった。
【0007】本発明は、上記課題を解決せんとしてなさ
れたもので、その目的は、特に電気二重層コンデンサの
分極性電極用として好適な機械的強度が高く、かつ活性
炭の含有比率の高い活性炭質構造体を作製しうる活性
炭、およびその製造方法、並びに該活性炭を用いて、静
電容量が高く、かつ高強度を有する分極性電極を備えた
電気二重層コンデンサを提供することにある。
【0008】
【課題を解決するための手段】本発明者等は前記課題に
対して鋭意研究の結果、活性炭を過酸化水素含有溶液中
に浸漬して還流処理を行うことによって、活性炭表面に
200〜400℃の温度範囲で反応活性な表面官能基を
生成することができる結果、該活性炭に有機バインダを
添加して成形した後に所定の条件でエージング処理を施
した場合、前記表面官能基と有機バインダとの架橋反応
が飛躍的に向上し、有機バインダを介して活性炭間が強
固に結合されるために、成形体およびそれを炭化した活
性炭質構造体の機械的強度を高めることができ、また、
少ない有機バインダ量で粉末間を強固に結合させること
ができ、かつ別途硬化剤等を添加する必要がないことか
ら、構造体中に占める活性炭の含有割合も向上して電気
二重層コンデンサの静電容量を高めることができること
を知見した。
【0009】すなわち、本発明の活性炭は、昇温脱離ガ
ス分析(TPD)によって求められるCO2の脱離カー
ブのピークトップ位置が200〜400℃に位置するこ
とを特徴とするものである。
【0010】ここで、前記CO2の脱離カーブにおい
て、300℃におけるピーク強度(p1)と、700℃
におけるピーク強度(p2)との比(p1/p2)が4.
0以上であることが望ましい。
【0011】また、本発明の活性炭の製造方法は、活性
炭を過酸化水素含有溶液中に含浸して攪拌しながら還流
処理を行った後、乾燥して昇温脱離ガス分析(TPD)
によって求められるCO2の脱離カーブのピークトップ
位置が200〜400℃に位置する活性炭を作成するこ
とを特徴とするものであり、特に前記活性炭が水蒸気賦
活したヤシ殻からなる場合に有効である。
【0012】さらに、本発明の電気二重層コンデンサの
製造方法は、上記活性炭に有機バインダを添加混合して
成形後、酸化雰囲気中150〜300℃で熱処理した
後、非酸化性雰囲気中800〜1000℃で炭化熱処理
して活性炭質構造体を作製する工程と、2枚の前記活性
炭質構造体間にセパレータを積層するとともに、それぞ
れの前記活性炭質構造体のセパレータ積層面とは反対の
面に一対の集電体を積層を作製する工程と、前記活性炭
質構造体およびセパレータ内に電解液を含浸する工程と
を具備することを特徴とするものである。
【0013】
【発明の実施の形態】本発明の活性炭は、昇温脱離ガス
分析(TPD)によって求められるCO2の脱離カーブ
のピークトップ位置が200〜400℃に位置すること
を特徴とするものであり、これによって、200〜40
0℃でCO2として脱離する表面官能基の有機バインダ
との架橋反応が飛躍的に促進される結果、固形状活性炭
質構造体の強度を高めることができるとともに、構造体
中の有機バインダ量を低減して構造体中の活性炭の含有
割合を高めることができる結果、これを炭化することに
より得られる固形状活性炭質構造体の高強度化および静
電容量の向上を図ることができる。
【0014】すなわち、活性炭の脱離カーブのピークト
ップ位置が200℃より低いか、あるいは400℃より
高い場合には、活性炭と有機バインダとの間の架橋反応
が充分に進行せず固形状活性炭質構造体の強度が低下す
る。
【0015】さらに、活性炭の表面には5〜30Åの細
孔径を有する多数の細孔が存在することが望ましく、該
細孔表面には少なくとも200〜400℃でCO2とし
て脱離する、例えば、水酸基、キノン基、カルボキシル
基等の表面官能基が存在する。また、該活性炭の比表面
積は有機バインダとの架橋反応を促進するため、および
電気二重層の容量を増してコンデンサの静電容量を高め
るために、1500m 2/g以上、特に1500〜25
00m2/gであることが望ましい。
【0016】なお、前記無定形炭素を主成分とするもの
であり、その他の成分としては、原料に由来するシリ
