JP2002224611A - Coating method - Google Patents

Coating method

Info

Publication number
JP2002224611A
JP2002224611A JP2001026031A JP2001026031A JP2002224611A JP 2002224611 A JP2002224611 A JP 2002224611A JP 2001026031 A JP2001026031 A JP 2001026031A JP 2001026031 A JP2001026031 A JP 2001026031A JP 2002224611 A JP2002224611 A JP 2002224611A
Authority
JP
Japan
Prior art keywords
coating
atomizing head
rotary atomizing
air
bell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001026031A
Other languages
Japanese (ja)
Inventor
Shigeji Yamauchi
内 繁 治 山
Tomoaki Naruse
瀬 知 明 成
Yasushi Sato
藤 泰 佐
Makoto Ichimura
村 誠 市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Toyota Motor Corp
Original Assignee
Trinity Industrial Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp, Toyota Motor Corp filed Critical Trinity Industrial Corp
Priority to JP2001026031A priority Critical patent/JP2002224611A/en
Publication of JP2002224611A publication Critical patent/JP2002224611A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1007Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
    • B05B3/1014Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1092Means for supplying shaping gas

Abstract

PROBLEM TO BE SOLVED: To provide a nonelectrostatic coating method, in which a high voltage generator or insulating equipment is dispensed with, the troublesome to form a conductive primer layer is eliminated and the coating efficiency of a coating material is improved. SOLUTION: The distance (L) between a bell type coater (1) and the surface of a material (4) to be coated is kept to <=100 mm, a coating pattern width (P) of the bell type coater (1) on the surface of the material (4) to be coated is narrowed down to about <=2 times of the tip diameter of the rotary atomizing head (2) by shaping air (3) and the air pressure is set to control the wind speed of the shaping air on the surface of the material (4) to be coated to <=7 m/see. As a result, the coating material particles jetted in the peripheral direction of the rotary atomizing head of the bell type coater reaches on the surface of the material to be coated by the effect of the shaping air to be directed to the direction of the material to be coated without forming an electric static field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塗装機と被塗物と
の間に静電界を作らない非静電式の塗装方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-electrostatic coating method which does not create an electrostatic field between a coating machine and an object to be coated.

【0002】[0002]

【従来の技術】自動車、家電等の工業用塗装ラインで
は、塗装機から噴射される塗料にマイナスの電荷を与
え、被塗物をアースしてプラス側とし、その被塗物と塗
装機との間に静電界を作って塗装を行う静電塗装が一般
に採用されている。
2. Description of the Related Art In an industrial coating line for automobiles, home appliances, etc., a negative charge is applied to paint sprayed from a coating machine, an object to be grounded is set to a plus side, and the coating object is Electrostatic coating, in which an electrostatic field is applied between the layers to perform coating, is generally employed.

【0003】静電塗装は、非静電式のエアスプレー塗装
やエアレススプレー塗装に比べて塗料の塗着効率が格段
に優れているため、省資源、公害対策面で有効であると
されている。特に、高速回転するベル型の回転霧化頭に
供給された塗料を遠心力と静電界のクーロン力で微粒化
して被塗物の表面に吸着させる回転霧化式のベル型塗装
機による静電塗装は、エア霧化式あるいはエアレス霧化
式の塗装機による静電塗装に比べて塗料の塗着効率が高
く、しかも高品質な塗膜が得られることから、自動車ボ
ディや自動車用内装部品・外装部品の塗装に多く用いら
れている。
[0003] Electrostatic coating is considered to be effective in resource saving and pollution control because it has a much higher coating efficiency than non-electrostatic air spray coating and airless spray coating. . In particular, electrostatic spraying is performed by a rotary atomizing bell-type coating machine that atomizes paint supplied to a high-speed rotating bell-type rotary atomizing head by centrifugal force and Coulomb force of an electrostatic field and adsorbs it on the surface of the object to be coated. The coating efficiency of the paint is higher than that of the electrostatic coating by the air atomization type or the airless atomization type coating machine, and a high quality coating film can be obtained. It is often used for painting exterior parts.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、静電塗
装を行うためには、例えばベル型塗装機の回転霧化頭に
高電圧を印加する高圧発生器や、高電圧が印加される塗
装機とその塗装機に塗料を供給する塗料供給系とを電気
的に絶縁する絶縁設備等が必要となるので、塗装設備の
コストが嵩むという問題があった。
However, in order to perform electrostatic coating, for example, a high voltage generator for applying a high voltage to a rotary atomizing head of a bell type coating machine or a coating machine to which a high voltage is applied is used. Insulation equipment and the like for electrically insulating the paint supply system that supplies the paint to the coating machine are required, so that the cost of the coating equipment is increased.

【0005】また、最近の自動車用内装部品・外装部品
は、軽量で成形加工も容易なプラスチック製のものが増
えており、このようなプラスチック製の被塗物を静電塗
装するには、その表面に予め非静電式のエアスプレーガ
ンやエアレススプレーガン等で導電性塗料をコーティン
グして、アースをとるための導電性プライマー層を形成
しなければならないという面倒があった。
In recent years, the number of lightweight and easily molded plastic interior and exterior parts for automobiles has been increasing, and in order to electrostatically coat such plastic objects to be coated, it is necessary to use such plastic parts. The surface has to be coated with a conductive paint in advance using a non-electrostatic air spray gun or airless spray gun to form a conductive primer layer for grounding.

【0006】そこで本発明は、高圧発生器や絶縁設備を
不要とし、導電性プライマー層を形成する面倒を解消す
るために、塗料の塗着効率が高い非静電式の塗装方法を
提供することを技術的課題としている。
Accordingly, the present invention provides a non-electrostatic coating method having a high coating efficiency in order to eliminate the trouble of forming a conductive primer layer by eliminating the need for a high-voltage generator and insulation equipment. Is a technical issue.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1の発明は、高速回転するベル型の回転霧
化頭に供給された塗料を該回転霧化頭の先端部から遠心
力で微粒化して該回転霧化頭の円周方向に噴射すると同
時に、その噴射した塗料粒子を該回転霧化頭の周囲から
噴出するシェーピングエアのみで被塗物方向へ指向させ
るベル型塗装機を用いた非静電式の塗装方法であって、
前記ベル型塗装機と該塗装機で塗装する被塗物の表面と
の間の距離を100mm以下に保持し、前記シェーピン
グエアによって、被塗物の表面における前記ベル型塗装
機の塗装パターン幅を前記回転霧化頭の先端径の略2倍
以下に絞り込むと共に、被塗物の表面における前記シェ
ーピングエアの風速が秒速7m以下となるように該シェ
ーピングエアのエア圧を設定することを特徴とする。
In order to solve the above-mentioned problems, according to the present invention, the paint supplied to a high-speed rotating bell-shaped rotary atomizing head is supplied from the tip of the rotary atomizing head. Bell-type coating which atomizes by centrifugal force and sprays in the circumferential direction of the rotary atomizing head, and at the same time directs the sprayed paint particles in the direction of the object to be coated with only shaping air jetted from around the rotary atomizing head. Non-electrostatic coating method using a machine,
The distance between the bell type coating machine and the surface of the object to be coated by the coating machine is kept at 100 mm or less, and the shaping air is used to reduce the coating pattern width of the bell type coating machine on the surface of the object to be coated. The diameter of the tip of the rotary atomizing head is reduced to approximately twice or less, and the air pressure of the shaping air is set so that the wind speed of the shaping air on the surface of the workpiece is 7 m / sec or less. .