カ、アルミナ、鉄等の不純物成分を合計で100ppm
以下の含有してもよい。また、その形状は、機械的強度
の向上および粉末の分散性を高める点で平均粒径5〜7
0μm、特に10〜50μmの球状、フレーク状または
不定形等で存在する。 (活性炭の製造方法)次に、本発明の活性炭を製造する
方法について説明する。まず、本発明に用いられる活性
炭はその出発原料は、一般に活性炭を製造するための炭
素質原料であればよく、例えば、ヤシ殻、木粉などの植
物系原料、石炭、ピッチ、コールタール等の化石系原料
やフェノール樹脂、塩化ビニル樹脂、レゾルシノール樹
脂などの合成樹脂系原料、カーボンファイバ、カーボン
ブラックおよびそれらの炭化物等が挙げられるが、本発
明によれば、中でも安価なヤシ殻活性炭、さらには水蒸
気賦活によって得られるヤシ殻活性炭を用いた場合に特
に有用であり、その効果も顕著である。
【0017】次に、上記活性炭粉末を過酸化水素含有溶
液中に含浸する。かかる過酸化水素含有溶液の濃度は、
有機バインダの架橋反応性を高める官能基量を増すた
め、また、過酸化水素含有溶液により活性炭の賦活が進
行による固形状活性炭質構造体の密度および強度低下を
防止する点で、活性炭1gに対してH22が0.03〜
0.09molであることが望ましい。
【0018】なお、活性炭の過酸化水素処理において過
酸化水素水の濃度は、特に、取り扱いの面から10〜2
0重量%濃度の過酸化水素水を使用することが望まし
い。
【0019】ここで、本発明によれば、上記過酸化水素
水溶液中に浸漬した活性炭を攪拌しながら還流処理を行
うことが重要であり、これによって、活性炭の昇温脱離
ガス分析(TPD)によって求められるCO2の脱離カ
ーブのピークトップ位置を200〜400℃に位置する
ように制御することができる。
【0020】なお、効率的、かつ精度よく所望の活性炭
を得るためには、還流処理時の過酸化水素含有溶液の温
度は50〜100℃、還流時間は5〜20時間であるこ
とが望ましい。また、前記CO2の脱離カーブにおい
て、300℃におけるピーク強度(p1)と、700℃
におけるピーク強度(p2)との比(p1/p2)が4.
0以上であることが望ましい。
【0021】還流処理した後の活性炭は、所望により水
で洗い流し濾過した後、100〜120℃にて乾燥を行
うことにより作製することができる。なお、本発明によ
れば、濾過後の活性炭に過酸化水素が付着していても、
後の炭化熱処理によって分解、揮散させることができ
る。 (電気二重層コンデンサの製造方法)上述の方法によっ
て作成された活性炭を用いて電気二重層コンデンサを作
製する方法の一例について説明する。まず、上述した活
性炭粉末100重量部に対して、ポリビニルブチラール
(PVB)、ポリビニルホルマール(PVFM)等のポ
リビニルアセタール、酢酸ビニル等の有機バインダ、特
に本発明の活性炭との架橋反応性の高いポリビニルブチ
ラール(PVB)を30〜90重量部、特に4〜75重
量部となる量で添加、混合する。さらに、成形性の点
で、ポリビニルブチラール(PVB)のブチラール化度
は1500以下、特に1000〜1300であることが
望ましい。
【0022】また、上記粉末に対して、成形性を向上さ
せるために、フタル酸ジブチル(DBP)やフタル酸ジ
オクチル(DOP)等の可塑剤等を、総量で活性炭10
0重量部に対して80〜200重量部、特に90〜16
0重量部の割合で添加してもよい。
【0023】次に、上記混合粉末を用いて、プレス成形
法、ドクターブレード法、押し出し成形法、カレンダー
ロール法、ロール成形法等の公知の成形手段により所定
形状に成形して特に板状体を作製する。
【0024】そして、前記成形体を大気等の酸化性雰囲
気中、150〜300℃、特に180〜200℃に加熱
し、12〜48時間、特に30〜48時間保持するエー
ジング熱処理を施す。本発明によれば、活性炭の表面官
能基がかかる温度(150〜300℃)にて反応活性で
あり、かつ有機バインダの反応性も高いことから、エー
ジング熱処理によって活性炭と有機バインダとの結合力
を高めて成形体の機械的強度を高めることができる。ま
た、その後の炭化熱処理においても前記活性炭と有機バ
インダとの間の強固な結合の一部が残存し、構造体の強
度を高めることができる。
【0025】その後、これを非酸化性雰囲気中、800
〜1000℃で炭化処理して有機バインダ成分を炭化さ
せるとともに、活性炭間を焼結一体化させて、活性炭粒
子間を結合し、かつ該活性炭表面に多数の細孔を形成す
ることができる。なお、構造体の機械的強度を高めるた
めには、上記炭化処理後に前記有機バインダの一部を残
存させていてもよい。
【0026】なお、上記方法によって作製される活性炭
質構造体は、3点曲げによる強度が7.35MPa以上
となり、電気二重層コンデンサの分極性電極として用い
る際の製造時の取り扱いや使用時の振動、衝撃等に耐え
うる機械的な信頼性に優れたものとなる。
【0027】また、活性炭構造体中の活性炭含有比率を
高めて、構造体のアルゴン吸着法による細孔容積を15
00m2/g以上とすることができ、電気二重層コンデ
ンサの静電容量を高めることができるとともに、活性炭
および有機バインダ間が強固に結合していることによっ
て、コンデンサの内部抵抗を低減することができる。
【0028】得られた活性炭質構造体2枚の間にセパレ
ータを介装するとともに、活性炭構造体のセパレータ積
層面とは反対面それぞれに集電体を積層して積層体セル
を形成する。そして、該積層体セルを、所望により複数
積層した状態で外装材内に収納する。
【0029】ここで、セパレータは、パルプやポリエチ
レン、ポリプロピレン等の有機フィルムまたはガラス繊
維不織布等およびセラミックス等により形成され、分極
性電極間を絶縁するために形成されるものであるが、分
極性電極内に含有される電解液中のイオンを透過させる
ことができる多孔質体により形成される。また、集電体
は、導電性を有する導電性ブチルゴム、アルミ箔、アル
ミのプラズマ溶射等により形成され、分極性電極との間
で電荷をやり取りすることができる。
【0030】さらに、外装材は、分極性電極およびセパ
レータに含まれる電解液が外部に漏れることを防止でき
るとともに、分極性電極、セパレータおよび集電体を固
定、保護するためのものであり、例えば、アルミラミネ
ート等の袋状体や金属製筐体が好適に使用でき、また、
分極性電極、セパレータおよび集電体の積層体の外部に
ポリプロピレン、アクリル等のプラスッチックやガラ
ス、セラミック等の絶縁材料または絶縁層を介在させた
金属が使用可能である。
【0031】そして、外装材の壁面に集電体の一端に設
けた端子部、あるいは該端子部と接続されたリード端子
を貫通させた状態で外装材内部を封止し、かつ外装材壁
面に設けた電解液注入口から電解液を注入することによ
って、電気二重層コンデンサを作製することができる。
【0032】電解液としては、硫酸や硝酸等の水溶液
や、プロピレンカーボネート、γ−ブチロラクトン、
N,N−ジメチルホルムアミド、エチレンカーボネー
ト、スルホラン、3−メチルスルホラン等の有機溶媒と
4級アンモニウム塩、4級スルホニウム塩、4級ホスホ
ニウム塩等の電解質を組み合わせた有機溶液が使用可能
であるが、本発明によれば、分解電圧の高い有機質電解
液を用いることが望ましい。 (電気二重層コンデンサの構造)また、上記方法によっ
て作製された本発明の電気二重層コンデンサの一例につ
いて、その概略断面図である図1を基に説明する。図1
によれば、電気二重層コンデンサ1は、電解液を含浸し
た2枚の固形状活性炭質電極(分極性電極)2間に絶縁
性で多孔質のセパレータ3が介装されている。また、分
極性電極2、2のセパレータ3積層面とは反対の面には
集電体4が積層されて積層体セル5が形成され、積層体
セル5は外装材6内に収納されるとともに、集電体4の
一端に設けられた端子部4Aが外装部6を貫通して外装
材6外部に突出し、端子部4Aによって電気二重層コン
デンサ1と外部回路(図示せず)とのやりとりを行う構
造からなる。また、外装材内部は封止され、かつ電解液
が充填される。
【0033】本発明によれば、分極性電極2の機械的強
度が高く、かつ活性炭の含有割合が高いことから、機械
的信頼性が高く、かつ内部抵抗が低く、静電容量が高い
電気二重層コンデンサとなる。
【0034】
【実施例】(実施例)先ず、BET法による比表面積1
700m2/g、水蒸気賦活により作製した平均粒径2