【0008】請求項1の発明の如く、ベル型塗装機を被
塗物に近接させて該塗装機と被塗物の表面との間の距離
を100mm以下に保持すると、その間にクーロン力と
いう吸引力が働く静電界を作らなくても、ベル型塗装機
の回転霧化頭の円周方向に噴射した塗料粒子を被塗物方
向へ指向させるシェーピングエアの効きによって、その
塗料粒子を被塗物の表面に到達させることができる。
According to the first aspect of the present invention, when the distance between the coating machine and the surface of the object to be coated is kept at 100 mm or less by bringing the bell type coating machine close to the object to be coated, the suction called the Coulomb force during that time. Even without creating an electrostatic field in which a force acts, the paint particles sprayed in the circumferential direction of the rotary atomizing head of the bell type coating machine are directed to the work object by shaping air. To the surface.

【0009】また、静電界のクーロン力が働かなけれ
ば、ベル型塗装機の回転霧化頭から噴射した塗料粒子
は、被塗物の表面に対して直進せずに広角的に拡散する
ためその塗着効率が低下する傾向を示すが、本発明の如
く、塗料粒子が被塗物の表面に塗着したときに形成され
るベル型塗装機の塗装パターン幅をシェーピングエアで
回転霧化頭の先端径の略2倍以下に絞り込めば、塗料粒
子の広角的な拡散が抑制されて被塗物の表面に対する直
進性が確保され、塗着効率が著しく向上する。
Further, if the Coulomb force of the electrostatic field does not act, the paint particles sprayed from the rotary atomizing head of the bell type coating machine diffuse at a wide angle without going straight to the surface of the object to be coated. Although the coating efficiency tends to decrease, as in the present invention, the coating pattern width of the bell type coating machine formed when the coating particles are applied to the surface of the object to be coated is adjusted by rotating the atomizing head with shaping air. If the diameter is narrowed to approximately twice or less of the tip diameter, the wide-angle diffusion of the paint particles is suppressed, the straightness to the surface of the object is secured, and the coating efficiency is significantly improved.

【0010】また、被塗物の表面と100mm以下の距
離に近接させたベル型塗装機から噴出するシェーピング
エアのエア圧が高すぎると、そのシェーピングエアが被
塗物の表面に高風速で衝突して、塗料粒子を飛散させる
ような強い跳ね返りの気流を生ずるため、被塗物の表面
に塗着しないオーバースプレー塗料が多くなるが、本発
明の如く、被塗物の表面におけるシェーピングエアの風
速が秒速7m以下となるようにそのエア圧を設定すれ
ば、跳ね返りの気流による塗料粒子の飛散が抑制され
て、オーバースプレー塗料が少なくなる。
Further, if the air pressure of the shaping air ejected from a bell type coating machine which is close to the surface of the object to be coated is less than 100 mm, the shaping air collides with the surface of the object at a high wind speed. As a result, an overspray paint that does not adhere to the surface of the object to be coated increases due to a strong bounced air current that scatters the paint particles. If the air pressure is set so as to be 7 m / sec or less, scattering of the paint particles due to the rebound air flow is suppressed, and the amount of overspray paint is reduced.

【0011】請求項2及び請求項3の発明は、シェーピ
ングエアとして、噴出方向が回転霧化頭の回転方向又は
反回転方向に傾けられて回転霧化頭の周囲から渦状に噴
出される渦流と、噴出方向が回転霧化頭の中心側に傾け
られて回転霧化頭の周囲から円錐面状に噴出される円錐
空気流のいずれか一方又は双方を用い、双方を用いる場
合は、円錐空気流を渦流の外側から内側に向けて噴出さ
せる。
According to the second and third aspects of the present invention, as the shaping air, a vortex flow which is jetted from the periphery of the rotary atomizing head in a vortex shape in which the jetting direction is inclined in the rotation direction or the anti-rotation direction of the rotary atomizing head. , Using one or both of the conical airflows in which the jetting direction is inclined toward the center of the rotary atomizing head and jetted in a conical shape from the periphery of the rotary atomizing head, and when both are used, the conical airflow is used. Is ejected from the outside to the inside of the vortex.

【0012】渦流及び円錐空気流は、いずれも、回転霧
化頭の遠心力でその円周方向に噴射する塗料粒子を被塗
物に指向させ、特に渦流は、塗料の微粒化及び均一な円
形塗装パターンの形成に寄与し、円錐空気流は塗装パタ
ーン幅の絞り込みに寄与する。これにより、双方を同時
に使用する場合は、適当なサイズの円形パターンを容易
に形成することができる。
Both the vortex and the conical air flow direct the paint particles, which are sprayed in the circumferential direction by the centrifugal force of the rotary atomizing head, to the object to be coated. In particular, the vortex causes atomization of the paint and a uniform circular shape. The conical air flow contributes to the formation of the paint pattern and the narrowing of the paint pattern width. Thus, when both are used simultaneously, a circular pattern of an appropriate size can be easily formed.

【0013】さらに、請求項4の発明のように、円錐空
気流を回転霧化頭の中心側に10°以上40°以下の角
度に傾けて噴出させ、渦流を回転霧化頭の回転方向又は
反回転方向に10°以上60°以下の角度に傾けて噴出
させれば、被塗物の表面におけるシェーピングエアの風
速を秒速7m以下にしたときに、塗装パターン幅を回転
霧化頭の先端径の2倍以下に維持できる。
Further, as in the invention of claim 4, the conical air flow is jetted toward the center side of the rotary atomizing head at an angle of 10 ° or more and 40 ° or less, so that the vortex flows in the rotation direction of the rotary atomizing head or When the jetting is performed at an angle of 10 ° or more and 60 ° or less in the anti-rotation direction, when the wind speed of the shaping air on the surface of the workpiece is set to 7 m / sec or less, the width of the coating pattern is changed to the tip diameter of the rotary atomizing head. Can be maintained at twice or less.

【0014】請求項5の発明は、ベル型塗装機とその先
端に装着された回転霧化頭の隙間を陽圧に維持し、請求
項6の発明は、ベル型塗装機の後方から先端側に向かっ
てベル型塗装機を覆う円筒状のエアカーテンを形成する
ようにしている。
According to a fifth aspect of the present invention, the gap between the bell-type coating machine and the rotary atomizing head mounted on the tip of the bell-type coating machine is maintained at a positive pressure. To form a cylindrical air curtain that covers the bell-shaped coating machine toward.

【0015】請求項5及び6の発明によれば、ベル型塗
装機と被塗物の表面との距離を100mm以下に近付け
て塗装した場合に、オーバースプレイされた塗料粒子
が、ベル型塗装機とその先端に装着された回転霧化頭の
隙間に侵入して付着したり、塗装機外周面に付着したり
する塗装機の汚れを未然に防止することができる。
According to the fifth and sixth aspects of the present invention, when the distance between the bell type coating machine and the surface of the object to be coated is reduced to 100 mm or less, the oversprayed paint particles are converted to the bell type coating machine. It is possible to prevent the coating machine from getting into the gap between the rotary atomizing head mounted on the tip of the coating machine and sticking to the coating machine or the outer peripheral surface of the coating machine.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を図面に
よって具体的に説明する。図1は本発明に係る塗装方法
の一例を示す図、図2は本発明方法に用いたベル型塗装
機の一例を示す図、図3はシェーピングエアの流線を示
す模式図、図4は塗着効率を示すグラフである。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a diagram showing an example of a coating method according to the present invention, FIG. 2 is a diagram showing an example of a bell type coating machine used in the method of the present invention, FIG. 3 is a schematic diagram showing streamlines of shaping air, and FIG. It is a graph which shows coating efficiency.

【0017】図中、1は、高速回転するベル型の回転霧
化頭2に供給された塗料を該回転霧化頭2の先端部から
遠心力で微粒化してその円周方向に噴射すると同時に、
その噴射した塗料粒子を回転霧化頭2の周囲から噴出す
るシェーピングエア3のみで被塗物4の方向へ指向させ
るベル型塗装機である。
In the drawing, reference numeral 1 denotes a coating material supplied to a bell-shaped rotary atomizing head 2 which rotates at a high speed, is atomized from the tip of the rotary atomizing head 2 by centrifugal force, and is sprayed in the circumferential direction. ,
This is a bell-type coating machine in which the sprayed paint particles are directed toward the workpiece 4 only by the shaping air 3 which is blown out from around the rotary atomizing head 2.

【0018】ベル型塗装機1は、これを定位置に固定し
て塗装する定置式、あるいはレシプロ装置や塗装ロボッ
トに取り付けて動かしながら塗装する移動式の何れの場
合でも、その塗装の際に被塗物4の表面との間の距離L
を100mm以下に保持するように設置あるいは動作制
御する。
The bell-type coating machine 1 can be fixed at a fixed position, or it can be fixed, or it can be mounted on a reciprocating device or a painting robot, and it can be moved while moving. Distance L from the surface of the coating 4
Is installed or the operation is controlled so that is maintained at 100 mm or less.

【0019】これにより、ベル型塗装機1の回転霧化頭
2の円周方向に噴射した塗料粒子を被塗物4の方向に向
けさせるシェーピングエア3の効きによって、その塗料
粒子を被塗物4の表面まで確実に到らしめることが可能
となる。
As a result, the coating particles sprayed in the circumferential direction of the rotary atomizing head 2 of the bell type coating machine 1 are directed by the shaping air 3 to the direction of the object 4 so that the coating particles are applied to the object. 4 can be reliably reached.

【0020】ただし、ベル型塗装機1と被塗物4との間
に塗料粒子を被塗物4の方向に吸引させるクーロン力が
作用しない非静電式の塗装では、ベル型塗装機1の回転
霧化頭2からその円周方向に噴射してシェーピングエア
3で被塗物4の方向へ指向せられる塗料粒子が、被塗物
4の表面に対して直進せずに、回転霧化頭2の遠心力で
広角的に拡散して、塗料の塗着効率が低下する傾向にあ
る。
However, in the case of non-electrostatic coating in which no Coulomb force acts to suck paint particles in the direction of the object 4 between the bell-type coating machine 1 and the object 4, the bell-type coating machine 1 The paint particles which are sprayed in the circumferential direction from the rotary atomizing head 2 and directed toward the object 4 by the shaping air 3 do not go straight to the surface of the object 4 to be rotated. With the centrifugal force of 2, the light is diffused at a wide angle, and the coating efficiency of the paint tends to decrease.

【0021】つまり、ベル型塗装機と被塗物との間に静
電界を作る静電塗装の場合は、ベル型塗装機の回転霧化
頭からその円周方向に噴射する塗料粒子を被塗物方向に
向けさせるようとするシェーピングエアの作用と、該塗
料粒子をクーロン力で被塗物方向に吸引する静電界の作
用とによって、塗料粒子が被塗物の表面に対して直進せ
られるため、その表面に塗着せずに逃散するオーバース
プレー塗料は少ないが、非静電式の塗装では、塗料粒子
を被塗物方向に吸引するクーロン力が働かないので、必
然的に塗料粒子が広角的に拡散してオーバースプレー塗
料が多くなる。
That is, in the case of electrostatic coating in which an electrostatic field is created between the bell type coating machine and the object to be coated, the coating particles sprayed in the circumferential direction from the rotary atomizing head of the bell type coating machine are coated. Due to the action of shaping air that is directed to the direction of the object and the action of the electrostatic field that attracts the paint particles toward the object by Coulomb force, the paint particles are caused to travel straight against the surface of the object. There is little overspray paint that escapes without being applied to the surface, but in non-electrostatic coating, the Coulomb force that attracts paint particles in the direction of the workpiece does not work, so the paint particles inevitably have a wide angle. And spread over paint.

【0022】そこで、被塗物4の表面におけるベル型塗
装機1の塗装パターン幅Pをシェーピングエア3で回転
霧化頭2の先端径の略2倍以下に絞り込むことにより、
塗料粒子の広角的な拡散を抑制すると同時に、その塗料
粒子に被塗物4の表面に対する直進性を付与して、塗料
の塗着効率を高める。
Therefore, the coating pattern width P of the bell type coating machine 1 on the surface of the workpiece 4 is narrowed by the shaping air 3 to approximately twice or less the tip diameter of the rotary atomizing head 2.
At the same time as suppressing the wide-angle diffusion of the paint particles, the paint particles are given a straightness to the surface of the article 4 to be applied, thereby increasing the paint application efficiency.

【0023】なお、シェーピングエア3による塗装パタ
ーン幅Pの絞り込みは、例えば、そのシェーピングエア
3の噴出方向を被塗物4の表面に直交する方向から回転
霧化頭2の中心側に傾けたり、あるいは回転霧化頭2の
回転方向又は反回転方向に傾けることによって行う。
The narrowing of the coating pattern width P by the shaping air 3 is performed by, for example, tilting the jetting direction of the shaping air 3 from the direction perpendicular to the surface of the workpiece 4 toward the center of the rotary atomizing head 2, Alternatively, it is performed by tilting the rotary atomizing head 2 in the rotation direction or the counter rotation direction.

【0024】ただし、シェーピングエア3が強すぎる
と、そのシェーピングエア3が被塗物4の表面に衝突し
て生ずる跳ね返りの気流5で塗料粒子が飛散せられて、
被塗物4の表面に塗着しないオーバースプレー塗料が多
くなり、塗料の塗着効率が却って低下するおそれがあ
る。
However, if the shaping air 3 is too strong, the paint particles are scattered by the rebounding airflow 5 generated when the shaping air 3 collides with the surface of the object 4 to be coated.
The amount of overspray paint not applied to the surface of the article 4 to be coated increases, and the coating efficiency of the paint may be rather lowered.

【0025】そこで、シェーピングエア3のエア圧を種
々変更して塗料の塗着率を計測する実験を行ったとこ
ろ、被塗物4の表面におけるシェーピングエア3の風速
が秒速7m以下のときは、跳ね返り気流5による塗着率
の低下よりもシェーピングエア3による塗着率の向上効
果が勝ることが判明した。したがって、塗物4の表面に
おけるシェーピングエア3の風速が秒速7m以下となる
ようにシェーピングエア3のエア圧を設定する。
An experiment was conducted to measure the coating rate of the paint by changing the air pressure of the shaping air 3 in various ways. When the wind speed of the shaping air 3 on the surface of the workpiece 4 was 7 m / sec or less, It was found that the effect of improving the coating rate by the shaping air 3 was better than the reduction in the coating rate by the rebound airflow 5. Therefore, the air pressure of the shaping air 3 is set so that the wind speed of the shaping air 3 on the surface of the coating material 4 is 7 m / sec or less.