0〜40μmのヤシ殻活性炭粉末100gを、活性炭1
gに対して表1に示すモル数の各薬品を含有する水溶液
中に浸漬して、撹拌しながら表1に示す時間還流処理を
行った。その後、120℃で10時間乾燥して活性炭を
得た。
【0035】得られた活性炭1gに対して、昇温速度1
0℃/分、室温〜1000℃の条件で昇温脱離ガス分析
(TPD)を行い、図2のように、温度(X軸)−CO
2ガスの脱離量に基づく電流値(Y軸)としてCO2ガス
の脱離カーブを測定し、該カーブのピークトップ位置を
求めた。また、該カーブから300℃でのCO2脱離量
のピーク強度p1と700℃でのピーク強度p2との比
(p1/p2)を算出した。なお、測定に関しては関西熱
化学製MSC−25を標準試料として環境条件の補正を
行った。結果は表1に示した。
【0036】次に、得られた活性炭粉末100重量部に
対して、ポリビニルブチラール(PVB)を42重量部
と、可塑剤としてメチルセルロースを100重量部とを
混合し撹拌混合機にて撹拌し、得られた杯土を押出成形
機にて成形して平板状の成形体を作製した。
【0037】そして、前記成形体を大気中、200℃で
48時間保持するエージング処理を行った後、真空中、
30℃/時間で昇温して900℃で3時間炭化熱処理を
行い、縦70mm×横50mm×厚さ1mmの活性炭質
構造体を作製した。
【0038】得られた活性炭質構造体に対して、JIS
R−1601の規格に準じて3点曲げ強度を測定した。
また、アルゴン吸着法によって活性炭構造体の比表面積
(BET値)を測定した。結果は、表1に示した。
【0039】一方、前記活性炭質構造体2枚を作製し、
この間に93mm×63mm×0.3mmのガラス繊維
不織布からなる多孔質セパレータを介して積層し、その
上下面に93mm×63mm×0.5mmのアルミニウ
ム製集電体を積層して積層体セルを形成し、該積層体セ
ルをアルミラミネートによって封止して電気二重層コン
デンサを作製した。なお、集電体の一端には端子部を形
成し、端子部が外装材壁面を貫通した状態で外装材外部
に突出させるとともに、外装材内部には1mol/lの
テトラエチルアンモニウムテトラフルオロボレート(E
4NBF4)の炭酸プロピレン(PC)溶液を電解液と
して充填した。
【0040】得られた電気二重層コンデンサについて、
3.0Vの電圧で30分間充電した後、3mA/cm2
の定電流放電法にて電極単位重量当たりの静電容量(F
/g)を求めた。さらに、放電時の電圧が0(V)とな
った時点で放電を中止して10分後の電圧上昇値から電
気二重層コンデンサの内部抵抗を測定した。結果は表1
に示した。 (比較例)実施例の試料No.2の活性炭に対して、電
解液を添加、混練してペーストを作製し、実施例の集電
体の表面に塗布することによって分極性電極を作製する
以外は実施例と同様に電気二重層コンデンサを作製し、
評価した。結果は表1に示した(試料No.10)。
【0041】
【表1】
【0042】表1より明らかなように、薬品処理を行わ
ない試料No.1および薬品処理時に還流を行わない試
料No.2では、CO2の脱離カーブのピークトップ位
置が400℃より高く、また、活性炭質構造体の強度が
低くて取り扱いに耐えないものであった。
【0043】さらに、薬品として硫酸や硝酸を用いた試
料No.8およびNo.9では、CO2の脱離カーブの
ピークトップ位置が400℃より高く、また、活性炭構
造体の強度が低くなった。また、活性炭粉末と電解液と
を混練したペーストを分極性電極として用いた試料N
o.10では、活性炭構造体の比表面積が低く静電容量
が低いとともに、内部抵抗が高いものであった。
【0044】これに対し、本発明に従い、活性炭を過酸
化水素含有溶液中に浸漬して撹拌しながら還流処理を行
った試料No.3〜7では、強度7.35MPa以上、
静電容量40F/g以上、内部抵抗30Ω以下の優れた
特性を有するものであった。
【0045】
【発明の効果】以上詳述したとおり、本発明の活性炭
は、活性炭を過酸化水素含有溶液中に浸漬して還流処理
を行うことによって作製され、活性炭表面に200〜4
00℃の温度範囲で反応活性な表面官能基を生成するこ