【0026】以上が、本発明の実施態様であり、次にそ
の最適な実施例について図2〜図4を伴ってより具体的
に説明する。本例で使用したベル型塗装機1は、図2に
示すように、高速回転駆動されるエアモータ6の管状回
転軸7の先端に直径50mmの回転霧化頭2が取り付け
られ、前記回転軸7内に前記回転霧化頭2へ塗料を供給
する塗料ノズル8が挿入配設され、この塗料ノズル8の
後端側には、複数の塗料供給ホース及び洗浄流体ホース
9…を接続したマニホールド10が装着されている。そ
して、マニホールド10には、各ホース9…に個別に連
通された細径ノズル(図示せず)が形成され、これらが
束ねられた状態で塗料ノズル8内に挿入配設されてお
り、回転霧化頭2に各色塗料及び洗浄流体を個別に供給
できるようになされている。
The embodiment of the present invention has been described above. Next, an optimal embodiment will be described more specifically with reference to FIGS. As shown in FIG. 2, the bell type coating machine 1 used in this example has a rotary atomizing head 2 having a diameter of 50 mm attached to a tip of a tubular rotary shaft 7 of an air motor 6 driven to rotate at a high speed. A paint nozzle 8 for supplying paint to the rotary atomizing head 2 is inserted therein, and a manifold 10 to which a plurality of paint supply hoses and cleaning fluid hoses 9 are connected is provided on the rear end side of the paint nozzle 8. It is installed. The manifold 10 is provided with small-diameter nozzles (not shown) that are individually connected to the hoses 9... And these are inserted and disposed in the paint nozzle 8 in a bundled state. Each of the color paints and the cleaning fluid can be individually supplied to the head 2.

【0027】また、ベル型塗装機1の先端側には、シェ
ーピングエア3を噴き出させる環状のシェーピングエア
噴出用ハウジングHが形成されている。当該ハウジング
Hには、噴出方向を回転霧化頭2の回転方向又は反回転
方向に傾けて渦流3Aを噴出する直径0.5〜1mm程
度の多数の渦流形成孔11A…が環状に形成されると共
に、噴出方向を回転霧化頭2の中心側に傾けて渦流3A
の外側から内側に向けて円錐面状に円錐空気流3Bを噴
出する直径0.5〜1mm程度の多数の円錐空気流形成
孔11B…が環状に形成されており、この渦流3A及び
円錐空気流3Bがシェーピングエア3として作用する。
An annular shaping air jetting housing H for jetting out shaping air 3 is formed at the tip end side of the bell type coating machine 1. A large number of eddy flow forming holes 11A having a diameter of about 0.5 to 1 mm are formed in the housing H in such a manner that the eddy direction is inclined in the rotation direction or the anti-rotation direction of the rotary atomizing head 2 and the eddy flow 3A is ejected. At the same time, the ejection direction is tilted toward the center of the rotary atomizing head 2 and the vortex 3A
A large number of conical air flow forming holes 11B having a diameter of about 0.5 to 1 mm for ejecting a conical air flow 3B in a conical shape from the outside toward the inside are formed in an annular shape, and the vortex flow 3A and the conical air flow are formed. 3B acts as shaping air 3.

【0028】すなわち、渦流3Aは、回転霧化頭2の遠
心力で円周方向に噴射する塗料粒子を被塗物4に指向さ
せるように作用させると同時に、塗装パターン幅をある
程度広げて、且つ、均一な円形に整える作用を有し、さ
らに、回転霧化頭2の端縁近傍に形成されるので塗料の
微粒化に寄与する。
That is, the vortex 3A acts to direct the paint particles, which are sprayed in the circumferential direction by the centrifugal force of the rotary atomizing head 2, toward the object 4, and at the same time, increases the width of the paint pattern to some extent. Has a function of adjusting the shape to a uniform circular shape, and is formed near the edge of the rotary atomizing head 2, which contributes to atomization of the paint.

【0029】なお、渦流形成孔11A…は、回転霧化頭
2の回転軸Xと平行に被塗物4に下ろした直線Vに対し
て回転方向又は反回転方向に所定の捩れ角ω(50°程
度)だけ傾けられると共に、内側に向かって所定角度
(10°程度)傾斜されたスパイラル状に穿設されてお
り、渦流形成孔11Aへのエア供給圧は0〜0.4MP
a程度である。また、渦流形成孔11A…を回転方向に
傾けて形成するよりも、反回転方向に傾けて渦流3Aを
噴き出させたほうが、塗料の微粒化、塗装パターンの円
形性及び均一性に優れる。
The vortex flow forming holes 11A are provided with a predetermined twist angle ω (50) in the rotation direction or the anti-rotation direction with respect to a straight line V lowered on the object 4 in parallel with the rotation axis X of the rotary atomizing head 2. (Degrees) and a predetermined angle (approximately 10 degrees) inward and spirally formed. The air supply pressure to the vortex flow forming hole 11A is 0 to 0.4 MPa.
a. Injecting the swirl 3A in the anti-rotational direction is more excellent in atomization of the paint and the circularity and uniformity of the coating pattern than in forming the swirl flow forming holes 11A in the rotation direction.

【0030】また、円錐空気流3Bは、渦流3Aの外側
から内側に向かう空気流となるので、回転霧化頭2の遠
心力で円周方向に噴射する塗料粒子を被塗物4に指向さ
せると共に、塗装パターン幅Pを絞り込む作用を有す
る。なお、本例では、円錐空気流形成孔11Bの傾き角
θ=20°であり、円錐空気流形成孔11Bへのエア供
給圧は0〜0.5MPa程度である。
Since the conical air flow 3B is an air flow directed from the outside to the inside of the vortex flow 3A, the paint particles ejected in the circumferential direction by the centrifugal force of the rotary atomizing head 2 are directed to the object 4 to be coated. At the same time, it has an action of narrowing the coating pattern width P. In this example, the inclination angle θ of the conical air flow forming hole 11B is 20 °, and the air supply pressure to the conical air flow forming hole 11B is about 0 to 0.5 MPa.

【0031】このようにシェーピングエア3として渦流
3Aと円錐空気流3Bを用いることができるので、塗装
条件に応じてこれらを選択的に使用できる。例えば、塗
装パターン幅Pをそれほど小さくする必要がなく且つ均
一な円形の塗装パターンを形成したい場合には渦流3A
のみをシェーピングエア3として用いればよく、また、
均一な円形の塗装パターンを維持し且つ小さく絞り込む
必要がある場合には円錐空気流3B及び渦流3Aの双方
をシェーピングエア3として用いればよく、さらに、多
少均一性が崩れても塗装パターン幅を絞り込む必要があ
る場合には円錐空気流3Bのみをシェーピングエア3と
して用いればよい。
As described above, since the vortex flow 3A and the conical air flow 3B can be used as the shaping air 3, these can be selectively used according to the coating conditions. For example, when it is not necessary to make the coating pattern width P so small and it is desired to form a uniform circular coating pattern, the vortex 3A
Only shaping air 3 may be used, and
When it is necessary to maintain a uniform circular coating pattern and narrow down the diameter, both the conical air flow 3B and the vortex flow 3A may be used as the shaping air 3, and the width of the coating pattern is narrowed down even if the uniformity is somewhat lost. If necessary, only the conical air flow 3B may be used as the shaping air 3.