とができる結果、該活性炭に有機バインダを添加して成
形した後に所定の条件でエージング処理を施した場合、
前記表面官能基と有機バインダとの架橋反応が飛躍的に
向上し、有機バインダを介した活性炭間??が強固に結
合されるために、成形体およびそれを炭化した活性炭質
構造体の機械的強度を高めることができ、また、少ない
有機バインダ量で粉末間を強固に結合させることがで
き、かつ別途硬化剤等を添加する必要がないことから、
構造体中に占める活性炭の含有割合も向上して電気二重
層コンデンサの静電容量を高めることができる。
【0046】
【図面の簡単な説明】
【図1】本発明の電気二重層コンデンサの一例を示す概
略断面図である。
【図2】実施例の試料No.1、3、5および9につい
て昇温脱離ガス分析(TPD)を行い、測定されたCO
2ガスの脱離カーブを説明するための図である。
【符号の説明】
1 電気二重層コンデンサ 2 分極性電極 3 セパレータ 4 集電体 4A 端子部 5 外装材 p1 300℃におけるCO2ガス脱離のピーク強度 p2 700℃におけるCO2ガス脱離のピーク強度

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】昇温脱離ガス分析(TPD)によって求め
    られるCO2の脱離カーブのピークトップ位置が200
    〜400℃に位置することを特徴とする活性炭。
  2. 【請求項2】前記CO2の脱離カーブにおいて、300
    ℃におけるピーク強度(p1)と、700℃におけるピ
    ーク強度(p2)との比(p1/p2)が4.0以上であ
    ることを特徴とする請求項1記載の活性炭。
  3. 【請求項3】活性炭を過酸化水素含有溶液中に含浸して
    攪拌しながら還流処理を行った後、乾燥することを特徴
    とする活性炭の製造方法。
  4. 【請求項4】前記活性炭が水蒸気賦活したヤシ殻からな
    ることを特徴とする請求項3記載の活性炭の製造方法。
  5. 【請求項5】請求項1または2記載の活性炭に有機バイ
    ンダを添加混合して成形後、酸化雰囲気中150〜30
    0℃で熱処理した後、非酸化性雰囲気中800〜100
    0℃で炭化熱処理して活性炭質構造体を作製する工程
    と、2枚の前記活性炭質構造体間にセパレータを積層す
    るとともに、それぞれの前記活性炭質構造体のセパレー
    タ積層面とは反対の面に一対の集電体を積層を作製する
    工程と、前記活性炭質構造体およびセパレータ内に電解
    液を含浸する工程とを具備することを特徴とする電気二
    重層コンデンサの製造方法。
JP2001022218A 2001-01-30 2001-01-30 活性炭及びその製造方法並びにこれを用いた電気二重層コンデンサの製造方法 Pending JP2002226210A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022218A JP2002226210A (ja) 2001-01-30 2001-01-30 活性炭及びその製造方法並びにこれを用いた電気二重層コンデンサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022218A JP2002226210A (ja) 2001-01-30 2001-01-30 活性炭及びその製造方法並びにこれを用いた電気二重層コンデンサの製造方法

Publications (1)

Publication Number Publication Date
JP2002226210A true JP2002226210A (ja) 2002-08-14

Family

ID=18887663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022218A Pending JP2002226210A (ja) 2001-01-30 2001-01-30 活性炭及びその製造方法並びにこれを用いた電気二重層コンデンサの製造方法

Country Status (1)

Country Link