【0032】なお、12は、前記シェーピングエア噴出
用ハウジングHと、その内側に取り付けられる回転霧化
頭2との間に生じた空間Sにエアを噴き出して当該空間
S内を陽圧状態にする汚染防止エア噴出口である。ま
た、13は、ベル型塗装機1を覆うように略円筒状のエ
アカーテンを形成することにより、シェーピングエア噴
出用ハウジングHの先端に塗料粒子が付着するのを防ぐ
エアカーテン形成孔である。
Reference numeral 12 denotes an air jet to a space S generated between the shaping air jetting housing H and the rotary atomizing head 2 mounted inside the housing H to make the inside of the space S a positive pressure state. This is a pollution prevention air jet. Reference numeral 13 denotes an air curtain forming hole that forms a substantially cylindrical air curtain so as to cover the bell type coating machine 1 to prevent paint particles from adhering to the tip of the shaping air ejection housing H.

【0033】このベル型塗装機1を用いて、本発明方法
により塗装した場合の作用及び実験結果について説明す
る。回転霧化頭2を10000〜20000rpmで回
転させ、渦流形成孔11Aへ0.03〜0.05MPa、
円錐空気流形成孔11Bへ0〜0.3MPaの圧力でエ
アを供給し、塗料ノズル8を介して任意の色の塗料を1
20〜150cc/minで吐出させると、塗料が回転
霧化頭2の遠心力により微粒化されて、回転霧化頭2の
円周方向に噴射される。
The operation and experimental results when coating is performed by the method of the present invention using the bell type coating machine 1 will be described. The rotary atomizing head 2 is rotated at 10,000 to 20,000 rpm, and 0.03 to 0.05 MPa is supplied to the vortex forming hole 11A.
Air is supplied to the conical air flow forming hole 11B at a pressure of 0 to 0.3 MPa, and paint of any color is
When discharged at 20 to 150 cc / min, the paint is atomized by the centrifugal force of the rotary atomizing head 2 and is sprayed in the circumferential direction of the rotary atomizing head 2.

【0034】この塗料粒子は、図3に示すように、円錐
空気流3B及び渦流3Aからなるシェーピングエア3の
効きにより強制的に被塗物4に指向され、被塗物4の表
面に塗着される。ベル型塗装機1と被塗物4の表面との
間の距離Lを30mm〜100mmの範囲で移動させて
塗装条件を変えながら塗装したところ、ベル型塗装機1
の塗装パターン幅Pが回転霧化頭2の先端径の略2倍に
なるように絞り込み、且つ、シェーピングエア3の被塗
物4の表面における風速が3〜7m/secとしたとき
に、塗料粒子の微粒化状態がよく、塗装品質に優れた塗
膜が得られ、なお且つ、塗着効率に優れていた。このと
き、回転霧化頭2から噴射されて被塗物4の表面に塗着
した塗料粒子は、平均粒径35μm程度に微粒化されて
おり、その塗着効率も65〜90%と非常に高く、この
塗着効率は、実ラインで自動車部品について同等の塗装
品質が得られるように静電塗装する場合と同程度であっ
た。
As shown in FIG. 3, the paint particles are forcibly directed to the object 4 by the effect of the shaping air 3 composed of the conical air flow 3B and the vortex 3A, and are applied to the surface of the object 4. Is done. When the coating was performed while changing the coating conditions by moving the distance L between the bell-type coating machine 1 and the surface of the work 4 in the range of 30 mm to 100 mm, the bell-type coating machine 1
When the coating pattern width P is narrowed down to approximately twice the tip diameter of the rotary atomizing head 2 and the wind speed of the shaping air 3 on the surface of the workpiece 4 is 3 to 7 m / sec, The fine particles were finely divided, and a coating film having excellent coating quality was obtained, and the coating efficiency was excellent. At this time, the paint particles sprayed from the rotary atomizing head 2 and applied to the surface of the object 4 are atomized to an average particle size of about 35 μm, and the application efficiency is very high, 65 to 90%. The coating efficiency was high, and was about the same as the case where electrostatic coating was performed so that equivalent coating quality could be obtained for automotive parts on an actual line.

【0035】なお、回転霧化頭2を高速回転させると、
その遠心力により、ベル型塗装機1の先端に形成された
シェーピングエア噴出用ハウジングHと、その内側に取
り付けられる回転霧化頭2との間に形成される空間Sか
ら流出する空気流が形成され、これに伴い、空間S内が
負圧になりハウジングHに沿って空間S内に流入する空
気流が形成されるので、回転霧化頭2で微粒化された塗
料粒子がその空気流に乗って塗装機1内部に侵入して付
着するおそれがある。このため、塗装するときは、シェ
ーピングエア噴出用ハウジングHから空間S内にエアを
噴き出して、当該空間Sを陽圧状態にすることにより塗
料粒子の侵入を防止している。
When the rotary atomizing head 2 is rotated at a high speed,
Due to the centrifugal force, an air flow flowing out of a space S formed between the shaping air jetting housing H formed at the tip of the bell type coating machine 1 and the rotary atomizing head 2 mounted inside the housing H is formed. Along with this, a negative pressure is generated in the space S, and an air flow flowing into the space S along the housing H is formed, so that the paint particles atomized by the rotary atomizing head 2 are added to the air flow. There is a possibility that the vehicle may get inside and enter the inside of the coating machine 1 and adhere thereto. For this reason, at the time of painting, air is blown out from the shaping air blow-out housing H into the space S to make the space S a positive pressure state, thereby preventing paint particles from entering.

【0036】さらに、シェーピングエア噴出用ハウジン
グHに形成された円錐空気流形成孔11Bから円錐空気
流3Bを勢い良く噴き出すと塗装機1の周囲の空気と共
に、回転霧化頭2近傍に浮遊する塗料粒子が巻き込まれ
て、ハウジングHの先端に付着され、これを放置する
と、先端に付着した塗料が被塗物4上に落下して、ブツ
などの塗装不良を起こすおそれがある。
Further, when the conical air flow 3B is vigorously jetted from the conical air flow forming hole 11B formed in the shaping air jetting housing H, the paint floating near the rotary atomizing head 2 together with the air around the coating machine 1 If the particles are entrained and adhere to the tip of the housing H and left unattended, the paint adhering to the tip may fall onto the object 4 to be coated and cause poor coating such as dust.

【0037】ここで、エアカーテン形成孔13から塗装
機1を覆うように略円筒状のエアカーテンを噴き出す
と、塗装機1の周囲に浮遊する塗料粒子は周囲の空気と
共にエアカーテンに巻きこまれ、エアカーテン形成口1
3近傍の塗装機1外周面に塗料粒子が付着して汚れるこ
とはあっても、ハウジングHの先端に付着することを防
止できるので、塗装不良を起こしにくい。
Here, when a substantially cylindrical air curtain is blown out from the air curtain forming hole 13 so as to cover the coating machine 1, the paint particles floating around the coating machine 1 are wound around the air curtain together with the surrounding air. Air curtain forming port 1
Even if the paint particles adhere to the outer peripheral surface of the coating machine 1 near 3 and become dirty, it is possible to prevent the paint particles from adhering to the front end of the housing H, so that poor coating hardly occurs.

【0038】図4(a)及び(b)は、夫々渦流3Aの
捩れ角ωが50°及び60°のときの塗着効率を示すグ
ラフであって、塗装条件は、距離L及び円錐空気流3B
の供給圧を変化させる以外は、いずれも渦流3Aの供給
圧0.03MPa、回転霧化頭2の回転数15000r
pm、吐出量150cc/min、ベル型塗装機1と被
塗物4の相対直線移動速度800mm/secとした。
FIGS. 4A and 4B are graphs showing the coating efficiency when the torsional angle ω of the vortex 3A is 50 ° and 60 °, respectively. The coating conditions include the distance L and the conical air flow. 3B
Except for changing the supply pressure, the supply pressure of the vortex 3A is 0.03 MPa, and the number of revolutions of the rotary atomizing head 2 is 15000 r.
pm, the discharge rate was 150 cc / min, and the relative linear movement speed between the bell type coating machine 1 and the object 4 was 800 mm / sec.

【0039】図4(a)及び(b)を比較すると、他の
塗装条件が同じであれば、捩れ角ωは小さい方が塗着効
率に優れることがわかる。ただし、捩れ角ω=0°にす
ると渦流3Aの効果がなくなり、シェーピングエア3は
円錐空気流3Bのみが効くので、塗装パターン幅Pがよ
り小さくなりやすい。
4 (a) and 4 (b), it can be seen that, as long as the other coating conditions are the same, the smaller the twist angle ω, the better the coating efficiency. However, when the twist angle ω is set to 0 °, the effect of the vortex flow 3A is lost, and only the conical air flow 3B is effective as the shaping air 3, so that the paint pattern width P tends to be smaller.

【0040】また、図4(a)及び(b)の各例より、
円錐空気流3Bの供給圧及びその他の塗装条件が等しい
ときに距離Lが近いほど塗着効率に優れることがわか
る。ただし、距離Lを小さくしてベル型塗装機1を被塗
物4に近付けすぎると、塗料粒子内の溶剤が十分に揮散
する前に被塗物4に塗着されたり、単位面積当りに塗着
される塗料の量が多くなりすぎたりして、タレなどの塗
装不良を生じやすくなるという問題があるので、均一な
円形の塗装パターンを安定的に形成できる適度な距離L
は30mm以上である。
Further, from each example of FIGS. 4A and 4B,
It can be seen that when the supply pressure of the conical air flow 3B and other coating conditions are equal, the shorter the distance L, the better the coating efficiency. However, if the distance L is reduced and the bell-type coating machine 1 is brought too close to the object 4, the solvent in the coating particles is applied to the object 4 before the solvent is sufficiently volatilized, or is applied per unit area. Since there is a problem that the coating amount to be applied becomes too large and coating defects such as sagging tend to occur, an appropriate distance L for stably forming a uniform circular coating pattern can be obtained.
Is 30 mm or more.

【0041】さらに、捩れ角ωの大小にかかわらず、円
錐空気流3Bの供給圧が0.1MPaのときに最も塗着
効率が高く、渦流3Aの捩れ角ω=50°、距離L=7
0mmのときに、渦流3Aと円錐空気流3Bで形成され
るシェーピングエア3の風速が約5m/secであっ
た。また、いずれの例でも塗着効率は65〜90%であ
り、この塗着効率は、実ラインで自動車部品について同
等の塗装品質が得られるように静電塗装する場合と同程
度であった。
Further, regardless of the magnitude of the twist angle ω, the coating efficiency is highest when the supply pressure of the conical air flow 3B is 0.1 MPa, the twist angle ω of the vortex flow 3A = 50 °, and the distance L = 7.
At 0 mm, the wind speed of the shaping air 3 formed by the vortex 3A and the conical airflow 3B was about 5 m / sec. In each case, the coating efficiency was 65 to 90%, and the coating efficiency was almost the same as that in the case where electrostatic coating was performed so that the same coating quality could be obtained for automobile parts on an actual line.

【0042】さらに、本発明では塗装パターン幅Pを通
常の静電塗装などに比して格段に小さい100mm以下
にしているので、塗料の吐出量を少なくして塗装するこ
ととなるが、塗料の吐出量が少ないと回転霧化頭2の回
転数を低下させても同程度の微粒化状態を得ることがで
きる。このため、回転部分の機械的消耗やエア消費量を
軽減することができるだけでなく、回転数を低下させる
ことにより塗料粒子の飛散が抑えられて塗着効率を向上
させるように作用する。発明者が、回転霧化頭2の回転
数のみを変えて対照実験を行い塗着効率を比較したとこ
ろ、回転数25000rpmのときの塗着効率65%に
対して、回転数15000rpmのときの塗着効率が7
5%であった。
Further, in the present invention, since the coating pattern width P is set to 100 mm or less, which is much smaller than that of ordinary electrostatic coating or the like, the coating amount is reduced with the discharge amount of the coating material. If the discharge amount is small, the same degree of atomization can be obtained even if the rotational speed of the rotary atomizing head 2 is reduced. For this reason, it is possible not only to reduce the mechanical consumption and the air consumption of the rotating part, but also to reduce the number of rotations, thereby suppressing the scattering of the paint particles and acting to improve the coating efficiency. The inventor performed a control experiment by changing only the rotation speed of the rotary atomizing head 2 and compared the coating efficiencies. As a result, the coating efficiency at a rotation speed of 15,000 rpm was compared with the coating efficiency of 65% at a rotation speed of 25,000 rpm. 7 wearing efficiency
5%.

【0043】なお、シェ−ピングエア3となる渦流3A
の捩れ角ωや円錐空気流3Bの内傾角θ、これらの供給
圧、塗料の吐出量、回転霧化頭の先端径及び回転数など
の塗装条件は上述に限るものではなく、ベル型塗装機1
と被塗物4の表面との間の距離Lを100mm以下に保
持したときに、シェーピングエア3によって、被塗物4
の表面におけるベル型塗装機1の塗装パターン幅Pを回
転霧化頭2の先端径の略2倍以下に絞り込むことがで
き、さらに、被塗物4の表面におけるシェーピングエア
3の風速が秒速7m以下となる条件が満たされていれば
良い。例えば、上述の条件が満たされるのであれば、シ
ェーピングエア3として渦流3Aや円錐空気流3Bでは
なく、回転霧化頭2の周囲から被塗物4の表面に向かっ
て円筒状に噴出す空気流を用いても良い。
The vortex 3A serving as the shaping air 3
The coating conditions such as the torsion angle ω and the incline angle θ of the conical air flow 3B, the supply pressure thereof, the amount of paint discharged, the tip diameter of the rotary atomizing head and the number of rotations are not limited to those described above, and a bell type coating machine is used. 1
When the distance L between the object and the surface of the object 4 is kept at 100 mm or less, the object
The width P of the coating pattern of the bell type coating machine 1 on the surface of the workpiece 1 can be narrowed to approximately twice or less the diameter of the tip of the rotary atomizing head 2, and the wind speed of the shaping air 3 on the surface of the workpiece 4 is 7 m / s. It suffices if the following conditions are satisfied. For example, if the above-described conditions are satisfied, the shaping air 3 is not the vortex flow 3A or the conical air flow 3B, but the air flow that is jetted cylindrically from around the rotary atomizing head 2 toward the surface of the object 4 to be coated. May be used.