JP (1) JP2002226210A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055739A1 (ja) * 2009-11-05 2011-05-12 国立大学法人群馬大学 炭素触媒並びにその製造方法及びこれを用いた電極並びに電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055739A1 (ja) * 2009-11-05 2011-05-12 国立大学法人群馬大学 炭素触媒並びにその製造方法及びこれを用いた電極並びに電池
US8569207B2 (en) 2009-11-05 2013-10-29 National University Corporation Gunma University Carbon catalyst, method of producing same, and electrode and battery each utilizing same
US9040452B2 (en) 2009-11-05 2015-05-26 National University Corporation Gunma University Carbon catalyst, method of producing same, and electrode and battery each utilizing same

Similar Documents

Publication Publication Date Title
KR100836524B1 (ko) 고용량 전극 활물질, 그 제조방법, 이를 구비한 전극 및에너지 저장 장치
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
KR101793040B1 (ko) 울트라커패시터용 전극활물질의 제조방법, 상기 울트라커패시터용 전극활물질을 이용한 울트라커패시터 전극의 제조방법 및 울트라커패시터
JP2003104710A (ja) 固形状活性炭及びその製造方法並びにそれを用いた電気二重層コンデンサおよびその製造方法
KR20160036608A (ko) Co2 활성 코코넛 숯을 함유하는 고 전압 edlc 전극
KR102297370B1 (ko) 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터
JP3652061B2 (ja) 電気二重層コンデンサ
KR100911891B1 (ko) 전기이중층 커패시터용 활성탄소물의 제조방법 및 이에의한 전기이중층 커패시터 전극과 이를 이용한 전기이중층커패시터
JPH06267794A (ja) 分極性電極材の製造方法
JP3904755B2 (ja) 活性炭及びそれを用いた電気二重層コンデンサ
JP2000100668A (ja) 電気二重層コンデンサの製造方法
JP4587522B2 (ja) 電気二重層コンデンサ
JP2002226210A (ja) 活性炭及びその製造方法並びにこれを用いた電気二重層コンデンサの製造方法
JP3764604B2 (ja) 電気二重層コンデンサおよびその製造方法
JP2001185452A (ja) 電気二重層コンデンサおよびその製造方法
JP2000007316A (ja) 固形状活性炭及びそれを用いた電気二重層コンデンサ
JP3872222B2 (ja) 固形状活性炭質構造体およびそれを用いた電気二重層コンデンサ並びにその製造方法
JP2002015959A (ja) 電気二重層コンデンサとその製造方法
JP3801802B2 (ja) 電気二重層コンデンサおよびその製造方法
KR102364514B1 (ko) 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터
WO2007077906A1 (ja) 非水系キャパシタ及びその製造方法
JP3786551B2 (ja) 電気二重層コンデンサおよびその製造方法
JP3670507B2 (ja) 電気二重層コンデンサおよびその製造方法
JP2716334B2 (ja) 電気二重層コンデンサ
JP3766562B2 (ja) 電気二重層コンデンサ