【0044】[0044]

【発明の効果】以上述べたように、本発明方法によれ
ば、ベル型塗装機を被塗物に近接させてシェーピングエ
アによりベル型塗装機の回転霧化頭の円周方向に噴射し
た塗料粒子を被塗物方向へ指向させ、回転霧化頭の先端
系の2倍以下の塗装パターンで塗装することにより、静
電界を作らなくても、高い塗着効率で塗料粒子を被塗物
の表面に塗着させることができるので、高圧発生器や絶
縁設備を不要とし、導電性プライマー層を形成する面倒
を解消することができるという大変優れた効果を奏す
る。
As described above, according to the method of the present invention, the paint sprayed in the circumferential direction of the rotary atomizing head of the bell painter by shaping air by bringing the bell painter close to the object to be coated. By directing the particles in the direction of the object to be coated and applying a coating pattern that is less than twice the tip system of the rotary atomizing head, the coating particles can be applied with high coating efficiency without creating an electrostatic field. Since it can be applied to the surface, a high pressure generator and insulating equipment are not required, and a very excellent effect that the trouble of forming the conductive primer layer can be eliminated can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る塗装方法の一例を示す図。FIG. 1 is a diagram showing an example of a coating method according to the present invention.

【図2】本発明方法に用いたベル型塗装機の一例を示す
図。
FIG. 2 is a view showing an example of a bell type coating machine used in the method of the present invention.

【図3】シェーピングエアと塗装パターンの関係を示す
模式図。
FIG. 3 is a schematic diagram showing a relationship between shaping air and a coating pattern.

【図4】塗着効率を示すグラフ。FIG. 4 is a graph showing coating efficiency.

【符号の説明】[Explanation of symbols]

1………ベル型塗装機 2………回転霧化頭 3………シェーピングエア 3A……渦流 3B……円錐空気流 4………被塗物 L………距離 P………塗装パターン幅 6………エアモータ 7………管状回転軸 8………塗料ノズル 9………塗料供給ホース 10………色替装置 11A……渦流形成孔 11B……円錐空気流形成孔 H………シェーピングエア噴出用ハウジング S………空間 1 ... Bell type coating machine 2 ... Rotary atomizing head 3 ... Shaping air 3A ... Swirl 3B ... Conical air flow 4 ... Coating object L ... Distance P ... Coating pattern Width 6 Air motor 7 Tubular rotary shaft 8 Paint nozzle 9 Paint supply hose 10 Color changing device 11A Swirl flow forming hole 11B Conical air flow forming hole H … Housing for ejecting shaping air S ……… Space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成 瀬 知 明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 佐 藤 泰 愛知県豊田市柿本町一丁目9番地 トリニ ティ工業株式会社内 (72)発明者 市 村 誠 愛知県豊田市柿本町一丁目9番地 トリニ ティ工業株式会社内 Fターム(参考) 4D075 AA08 AA23 AA84 AA85 CA47 DC12 DC13 DC18 4F033 AA01 BA03 CA01 DA01 EA01 LA02 PA11 PB16 PD06  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomoaki Naruse 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Inventor Yasushi Yasushi 1-9-9 Kakimotocho Toyota City, Aichi Prefecture Trinity Within Industrial Co., Ltd. (72) Inventor Makoto Ichimura 1-9-9 Kakimotocho, Toyota-shi, Aichi F-term within Trinity Industrial Co., Ltd. 4D075 AA08 AA23 AA84 AA85 CA47 DC12 DC13 DC18 4F033 AA01 BA03 CA01 DA01 EA01 LA02 PA11 PB16 PD06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】高速回転するベル型の回転霧化頭に供給さ
れた塗料を該回転霧化頭の先端部から遠心力で微粒化し
て該回転霧化頭の円周方向に噴射すると同時に、その噴
射した塗料粒子を該回転霧化頭の周囲から噴出するシェ
ーピングエアのみで被塗物方向へ指向させるベル型塗装
機を用いた非静電式の塗装方法であって、前記ベル型塗
装機(1)と該塗装機で塗装する被塗物(4)の表面と
の間の距離(L)を100mm以下に保持し、前記シェ
ーピングエア(3)によって、被塗物(4)の表面にお
ける前記ベル型塗装機(1)の塗装パターン幅(P)を
前記回転霧化頭(2)の先端径の略2倍以下に絞り込む
と共に、被塗物(4)の表面における前記シェーピング
エア(3)の風速が秒速7m以下となるように該シェー
ピングエア(3)のエア圧を設定することを特徴とする
塗装方法。
1. The method of claim 1, wherein the paint supplied to the high-speed rotating bell-shaped rotary atomizing head is atomized from the tip of the rotary atomizing head by centrifugal force and sprayed in the circumferential direction of the rotary atomizing head. A non-electrostatic coating method using a bell-type coating machine in which the sprayed paint particles are directed toward an object to be coated only by shaping air ejected from around the rotary atomizing head, wherein the bell-type coating machine is used. The distance (L) between (1) and the surface of the object (4) to be coated by the coating machine is kept at 100 mm or less, and the shaping air (3) is used to adjust the distance (L) on the surface of the object (4). The coating pattern width (P) of the bell type coating machine (1) is narrowed down to approximately twice or less the tip diameter of the rotary atomizing head (2), and the shaping air (3) on the surface of the workpiece (4) is reduced. ) So that the wind speed of the shaping air (3) is 7 m / s or less. Coating method characterized by setting the air pressure.
【請求項2】前記シェーピングエア(3)として、噴出
方向が回転霧化頭(2)の回転方向又は反回転方向に傾
けられて回転霧化頭(2)の周囲から渦状に噴出される
渦流(3A)と、噴出方向が回転霧化頭(2)の中心側
に傾けられて回転霧化頭(2)の周囲から円錐面状に噴
出される円錐空気流(3B)のいずれか一方を用いる請
求項1記載の塗装方法。
2. A vortex as the shaping air (3), the jetting direction of which is inclined in the direction of rotation of the rotary atomizing head (2) or in the counter-rotating direction, and is vortexly jetted from around the rotary atomizing head (2). (3A) and one of the conical air flow (3B) in which the ejection direction is inclined toward the center of the rotary atomizing head (2) and is ejected in a conical shape from the periphery of the rotary atomizing head (2). The coating method according to claim 1, which is used.
【請求項3】前記シェーピングエア(3)として、噴出
方向が回転霧化頭(2)の回転方向又は反回転方向に傾
けられて回転霧化頭(2)の周囲から渦状に噴出される
渦流(3A)と、噴出方向を回転霧化頭(2)の中心側
に傾けて前記渦流(3A)の外側から内側に向けて円錐
面状に噴出される円錐空気流(3B)の双方を用いる請
求項1記載の塗装方法。
3. A vortex which is jetted from the periphery of the rotary atomizing head (2) as the shaping air (3) in a direction in which the jetting direction is inclined in the rotational direction or the anti-rotational direction of the rotary atomizing head (2). (3A) and a conical air flow (3B) that is ejected in a conical shape from the outside to the inside of the vortex (3A) with the ejection direction inclined toward the center of the rotary atomizing head (2). The coating method according to claim 1.
【請求項4】前記渦流(3A)を回転霧化頭(2)の回
転方向又は反回転方向に10°以上60°以下の角度に
傾けて噴出させ、円錐空気流(3B)を回転霧化頭
(2)の中心側に10°以上40°以下の角度に傾けて
噴出させる請求項2又は3記載の塗装方法。
4. The conical air stream (3B) is rotated and atomized by inclining the conical air stream (3B) at an angle of 10 ° or more and 60 ° or less in the rotation direction or the anti-rotation direction of the rotary atomization head (2). The coating method according to claim 2 or 3, wherein the head (2) is ejected toward the center side at an angle of 10 ° or more and 40 ° or less.
【請求項5】前記ベル型塗装機(1)で塗装する際に、
その先端に形成された環状のシェーピングエア噴出用ハ
ウジング(H)とその内側に取り付けられる回転霧化頭
(2)との間に生じた空間(S)にエアを噴き出して当
該空間(S)内を陽圧状態にする請求項1乃至4記載の
塗装方法。
5. The method of coating with the bell type coating machine (1),
Air is blown into the space (S) generated between the annular shaping air blowing housing (H) formed at the tip and the rotary atomizing head (2) attached inside the housing (H), and the inside of the space (S) is blown. The coating method according to any one of claims 1 to 4, wherein the pressure is set to a positive pressure.
【請求項6】前記ベル型塗装機(1)で塗装する際に、
その後方から先端側に向かってベル型塗装機(1)を覆
う略円筒状のエアカーテンを形成する請求項1乃至5記
載の塗装方法。
6. The method of coating with the bell type coating machine (1),
The coating method according to any one of claims 1 to 5, wherein a substantially cylindrical air curtain is formed to cover the bell-shaped coating machine (1) from a rear side toward a tip side.
JP2001026031A 2001-02-01 2001-02-01 Coating method Pending JP2002224611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026031A JP2002224611A (en) 2001-02-01 2001-02-01 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026031A JP2002224611A (en) 2001-02-01 2001-02-01 Coating method

Publications (1)

Publication Number Publication Date
JP2002224611A true JP2002224611A (en) 2002-08-13

Family

ID=18890923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026031A Pending JP2002224611A (en) 2001-02-01 2001-02-01 Coating method

Country Status (1)

Country Link
JP (1) JP2002224611A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021328A (en) * 2005-07-14 2007-02-01 Trinity Ind Corp Coater
JP2007289875A (en) * 2006-04-26 2007-11-08 Trinity Ind Corp Coating machine
WO2008095657A1 (en) * 2007-02-09 2008-08-14 Dürr Systems GmbH Deflecting air ring and corresponding coating process
WO2009112932A1 (en) * 2008-03-12 2009-09-17 Ransburg Industrial Finishing K.K. Rotary atomizer and coating pattern control method
JP2010036091A (en) * 2008-08-04 2010-02-18 Asahi Sunac Corp Rotary spray coater, and coating method using the same
JP2010528854A (en) * 2007-06-13 2010-08-26 サム テクノロジーズ Rotating sprayer for spraying coating material and apparatus comprising the sprayer
JP2012115736A (en) * 2010-11-29 2012-06-21 Toyota Motor Corp Rotary atomizing coating device and coating method by the rotary atomizing coating device
WO2013065746A1 (en) * 2011-10-31 2013-05-10 Hoya株式会社 Spectacle lens and method for producing same
US8720797B2 (en) 2007-05-24 2014-05-13 Toyota Jidosha Kabushiki Kaisha Rotary atomizing head, rotary atomization coating apparatus, and rotary atomization coating method
US8794177B2 (en) 2011-08-12 2014-08-05 Honda Motor Co., Ltd. Coating method and coating apparatus
CN116732993A (en) * 2023-08-15 2023-09-12 成都理工大学 Air-adjusting type concrete spraying device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021328A (en) * 2005-07-14 2007-02-01 Trinity Ind Corp Coater
JP4621085B2 (en) * 2005-07-14 2011-01-26 トリニティ工業株式会社 Painting machine
JP2007289875A (en) * 2006-04-26 2007-11-08 Trinity Ind Corp Coating machine
US8481124B2 (en) 2007-02-09 2013-07-09 Durr Systems Gmbh Deflecting air ring and corresponding coating process
WO2008095657A1 (en) * 2007-02-09 2008-08-14 Dürr Systems GmbH Deflecting air ring and corresponding coating process
EP2121197B1 (en) 2007-02-09 2016-09-14 Dürr Systems GmbH Deflecting air ring and corresponding coating process
US8642131B2 (en) 2007-02-09 2014-02-04 Durr Systems Gmbh Deflecting air ring and corresponding coating process
US8720797B2 (en) 2007-05-24 2014-05-13 Toyota Jidosha Kabushiki Kaisha Rotary atomizing head, rotary atomization coating apparatus, and rotary atomization coating method
JP2010528854A (en) * 2007-06-13 2010-08-26 サム テクノロジーズ Rotating sprayer for spraying coating material and apparatus comprising the sprayer
JP2009214065A (en) * 2008-03-12 2009-09-24 Ransburg Ind Kk Rotary electrostatic coating apparatus and coating pattern control method
US8490572B2 (en) 2008-03-12 2013-07-23 Michio Mitsui Rotary atomizer and coating pattern control method
WO2009112932A1 (en) * 2008-03-12 2009-09-17 Ransburg Industrial Finishing K.K. Rotary atomizer and coating pattern control method
JP2010036091A (en) * 2008-08-04 2010-02-18 Asahi Sunac Corp Rotary spray coater, and coating method using the same
JP2012115736A (en) * 2010-11-29 2012-06-21 Toyota Motor Corp Rotary atomizing coating device and coating method by the rotary atomizing coating device
US8794177B2 (en) 2011-08-12 2014-08-05 Honda Motor Co., Ltd. Coating method and coating apparatus
WO2013065746A1 (en) * 2011-10-31 2013-05-10 Hoya株式会社 Spectacle lens and method for producing same
JPWO2013065746A1 (en) * 2011-10-31 2015-04-02 Hoya株式会社 Eyeglass lens and manufacturing method thereof
CN116732993A (en) * 2023-08-15 2023-09-12 成都理工大学 Air-adjusting type concrete spraying device
CN116732993B (en) * 2023-08-15 2023-10-13 成都理工大学 Air-adjusting type concrete spraying device

Similar Documents

Publication Publication Date Title
JP4428973B2 (en) Rotating atomizing coating apparatus and coating method
US7611069B2 (en) Apparatus and method for a rotary atomizer with improved pattern control
JP2011524801A (en) General purpose atomizer
JP3254828B2 (en) Rotary atomization electrostatic coating method and apparatus
JP2002224611A (en) Coating method
JP3473718B2 (en) Rotary atomization electrostatic coating method and apparatus
JP6005497B2 (en) Rotary atomizing head type coating machine
WO2007000853A1 (en) Bell type coating device
US7137573B2 (en) Rotary atomization coating apparatus
JPH0871455A (en) Rotary atomization electrostatic coater
JP4194911B2 (en) Coating method and coating apparatus
JPH0985134A (en) Rotary atomizing electrostatic coating method and device therefor
JP4954488B2 (en) Atomization coating machine
JPH07251099A (en) Method for electrostatic coating and apparatus therefor
JP3753646B2 (en) Rotary atomizing coating equipment
JP2531066B2 (en) Rotation atomization electrostatic coating method
JPH07265746A (en) Method and apparatus for electrostatic coating by rotary atomization
JP2567072B2 (en) Rotary atomizing coating device
JPH09239297A (en) Method of rotary atomization electrostatic coating and device therefor
JP6634532B2 (en) Vehicle body coating method and vehicle body coating system
JPS58104656A (en) Rotary atomizing type electrostatic painting apparatus
JPH06134353A (en) Electrostatic coater
JP5474638B2 (en) Electrostatic coating method
JP7449438B1 (en) Rotating atomizing head type paint machine
US20240050965A1 (en) Rotary atomizing head-type sprayer and electrostatic painting apparatus